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Abstract In this manuscript, we propose an on-line trajectory-
tracking algorithm for nonholonomic Differential-Drive Mo-
bile Robots (DDMRs) in the presence of possibly large para-
metric and measurement uncertainties. Most mobile robot
tracking techniques that depend on reference RF beacons
rely on approximating line-of-sight (LOS) distances between
these beacons and the robot. The approximation of LOS
is mostly performed using Received Signal Strength (RSS)
measurements of signals propagating between the robot and
RF beacons. However, accurate mapping between RSS mea-
surements and LOS distance remains a significant challenge
and is almost impossible to achieve in an indoor reverberant
environment. This paper contributes to the development of
a neighboring optimal control strategy where the two major
control tasks, trajectory tracking and point stabilization, are
solved and treated as a unified manner using RSS measure-
ments emitted from Radio Frequency IDentification (RFID)
tags. The proposed control scheme is divided into two cas-
caded phases. The first phase provides the robot’s nomi-
nal control inputs (speeds) and its trajectory using full-state
feedback. In the second phase, we design the neighboring
optimal controller, where RSS measurements are used to
better estimate the robot’s pose by employing an optimal
filter. Simulation and experimental results are presented to
demonstrate the performance of the proposed optimal feed-
back controller for solving the stabilization and trajectory
tracking problems using a DDMR.
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Frequently Used Symbols

K(t) Feedback control gain at time t
HK Hamiltonian’s gradient with respect to K
s Number of RFID tags in the environment
ψ Costate variable (Lagrange multiplier)
q(t), qd(t) Robot’s actual and desired pose at time t
q j

t ∈ R3 jth tag position in 3D space
t0, t f Initial and final time instants
I ≡ [t0, t f ] Time interval
Tr[·] Trace of matrix [·]
u(t) Robot’s control input vector at time t
ξ (t) Robot’s actuator noise at time t
ζ (t) Measurement noise vector at time t
(·)o ,(·)ε ,(·)ad Optimal, perturb, admissible value of (·)
L Lebesgue measurable function space
νT dJ(·) Gateaux (directional) derivative of J in di-

rection ν

1 Introduction

Feedback control design problem for tracking a pre-defined
trajectory or stabilizing to a fixed point using a nonholo-
nomic mobile robot are quite challenging tasks. In particu-
lar, Brockett’s theorem [7] proves the nonexistence of smooth
state-feedbacks for the asymptotic stabilization of fixed con-
figurations. As such, practical alternative control solutions
that guarantee acceptable tracking and stabilization perfor-
mance for systems with non-integrable kinematic constraints
are well motivated. In this manuscript, the proposed con-
trol strategy treats both tracking and point stabilization prob-
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lems as a unified manner, where solving the point stabiliza-
tion problem becomes the special case of trajectory tracking
problem. Hence, we focus on the design of neighboring op-
timal control scheme for solving trajectory tracking problem
using a nonholonomic differential drive mobile robot.

Tracking problems have been addressed in a variety of
robotic platforms [57,15,41,4,42,59] using intelligent con-
trol laws coupled with adaptation. For wheeled mobile robots,
conventional control laws have been applied for solving track-
ing problems [58,30,32,43,1,23,49] and stabilization prob-
lems [3,17,51,54,8]. For example, see [29,28,39,48,12,14]
for backstepping methods [11,24,53] for sliding mode con-
trol, [9,34,18] for moving horizon H∞ tracking control cou-
pled with disturbance effect, and [47] for transverse func-
tion approach. A vector-field orientation feedback control
method for a differentially driven wheeled vehicle has been
demonstrated in [46]. This technique solves both trajectory
tracking and point stabilization problem as in our current
work. The dynamic effects of the vehicle and the noisy feed-
back signal may affect the vehicle to stabilize on a fixed con-
figuration. Several contributions have been made to the de-
sign of non-conventional control laws (fuzzy logic control,
for instance) for mobile robot with a particular focus on tra-
jectory tracking, see [27,37] and some references therein,
for example. In [40], a fuzzy logic control law is designed
for a car-like mobile robot for autonomous garage-parking
and parallel-parking capability by using real-time image pro-
cessing technique. Authors in [22] designed a flexible archi-
tecture for a mobile robot, called Virtual Operator MultiA-
gent System, in order to satisfy the rapidly changing mis-
sions by dynamic task switch or dynamic role switch. The
control laws for kinematic inputs (linear and angular veloci-
ties) and dynamic inputs (torques) have designed separately
in [13,5]. In the literature, less attention is paid towards solv-
ing tracking problems since it is simpler than point stabiliza-
tion problem for nonholonomic systems [43].

RFID technology drew the attention of a large body of
research on mobile robot localization owing to its wide avail-
ability, contactless recognition ability, and affordability [50,
36,20,10]. In most cases, RFID systems are deployed for
solving localization problem (not stabilization or tracking
problems) of mobile robots in a particular environment [21,
44,31,35]. A sliding mode controller in cooperation with
RFID system is proposed in [38] to track a desired tra-
jectory, where RFID tags are placed on the floor in a tri-
angular pattern to estimate the position of the mobile robot.
This technique, however, is not suitable if the operating en-
vironment is dynamically changed. Besides trajectory track-
ing, some researchers contributed to develop pose estima-
tion techniques using vision technology [26,25,55]. Yet, they
are based on known noise statistics and require complex im-
age processing techniques. In 2008, Gueaieb and Miah pio-
neered a navigation algorithm, where the phase difference of

RFID signals is exploited to navigate a mobile robot in an in-
door environment [19]. The navigation system is, however,
based on a customized RFID reader (not RFID tag) architec-
ture and the navigation performance is evaluated using com-
puter simulations. Moreover, the robot’s trajectory tracking
and stabilization problems were not explicitly solved in our
previous work.

Despite aforementioned contributions on mobile robotics,
the stabilization and tracking problems in a highly dynamic
environment still face some significant technical challenges
that must be overcome. Hence, our effort is devoted to solve
these two main control tasks of a DDMR in two phases. In
the first phase, a nominal full-state feedback controller is
designed to provide nominal speeds and its corresponding
trajectory, where the process and measurement noise (exter-
nal disturbances) are not considered. In the second phase,
the nominal control and trajectory are employed to design
the on-line neighboring optimal control inputs which are ap-
plied to the robot’s actuators. Note that the robot’s actuators’
noise and RSS measurement noise are taken into consider-
ation in this phase. RSS measurements emitted from RFID
tags are used to better estimate the robot’s pose by incor-
porating an optimal filter. It is important to mention, how-
ever, that the proposed optimal feedback controller is differ-
ent from many alike controllers suggested in the literature
in that we optimize a general feedback control gain which
eventually provides optimal control inputs to the robot’s ac-
tuator. Unlike many other controllers, the proposed control
method does not require the linearization of the robot model.
Hence, this novel work of optimizing the feedback control
gain opens the door for solving problems of a general class
of highly nonlinear dynamical systems. The work described
herein is pioneered by using a DDMR operating in an indoor
office environment where RFID tags are placed at 3-D po-
sitions. It is worth mentioning that the controller proposed
in this manuscript does not represent an all-case alternative
to vision-based navigation systems. Rather, it can serve as
a substitute for such systems in environments of variable or
limited lighting conditions.

