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Abstract In recent years 3D models of buildings
are used in maintenance and inspection, preservation,
and other building related applications. However, the
usage of these models is limited because most mod-
els are pure representations with no or little associated
semantics. In this paper we present a pipeline of tech-
niques used for interior interpretation, object detec-
tion, and adding energy related semantics to windows
of a 3D thermal model. A sequence of algorithms is
presented for building the fundamental semantics of
a 3D model. Among other things, these algorithms
enable the system to differentiate between objects in
a room and objects that are part of the room, e.g.
floor, windows. Subsequently, the thermal information
is used to construct a stochastic mathematical model–
namely Markov Random Field– of the temperature
distribution of the detected windows. As a result, the
MAP(Maximum a posteriori) framework is used to
further label the windows as either open, closed or
damaged based upon their temperature distribution.
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The experimental results showed the robustness of the
techniques. Furthermore, a strategy to optimize the
free parameters is described, in cases where there is a
sample training dataset.
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1 Introduction

Efficiency in energy usage is a fundamental step
in adopting green energy and conservation of nat-
ural resources: the European commission estimates
the largest energy saving potential lies in residential
(≈ 27 %) and commercial (≈ 30 %) buildings [7].
Among other factors uncontrolled air leakage, known
as air infiltration, plays a significant role in energy
consumption during heating seasons but also in geo-
graphical locations where air conditioning is a neces-
sity. High rate of air infiltration is caused mostly
by opened windows or doors which can easily be
resolved by human intervention. However, other parts
of a building that are poorly insulated are not eas-
ily detectable as open window or door. As a result,
infrared thermometers are mainly used to detect faulty
insulations in a labor intensive and time taking man-
ner [15, 24]. Alternatively, automating the process of
air infiltration detection has a significant impact on
efficiency, cost and effectiveness of the leakage detec-
tion and proofing process. Consequently, there is an
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ongoing research in automated 3D model creation for
energy efficiency [16, 20].

Motivated by the economic and environmental
impact we contribute to the efforts of fully automat-
ing the energy leakage detection process. Building on
results obtained in [7], where a method for acquir-
ing a 3D thermal model of a building is presented,
we present a sequential pipeline of algorithms for
3D scene understanding and temperature distribution
modelling as given in Fig. 1. Particularly, the tempera-
ture distribution is used to model the state of a window
as either opened, closed, or damaged, i.e., not properly
insulated. After reviewing related work we describe
our mobile robot and the thermal camera vs. 3D laser
scanner calibration to make the paper self-contained.
Then we define and formalize the problem mathemat-
ically in Section 4. Our solution pipeline uses proba-

bilistic model and pre-processing of a 3D point cloud
and is presented in Section 5 and 6. Finally, experi-
mental results are presented in Section 7. Section 8
concludes the paper.

Throughout the paper we use a data set acquired
at Jacobs University Bremen, Germany. The buildings
feature a uniform type of windows as given in Fig. 2.
Thermography however is preferred to be performed
in interiors. To detect energy related flaws a difference
of 15 Kelvin is necessary between indoor and outdoor
temperature to come to significant conclusions. It is
desired that the weather conditions remain stable over
a longer period of time, making the morning hours in
the winter months ideal. Keeping stable conditions is
easier to achieve for indoor thermography. The analy-
sis of back-ventilated walls and roofs is only possible
from indoors. Thermal bridges at exterior walls and

Fig. 1 Overview of
window Detection and
labelling pipeline
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Fig. 2 Above: The campus center of the Jacobs University as
a 3D point cloud with thermal information and filtered veg-
etation [10]. Below: Photo of eight windows (left) and the
corresponding infrared image (right). In the thermal image
heat losses are clearly detectable. In the top row the windows
show different temperature distributions. The first window on

the left belongs to an empty office which is not heated. The
top part if the second window is open. The third window is
closed and has proper insulation. The fourth window shows
unusually high temperatures. This was caused by a partially
detached rubber insulation strip that allowed the air to flow
through

interior walls connecting heated and unheated rooms,
pillars that interrupt the thermal insulation of a build-
ing, air leaks at windows and doors and the moisture
penetration at basement walls are the common appli-
cations for indoor thermography, that focus on energy
efficiency in existing buildings [14].

2 Related Work

According to Xiong and Huber, creating a 3D
model of an indoor environment has notable advan-
tages in maintenance, management, and architectural
renovation of buildings [28]. The traditional approach
to create a 3D model is based on CAD (Computer-
aided design) tools and manual measurements, despite
the consequential high cost and lengthy time con-
sumption. However, recent technological advances in
laser scanning technology prompted the full automa-
tion of 3D model creation [1, 26]. 3D model creation
is still a fairly complex task with challenges at dif-
ferent levels. These challenges can be categorized in

two; lower level problems and higher level problems.
Lower level problems are successfully explored in the
computer vision community. They include the mere
acquisition of data as well as basic post-processing
steps. In 3D point cloud processing the acquisition
of accurate data is solved by technological means.
Computer vision methods are widely used to solve
fundamental problems such as registration [4], i.e.,
solving simultaneous localization and mapping [6],
and representation, i.e., octrees [18] and range images.
The addition of semantics belongs to the second group
of problems. Semantics range from primitive shape
detection to higher level knowledge inference. Several
shape detection methods have been proposed in the
computer vision community that can cope with uncer-
tainties and clutter in the data sets [17, 25]. Addition-
ally, the current trend in 3D point cloud interpretation
is to infer higher level knowledge [23].

