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Abstract We present the design and implementation of a vision based autonomous landing
algorithm using a downward looking camera. To demonstrate the efficacy of our algorithms
we emulate the dynamics of the ship-deck, for various sea states and different ships using
a six degrees of freedom motion platform. We then present the design and implementation
of our robust computer vision system to measure the pose of the shipdeck with respect to
the vehicle. A Kalman filter is used in conjunction with our vision system to ensure the
robustness of the estimates. We demonstrate the accuracy and robustness of our system to
occlusions, variation in intensity, etc. using our testbed.
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1 Introduction

In recent years, considerable resources have been devoted to the design, development and
operation of Unmanned Aerial Vehicles (UAVs). The applications of such UAVs are diverse,
ranging from scientific exploration and data collection, to provision of commercial services,
military reconnaissance, and intelligence gathering. Other areas include law enforcement,
search and rescue, and even entertainment. UAVs, particularly ones with vertical take-off
and landing capabilities (VTOL), enable difficult tasks without endangering the life of hu-
man pilots. This potentially results in cost and size savings as well as increased operational
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capabilities and performance. Currently the capabilities of such UAVs are limited. A heli-
copter is a compact VTOL capable platform extremely manoeuvrable.

The autonomous landing of VTOL UAVs is a very important capability for autonomous
systems, and is useful for various tasks as search and rescue, law enforcement, and military
scenarios. Our challenge is to provide the UAVs with the capability of autonomously land
on ship deck platforms in extreme weather conditions.

Autonomous landing on a fixed platform has been studied since the emergence of Un-
manned Aerial Vehicles (UAVs) and some existing solutions are provided [1], [2].

Various approaches to the problem of landing on moving targets have been studied.
Some of them are on two degree of freedom platforms [3] or a simple moving platform [4],
[5].

However, autonomously landing on a ship deck platform continues to be studied, and
has only recently been solved for very favourable weather conditions [6], [7], [8], [9].

Computer Vision for landing has also been extensively studied. [1], [2], [3], [4], [5],
[10] give a good overview and various applications of vision but none of them focus on
the problem of landing an UAV on a 6 degree of freedom (DoF) moving platform. Various
authors have focussed on the landing problem using special markers or helipad1 structures
[11], [12], [13].

The movement of a ship at Sea is due to the effect of the wave motion. The typical
environmental conditions attributed to waves are grouped into several Sea States [8] (see
table 1).

Sea State Description Significant Wave Height (m)
0 Calm (glassy) 0.0
1 Calm (ripples) 0.0 - 0.1
2 Smooth (wavelets) 0.1 - 0.5
3 Slight 0.5 - 1.25
4 Moderate 1.25 - 2.5
5 Rough 2.4 - 4.0
6 Very Rough 4.0 - 6.0
7 High 6.0 - 9.0
8 Very High 9.0 - 14.0
9 Phenomenal Over 14

Table 1 Sea State Parameters. The Significant Wave Height is defined as the average value of the height
(vertical distance between trough and crest) of the largest 1/3 of the waves present. The waves are modelled
as sinusoidal function.

The ship can be modelled as a rigid body moving in the sea with six degrees of freedom,
figure 1 (see [14]). Its movement in the sea depends on the Sea State, the physical parameters
of the ship, and the wave direction.

Some authors use sinusoidal functions with a fixed amplitude and frequency only for
heave movement [15]. Others use sinusoidal functions for every degree of freedom [9].
Finally, others define a different heave movement function [16]. None of these authors take
into account the ship model or Sea State.

1 In the paper, the word ”heliport” is used to refer to the surface to land, and the word ”helipad” to refer to
the drawings painted on the heliport.
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Fig. 1 Standard notation and sign conventions for ship motion description.

If we want to simulate the ship model, we can use physical models as the one used in
games [17]; or control applications [14] or [7]. Unfortunately, these models are too complex,
not realistic enough, and need additional ship parameters.

To consider the ship model in the simplest form, a register of sailing data [18] could be
used to calculate the model [19]. With this approach, the Sea State and wave direction are
ignored.

A better approach is the use of a simple physical model that consists of a sinusoidal
function for each degree of freedom, whose parameters depend on the Sea state, wave di-
rection, and of course the ship [8]. However, this approach is not random enough for our
problem because each degree of freedom moves periodically.