The rest of the paper is outlined as follows. Section 3
illustrates the high level architecture of the proposed mobile
robot trajectory tracking system along with the robot’s kine-
matic model and its feedback system using RSS measure-
ments. The nominal optimal control and its corresponding
nominal optimal trajectory are computed using the smooth
state feedback control as detailed in section 4. Section 5 de-
scribes the robot’s on-line neighboring optimal control strat-
egy, where RSS measurements from RFID system are used
for its optimal pose estimation. A thorough evaluation of
the current work with some numerical simulation results is
presented in section 6 followed by experimental results in
section 7. Finally, conclusions are drawn in section 8.
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2 Preliminaries

In the rest of the paper, small and capital bold letters will
be used to denote vectors and matrices, respectively. Scalars
will be denoted by non-bold letters. The 2-norm and scalar
product are defined by

‖x‖ ≡
[

n

∑
i=1
|xi|2

]1/2

and (x ·y)≡ xT y≡
n

∑
i=1

xiyi,

respectively, for vectors x,y ∈ Rn and positive n. For matri-
ces X,Y ∈ Rm×n, these quantities are given by

‖X‖ ≡
[

m

∑
i=1

n

∑
j=1

∣∣xi, j
∣∣2
]1/2

and

(X ·Y)≡ Tr
[
XT Y

]
≡ Tr

[
XYT ] ,

respectively, where Tr [·] denotes the trace of matrix [·]. Clearly,
Tr
[
XT X

]
= ‖X‖2.

If the function J : Rn → R is differentiable at x ∈ Rn,
then for any ν ∈ Rn, νT dJ(x) denotes the Gateaux (direc-
tional) derivative in the direction of ν , which is given by

ν
T dJ(x) = lim

ε→0

J(x+ εν)− J(x)
ε

.

However, if J : Rm×n → R, then for any X,V ∈ Rm×n, the
directional derivative in the direction of V is defined by

Tr[VT dJ(X)] = lim
ε→0

J(X+ εV)− J(X)

ε
.

For any bounded interval I ≡ [t0, t f ], C(I ,Rn) denotes
the class of all continuous functions on I taking values in
Rn. Let p ∈ [1,∞) and any finite time interval I , we use
Lp(I ,Rn) to denote the set of Lebesgue measurable func-
tions {f} defined on the measurable set I and taking values
in Rn whose norms are p-th power integrable [33,52] i.e.,

Lp(f) =
(∫ t f

t0
‖f‖pdt

)1/p

< ∞,

where Lp(f) denotes the p-th norm of the function f. For
p = ∞, L∞(I ,Rn) denotes the space of Lebesgue measur-
able functions {f} defined on I and taking values in Rn

satisfying ess-sup{‖f(t)‖, t ∈I }< ∞.

3 System Overview

3.1 System Architecture

A high level setup of the proposed tracking system with four
RFID tags, Tag1, Tag2, Tag3, and Tag4, attached to the ceil-
ing of an indoor space (office, for instance), is depicted in
Fig. 1. In this configuration, the robot’s desired trajectory on

the ground is defined in continuous time, qd(t) with qd(t0)
and qd(t f ) being the initial and final poses, respectively. For
instance, if a mobile robot is provided with the list of 16-bit
tag IDs, 0xFFF9, 0xFFF2, 0xFFF5, and 0xFFF4, then it is
supposed to continuously read these tag IDs and their corre-
sponding RSS values through an RFID reader mounted on
it [45]. Based on the tags’ RSS measurements, optimal con-
trol actions are then generated for its actuators to track the
desired trajectory, qd(t). In the following, we provide a de-
tailed description of how these optimal control actions are
generated for the robot to track its desired trajectory.

Tag1 Tag4
Tag2

Tag3

Ceiling of an office environment, for instance
RFID tags

RFID readerRobot’s front castor

GroundMobile robot

Desired trajectory,qd(t0)

qd(tf)

qd(t)

Fig. 1 High level system architecture of the proposed tracking system.

3.2 Robot’s Feedback Model Using RSS

Let (x,y) and θ be the position and the heading angle of a
robot with respect to a ground-fixed inertial reference frame
X-Y. The rotational velocities of the robot’s left and right
wheels are characterized by the sole (scalar) axis angular
velocities uL and uR, respectively. The robot’s position is the
midpoint of the wheelbase of length l connecting the two
lateral wheels along their axis. The mobile robot1 used in
this study is pictured in Fig. 2(a) and its corresponding kine-
matic model is shown in Fig. 2(b).

(a)

X-X
-Y

Y

θl

Front castor

2r

2r

y

x(0, 0)

(b)

Fig. 2 (a) Sputnik mobile robot and (b) its kinematic model.

Consider t0 and t f be the initial and final time to com-
plete the robot’s mission, respectively, and I ≡ [t0, t f ] de-

1 The photo of this mobile robot is taken from www.drrobot.com

www.drrobot.com
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notes the time interval. At any time t ∈ I , the robot kine-
matic model is given by

q̇(t) = f[q(t),u(t)] =
r
2

B[q(t)]u(t) , (1)

where the robot’s configuration q(t) ≡ [x(t) y(t) θ(t)]T ∈
Q⊂R2×S1, its control input vector u(t)≡ [uR(t) uL(t)]T ∈
U ⊂ R2, θ(t) ∈ [−π,+π),

B[q(t)] =




cosθ(t) cosθ(t)
sinθ(t) sinθ(t)

2
l − 2

l


 ,

and r is the radius of each wheel. Since the robot itself is
subjected to the noisy speed, the model (1) can be rewritten
as

q̇(t) = f[q(t),u(t),ξ (t)], (2)

where ξ (t) is the noise associated with control input u(t).
For simplicity, assume that ξ : [0,∞)→ R2, is any measur-
able stochastic process taking values from the closed (Eu-
clidean) ball Bu(ξ̄ ,r

′
1) defined by

Bu(ξ̄ ,r
′
1) =

{
ξ (t) ∈ R2 : ‖ξ (t)− ξ̄‖ ≤ r

′
1

}
,

where r
′
1 > 0 is the radius of the noise associated with the

robot’s speed and ξ̄ is the mean of ξ (t), for t ∈I .
However, due to the speed limits of the wheels, the in-

puts are constrained as

|uL(t)| ≤ umax
L and |uR(t)| ≤ umax

R , t ∈I . (3)

In other words, u(t) must be chosen from a set of admissible
speeds, Uad , i.e., u(t) ∈ Uad . Note that a DDMR is a non-
holonomic system with the nonholonomic constraint given
by

ẋsinθ − ẏcosθ = 0, (4)

which ensures the wheel’s non-slip movement in the lateral
direction.

Let us model the robot’s RSS measurements as

z(t) = ĥ[q(t)]+ζ (t), (5)

where z(t) ∈ Rs is the RSS measurement vector (in dBm)
from s RFID tags in the environment and the noise ζ : [0,∞)→
Rs, is defined such that

Bm(ζ̄ ,r
′
2) =

{
ζ (t) ∈ Rs : ‖ζ (t)− ζ̄‖ ≤ r

′
2

}
,

where r
′
2 > 0 is the radius of the noise associated with the

RSS measurements and ζ̄ is the mean of ζ (t), for t ∈ I .
The nonlinear measurement function

ĥ[q(t)] =
[
ĥ1[q(t)] . . . ĥs[q(t)]

]T

of (5) is given by h : R2×S1→ Rs with

ĥ j[q(t)] = αeβ d̂ j , for j = 1, . . . ,s, (6)

where α and β are the parameters which are obviously de-
pendent on the operating environment. Hence, these parame-
ters can be optimized on-line using the nonlinear least square
method. d̂ j of (6) is simply the Euclidean distance between
the robot’s current position (x,y) and j-th RFID tag position
q j

t . If q j
t = [x j

t y j
t z j

t ]
T represents the 3D position of the j-th

tag, then

d̂ j =

√
(x− x j

t )
2 +(y− y j

t )
2 +(z j

t )
2, for j = 1, . . . ,s.