Building thermal 3D models of environments
received some attention recently. Ham and Golparvar-
Fard model and evaluate thermal models of building
exteriors and the energy performance of buildings
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[15]. However, to the best of our knowledge, there
has not been any work done in automatic temperature
analysis for the understanding of an object state.

3 Automatic Acquisition of Thermal 3D Models

Thermal imaging is state of the art in recording
energy related issues [13, 16, 20], while terrestrial
laser scanning has been used for years to create 3D
models [1, 27, 28]. The combination of these two
yields a 3D model that contains precise temperature
information including the dimensions of heat and air
leaks. To achieve valid results some general rules,
mostly concerning the weather conditions, have to be
taken into account when performing thermography.
We pay attention to these rules in all our experiments.
Most importantly, to measure a valid, noise-reduced
thermogram there has to be a temperature difference
between indoor and outdoor of at least 15◦. Other error
sources such as sun light, wind and rain, clear sky
were minimized as well.

Experimental Setup and Data Acquisition. The setup
for simultaneous acquisition of 3D laser scan data
and thermal images is the robot Irma3D (see Fig. 3).
Irma3D is built of a Volksbot® RT-3 chassis. Its main
sensor is a Riegl® VZ®-400 laser scanner from ter-
restrial laser scanning. A thermal camera is mounted
on top of the scanner. The optris® PI160 thermal
camera has an image resolution of 160 × 120 pix-
els and a thermal resolution of 0.1◦C. It acquires
images at a frame rate of 120 Hz and with an accu-
racy of 2◦C with a field of view of approximately
40◦ × 64◦. The laser scanner acquires data with a
field of view of 360◦ × 100◦. To achieve the full hor-
izontal field of view the scanner head rotates around

Fig. 3 The robot Irma3D, with a 3D laser scanner, a thermal
camera and a webcam

the vertical scanner axis when acquiring the data. We
take advantage of this feature when acquiring image
data. Since the cameras are mounted on top of the
scanner, they are also rotated. We acquire 10 images
per camera during one scanning process to cover the
full 360◦.

After acquiring the 3D data it has to be merged with
the image information. This processing consists of five
steps that will be explained in this section.

Intrinsic Calibration of Thermal and Optical Cam-
era. Each sensor perceives the world in its own local
coordinate system. To join the perceived information
we need the specific parameters of these coordinate
systems. Each camera has unique parameters that
define how a point (X, Y, Z) in world coordinates
is projected onto the image plane. These parameters
are calculated through a process known as geomet-
ric camera calibration. Given the focal length (fx, fy)

of the camera and the camera center (cx, cy) image
coordinates (x, y) are calculated as:

⎡
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Given the radial distortion coefficients k1, k2, k3 and
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x2 + y2 the corrected image points (xc, yc) are cal-

culated as

(
xc
yc

)
=

(
x(1 + k1r

2 + k2r
4 + k3r

6)+ 2p1y + p2(r
2 + 2x2)

y(1 + k1r
2 + k2r

4 + k3r
6)+ p1(r

2 + 2y2)+ 2p2x

)

(2)

To determine the parameters of optical cameras,
chessboard patterns are commonly used because the
corners are reliably detectable in the images. A num-
ber of images showing a chessboard pattern with
known number and size of squares are recorded. In
each image the internal corners of the pattern are
detected and the known distance between those in
world coordinates allows to formulate Eqs. (1) and (2)
as a non-linear least squares problem and solve for the
calibration parameters [8].

For low resolution thermal cameras a chessboard
pattern is error-prone even after heating it with an
infrared lamp. For pixels that cover the edge of the
squares the temperature is averaged over the black
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and white parts thus blurring the edges. [21] have
explored the calibration procedure using different
types of thermal cameras. Generally an object with a
unique pattern having distinct targets is used which
eases labeling and increases accuracy of the cali-
bration process. The points are actively or passively
heated. In case of passive heating different material
causes the pattern to show up. [21] developed a pattern
consisting of targets of self-adhesive foil on an alu-
minum plate. While the targets emit radiation related
to their own temperature the reflective metal surface
reflects the cold temperature of space thus leading to
an enormous contrast in temperature. Unfortunately
this concept is not applicable for the co-calibration
of the thermal camera and a laser scanner as it is
very difficult to position the board in a way that the
sky is reflected without occlusions and the board is
completely visible in the laser scan. Instead we sug-
gest a pattern with clearly defined heat sources such
as small light bulbs as it shows up nicely in thermal
images.

Figure 3 shows our pattern in the background. It is
composed of 30 tiny 12 Volt lamps, each with a glass-
bulb diameter of 4mm. The overall size of the board
is 500mm (width) × 570mm (height). Identifying the
heat sources in the image enables us to perform intrin-
sic calibration in the same way as for optical cameras.
To detect the light bulbs in the thermal image a thresh-
olding procedure is applied to create a binary image
showing regions of high temperature. A further thresh-
olding step discards effectively all regions that are too
big or too small. If the remaining number of regions
is equal to the number of light bulbs in the pattern the
regions are sorted according to the pattern to allow for
easy determination of correspondences. To calculate
the exact center of the features, the mean is calcu-

lated by weighing all the pixels in the region by its
temperature value.