The paper is organized as follows: in section ”System Description” a system and equip-
ment description is developed; the ship deck simulation is explained in section ”Ship Deck
Simulation”; section ”Computer Vision System” describes how the computer vision system
works; the state estimator is explained in section ”State Estimation: Kalman Filter”; results
of the whole system are described in section ”Results”; finally, section ”Conclusion and
future work” concludes the paper.

2 System Description

The VTOL UAV proposed to be used in our study is a Rotomotion Inc, SR200 (figure 2).
This helicopter is equipped with an autopilot, an inertial measure unit (IMU), a GPS sensor,

Fig. 2 Rotomotion SR 200 Gas powered Helicopter. Length: 2790 mm; Width: 760 mm; Height: 860 mm;
Main Rotor Diameter: 3000 mm; Endurance: Up to 5 hours; and Maximum Payload: 22.7 kg

and a small onboard computer that simplifies the control task and is ideal for the develop-
ment of autonomous capabilities for UAVs.
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A white H surrounded by a white circle (figure 3) is painted on the heliport surface.
These marks are the most extended marks to indicate the presence of a heliport surface.

Fig. 3 Helipad Marks used in our application. They are typical marks.

To detect the heliport, and to measure its pose with respect to the helicopter’s pose, we
propose to use a single downward looking colour camera computer vision system (a single
camera with three channels: RGB). We selected the single camera system instead of a stereo
pair because we assume that the size of the square landing platform is known, and because
stereo requires a very large baseline. As such, the 3-D reconstruction could be calculated
using the platform model and the camera calibration parameters (see section ”Computer
Vision System”). The helicopter is also equipped with SONAR sensors that return the mea-
surements of the distance to the floor when the helicopter is really close to it. These sensors
allow us to detect the heliport pose in the very last stage of the landing when the helicopter
is so near to the heliport that the computer vision system is not able to detect the marks.

3 Ship Deck Simulation

We simulate the movement of the ship deck on the Sea, using a Servos and Simulation
Inc, Generic Motion System (model 710-6-500-220) with a 2.44× 2.44m2 gray surface as
heliport (figure 4).

Fig. 4 Servos and Simulation Inc, 710-6-500-220 Generic Motion System. Number of axis: 6; Height: 48.6
cm; Floor Platform: 66×68.6cm2; Power: 220 VAC @ 20 A; Payload: 226.8 kg; Max. Roll (x): ±13°; Max.
Pitch (y): ±15°; Max. Yaw (z): ±16°; Max. Surge (x): ±10.2cm; Max. Sway (y): ±10.2cm; and Max. Heave
(z): ±6.4cm

Our approach for the ship deck motion simulation is an improvement of [8]. We propose
a uniform random generation for the amplitude of each sinusoidal movement based on how
the amplitude data corresponds to the top 1/10 waves. To obtain a continuous and deriv-
able movement, we interpolate between two different sinusoidal function with a 5 degree
polynomial.

Using MATLAB to achieve the ship simulation, we obtain, for a Sea State of 6, a Wave
Direction of 60°, and a Oliver Hazard Perry Class FFG Frigate, the following plots (figures
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5, 6 and 7). The shape of these plots looks similar to the available plots of ship movements
in [18].
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Fig. 5 Position of surge (x, blue), sway (y, red) and heave (z, green) of the simulated ship’s Center of Gravity.
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Fig. 6 Euler angles of the simulated ship: Roll (blue), Pitch (red) and Yaw (green).

Once the ship simulation is calculated, because of our platform motion is smaller than
the real ship’s (figure 4), and our helicopter is smaller than its manned counterpart (figure 2),
the entire system has to be scaled down. The approach that we choose for the scaling consist
on scale only the amplitudes of the movement of each DoF. We scale down the position DoF
(x, y, and z) multiplying the simulated amplitude by the coefficient 1/90, and the angles
(Yaw, Pitch, and Roll) by 1/3. While the scaling function is not realistic, it ensures that
position and attitude are not being distorted and the platform is being used to the maximum
extent possible.

The following step in the ship deck simulation is the calculation of the motor inputs
of our platform through the Inverse Kinematics (figure 10) using the scaled ship simulation
movement as the desired movement of our motion platform (figure 9). According to [20], we
use the equation 1, defining a fixed reference system (attached to the bottom of the motion
platform) and a mobile reference system (attached to the mobile part of the platform), to
calculate the inverse kinematics:

Li = ‖Or +ORp ·Pbi−Oai‖ (1)
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Fig. 7 Position of surge (x, blue), sway (y, red) and Heave (z, green) of the Center of the landing Deck of the
simulated ship.