We now define the robot’s control input u(t) as the feed-
back model defined as

u(t) = χ[z(t)] (7)

subject to (3), where χ[·], is a function that takes RSS mea-
surements as the feedback information. Clearly, the model (2)
is underactuated (i.e., two inputs but three state-variables
to control). Hence, the challenge is to design the feedback
function χ[·] of the model (7), which we tackle using the
feedback gain (see section 4) coupled with RSS measure-
ments from RFID tags (see section 5, for details).

Substituting (7) in (1), we can formulate the robot’s measurement-
feedback system as

q̇(t) =
r
2

B[q(t)]χ[z(t)]. (8)

3.3 Problem Formulation

Let qd(t) = [xd(t) yd(t) θ d(t)]T be the desired trajectory that
the robot is supposed to track and

e(t) =
√

[xd(t)− x(t)]2 +[yd(t)− y(t)]2

denote its position tracking error, for t ∈ I . The objective
is to find the optimal control input u(t) ∈Uad that generates
the trajectory q(t) ∈Q while minimizing the total position
tracking error, E , given by

E =
∫ t f

t0
e(t)dt. (9)

Given the robot’s kinematic model (1), its nonholonimic con-
straint (4), and for any ξ (t) ∈Bu(ξ̄ ,r

′
1), ζ (t) ∈Bm(ζ̄ ,r

′
2),

the problem can be stated as follows:

inf
{q∈Q, u∈Uad}

[E ]. (10)

Although not explicitly stated, this goal implicitly imposes
the optimization of the robot orientation θ(t) since it is cou-
pled with the robot position (see model (1)). This point will
be clearer in the next section.
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4 Nominal Pose and Control Generation

In order to determine the robot’s nominal optimal pose and
its corresponding control input, assume that the process noise
ξ (t)= 0 and also define the robot’s feedback control model (7)
as the full-state feedback control:

u(t) = K(t)q(t), (11)

subject to (3), where K(t) 6= 0 is the feedback control gain
for the robot model (1). Since the sets U and Q are convex,
K(t) must be chosen from a convex set K ⊂R2×3. Further-
more, due to the constraint on the wheel speeds, K(t) has to
be chosen from the admissible matrix space Kad ⊂K .

Substituting (11) in (1), yields the following full-state
feedback system:

q̇(t) =
r
2

B[q(t)]K(t)q(t) = f̂[q(t),K(t)], q(t0) = q0, (12)

where the robot’s initial pose q0 6= 0 since model (12) is
a nonlinear homogeneous equation (drift-free system). The
actual trajectory of the robot can be described by

q(t) = q(t0)+
r
2

∫ t

t0
{B[q(τ)]K(τ)q(τ)}dτ, (13)

for t ∈I . Since feedback control gain K(t) in (11) needs to
be optimized in order to determine nominal optimal control
uo(t), the full-state feedback control problem boils down to
the optimization problem.

For the robot to find the nominal optimal trajectory qo(t),
define the cost functional as

J(K) = φ [t f ,q(t f )]+
∫ t f

t0
`[t,q(t)]dt, (14)

with

φ [t f ,q(t f )] =
1
2
[q(t f )−qd(t f )]

T P(t f )[q(t f )−qd(t f )]

`[t,q(t)] =
1
2
[q(t)−qd(t)]T Q(t)[q(t)−qd(t)],

where P(t f ),Q(t) ∈ R3×3 are symmetric positive definite
matrices that indicate the relative importance of the error
components along R2×S1. If the robot’s purpose is to stabi-
lize on a fixed point in its environment, then the weight ma-
trix P(t f ) must be higher than Q(t). However, the opposite
is true for the robot to track a desired trajectory. The perfor-
mance index J(K) in (14) depends on the feedback control
gain matrix K(t) through the state variable q(t) as it is clear
from the feedback system (12). The nominal trajectory and
control (qo(t),uo(t)) can be obtained by minimizing J(K)

subject to (1), (3), and (4).
Assume that the feedback gain K ⊂ R2×3 is a closed

bounded convex set and

Kad ≡
{

K(t) ∈L `oc
∞ ([0,∞),R2×3) : K(t) ∈K

}

where L `oc
p ([0,∞),R2×3) are locally convex topological func-

tion spaces of p-th power locally integrable functions con-
taining the spaces Lp(I ,R2×3).

To solve for the nominal optimal trajectory using the
feedback system (12) that minimizes the objective functional
(14), we need to derive the necessary conditions of optimal-
ity. These necessary conditions are most readily found if the
integrand of the cost functional (14) is recast in terms of
Hamiltonian

H : I ×R2×S1×R3×R2×3 7−→ R,

which is given by

H [t,q(t),ψ(t),K(t)] = ψ
T f̂[q(t),K(t)]+ `[t,q(t)], (15)

where ψ(t)∈R3, t ∈I , is a vector of Lagrange multipliers
whose elements are the costates. We now derive the neces-
sary conditions of optimality for the feedback model (12).

Theorem 1 (Necessary Conditions of Optimality) The op-
timal trajectory qo(t) for the feedback model (12) can be
obtained if there exists an optimal feedback control gain
Ko(t) ∈Kad and an optimal multiplier ψo(t) ∈ C(I ,R3)

such that the triple {qo,ψo,Ko} satisfies the following nec-
essary conditions:

H [t,qo(t),ψo(t),K(t)]≥H [t,qo(t),ψo(t),Ko(t)],

K(t) ∈K , t ∈I ,
(16)

q̇o =
∂H

∂ψ
[t,qo(t),ψo(t),Ko(t)], qo(t0) = q0, t ∈I , (17)

ψ̇
o =−∂H

∂q
[t,qo(t),ψo(t),Ko(t), ψ

o(t f ) =
∂φ

∂q
[t f ,q(t f )].

(18)

Theorem 1 states that there exists a feedback control
gain Ko(t) ∈ Kad for the robot to determine nominal op-
timal control inputs for its actuator. Its proof is given in Ap-
pendix A.1. In order to solve for Ko(t), we determine the
gradient of the Hamiltonian defined in (15) and set it to zero,

HK ≡
∂H

∂K
=

r
2

BT [q(t)]ψ(t)qT (t) = 0. (19)

Note that the expression in (19) is independent of the gain
matrix K(t). Hence, the problem boils down to finding K(t)
t ∈ I , such that the robot’s actual trajectory (13) and the
costate trajectory from (18) satisfy (19). The optimal feed-
back control gain Ko(t) can be determined by satisfying the
Hamiltonian inequality (16). In other words, K(t) is to be
adaptively tuned to minimize the robot’s tracking error.
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Corollary 1 (Adapting the gain K) Consider the robot’s
feedback system (12) defined over the time horizon I . Adapt-
ing the gain K according to the following offline update rule

Knew = Kold− εHK, for 0 < ε < 1 (20)

satisfies the Hamiltonian inequality (16) and, hence, guar-
antees the converge of the robot’s trajectory towards its tar-
get.