Extrinsic Calibration – Cameras and Laser Scanner.
After calculating the internal parameters of the cam-
eras we need to align the camera images with the
scanner coordinate system, i.e., extrinsic calibration.
The three rotation and three translation parameters are
known as the extrinsic camera parameters and define
the geometric relation between camera and laser scan-
ner. Once all the points are in the camera coordinate
system, the projection to the image can be defined up
to an factor s using Eq. (3) [8]:
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Suppose there are n images of the calibration pat-
tern and m planar points on the pattern considering
the distortions as independent and identically dis-
tributed noise then the maximum likelihood estimate
of the transformation between the scanner and camera
coordinate system is obtained by minimizing
n∑

i=1

m∑
j=1

||pij − p̂(A,D,Ri , ti ,Pj )||2 (4)

where A is the intrinsic matrix, Ri the rotation matrix,
ti the translation vector, and D the distortion parame-
ters. p̂(A,D,Ri , ti ,Pj ) defines the projection of point
Pj in image i, according to Eqs. (3) and (2). This
approach assumes that we have a number of points that
are identifiable in both the laser scan and the image.
For this purpose we attach the calibration pattern onto
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a board. For the optical camera this is a printed chess-
board pattern and for the thermal camera light bulbs
arranged in a regular grid pattern. The calibration pat-
terns are depicted in the background of Fig. 3 The
position of the points of these patterns are known.
Algorithm 1 detects the points in a laser scan.

3D to 2D Projection and Color Mapping. During
the data acquisition phase laser scans and images are
acquired simultaneously. After determining the rela-
tions between scanner and cameras in the calibration
step this relation is used directly to assign temperature
and color values to the point cloud.

Projection/Occlusion/Resolution Errors. Due to the
different fields of view the sensors see different parts
of the world. An area that is visible for one sensor
might be occluded for the other sensor. When mapping
the thermal information to the point cloud this causes
wrong correspondences and therefore faulty assigned
values. This impact is amplifed by the low resolution
of the thermal camera. With only 120 by 160 pixels per
image each pixel corresponds to many 3D points seen
by the laser scanner leading to errors at edges. Con-
sequently small calibration inaccuracies have a large
impact on the results. To solve this problem we per-
form a ray tracing procedure that checks whether a
point in the point cloud can be seen by the camera. We
connect the point P and the camera position C with a
straight line PC and select all points with a distance
less than a threshold t to PC, i.e., all points Oi for
which

|P − Oi |2 − |(P − Oi ) · (P − C)|2
|P − C|2 < t2 (5)

holds true. If any point Oi lies between P and C, P is
not visible from the camera and therefore is discarded.
The threshold t accounts for small inaccuracies in the
calibration and the low resolution of the camera simul-
taneously. To speed up the checking procedure the
points are organized in a kd-tree data structure. With a
quick check all voxels that are not traversed by the ray
are immediately discarded and therefore all the points
within are ignored.

4 Problem Definition

Inferring higher level knowledge about the property of
an object can be seen as two problems that are highly

related. First, the detection of objects that belong to
a certain class. This is a problem where the emphasis
is on understanding and modelling of time-invariant
properties of a certain class of objects, e.g. all win-
dows are made of glass, so that the properties are
used to recognize an object of that class. Second, the
inference about the object, rather than the class, using
specific knowledge. In the second case, the problem is
recognizing properties of an object that are observed
in a certain time frame under a certain condition;
which, of course, gives information about the objects
state rather than the class it belongs to. Consequently,
each of the above problems is usually solved sepa-
rately and sequentially. In fact, the solution space of
the first problem is the domain/problem space of the
second problem. In this paper we will be dealing with
window detection and labelling, i.e, assessing win-
dows either as open (O), closed (C) or damaged (D),
i.e., a window without the proper insulation. Window
detection belongs to the first group of problems and
will be performed first followed by window labelling
that belongs to the second group of problems.

Although window detection from a point cloud rep-
resentation of a room full of objects is a challenging
task we have designed a sequential pre-processing
modules which essentially reduce window detection
to the estimation of a mapping function f (·). Assum-
ing we have successfully identified 3D points that
represent a window, the 3D points are considered as
random variables taking a temperature value from R.
Thus, the labelling of windows as closed, opened or
damaged is formulated as a probability distribution
modelling problem. In general, probabilistic models
for object recognition are categorized either as gen-
erative models or discriminative models. The former
one attempts to model the joint probability distribu-
tion P(X, Y ) between the data denoted by X and the
label denoted by Y . Alternatively, the discriminative
model approach is to model the posterior probabil-
ity P(Y |X) directly from the data. A discriminative
model is widely believed to be the better modelling
technique with better predictive ability [19]. Conse-
quently, we have chosen the discriminative modelling
approach, and thus the posterior probability of a label
y ∈ {C,O,D}, is modelled as:

ts = f (x), (6)

P(y|ts) = p(ts |y)P (y)
p(ts)

, (7)
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where x is the fully registered thermal 3D point cloud
model of the room, f (·) is a function that takes this
model as an input and outputs the temperature dis-
tribution of the detected window, ts ∈ R

n, where n

is the number of 3D points representing the window.
Since p(ts) is exactly the same for all the labels it
has no effect on the label specific posterior, and thus
is ignored. Additionally, the probability of a window
being closed is assumed to be exactly the same as
being open or being damaged. In fact, this might not
be true but we have no prior information to assume
otherwise. Therefore, the modelling task is:

P(y|ts) ≈ p(ts |y) (8)

In summary, labelling a window as open, closed
or damaged is formulated as estimating the condi-
tional probability distribution of every label, followed
by a decision rule, where the decision will be based
on MAP (Maximum a posteriori) to minimize the
expected error [5]. MAP is summarized as:

ŷ = arg maxyi∈YP (y = yi |ts) (9)

where ŷ is the final label assigned to the temperature
distribution of a window t ∈ R

n, and Y = {C,O,D}.
In the following sections a solution to the problem
formulation given in Eq. (7) is presented, respectively.