Where Li is the longitude of the bar i of the motion platform; Or = [x,y,z]t is the desired
position of the mobile reference system respect to the fixed one; ORp is the 3-by-3 rotation
matrix of the desired attitude of the mobile reference system respect to the fixed one; Pbi
is the 3-by-1 vector of the position of the side of the bar i fixed to the mobile part of the
platform, in coordinates of the mobile reference system; Oai is the 3-by-1 vector of the
position of the side of the bar i moved by the motor i, respect to the fixed reference system.
Oai depends on the motor input qi that is the unknown of the equation; and i = 1..6 indicates
the number of the bar of the motion platform (see figure 8).

Fig. 8 Generic 6 DoF parallel robot.

When equation 1 has no solution inside the compatible values of qi, a singular configu-
ration is achieved. If that happens, we calculate the value that minimizes equation 1 that is
the nearest achievable pose by the platform respect to the desired one.
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Fig. 9 Desired motion of our motion platform, for the ship simulation described in figures 5, 6 and 7. In red,
points of singular configuration that are not achievable by our platform; in blue achievable points.
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Fig. 10 Motor inputs (Volts). Blue solid line, motor inputs before filtering for the desired movement described
in figure 9; red dash line, motor inputs after filtering.

The last step is the filtering of the calculated inputs in order to limit the speeds and
accelerations because the inverse kinematics calculation does not take them into account
(figure 10).

4 Computer Vision System

In order to measure the pose of the Landing Platform, we use a single downward looking
camera computer vision system on board the helicopter as described in section ”System
Description”.

As the helipad has no image descriptors (like SURF features), the detection and the
tracking cannot be based on matching them with a previously known template. We have to
use other features of the helipad, like the color or the marks (an H surrounded by a circle).

The computer vision algorithm has the following steps described below:

1. Image Acquisition and Preprocessing.
2. Heliport Zone Extraction.
3. Helipad Marks Extraction.
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4. Heliport 3D Reconstruction.

The computer vision algorithm has been developed maximizing its accuracy, perfor-
mance and robustness. We tried to avoid false positives using a very long decision tree. A
false negative (no measure when it has to be measured) is better than a false positive (a wrong
measurement), because the state estimator (section ”State Estimation: Kalman Filter”) can
manage it more easily.

4.1 Image Acquisition and Preprocessing

To start with the computer vision algorithm, the colour image is acquired (figure 11). The
camera gives the image in the RGB (Red-Green-Blue) colour space. Then, the image is
converted to an intensity image and to the HSV (Hue-Saturation-Value) colour space. Both
images are preprocessed with a mean filter and then, with a opening morphological trans-
formation [21]. With this image preprocessing we are preparing the image to the following
steps. If the preprocessing would not be done, the computer vision algorithm would work
slower and with less accuracy, performance and robustness.

Fig. 11 Example of an Acquired Image

4.2 Heliport Zone Extraction

In this step, we work with the preprocessed HSV colour image. A colour thresholding is
done to get a binary image with the gray pixels of the heliport. This binary image also
requires a preprocessing step, that consist on a median filter followed by an opening mor-
phological transformation. Then, the blobs are extracted and the small ones are deleted. With
all these preprocessing, we clear all the noise and small regions. Finally, the blobs are filled
in and an OR logical transformation is done to get a whole binary image that represent the
candidate pixels to belong to the heliport. Note that the heliport zone extraction give us not
only the gray pixels, but also the white ones of the H and circle marks because of the blob’s
filled in that we did. Note also, that this step gives also other gray regions that can be visible
in the image, giving us some false positives that we will filter in the next stages.

4.3 Helipad Marks Extraction

To start with this stage, we element-by-element multiply the intensity image obtained in the
first step described and the binary output image of the previous section, getting figure 12.
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This resulting image is thresholded looking for the white pixels of the heliport marks (the
H and the circle). In order to remove noise and prepare this binary image, it is preprocessed
with a median filter and an opening morphological transformation. Then, the resulting blobs
are calculated, filtering those with small area (figure 13). The segmentation steps ends, and
the classification step starts.