In the following, we numerically solve for the gain K
such that (19) is satisfied, aggregating the components de-
scribed earlier.

Let Ki ≡Ki(t), t ∈I , be the gain at the i-th iteration of
the optimization procedure.

Step 0 (initialization): Subdivide the time interval I ≡[
t0, t f

]
into N subintervals. Assume a piecewise-constant Ki(t)=

Ki(tk), t ∈ [tk, tk+1], for k = 0, . . . ,N−1.
Find the optimal gain Ko by repeating Steps 1–5 until the
stopping criterion in Step 5 is met.
Step 1: Integrate the robot’s feedback system (12) as in (13)
with K≡Ki(t), t ∈I .
Step 2: Solve the costate equation (18) backward for ψ i.
Step 3: Define the Hamiltonian H (t,qi,ψ i,Ki) as in (15).
Step 4: Compute the cost function J(Ki) using (14), the gra-
dients of the Hamiltonian HK in (19), and its corresponding
intergrated norm

∫ t f
t0 ‖HK‖2dt.

Step 5: If J(Ki)≤ δ1 or
∫ t f

t0 ‖HK‖2dt ≤ δ2, for pre-defined
small positive tolerance constants δ1 and δ2, then Ki is re-
garded close enough to its nominal optimal value, and so the
algorithm is halted.
Otherwise, use the following update rule to adjust the piecewise-
constant feedback control gain:

Ki+1(tk) = Ki(tk)− ε HK(tk)+λ ∆Ki(tk)

∆Ki(tk) = Ki(tk)−Ki−1(tk)

for k = 0, . . . ,N−1, where ε and λ are the step size and the
momentum constant (for faster convergence), respectively.

We now have the optimal feedback gain, Ko. Using the
robot’s initial pose qo(t) = q(t0) = q0, it’s nominal-optimal
control can thus be computed by

uo(t) = Ko(t)qo(t), (21)

with the corresponding nominal-optimal state model

q̇o(t) = f[qo(t),uo(t)]. (22)

Models (21) and (22) will be employed to solve for the robot’s
actual optimal control inputs and its corresponding state tra-
jectory which are illustrated in the next section.

5 Robot’s Optimal Trajectory

For the robot to operate in real-time, it is conceivable that
the exact optimal control could be updated continuously to
provide the instantaneous control input to the robot’s ac-
tuator. A practical method of doing so is to partition the
robot’s actual trajectory and control into: a) nominal and b)
neighboring parts, where the former represents the off-line
deterministic solution (nominal) which is illustrated in sec-
tion 4 (no external disturbances were considered) and the
later represents the on-line (real-time) solution [56]. Note
that the robot’s actuator noise and RSS measurement noise
from RFID tags are taken into account for determining its
neighboring optimal control inputs.

5.1 Neighboring Optimal Control

In order to compute the robot’s neighboring optimal control
input, let us rewrite the cost functional (14) as

J(q) = φ [t f ,q(t f )]+
∫ t f

t0
`[t,q(t),u(t)]dt, (23)

where

φ [t f ,q(t f )] =
1
2
[q(t f )−qo(t f )]

T P(t f )[q(t f )−qo(t f )]

`[t,q(t),u(t)] =
1
2
[q(t)−qo(t)]T Q(t)[q(t)−qo(t)]+

1
2
[u(t)−uo(t)]T R̂(t)[u(t)−uo(t)]

with R̂(t)∈R2×2 being a symmetric positive definite matrix
(i.e., R̂(t) 6= 0). Defining the perturbations from the nominal
optimal solutions as

∆q(t) = q(t)−qo(t), ∆u(t) = u(t)−uo(t), t ∈I , (24)

the robot’s model (1) can be expanded as the Taylor series

q̇o(t)+∆ q̇(t) = f [qo(t),uo(t)]+
∂ f
∂q

[qo(t),uo(t)]∆q(t)

+
∂ f
∂u

[qo(t),uo(t)]∆u(t)+O[∆q,∆u],

where O[∆q,∆u] is the higher order terms of ∆q(t) and
∆u(t). Using the robot’s nominal state model (22) and as-
suming the perturbation variables to be “small”, the above
expression can be truncated to the first degree, yielding the
robot’s linear kinematic constraint

∆ q̇(t) = F(t)∆q(t)+G(t)∆u(t), ∆q(t0) = ∆q0, (25)

where

F(t) =
∂ f
∂q

[qo(t),uo(t)] , G(t) =
∂ f
∂u

[qo(t),uo(t)] .
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The cost function (23) can be expanded as

J[qo +∆q]∼= J[qo]+∆J[∆q]+∆
2J[∆q].

However, the optimality guarantees that the first variation of
J[·] (i.e., ∆J[∆q(t)]) is zero [56], yielding the above expres-
sion as

J[qo +∆q]∼= J[qo]+∆
2J[∆q],

where the second variation of J[·] can be expressed as

∆
2J[∆q] =

1
2

∆qT (t f )φqq(t f )∆q(t f )+

1
2

∫ t f

t0

{[
∆qT (t) ∆uT (t)

][`qq `qu
`uq `uu

][
∆q(t)
∆u(t)

]}
dt,

(26)

subject to (25).
Let us rewrite the expression (26) as:

∆
2J[∆q], J =

1
2

∆qT (t f )P(t f )∆q(t f )+
1
2∫ t f

t0

{[
∆qT (t) ∆uT (t)

][ Q(t) M(t)
MT (t) R(t)

][
∆q(t)
∆u(t)

]}
dt,

(27)

where

P(t f )≡ φqq(t f )≡
∂ 2φ

∂q2

[
t f ,qo(t f )

]

Q(t)≡ `qq ≡
∂ 2`

∂q2 [t,q
o(t),uo(t)] ,

M(t)≡ `qu ≡
∂ 2`

∂q∂u
[t,qo(t),uo(t)] , and

R(t)≡ `uu ≡
∂ 2`

∂u2 [t,q
o(t),uo(t)] .

Since M(t) = 0, it follows from (27) that

J =
1
2

∆qT (t f )P(t f )∆q(t f )+
1
2∫ t f

t0

{[
∆qT (t) ∆uT (t)

][Q(t) 0
0 R(t)

][
∆q(t)
∆u(t)

]}
dt,

(28)

which is a quadratic cost functional.

Theorem 2 (Adapted from [56]) Consider the robot’s lin-
ear kinematic model (25) and its quadratic cost functional
given by (28). The optimal linear-quadratic state feedback
control law is given by

∆uo(t) =−R−1(t)GT (t)P(t)∆q(t) =−C(t)∆q(t), (29)

where C(t) is the (2× 3) neighboring-optimal control gain
matrix given by

C(t) = R−1(t)GT (t)P(t) (30)

and P(t) is the solution of the differential matrix Riccati
equation

Ṗ =−FT (t)P(t)−Q(t)−P(t)F(t)+

P(t)G(t)R−1(t)GT (t)P(t), P(t f ) = P f .
(31)

It is interesting to note that the solution for P(t) and, there-
fore, for C(t) is independent of ∆q(t). Variations in ∆q(t0)
or ∆q(t f ) have no effect on C(t), although the linear-optimal
control history obviously is affected by state perturbations [56].

It is clear from Theorem 2 that once the solution of the
differential matrix Riccati equation (31) is available, the feed-
back control law given by (29) can be formally constructed.
From the perturbation (24), the total control is formed as the
sum of the nominal and the perturbation optimal controls as
stated in the chapter introduction:

u(t) = uo(t)+∆uo(t) = uo(t)−C(t)[q̂(t)−qo(t)], (32)

where q̂(t) is the robot’s estimated pose which will be deter-
mined in section 5.2.