5 Window Detection

Window detection is a difficult task with many asso-
ciated problems. In this paper a simple but effective
detection technique, exploiting the thermal camera, is
presented. Intuitively, the core idea is the difference

Fig. 4 Blue color represents the walls, and the red is for floor
and ceiling; constraint is set to ≥ 80◦

in material property, i.e., all windows are made of
glass and walls are made of some other material. This
means, given a thermal 3D point cloud of a room that
contains only windows and walls, there is a thermal
conductivity difference between the wall material and
the window material. And thus, there will always be
a temperature difference which can be used to recog-
nize one from the other. However, a 3D point cloud
representation of a room contains other objects and
clutter. As a result, a mandatory preprocessing has to
be done to detect and remove these other objects from
the scene.

5.1 Pre-processing

Filtering objects that are inside a room and points
that are scanned through windows (see Fig. 5) is
a challenging task that is simplified with practi-
cal and realistic assumptions. The assumptions taken
are:

– A room has a rectangular shape.
– The scanner is located inside the room.
– The walls and windows are not completely

occluded, i.e., some part of the wall is always
visible.

– The thermal 3D point clouds are registered to a
single co-ordinate system.

Assuming the above conditions are true, a sequential
procedure is proposed for filtering out objects from the
scene, such that the point cloud consists only of walls
and windows.

5.1.1 From 3D to 2D

Assuming that windows are located on the walls and
not on the ceiling, neither the height of the room nor
points representing the floor and ceiling are important
for window detection. Hence, points representing the
floor and ceiling need to be filtered out from the scan.
Floors and the ceilings are, again, almost always paral-
lel to each other and perpendicular to the walls. Thus,
the normal vector of a 3D point representing the ceil-
ing is parallel to a wall. Given the above we conclude
that a 3D point is representing the floor or ceiling if its
normal vector is perpendicular to the x − y-plane, or
parallel to the x− z-plane, where z is the vertical axis.
Let a = (1, 0, 0) be a vector on the x-axis, and ni be
the normal vector of the ith point, then for all points
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Fig. 5 (a) A 3D thermal
model of the Automation
Lab at Jacobs University
Bremen. (b) 2D projection
of the room with the x-y
axis colored in red. (c) The
detected outer rectangular
shape, or walls of the room

on the floor or on the ceiling 80◦ ≤ θ ≤ 100◦ holds
true in:

a · ni = ‖a‖‖ni‖ cos θ (10)

We set the threshold to 10◦, due to noise and inaccu-
racy in calculating normals (Fig. 4).

Inspired by the work of Xiong and Huber [28] our
software further simplifies the 3D representation of
the room to a 2D representation, since the height of the
room is not really needed in wall detection. Thus, the
3D points are transformed to a 2D plane as follows:
(

p′
0

)
= p − (p · n)n (11)

where n is the normal vector of the projection plane,
p′ ∈ R

2 is the projected point, and p ∈ R
3, is the point

to be projected. Now that the room is projected onto
a 2D plane walls are represented with lines instead of
planes (cf. Fig. 5).

5.1.2 Wall Detection

The projection of the room to a 2D space enables us
to work with lines as walls instead of planes. We have
assumed that the room has a rectangular shape, that
the origin of the scan is inside the room, and that
the walls are not completely occluded. Hence, we can
conclude that the x − y-axis of the 2D plane, which
has its origin at the scanner location, intersects with
each wall line after θ rotation, where 0◦ ≤ θ < 360◦.
The intersection is independent of the orientation and
position of the scanner as long as it is in the room.
The only exception is when the axes intersect with the
corners.

As a line equation is defined by two points that
lie on the line we need to detect two points on each
wall (line) to detect all the walls of the room. The first
four points– since there are four walls– are determined

by selecting the farthest point on the ± x-axis and ±
y-axis. To determine the second set of points the reg-
istered scans are rotated by a given angle θ2. Again
the farthest point on each ± x − y-axes are selected.
Rotating the selected points back by −θ2 yields the
second set of points needed for defining the four line
equations. Although θ2 can be selected arbitrarily its
size has a significant impact on the convergence speed
of the algorithm. For larger θ2 it is very likely that the
rotation passes the corner causing the pairs to be on
different walls. For small θ2 the distance between the
two points of a pair is small influencing the impact of
noise in the data.

The algorithm fails in cases where the farthest point
on one of the axes is not a wall point, e.g. due to
occlusions, or due to the presence of noise, i.e., points
outside of the room that are scanned through win-
dows and doors. Further problems occur when one of
the intersecting points lies in a corner of the room.
To ensure an accurate and robust wall detection the
following conditions are introduced:

– Each detected line has to be perpendicular to two
lines, the ones it is intersecting with, and paral-
lel to the other, the one it is not intersecting with.
This is a hard constraint that has to be fulfilled in
order to detect the walls with a reasonable accu-
racy; in other words, the slopes S1 and S2 of two
intersecting lines should satisfy S1 = −1/S2.

– To avoid the detection of outliers as walls there
should be a considerable number of points at all
four intersection points of the four detected lines.
This is more of a soft constraint, especially, in
a heavily occluded scan. Consequently, this con-
straint is mainly used to measure the confidence
level, i.e., error = 1 − conf idence.