Fig. 12 Example of an Intensity Image after Heli-
port Extraction

Fig. 13 Example of a Threshold Image, ready for
look for Heliport Marks

The classification is done with a decision tree, where, each level gives some false pos-
itives, however, at the end of the tree, we will have one single solution. With this method-
ology, the speed and specially the accuracy of the computer vision algorithm is improved.
In the first stages, an individual classification for Hs and circles is done. Then, we use both
candidates (if found) to classify and verify them.

The first level is a fast classification using the Euler number (Euler number = connected
components − number of holes) of each blob. H blobs have an Euler number equal to zero,
and circle blobs’ Euler number is one. Blobs with different Euler numbers are discarded.
The Euler number is a scale, translation, rotation and homography invariant feature. The
second level is a classification with a multi-layer perceptron (MLP) artificial neural network
(ANN) with ten neurons in the hidden layer, tree outputs (H candidate, O candidate and
other) and five inputs (see figure 14). The inputs are obtained with a principal component
analyse (PCA) applied to the first seven invariant Hu Moments of each blob. Hu Moments
are invariant to scaling, translation and rotation and are frequently used in Optical Character
Recognition (OCR), [22], [23], [24]. Homography modifies a little these features, but they
can be used in our decision tree. As the H has more information than the circle (because it is
less symmetrical that the circle), we can use it in the third classification level. This third level
uses the signature of the H candidates. The signature is invariant to rotation and translation;
it preserves its shape to scaling; and some features of the shape (relative maximum and
minimum) are preserved to homography. The H signature has four relative maximum and
four relative minimum. The four maximum are the external corners of the H; and the four
minimum are the bisectrix of the horizontal segment (above and below the centroid), and
the bisectrix of the vertical segments (the external points). Because of its symmetry, if we
connect the four maximum, we have a quadrilateral polygon whose center should be near to
the centroid of the H blob. The same phenomenon appears with the minimum. The fourth
level in our tree checks is the fact that all these three centers (center of maximum, center
of minimum and centroid) have to be near in the image (distances in pixels have to be
small). The fifth level checks the distance between the vertical straight lines of the maximum
(vertical segment of the H) and the points of the minimum that should be in the vertical
segment of the H. This distance has to be small (ideally zero).
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Fig. 14 Multi-layer perceptron (MLP) artificial neural network (ANN) with ten neurons in the hidden layer,
tree outputs (H candidate, O candidate and other) and five inputs, used in the second level of the classification
tree.

Hitherto, our classification tree uses only individual features to achieve its task. Now,
we have to select only one H blob and one circle blob among all the resulting candidates
that have to be compatible both together. The sixth level is based on the knowledge that the
H has to be inside the circle. The seventh and last level calculates the coefficient between
the area of the H and the area of the circle, which should be, more or less, a constant value.
In these two last levels all H and circle blob candidates are tested, discarding those that do
not satisfy the conditions checked in these last levels.

At the end of this step, we have the helipad marks (H and circle) extracted of the image
(figures 15 and 16).

Fig. 15 Example of Circle selected blob Fig. 16 Example of a H selected blob

4.4 Heliport 3D Reconstruction

The last step in the computer vision algorithm has to give us the 3D pose of the heliport with
respect to the camera (on-board the helicopter). With the corners of the H of the helipad
in the image (obtained thanks to its signature), we can calculate the homography matrix
between these points of the image and the same points in a predefined target image. Then,
using the homography matrix, we calculate the corners of the heliport knowing where are
the corners in the target image (figure 17).

Once we have the corners of the heliport in the image, the 3D reconstruction has to be
performed (figure 18). The reconstruction is based on the pin-hole camera model (equations
2 and 3, been i = 1..4), the square and known platform model (equation 4, been i, j =
1..4 and i 6= j; and equation 5, been i, j,k = 1..4 and i 6= j 6= k). The camera has to be
previously calibrated (focal distance f , scale factors Kx and Ky and principal point Cx and
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Cy, no distortion is assumed).

xi · f ·Kx− (x f i−Cx) · zi = 0 (2)

yi · f ·Ky− (y f i−Cy) · zi = 0 (3)

||xi−x j|| = Li j (4)

(xi−x j) · (x j−xk) = 0 (5)

Where xi = [xi,yi,zi]
t are the 3D coordinates of the point i in the central coordinate system,

and x f i and y f i is the 2D coordinate of the point i in the camera lateral coordinate system.