Substituting perturbed optimal control (29) in (25) yields
the perturbed stated feedback system

∆ q̇(t) =
[
F(t)−G(t)R−1(t)GT (t)P(t)

]
∆q(t),

≡ A(t)∆q(t), ∆q(t0) = ∆q0 6= 0,
(33)

with A(t) ≡
[
F(t)−G(t)R−1(t)GT (t)P(t)

]
and the corre-

sponding state trajectory can then be described by

∆q(t) = Φ(t, t0)∆q(t0),

where Φ(t, t0) = etA(t) is the state transition matrix.
The feedback model (33) with the quadratic cost func-

tional (28) is similar to the optimal linear quadratic regulator
problem, which is stable in the Lyapunov sense [2]. In other
words, the optimality leads to stability.

Theorem 3 (Optimality to stability) The feedback system
given by (33) is

(i) stable if Q(t) is a real, symmetric, positive semi-definite
matrix and

(ii) asymptotically stable if Q(t) is a real, symmetric, posi-
tive definite matrix.

The proof of this Theorem is given in Appendix A.2. We
now focus on estimating the robot’s pose based on partial
noisy RSS measurements from RFID tags placed in its op-
erating environment.

5.2 Optimal Pose Estimation

The DDMR employed in the current work is subjected to
actuator noise. As can be seen form Fig. 1, the robot re-
ceives RSS measurements from RFID tags. In an indoor
reverberant environment, these RSS measurements can be
highly contaminated by ambient noise. In this section, we
take into account the robot’s actuator noise and RSS mea-
surement noise from RFID tags. Noisy RSS measurements
are used as feedback information for estimating the robot’s
state, which is eventually form the measurement feedback
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model (8). The estimated state is then used to find the total
optimal control input as in (32). In the following, an optimal
filter is presented to “filter out” the noisy RSS measurements
as well as actuator signals for estimating the robot’s pose.

The Taylor series expansion of (2) neglecting the higher
order terms yields

∆ q̇(t) = F(t)∆q(t)+G(t)∆u(t)+L(t)∆ξ (t), where

L(t) =
∂ f
∂ξ

[qo(t),uo(t),ξ o(t)] , and ∆ξ (t) = ξ (t)−ξ
o(t),

with ∆q(t0) = ∆q0. Note that ξ
o(t) = 0 because the deter-

ministic solution of (22) has no process noise. The expected
values of the initial state and covariance are

E[q(t0)] = q̂0, E
{
[q(t0)− q̂0][q(t0)− q̂0]

T}= S0. (34)

For simplicity, assume that the robot’s input and measure-
ment noise are a white, zero-mean Gaussian random pro-
cess. If WC and NC are spectral density matrices of the robot’s
input and measurement noise, respectively, the following ex-
pression holds:

E
[
ξ

T (t) ζ
T (t)

]
=
[
ξ̄

T
ζ̄

T
]
E
{[

ξ (τ)

ζ (τ)

][
ξ

T (t) ζ
T (t)

]}

=

[
WC(t 0

0 NC(t)

]
δ (t− τ),

(35)

where δ (·) is the dirac delta function. The robot’s a priori
state estimate is described by

q̂(t) = q̂0 +
∫ t

t0
f[q̂(t),u(t)]dt. (36)

From measurement model (5), the matrix H(t) is determined
along the a priori estimate q̂(t) found in (36) as

H(t) =
∂h
∂q

[q̂(t)].

The optimal filter gain can then be computed as

KC = S(t)HT (t)N−1
C (t), (37)

where the state covariance matrix S(t) is the solution of the
differential matrix Riccati equation

Ṡ(t) =F(t)S(t)+S(t)FT (t)+L(t)WC(t)LT (t)

−S(t)HT (t)N−1
C (t)H(t)S(t), S(t0) = S0.

(38)

Using the current RSS measurement, z(t) given in (5), the
robot’s a posteriori state estimate is determined by solving
the following state model:

˙̂q(t) = f[q̂(t),u(t)]+KC {z(t)−h[q̂(t)]} , q̂(t0) = q̂0. (39)

Hence, finding the robot’s optimal trajectory contrains
four parts:

1. compute robot’s nominal-optimal control and trajectory
as given in (21) and (22),

2. computation of neighboring-optimal control gain matrix:
(a) specify the cost function as given in (28) subject to

the robot’s linear kinematic constraint (25).
(b) define the Hamiltonian for the neighboring-optimal

trajectory and control.
(c) solve the differential matrix Riccati equation (31)

that results from minimizing the Hamiltonian to ob-
tain the adjoint covariance matrix, P(t), from t f to
t0.

(d) compute the neighboring-optimal gain matrix, C(t)
as given in (30).

3. optimal estimation of the robot’s pose:
(a) initialize estimated pose and state error covariance

matrix as in (34).
(b) use (35) to compute error covariance matrices, WC

and NC.
(c) integrate the differential matrix Riccati equation (38).
(d) compute the filter gain, KC, as in (37).
(e) optimal pose is estimated using (39).

4. actual optimal control and trajectory generation:
(a) compute the robot’s actual optimal control by (32).
(b) robot’s actual trajectory is then the solution of (39).

The above steps can be used in conjunction with sim-
ulation or real-time control to generate robot’s actual opti-
mal trajectories corresponding to its cost function (28), kine-
matic contraint (1), and measurements (5). Fig. 3 shows the
schematic diagram of the keys steps of the proposed tra-
jectory tracking system for a DDMR. Having computed the
filter gain KC and neighboring optimal control gain matrix
C(t), the linear stochastic controller is seen to be driven by
the nonlinear RSS measurements, z(t). Its output is summed
with the nominal-optimal control, uo(t); the nominal-optimal
state, qo(t), is used to derive the total pose estimate q̂(t).

+
+

+

+

+

−

u(t) measurment
model, ĥ[q(t)]

u
′
(t) q(t)

qo(t)

Optimal control
gain, −C(t)

q̂(t)

Optimal filter

∆q̂(t)
qd(t)

∆z(t)

ẑ(t)

∆u(t)

trajectory
optimal
Nominal

generator
and control

Reference
trajectory

mobile robot

actual measurements, z(t)q(t) =
∫
q̇(t)dt

q̇(t) = f(q̂,u)

uo(t)

Fig. 3 Schematic of the robot’s stochastic neighboring-optimal control
law in continuous time.

6 Simulation Results

We now illustrate the performance of the proposed neigh-
boring optimal controller using the continuous-time model
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of a mobile robot, which is expected to follow a reference
trajectory over the time horizon of I ≡ [0,60] s. The robot
employed in this work is a circular shaped differential drive
virtual mobile robot with the wheel base of l = 30cm and
the radius of each wheel r = 8.25cm. Its wheel speeds are
constrained as

|uR(t)| ≤ umax
R = 10rad·s−1, |uL(t)| ≤ umax

L = 10rad·s−1.