The confidence level is quantified by counting the
intersection points of the detected four lines that have
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a considerable number of points on and around them,
e.g., if of the four intersection points three have a sig-
nificant number of points on and around them then the
confidence is 3/4 or 75%. The threshold for determin-
ing the significance of the number of points depends
on the density of the scan. If the above two con-
straints are not satisfied the whole scan is rotated by
a certain angle θ1 and the line detection process starts
all over again– the iteration continues until lines are
detected that satisfy the constraints reasonably. The
procedure is outlined in Algorithm 2. After a suc-
cessful detection of the lines representing the walls,
all points that are not near the walls, with in a cer-
tain threshold, are removed. An example is given
in Fig. 5.

5.2 Window Detection

The result of the pre-processing step is a 3D model
of the walls of the room. Now the remaining point
cloud is dominated by points from the wall which
means most points have an almost similar temperature
value. However, 3D points of a window and points
around it show a considerable temperature difference
from the wall points (cf. Fig. 6). Thus, the window
detection technique aims to exploit these temperature
differences as a main feature.

Since there are significantly more 3D points that
represent the walls than those that represent the win-
dow area a typical temperature distribution in a room
takes a bell curved shape (cf. Fig. 6). The rare ends
of this temperature distribution correspond to tem-
perature peaks. On the lower end these are objects
that are cooler than the room temperature, i.e., mostly
windows. The upper end represents hotter objects
that are close to the wall, e.g., computers or heaters.
Thus, filtering points with a constant threshold that
is dependent on the standard deviation and mean
of the temperature distribution enables us to detect
points with uncommon temperature values, regard-
less of the the temperature distribution’s peakedness
or flatness. Although it must be noted that for sen-
sitive thresholding one has to consider the possible
asymmetry of the distribution, e.g., heaters might be
turned off. Furthermore, in the warm season, when
air conditioning is used, windows will contribute to
the upper end of the temperature scale. The thresh-
olding constant that divides the points into warm and
cold points depending on the distribution is given as
follows:

tempdiv = 1

N

N∑
j=1

tj ±

√√√√√ 1

N

N∑
j=1

(tj − μ)2 (12)
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where tj represent the temperature values of the room
with walls, windows and other nearby objects, and μ

is the mean temperature value.
Using the temperature dividing threshold tempdiv

we detect points with lower temperature values and
conclude that these points represent windows. In the
next step the potential window points are clustered
according to their spatial distance from each other.

The clustering is done based on a simplified ver-
sion of k-means clustering, i.e., the clusters emphasize
compactness and connectedness. See Algorithm 3 for
summary. A final filtering procedure removes clusters
with a small number of points.

Each of the remaining clusters is processed indi-
vidually in case there is more than one window in
the room. We approximately determine the width and
height of each window from the cluster. This has the
major advantage that we can control the number of
points on the window. The boundaries of the win-
dow are approximated by first determining the plane
that the window lies on by removing the axis with
the smallest variance. Second, we select the extreme
± of each axis, i.e., the distance from the respective
component of the mean vector of the clusters. Finally,
the extreme points are used to determine the bound-
ary points. To achieve an identical number of points
on each detected window we use an octree based sub-
sampling (see [11]). The procedure takes into account
the size of the window by creating an octree with
a variable minimum voxel size and taking only one
point from each voxel.

6 Modelling State of a Window

In this paper a window is considered to be in three
distinctive states (labels), henceforth will be used
alternatingly. The states are: closed(C), opened(O), or
damaged(D) – a damaged window refers to a win-
dow without the proper heat insulation. In this section,
MRF (Markov random field) is presented as a math-

Fig. 6 Typical temperature
distribution of a 3D scan
with walls and windows
only
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ematical tool to model the probability distribution of
each window’s states, given the 3D thermal point
cloud of the window.

6.1 Markov Random Field

First introduced by [3] the Markov Random Field
(MRF) is mainly used to express the statistical depen-
dencies between several random variables arranged in
some form of spatial configuration or graph. MRF
simplifies the joint distribution modelling by exploit-
ing the Markovian property of the graph [9].

Meanwhile, the Hammersley-Clifford theorem [3]
showed that a joint probability distribution of several
random variables {z1, · · · , zn} that can be factorized
as P(z1, · · · , zn) = ∏n

j=1 φj (ψj ), where φj is any
real valued function defined for each clique set, is
equivalent with MRF [9]. Furthermore, since MRF
assumes that every joint realization of the random
variables has a strictly positive probability value– this
is called the positivity condition– the factorized distri-
bution can be expressed using exponential form, called
Boltzmann (Gibbs) distribution. Boltzmann distribu-
tion is defined as:

p(t; θ) = 1

Z(θ)
exp(

−E(t, θ)

T
) (13)

where Z is the normalization constant, T is a control-
ling constant, t is a certain realization of the random
variables, and E(·) is a system, i.e. the system being
modelled, specific function called energy function.
And finally, θ is a set of free constant parameters that
will be discussed later.

6.1.1 Boltzmann Distribution

The Boltzmann distribution is at the heart of MRF
modelling; hence, in this subsection, a brief discussion
about the mathematical properties of the Boltzmann
distribution is presented. There are two independent
variables E(·) and T and a single dependent vari-
able p(·) in Eq. (13). Consequently, understanding the
exact relationship between each independent variable
and the probability distribution is crucial.