Fig. 17 Example of Output Image after the com-
puter vision algorithm. In green, the heliport. In red,
the H corners (maximum of signature). In purple, the
minimum of the H signature
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Fig. 18 Example of 3D reconstruction after the
computer vision algorithm. The camera is fixed in
the point (0, 0, 0), looking downwards

5 State Estimation: Kalman Filter

In order to manage the measurements of the computer vision system, filtering the noise
and calculating the pose of the heliport even when measurements are not available, a state
estimator is needed.

In our problem we can see three coordinate systems: the first one, the World frame, fixed
to the ground; the helicopter frame, fixed to the camera on-board the helicopter; and the last
one, the heliport frame, fixed to the landing platform. The movement of the helicopter with
respect to the World is modelled thanks to the helicopter model, and can be measured thanks
to the IMU and GPS. The movement of the landing platform with respect to the World is
unpredictable and we have no measure of it, but we have the measure of the movement of the
helicopter with respect to the landing platform (the output of the computer vision system).
If we assume that we have a good estimation of the pose of the helicopter frame, we can
transform the computer vision measure into a measure between the World frame and the
landing platform. With this transformation, we decouple the models (but not the measures),
and it is easier to define them.

As the movement of the ship deck platform with respect to the World frame is unpre-
dictable, we cannot assume a model to estimate its pose. We define the following model:

d5xi

dt5 = 0 (6)

Where xi is the position of each DoF (x, y, z, θ , ψ , φ ) of the landing platform.
With this model, an Extended Kalman Filter is implemented to obtain the pose of the

heliport, using the computer vision measurements and knowing the state of the helicopter.
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6 Results

In this section, some examples of the results of previous sections are shown. More results
and videos are available at http://www.vision4uav.com/?q=jlsanchez/research.

6.1 Computer Vision System

The computer vision system performance depends on different parameters:

- The camera selected: the resolution is a key factor in the detection step, and the param-
eters Cx, Cy, Kx, and Ky affect on the 3D reconstruction algorithm.

- The lens selected: with the resolution of the camera, is the other key factor in the detec-
tion step. Also, the f factor affects on the 3D reconstruction.

- The computer used: the framerate of the computer vision algorithm depends on the
computer used.

Because of the ship deck platform is inside the lab, to test the computer vision, we
additionally use a 19 cm x 19 cm scaled version of the heliport that allows us to test the
computer vision system in an easy way. Of course, the lens is scaled too. The selected
camera is a Point Gray Inc, Chameleon USB color camera (model CMLN-13S2C-CS), that
can work with a resolution of 640 x 480 pixels at a rate of 24 frames per second (fps). The
lens used is a FUJINON (model YV5x2.7R4B-2) with a focal length between 2.7 mm and
13.5 mm, which means an angle of view between 99°x 74°and 20°x 15°. With this lens we
can test our algorithm in different situations. We set the lens in a way that we were able to see
our scaled helipad in a range distance between around 0.4 m and 1.5 m, that means between
2 and 8 times the size of the test helipad. For smaller distances, we assume that we are in
the last step of the landing, and the SONARs would work. For bigger distances, we assume
that we are far enough, and we can approximate the helicopter to the ship safely before
starting the landing manoeuvre. Of course, these distances can be modified by changing the
lens focal distance. Also someone could consider the use of two or more cameras to see the
heliport at different distances, running the same computer vision algorithm.

Once the camera and the lens is set for our tests, we calibrated it, getting: f ·Kx =
1307.549726, f ·Ky = 1307.549726, Cx = 319.5 and Cy = 239.5. The distortion of the lens
does not affect. If the distortion affects, a previous step in the computer vision algorithm
could be done to correct it.

The used PC to run the algorithm is a 2010 laptop with a Dual-core Intel Core i3 CPU
@ 2.26GHz. The framerate achieved is around 6 fps, but with a more powerful PC, this
framerate could be improved easily up to 20 fps or more. By the way, this low framerate is
enough for our application, because the helicopter is equipped with an IMU (and also a GPS)
that allow us to know its pose faster. That means that with the computer vision system we
only need to measure the pose of the ship with respect to the helicopter and the frequencies
of the movement of the ship are much slower than 6 fps (as we saw in a previous section,
they are between 0.07 and 0.13 Hz, so a framerate of 6 fps is more than 45 times faster).