The performance metrics adopted in the current work are the
robot’s pose (position and orientation) tracking error given
by

q(t)−qd(t) = qe(t) =




xe(t)
ye(t)
θe(t)


=




x(t)− xd(t)
y(t)− yd(t)
θ(t)−θ d(t)




and the average cumulative position error defined in (9) over
the time interval of I ≡ [0,60] s, which allow us to make
quantitative assessment of the proposed neighboring optimal
controller. The dimension of the virtual test area is about 16×
16×3m3, where 25 RFID tags (s= 25) are uniformly placed
on the ceiling of the workspace (denoted by x’s in the figures
below). In order to find the nominal solution as described in
section 4, the initial the feedback control gain K(t) is chosen
as

K(t) = 10−6
[

1 1 1
1 1 1

]
,

which is then optimized to find the nominal control uo(t)
and its corresponding nominal trajectory qo(t), t ∈ I , us-
ing (21) and (22). The sampling time period for the simula-
tion is set to 0.1s. The weighting matrices of the cost func-
tion (14) are chosen as P(t f ) = diag(0.5,0.5,1) and Q(t) =
diag(1,1,2), ∀ t ∈I . Hence, trajectory tracking is regarded
twice as important as just stabilizing on a fixed configura-
tion. The mean and standard deviation of the robot’s actuator
noise, ξ (t), are chosen to be 0 and 0.8rad·s−1, respectively.

6.1 Modelling RSS Measurements and Noise

To make the controller’s simulation as realistic as possible,
the RSS signals were experimentally measured by emulat-
ing the RFID system using an XBee Pro RF module and
a MakeController board (Fig. 4) [45]. The experiment was
conducted by placing the XBee Pro RF module (emulat-
ing the tag) at (9,8,3) m and mounting the MakeController
board (emulating the reader) on top of the robot which was
initially placed at the origin with an orientation of 45◦. The
robot was programmed to travel along a straight line for 60s
during which the XBee Pro module’s RSS values were mea-
sured and logged by the MakeController board at a sampling
period of 0.6s. Since the experiment was conducted in an
open space with no obstacles, reverberations and noise were

neglected and the collected data was used to model the ideal
(clean) RSS values in terms of distance, i.e., model (6). This
yielded the parameter values α = −35.5 and β = 0.1071.
To articulate the performance of the proposed controller in a
highly reverberant environment, an exaggerated noise model
is adopted by adding a noise ζ (t) with a mean ζ̄ =−30 dBm
and a standard deviation of 50 dBm. This yielded a signal-
to-noise ratio of −179.45 dBm. Fig. 5 shows the resultant
“noise-free” and noisy RSS signals obtained. The parameter
values of the noisy RSS signal were found to be α = −60
and β = 0.2. This noisy signal was used in the following
controller’s simulations.

(a) (b)

Fig. 4 (a) MakeController board, and (b) XBee Pro RF module.
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Fig. 5 Noise model considered for the simulation.

6.2 Robot Stabilization on a Fixed Configuration

In this section, we present the robot’s ability to stabilize on a
fixed configuration regardless of its initial position and ori-
entation. The stabilization performance of the proposed con-



10 M. S. Miah, W. Gueaieb

trol scheme is evaluated by choosing the weight matrices
as P(t f ) = diag(2,2,2) and Q(t) = diag(0.01,0.01,0.01),
∀ t ∈ I . Hence, the stabilization at the target point is re-
garded 20 times more important than guiding the robot to-
wards the target. The robot’s goal is to stabilize itself at
(x,y) = (3,8) m with an orientation of 90◦. The initial posi-
tion and orientation of the robot are set to (0,0) m and 28.6◦,
respectively. Fig. 6(a) shows the simulation results, where
the hollow and solid arrows represent the initial and final
poses, respectively. The dashed path represents the robot’s
actual trajectory while the x’s depict the 2-D projections of
the RFID tags mounted on the ceiling. The distance between
the robot and its target is shown in Fig. 6(b). It reveals how
fast the robot is approaching towards the target. The robot
reached its target in about 20 s. Then, after some zigzag-
ging, it could stabilize itself eventually with a position er-
ror of practically nil. This was achieved despite the exces-
sively noisy RSS signals transmitted by the tags and the
noisy actuator signals of the robot. The zigzagging behav-
ior is expected due to the complexity of this task, especially
for nonholonomic robots. Fig. 6(c) reveals the correspond-
ing control inputs, u(t), computed by the model (32). Since
the robot has to stabilize itself in 60 s, the zigzagging behav-
ior on the corresponding control inputs was expected as it is
clear from Fig. 6(c), but eventually the robot stopped (speed
is zero) at t f = 60 s.

6.3 Tracking a Curvilinear Trajectory

The purpose of this test is to study the robot’s tracking abil-
ity along a complex trajectory. To do that, we define a de-
sired trajectory as xd(t)= 3sin(πt/30), yd(t)= 3sin(πt/15),
and θ d(t) = tan−1

(
ẏd/ẋd

)
, for t ∈I . The robot is initially

placed at (0.5,0) m with an initial orientation of 0◦. Fig-
ure 7 summarizes the performance of the proposed neigh-
boring optimal controller. The tracking error is plotted in
Figure 7(b). Starting off its desired path, the robot converges
in less than 3 s while keeping the left and right wheel rota-
tional speeds within their limits (maximum of 10rad·s−1).
See Fig. 7(c) for wheel speeds at time instant t ∈ [0,60] s. It
is noticed from Fig. 7(a) that the robot looses track of its tra-
jectory momentarily at a few sharp turns before converging
back to it. The average tracking error throughout the whole
trajectory (E /60 of (9)) is 0.1 m. This is a very small error
taking into account the total traveled distance of 30.8 m, the
wheel speed constraints, and the excessive noise associated
with the RF signals transmitted by the RFID tags. It is im-
portant to articulate that this error is non-cumulative. It is
rather affected by the signal-to-noise ratio of the RF signals,
but not by the traveled distance or navigation time. On the
same figure, the percentile plot (whose x-axis is on top of the
figure) shows that the tracking error is kept less than the av-
erage value (0.1 m) for about 75% of the time, and less than
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Fig. 6 Controller’s performance in stabilizing on a fixed configuration
(a) optimal trajectory, (b) error, and (c) control inputs (wheel speeds).
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0.22 m for 90% of the time. Once again, taking into account
the aforementioned constraints, which are quite typical in
any real-world robotic system, these values are considered
very satisfactory.

The differential drive mobile robot’s real-time motion
and control performance are illustrated through a supple-
mentary multimedia material enclosed with this paper. The
material includes three short Matlab videos (1 min. each)
showing the robot’s capability in stabilizing itself on a fixed
configuration (DDMR-stabilization.avi), in tracking an eight-
shaped trajectory (DDMR-eight-tracking.avi), and in track-
ing a straight line segment (DDMR-line-tracking.avi).

7 Experimental Results

This section presents the results demonstrating the real-time
performance of the proposed neighboring optimal controller.
For that, the kinematic model (1) is realized by the Sputnik
robot platform as pictured in 2(a). The Sputnik is a two-
wheel differential drive mobile robot whose kinematic model
is derived by the conventional geometric model of a uni-
cycle robot. The details of the low-level components, such
as the torque-speed characteristics and interfacing mecha-
nisms, were not disclosed by the robot manufacturer and
have to be dealt with appropriately by the controller. Some
of the robot’s nominal relevant parameters as documented
by its manufaturer are as follows: weight= 6.1kg, diamater≡
l = 26cm, height= 47cm, maximum linear speed= 1m·s−1,
radius of each driving wheel ≡ r = 8.25cm, maximum mo-
tor torque = 22kg · cm.