The first and perhaps the most important prop-
erty is the relationship between the energy function
and the distribution. Since the exponential function
is taking the negative of the energy function as an
input, and given the nature of exponential functions,

it is straight forward to see the inverse variation
of the energy function and the distribution. And
thus, assuming E(·) > 0, the relationship can be
expressed as p(·) ∝ 1

E(·) . Intuitively, this means
the Boltzmann distribution favours states with small
energy value– in terms of modelling, it means all
instances of a class should always minimize the energy
function of the class’s Boltzmann distribution, more
accurately, should minimize the energy function bet-
ter than other class’s instance. The second property
on the other hand, is between the controlling con-
stant T and the distribution; as T gets small the
standard deviation of the distribution gets small as
well. In essence, T ∝ σ , where σ is the standard
deviation.

In the next subsection, a discussion is presented
about the formulation of energy functions that favour
a distinctive feature of window’s states.

6.2 Energy Functions

Apparently, the temperature distribution of a closed
window–a window that is neither damaged nor
opened–exhibits a very small variance regardless of
the peak temperature. On the contrary, the temper-
ature distribution of opened window has a much
higher variance than closed window (Fig. 7). This has
shown to be a very robust feature, i.e., invariant to
peak temperature value, to distinguish one from the
other. Damaged windows, however, are particularly
detectable because of their non-smooth temperature
distribution. Intuitively, the non-smoothness in tem-
perature value is the main feature of a leaky window.
Therefore, non-smoothness in temperature distribu-
tion is the emphasized feature in the energy function
of a damaged window. However, it must be noted that
the temperature distribution of both opened and closed
windows are smooth, i.e., small temperature differ-
ence between neighbouring points, as opposed to the
distribution of damaged windows. These characteris-
tics of the different window states were derived from
thermal images of windows. Examples of different
windows are shown in Fig. 2.

On the other hand, energy functions are ought to
be designed such that the function is close to the min-
imum for strong cases of the designated feature and
reaches its minimum for extreme cases, respectively.
Additionally, since the features of each state should be
distinctive they must be different from each other and
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Fig. 7 (a) Open window colored according to the thermal distribution. (b) Closed window colored according to the thermal
distribution. (c)+(d): the temperature distribution of each window, respectively

the design of the energy function is state specific. The
following equations, thus, are designed as an energy
function for each state.

EC(ts , θc) = α1c

N∑
j=1

(tj − μ)2

N
+ α2c

N∑
j=1

d(xj ,K)

N
(14a)

EO(ts , θo) = α1o
N∑N

j=1(tj − μ)2
+ α2o

N∑
j=1

d(xj ,K)

N
(14b)

ED(ts , θd) = α
N∑N

j=1 d(xj ,K)
(14c)

where θc = (α1c, α2c), θo = (α1o, α2o), θd = (α)

are weighting constants for each term of the energy
functions. N is the number of random variables (3D
points) representing the window. d is a function that
calculates the average temperature difference in a K

neighbouring points, with respect to x ′j s spatial loca-
tion. And finally, tj is the temperature value of the

j th point xj of the window and μ the mean tempera-
ture value. The first term encourages small variance in
case of a closed window’s energy function Eq. (14a),
and a high variance in case of open window’s energy
function Eq. (14b). The second term in both cases,
open and closed window, emphasizes smoothness.
However, the damaged window’s energy function Eq.
(14c) encourages non-smooth temperature distribution
(cf. Fig. 8).

The energy functions, however, are defined on
a very high dimensional space and computing the
normalization constant analytically is mathematically
complex and therefore not done in practice. Hence, it
has to be approximated with an appropriate numerical
method, Monte Carlo integration.

6.3 Monte Carlo Integration

Monte Carlo integration attempts to approximate a
result from an experiment. Monte Carlo methods are
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Fig. 8 The energy
functions defined on
variance and/or smoothness
where all the weighting
constants are assigned to 1.
Top Left: closed window’s
energy function, Top Right:
open window’s energy
function, Bottom: damaged
window’s energy function
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usually better for the approximation of higher dimen-
sional integrals than numerical methods [22].

The normalization constant of a Boltzmann distri-
bution for n continuous random variables defined on
the same probability space is calculated as:

Z =
∫
Rn

exp

(−E(t)

T

)
dt (15)

However, Eq. (15) can without loss of generality also
be expressed as follows:

Et [exp(−E(t)
T

)

p(t)
] = Z =

∫
Rn

exp(−E(t)
T

)

p(t)
p(t) dt, (16)

where E(t) is an energy function, p(t) can be any
probability distribution; t ∈ R

n, where n is the number
of random variables or 3D points and t is the realiza-
tion of the random variables. Et [·] is used to represent
the expectation value of the function over the random
variables.

The Law of large numbers assures the approxima-
tion of expected value with a large number of samples
and thus Eq. (16) is further reduced to:

Et

⎡
⎣exp

(−E(t)
T

)

p(t)

⎤
⎦ = 1

M

M∑
j=1

exp
(−E(tj )

T

)

p(tj )
(17)

Again, tj ∈ R
n is sampled according to p(t) for

M number of times, the larger M is the better the
approximation will be.

The major practical difficulty in using the Monte
Carlo integration is the design of p(t) especially for
a function defined in a large space. For example, if

we assume p(t) to be uniformly distributed the frac-

tion
exp(

−E(tj )

T
)

p(tj )
becomes almost infinity since p(t)

will be extremely small due to the high dimension-
ality of the space. Theoretically, this can be solved
if we take an infinite amount of samples from p(t).
Hence, for practical reasons the issue can only be
dealt with a hand designed probability distribution
p(t) that tracks the energy function very well– which

means, if exp(
−E(tj )

T
) is small then p(tj ) is small and

vice-versa. Consequently, the fraction
exp(

−E(tj )

T )

p(tj )
will

be a more pragmatic number that contributes for the
estimation significantly. Moreover, we can estimate a
more accurate expectation and in effect a better esti-
mate with small number of samples, comparatively, if
a well-tracking probability distribution is designed, cf.
Fig. 10.