In figures 19 to 21, the performance of the detection steps of the computer vision al-
gorithm is tested. We can affirm that for different distances and angles of the heliport with
respect to the camera, the algorithm is able to detect the heliport. We also can affirm that
even with a lot of contamination or partial occlusions of the helipad or even with illumina-
tion changes, it can still be detected.

http://www.vision4uav.com/?q=jlsanchez/research
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Fig. 19 Example of Heliport very tilted. The 3D reconstruction reflects the tilting, and the computer vision
algorithm still works despite the huge tilting
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Fig. 20 Example of Heliport far away. The 3D reconstruction reflects the bigger distance. The computer
vision algorithm is able to work in different ranges of heliport distances.

Fig. 21 Example of Contamination on the heliport. The computer vision algorithm works appropriately even
with a really big and probably ”unrealistic” contamination.

Other important issue to evaluate is not only the performance of the detection of the
helipad, but also the final 3D reconstruction of the heliport. The accuracy of the computer
vision system (for our camera-lens-heliport selection) depends on the pose of the heliport
with respect to the camera. Tests showed us that, as we expected, the position of the center
of the heliport (x, y and z coordinates) with respect to the camera frame is more accurate and
less noisy than the Euler angles (θ , ψ and φ coordinates). Also, we can see that the noise of
the euler angles is reduced if the heliport is tilted with respect to the camera, that mean, the
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most dangerous poses. So, the less parallel the camera plane is with respect to the heliport
plane, the system better works. Figures 22 to 24 show a test with the heliport parallel to the
camera plane. Figures 25 to 27 show other test with the heliport tilted.
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Fig. 22 Heliport at a distance of around 6 times the size of the helipad. The heliport plane is parallel to the
camera plane. This is one of the cases in which the 3D reconstruction works worst (very noisy).
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Fig. 23 Position x, y and z of the centre of the heliport with respect to the camera when is stationary like in
figure 22. Mean values: 0.008 m, -0.0229 m, and 1.2415 m. Standard deviations: 0.000460 m, 0.000425 m,
and 0.0069 m.
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Fig. 24 Euler Angles Yaw, Pitch and Roll of the heliport with respect to the camera when is stationary like
in figure 25. Mean values: 161.6°, 162.9°, and 108.6°. Standard deviations: 11.60°, 3.90°, and 12.47°.
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Fig. 25 Heliport at a distance of around 3 times the size of the helipad. The heliport plane is tilted with
respect to the camera plane. In this case the 3D reconstruction works better (less noisy).
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Fig. 26 Position x, y and z of the centre of the heliport with respect to the camera when is stationary like in
figure 22. Mean values: -0.0433 m, -0.0142 m, and 0.6857 m. Standard deviations: 0.000425 m, 0.000526 m,
and 0.0016 m.
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Fig. 27 Euler Angles Yaw, Pitch and Roll of the heliport with respect to the camera when is stationary like
in figure 25. Mean values: 7.9°, 133.0°, and 72.8°. Standard deviations: 0.98°, 0.38°, and 1.22°.

6.2 State Estimation

In figure 28, one of the DoF of the motion platform (the z movement) is estimated using
the Kalman Filter with the model proposed in section ”State Estimation: Kalman Filter” and
typical measures and noises of the computer vision system described, after the transforma-
tion to World frame’s coordinates.
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Fig. 28 Example of State Estimation of the pose of the motion platform. It is shown the z movement. In the
upper plot, in blue, the real state, and in red, the estimated state. In the bottom plot, in cyan, the measurements
of the computer vision system, with its typical noise, after the transformation to refer them to the World frame.

7 Conclusion and Future Work

In this paper a new and complete ship deck simulation for the autonomous landing of VTOL
UAVs on ships is proposed using a real Motion Platform. This simulation fulfils the require-
ments of being accurate, realistic, random and simple enough, therefore we can use it easily
without losing realism. The pose of this landing platform is measured using a single down-
ward looking camera computer vision system on board the helicopter for standard grey
helipads with an H surrounded by a circle. The computer vision requires the knowledge of
the deck size for the 3D reconstruction. This algorithm was developed having in mind ro-
bustness, avoiding any false positive. Also, it works appropriately even with contamination
on the helipad or light changes. A state estimator that uses the computer vision measures,
calculates the state of the landing platform, removing its noise and avoiding the problems
when the helipad is not detected. These are the first steps required to achieve a solution to
the challenge of autonomously landing on a ship.

To complete this challenge, as future work, a state estimator which incorporates the
helicopter model, and IMU measurements is required. Additionally, a controller will need
to be designed and tested in order to close the control loop.
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