The MakeController board (emulating the RFID reader)
mounted on the robot is connected to a laptop computer
using an USB cable which allows the robot to receive the
RSS measurements coming from the XBee modules (em-
ulating RFID tags). Note that the laptop computer and the
robot is wirelessly connected through an wireless router in
the robot’s workspace. The experiment is conducted in the
MIRaM laboratory of dimension about 10× 9× 3 m at the
University of Ottawa. The top-view of the workspace floor
plan is depicted in Figure 8.

The robot is supposed to follow the U-shaped rectilinear
trajectory of length 16.5 m which is divided into three un-
equal segments A, B, and C. The four XBee modules in this
case are located at positions (1.7,5.0,0.7) m, (−1.5,4.9,0.7) m,
(−1.5,2.1,0.7) m, and (1.0,2.6,0.7) m and their correspond-
ing 16-bit IDs are 0x5001, 0x5002, 0x5003, and 0x5004, re-
spectively. The robot’s real-time trajectory tracking perfor-
mance is revealed in Fig. 9(a), where the hollow and solid ar-
rows indicate the robot’s initial and final poses, respectively.
The corresponding position tracking error, e(t), is reported
in Fig. 9(b). The initial error spike is due to the uncertainty
associated with the robot’s initial pose but it rapidly went
back to track the trajectory. Since the robot receives the RSS
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Fig. 7 Controller’s performance in following a curvilinear trajectory
(a) optimal trajectory, (b) error, and (c) control inputs (wheel speeds).
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Fig. 8 Floor plan of the robot’s workspace at the MIRaM laboratory.

measurements from four XBee modules in the segment A,
it’s navigation performance is quite satisfactory in the sense
that the tracking errors are less than 10 cm in almost every-
where in A. In addition, the error spikes at times t ≈ 25s
and at t ≈ 39s are due to the turning points at the end of
segments A and B of the trajectory. It is quite interesting to
see that, unlike conventional odometric tracking algorithms,
tracking errors are not cumulative as the robot travels over
longer trajectory as it is clear from segments B and C, where
the tracking errors are also less than 10 cm almost every-
where in these segments. The robot’s tracking performance
over the whole trajectory is quite satisfactory in the sense
that 90% of the time the error is less than 10 cm, as shown
in the percentile plot of Fig. 9(b).

The snapshots of this experiment while the robot is navi-
gating along the U-shaped trajectory are summarized in Fig-
ure 10. The robot is initially placed at the beginning of the
segment A (see Figure 10(a)). Figures 10(a)-10(g) reveal the
navigation performance of the segment A. After that, the
robot had to turn at the first sharp corner to follow the seg-
ment B (see Figure 10(h)). Note that the robot is no longer in
line-of-sight with the XBee modules which shows the power
of RFID systems in navigating a mobile robot in indoor en-
vironment. When the robot is in segment C, it is completely
out of line-of-sight from the XBee modules since the work-
stations are placed in between the segments B and C. As
can be seen from Figures 10(m)-10(p), the robot is still able
to track this line segment with the tracking error of about
8 cm. It is important to articulate the fact that the main pur-
pose of this experiment was to track the desired trajectory
rather than stabilizing on a fixed point. Hence, the robot
has stopped at about 5 cm away from the desired end point
of segment C (see Figure 10(p)).

Note that this controller is also able to stabilize the robot
at a fixed configuration by simply tuning the weight matri-
ces (P(t f ) and Q(t)) of the cost function (14). This is in con-
trast to many recent RFID-based techniques which usually
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Fig. 9 Robot’s real-time performance: (a) actual vs. desired trajectory
and (b) tracking error.

tackle the localization problem only [16,6,50]. The local-
ization accuracy reported there in is in the range of 0.1–
0.5m, despite neglecting the effect of reverberations and
low signal-to-noise ratios. Moreover, the RFID-based robot
navigation techniques presented in those papers are mostly
based on simulations, see [16], for example, and some ref-
erences therein.

8 Conclusion

In this paper, a neighboring optimal control strategy for solv-
ing trajectory tracking and point stabilization problems is
proposed. It relies on dividing the whole control process
into two sub-processes: finding nominal and neighboring
optimal control inputs. The nominal trajectory is computed
off-line which is deterministic. The neighboring trajectory
is computed on-line. It requires an optimal filter for esti-
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 10 Robot’s real-time performance for tracking a rectilinear trajectory using neighboring optimal control.

mating the robots pose taking into account the noise asso-
ciated with the RSS measurements from the RFID tags and
the robot’s wheel speeds. The actual control actions are then
computed by the sum of the nominal and the neighboring
control inputs which lead the robot to track its pre-defined
desired trajectory. Numerical results demonstrate the robot’s

ability to stabilize on a fixed configuration and to guide itself
along a pre-defined trajectory with a satisfactory tracking er-
ror. Moreover, the proposed control technique is modular in
the sense that it is applicable to a broader class of nonlinear
dynamic systems with process and measurement uncertain-
ties.
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A Appendix

A.1 Proof of Theorem 1

Let q(t)≡ q[t,K(t)] be the solution of the feedback system (12), with
the cost functional (14) for any choice of K(t) ∈ Kad . Since Ko(t)
is optimal with the associated trajectory qo(t), it is clear that J(Ko ≤
J(K), ∀ K ∈Kad . Suppressing the variable t for clarity and for any
ε ∈ [0,1], we define Kε =Ko+ε(K−Ko). Since K is a closed convex
set, Kad is also a closed convex subset of L∞(I ,R2×3) and therefore
Kε ∈Kad . Thus J(Ko)≤ J(Kε ), which follows that

Tr
[
(K−Ko)T dJ(Ko)

]
≥ 0, (40)

where dJ(Ko) denotes the Gateaux (directional) derivative of J evalu-
ated at K = Ko in the direction of (K−Ko).

Let qε be the solution of the feedback system (12) corresponding
to the gain Kε with the same initial state qε (t0) = q0. It is easy to very
that

lim
ε→0

Kε (t) = Ko(t), and lim
ε→0

qε (t) = qo(t).

Using q̇ε = f̂(qε ,Kε ) and q̇o = f̂(qo,Ko) with qε (t0) = qo(t0) = q0
which, yield the following equation

q̇ε − q̇o = f̂(qε ,Ko)− f̂(qo,Ko)+ ε f̂(qε ,K−Ko). (41)

Dividing by ε and denoting

η(t)≡ lim
ε→0

(
qε (t)−qo(t)

ε

)

it follows from the expression (41) that η(t) must satisfy the following
initial value problem

η̇ =
∂ f̂
∂q

(qo,Ko)η + f̂(qo,K−Ko), η(t0) = 0. (42)

Equation (42) is a linear non-homogeneous equation with f̂(qo,K−
Ko) being the driving force. As a result, it has a continuous solution
η(t) ∈C(I ,R3), which is continuously dependent on f̂(qo,K−Ko).

By definition of Gateaux (directional) derivative we can derive the
following expression

Tr
[
(K−Ko)T dJ(Ko)

]
= lim

ε→0

J[Ko + ε(K−Ko)]− J(Ko)

ε

= η
T (t)

∂φ

∂q
[t f ,q(t f )]+

∫ t f

t0
η

T (t)
∂`

∂q
[t,q(t)]dt.