6.4 Designing a Probability Distribution

The energy function of each label is inherently differ-
ent, and thus, the design of the probability distribution
is also label specific. The goal is to design a proba-
bility distribution that tracks the energy function well,

which means K · p(t) ∝ exp
(−E(t)

T

)
. Therefore,

there are two conditions, introduced for convenience,
to be satisfied by a probability distribution to be con-
sidered as a well designed probability distribution.
The first and the foremost is good tracking capability.
And secondly, p(x) should NOT be negligibly small
regardless of its tracking capability, which is the case
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for most probability distributions defined in a vast
space. An attempt is made to meet the first condition
by designing a Markov chain as follows:

Xi+1 = Xi +W ·N (0, σ 2) (18)

X0 = N (k, σ 2),

where i counts the steps starting from 0 to the num-
ber of random variables, and X is a random variable
taking a temperature value from R, X0 is the initial
state of the process, W is a weight which can be used
to control the rate of variation that will be discussed
later, and k is a constant that can be tuned accordingly;
σ is the standard deviation of the Gaussian distribu-
tion. The described discrete time stochastic process
Eq. (18) is then ran n times to propose a tempera-
ture distribution of a window with n random variables
or 3D points. Furthermore, the probability of a tem-
perature distribution instant t = {xn · · · , x0} can be
calculated as shown in Eqs. (19) and (20). Note that
the Markov property is being used to simplify the
computation of the joint distribution.

p(xn, · · · , x0) = p(xn, · · · , x1|x0)p(x0) (19)

= p(xn, · · · , x2|x1, x0)p(x1|x0)p(x0)

.

.

.

= p(xn|xn−1) · · · p(x2|x1)p(x1|x0)p(x0)

And from Eq. (18):

p(xi |xi−1) = 1

σ
√

2π
er

2/2σ 2
(20)

where r is a number sampled from N (0, σ 2) at the ith

step. Thus, Eq. (18) can be used to create a probability
distribution that generates sample t = {xn, · · · , x0}
tracking each label’s energy function. However, the
free parameters have to be tuned according to the spe-
cific energy function; the significant free parameters
are W and σ . The second condition for the proba-
bility distribution is NOT to be negligibly small. The
approach taken towards this problem is clustering of
points according to their spatial location, and treat
each cluster as a random variable, i.e., every point in
the cluster will have the same temperature value. This,
in effect, will reduce the domain space to the number
of clusters from the number of points which means the
joint distribution is highly scaled.

The free parameters of Eq. (18) are assigned as
W = 1 and σ 2 = 0.3 for closed window. Conse-
quently, Eqs. (20) and (19) are high valued when there
is less variance between consecutive points, i.e., xi−1

and xi+1 and small when there is high variance and,
of course, this by itself encourages smoothness. On
the contrary, the variance of open window’s tempera-
ture distribution is much higher than the variance of
closed window, but the smoothness should be exactly
the same. Hence, setting W = 20.0 in open window
case aims to cause a higher variance between clus-
ters, NOT between points. As a result Eqs. (20) and
(19) will be high valued for states with high vari-
ance yet smooth temperature distribution. Note that
increasing W achieves the proposal of states with
higher variance without causing the probability dis-
tribution to shrink which would happen if we simply
increase the variance. Thus, the variance is left as
σ 2 = 0.3.

However, as discussed above, the most distinctive
feature of damaged window is the non-smoothness of
the temperature distribution, unlike closed or opened
window. The design of the probability distribution
for the damaged window’s energy function is also
based on Eq. (18) with minor but basic modifications
on the handling of points inside a cluster. In cases
of open and closed windows each point in a clus-
ter is assigned exactly the same temperature. But in
case of damaged windows the assignment is done as
follows:

pj = Xi−1 +W2 · U(0, 1) · r, (21)

where pj is a point in a cluster Xi , Xi−1 is the value
of the previous cluster, r is a sample generated from
N (0, σ 2) at the ith step, and U(0, 1) is a uniform dis-
tribution that is sampled iteratively ∀pj ∈ Xi . Finally,
W2 is a weighting constant that is used to amplify non-
smoothness. As can be seen, each point in a cluster
will have different value, unlike the points in a closed
or open window. But most importantly, the point’s
probability is exactly the same as the cluster’s, since
every value is sampled from U(0, 1) with a probability
equal to 1. And this property enables the proposed dis-
tribution to represent a very non-smooth temperature,
which is expected, without flattening the probability
distribution.

Although the hand designed probability distribu-
tions are made to track the energy functions well, there
is yet another practical issue that is specific to the
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Fig. 9 (a)–(c): Three original thermal 3D point clouds with temperature values. (d)–(f): The detected windows under different
circumstances, i.e., (d) closed, (e) semi-open, and (f) fully open are shown in green

Fig. 10 The convergence
of the mean sequence; the
approximation of the
normalization constant of a
closed window with 1000
samples

 1000 800 600 400 200 0

 3

 4

 5

 6

 7

number of samples

no
rm

al
iz

at
io

n 
co

ns
ta

nt

Table 1 Summary of the approximated normalization value
and error range

Label Number of samples Normalization Error range

constant

Closed 1000 5.79517 0.0333378

Open 1000 5.26492 0.0231288

Damaged 1000 4.64347 0.0379469

Table 2 The value of free parameters for each labels energy
function

Label α1 α2 α3 T

Closed 0.05 1 N/A 1

Open 2 1 N/A 1

Damaged N/A N/A 0.1 1
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window labelling problem; the number of 3D points
representing a window vary from window to window.
To address this problem 3D points of the detected win-
dow are reduced using an octree sub-sampling. As a
result, the number of 3D points on a typical window
is assumed to be constant and thus the normalization
constant is approximated off-line, which otherwise
would have to be computed for each labelling task.
Alternatively, for applications where speed is not an
issue the normalization constant can be calculated
on-line. However, no significant difference has been
observed on the final performance except the apparent
overhead in the latter case.

7 Experimental Results

The test data set is acquired with a highly precise
laser scanner, the Riegl VZ-400, and an Optris PI160
thermal camera. The pre-processing, e.g., registration,
visualization and mapping of the thermal image is
done with 3DTK – The 3D Toolkit (http://threedtk.de/).
The window detection is tested on acquired data sets
and has been proven to be adequate, see Fig. 9. Six
registered scans of a laboratory were chosen for initial
tests. The room has one window of the type typically
existent at Jacobs University (cf. Fig. 2). The data was
collected in winter. This season is chosen to reduce

Table 3 A summary of experimental windows labelling and probability of making an error

Probability of

Segmented Closed Opened Damaged Making Final

Window error Label

0.642699 0.303224 0.054077 0.357301 Closed

0.731546 0.1543682 0.0247715 0.15684535 Closed

0.308042 0.423237 0.1568721 0.576763 Opened

0.271198 0.477311 0.251491 0.522689 Opened

0.347431 0.466858 0.185712 0.533143 Opened

http://threedtk.de/
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the interference of sun on the thermal camera, and
to get a clear and distinctive temperature difference
between room and outside temperature. Open, semi-
open or closed windows are correctly detected. There
are, however, free parameters that dictate the shape
of the posterior probability distribution; the energy
function’s are parametrized to decrease or increase
sensitivity to the features that characterize the spe-
cific state. The values of these parameters are hand
tuned, for this experiment. However, optimizing these
free parameters ensures optimal performance from the
specific energy functions. Although, determining the
MLE(Maximum likelihood estimator) from the likeli-
hood function– if there is a sufficient training dataset–
or using EM(Expectation maximization)– if there are
missing variables from the dataset– would suffice for
an ideal optimization scenario the difficulty of the nor-
malization constant for analytical treatment has made
this road a dead end– keep in mind that the normal-
ization constant is a function of the free parameters.
There are, however, other alternatives like pseudo-
likelihood, where the joint likelihood is approximated
by disintegrating it into many spatially independent
distributions [2], given there is a huge training dataset
to learn from.

The normalization constant for each label is
approximated with 1000 samples randomly taken
according to the designed probability distribution, see
Section 6.3. Since the approximation of the mean gets
closer to the true mean as N → ∞, where N is
the number of samples, the error is estimated with
the variance of the following sequence Mh, that gets
smaller and smaller as N → ∞, cf. Fig. 10:

Mh =
h∑

i=1

fi

h
, (22)

where h goes from 1 to N and fi = exp(−E(ti)/T )
p(ti )

.
As shown in Table 1 the error range of the normaliza-
tion constants Z for each label is very low. Despite the
hand tuning of the free parameters the algorithm per-
formed as expected. The experimentally determined
parameters α1, α2, α3, and T are given in Table 2.
Exemplary results achieved with these parameters are
detailed in Table 3. All examples are correctly labelled
by the algorithm. The probabilities for each label and
also the probability to choose a wrong label are given.
Closed windows are reliably detected. The probability
to mislabel an open window is much higher. This is

due to the fact that in these cases the non-smoothness
increases the probability that the window is damaged.
This suggests that the smoothness function is not opti-
mal for window labelling. Nevertheless, also in these
cases the correct label was chosen.

8 Conclusions

In this paper, we presented a thermal information
analysis for object detection and labelling. The effec-
tiveness of the approach in general for window detec-
tion was shown in a small test data set. The method
is divided in two parts. First, windows are detected
from 3D thermal data. Second, windows are classi-
fied into categories based on energy functions of the
thermal data. In effect, we presented a reasonable
approach for understanding the structure of a room,
and we have sequentially shown usage of temperature
as a main feature for object detection and further-
more modelling of temperature distribution to infer
object related semantics. Although the main aim of
this work is to contribute to the efforts of automating
energy leak detection and prevention, the approaches
can be adopted for object detection and modelling
tasks in general, especially in cases where there is a
small data set to learn from. One could think of using
energy functions to distinguish different surface prop-
erties based on smoothness or the reflectance value
assigned to each point by the laser scanner. In future
work we plan to further assess and try to improve the
methods presented here. First, an extensive evaluation
is necessary using a much larger data set containing
windows of different types. Second, this includes a
thorough evaluation of the performance under chang-
ing temperature distributions. Especially transferring
the approach to examine rooms with air condition
rather than heating systems is a goal. Second, dif-
ferent energy functions should be evaluated in order
to improve the reliability of the labelling. Third, we
would like to extend the processing pipeline to label
other heat sources and to detect poor insulation in
buildings.
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