Hence, inequality (40) yields

η
T (t)

∂φ

∂q
[t f ,q(t f )]+

∫ t f

t0
η

T (t)
∂`

∂q
[t,q(t)]dt ≥ 0. (43)

Since η(t) of the variational equation (42) is continuously depen-
dent on f̂(qo,K−Ko), the map

f̂(qo,K−Ko) 7−→ η(t), t ∈I

is continuous from L1(I ,R3) to C(I ,R3) [2, p. 260]. Hence, the
map

η(t) 7−→ η
T (t)

∂φ

∂q
[t f ,q(t f )]+

∫ t f

t0
η

T (t)
∂`

∂q
[t,q(t)]dt

is a continuous linear functional on C(I ,R3). Thus, the composition
map

f̂(qo,K−Ko) 7−→ η
T (t)

∂φ

∂q
[t f ,q(t f )]+

∫ t f

t0
η

T (t)
∂`

∂q
[t,q(t)]dt

is a continuous linear functional on L1(I ,R3), where f̂(qo,K−Ko)∈
L1(I ,R3). Therefore, by the Riesz representation theorem or by the
duality between L1(I ,R3) and L∞(I ,R3), we may conclude that
there exists an element ψo ∈L∞(I ,R3) such that

Tr
[
(K−Ko)T dJ(Ko)

]
= η

T (t)
∂φ

∂q
[t f ,q(t f )+

∫ t f

t0
η

T (t)
∂`

∂q
[t,q(t)]dt =

∫ t f

t0
(ψo)T f̂(qo,K−Ko)dt.

(44)

It follows from inequality (43) that
∫ t f

t0
(ψo)T f̂(qo,K−Ko)dt ≥ 0, ∀ K ∈Kad . (45)

Using the variational equation (42), it follows from the second identity
of (44) that

η
T (t)

∂φ

∂q
[t f ,q(t f )]+

∫ t f

t0
η

T (t)
∂`

∂q
[t,q(t)]dt =

∫ t f

t0

{
(ψo)T

[
η̇− ∂ f̂

∂q
(qo,Ko)

]
η(t)

}
dt.

(46)

Integrating by parts and since η(t0) = 0,

∫ t f

t0
(ψo)T

[
η̇(t)− ∂ f̂

∂q
(qo,Ko)

]
η(t)dt =

η
T (t f )ψ

o(t f )+
∫ t f

t0
η

T (t)


−ψ̇−

[
∂ f̂
∂q

(qo,Ko)

]T

ψ
o


dt.

Expression (46) can now be written as

η
T (t)

∂φ

∂q
[t f ,q(t f )]+

∫ t f

t0
η

T (t)
∂`

∂q
[t,q(t)]dt =

η
T (t f )ψ

o(t f )+
∫ t f

t0
η

T



−ψ̇

o−
[

∂ f̂
∂q

(qo,Ko)

]T

ψ
o



dt

(47)

It is clear from (47) that

ψ̇
o =−

[
∂ f̂
∂q

(qo,Ko)

]T

ψ
o− ∂`

∂q
[t,qo(t)] and

ψ
o(t f ) =

∂φ

∂q
[t f ,q(t f )].

(48)

The costate dynamics (48) is linear along the optimal trajectories. Thus,
the necessary conditions of optimality is given by the integral inequal-
ity (45), the costate dynamics (48), and the state equation (12). In
other words, the choice of K ∈ Kad determines the optimality con-
ditions (45), (48), and (12).

Consider the optimality condition (45) and rewriting it as follows
∫ t f

t0
(ψo)T f̂(qo,K)dt ≥

∫ t f

t0
(ψo)T f̂(qo,Ko)dt, ∀ K ∈Kad . (49)

Using the integral inequality (49), it is easy to derive the point-wise
inequality [2]

(ψo)T f̂(qo,K)≥ (ψo)T f̂(qo,Ko), ∀ K ∈Kad . (50)

Now adding the term `[t,qo(t)] in both sides of (50) yields

(ψo)T f̂(qo,K)+ `[t,qo(t)]≥ (ψo)T f̂(qo,Ko)+ `[t,qo(t)],

which gives the Hamiltonian inequality

H [t,qo(t),ψo(t),K(t)]≥H [t,qo(t),ψo(t),Ko(t)].
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This is the same as inequality (16) stated in the theorem. Differentiating
H with respect to the costate variable ψ , we get

∂H

∂ψ
[t,qo(t),ψo(t),Ko(t)] = f̂[qo(t),Ko(t)],

which leads to the state equation

q̇o =
∂H

∂ψ

o

[t,qo(t),ψo(t),Ko(t)], qo(t0) = q0,

as defined in (17).
Differentiating H with respect to the state variable q yields

∂H

∂q
[t,qo(t),ψo(t),Ko(t)] =

[
∂ f̂
∂q

(qo,Ko)

]T

ψ
o +

∂`

∂q
[t,qo(t)] =−ψ̇

o,

Hence, the costate dynamics (48) can be expressed in terms of Hamil-
tonian as

ψ̇
o =−∂H

∂q

o

[t,qo(t),ψo(t),Ko(t)], and ψ
o(t f ) =

∂φ

∂q
[t f ,q(t f )],

which is the condition (18).

A.2 Proof of Theorem 3

Consider V : [0,∞]×R3→ R is a Lyapunov-candidate-function and is
given by

V [t,∆q(t)] =
1
2

∆qT (t)P(t)∆q(t) (51)

and P(t), which is the solution of (31), is a real, symmetric, positive
semi-definite matrix. We first proof that (51) satisfies the Lyapunov
basic properties.

Clearly, from (51), V [t,0] = 0, and ∂V
∂∆q [t,∆q(t)] = P(t)∆q(t) ∈

C1(I ,R3). Following [56, Ch. 3], let us define

∆φ(t) = ∆qT (t)P(t)∆q(t) = ∆qT
∆ψ(t), t ∈I . (52)

It is known that

∆φ(t f ) = ∆qT (t f )∆ψ(t f ) = ∆qT (t f )P(t f )∆q(t f )≥ 0.

Differentiating (52) with respect to t and dropping the variable (t) for
clarity, we get

∆φ̇ =−∆qT Q∆q−∆uT R∆u≤ 0. (53)

Now integrating and using the above expression, we find that

∆φ(t) = ∆qT (t f )P(t f )∆q(t f )+
∫ t f

t
[∆qT (τ)Q(τ)∆q(τ)+

∆uT (τ)R(τ)∆u(τ)]dτ ≥ 0, ∀ t ∈I ,

since P(t) ≥ 0, Q(t) ≥ 0, R(t) > 0, and all are symmetric matrices.
Hence, the solution of the differential matrix Riccati equation (31) has
to be real, symmetric, and at least positive semi-definite matrix for
V [t,∆q(t)] = (1/2)∆φ(t) ≥ 0. Thus, V [t,∆q(t)] in (51) satisfies the
Lyapunov basic properties.

By taking the time-derivative of the Lyapunov function (51) and
using the expression (53), it follows that

V̇ =
1
2

∆φ̇ =
1
2
{
−∆qT Q∆q−∆uT R∆u

}
≤ 0. (54)

(i) It is certain from (54) that if Q(t) is a real, symmetric, positive
semi-definite matrix, then V̇ [t,∆q(t)] = (1/2)∆φ̇ ≤ 0. Hence, the
feedback system (33) is stable in the Lyapunov sense with respect
to the Lyapunov function (51).

(ii) Since R is positive definite and if Q(t) is also positive definite, the
expression (54) yields V̇ < 0. Therefore, the feedback system (33)
is asymptotically stable.
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