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Abstract Robotic ecologies are networks of heteroge-
neous robotic devices pervasively embedded in everyday

environments, where they cooperate to perform com-
plex tasks. While their potential makes them increas-
ingly popular, one fundamental problem is how to make

them both autonomous and adaptive, so as to reduce
the amount of preparation, pre-programming and hu-
man supervision that they require in real world appli-
cations. The project RUBICON develops learning solu-

tions which yield cheaper, adaptive and efficient coor-
dination of robotic ecologies. The approach we pursue
builds upon a unique combination of methods from cog-

nitive robotics, machine learning, planning and agent-
based control, and wireless sensor networks. This pa-

per illustrates the innovations advanced by RUBICON
in each of these fronts before describing how the re-

sulting techniques have been integrated and applied to
a proof of concept smart home scenario. The result-
ing system is able to provide useful services and pro-

actively assist the users in their activities. RUBICON
learns through an incremental and progressive approach

driven by the feedback received from its own activities

and from the user, while also self-organizing the manner
in which it uses available sensors, actuators and other

functional components in the process. This paper sum-
marises some of the lessons learned by adopting such

an approach and outlines promising directions for fu-

ture work.
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1 Introduction

Smart environment technology utilizes sensors and mi-
croprocessors throughout the environment to collect data
and information to provide useful services. In home
settings, routinely the focus has been the provision of

health monitoring and assistance to individuals experi-
encing difficulties living independently at home. Home
monitoring systems generate and send messages to care

givers, informing them of the user’s routine activities
[1], as well as abnormalities in the users’ daily rou-
tines [2–4].

Enabling robots to seamlessly operate as part of
these systems is an important and extended challenge
for robotics R&D and a key enabler for a range of ad-
vanced robotic applications, such as home automation,

entertainment, and Ambient Assisted Living (AAL)
Service robots have been or are being integrated

with smart environments and AAL systems in a number

of past and existing projects, most notably, Companion-
Able1. KSERA2, FLORENCE3, MOBISERVE4, Hob-

bit5, Alias6, and ACCOMPANY7.8 On one hand, the

smart environment can act as a service provider for the
robot, e.g. feeding it with information about the user’s

whereabouts and state, by using sensors pervasively em-
bedded in the environment and/or worn by the user.

On the other hand, robots can support care givers [5]

1 www.companionable.net
2 ksera.ieis.tue.nl
3 www.florence-project.eu
4 www.mobiserv.info
5 hobbit.acin.tuwien.ac.at
6 www.aal-alias.eu
7 accompanyproject.eu
8 Note that this list of projects are mentioned as they are

European projects with specific HRI aims, however this is not
an exhaustive review of all projects in this research field.
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and offer greater freedom for applications to ascertain-

ing an individual’s state. Besides adding robotic ca-

pabilities to the smart environment, these works focus

on human-robot interaction (HRI) issues by providing

the user with a interface that acts as a representative

of the services the intelligent environment offers. This

provides most of the added value with services such

as cognitive stimulation, therapy management, social

inclusion/connectedness, coaching, fall handling, and

memory aid. To these ends, the same initiatives usually

adopt a user-centred design methodology and give the

designer and - to a limited degree - the final user(s),

control on personalization and product customisation

features. While such an approach puts the user in con-

trol and helps user acceptance of the technology, it adds

an additional burden to customize and adapt the result-

ing solutions to each user, environment and application.

A particularly interesting case is the recent emer-
gence of the robotic ecology paradigm, focusing on the

construction of environments composed of simple de-

vices that together can accomplish complex tasks. This

is generally done by abandoning the traditional view

of autonomous robotics (which tends to build multi-

purpose, often humanoid service robots) in favour of

achieving complex functionality by composition of dis-

tributed (and specific-purpose) robotic devices. Instances

of this paradigm include Network Robot Systems9, Sen-

sor/Actuator Networks [6], Ubiquitous Robotics [7], and

PEIS10 Ecologies [8–10]. A commonality amongst these
systems is the fact that the term robotic device is taken

in a broad sense, to include mobile robots, static sensors

or actuators, and automated home appliances. Build-

ing smart environments in this way reduces application

complexity and costs, and enhances the individual val-

ues of the devices involved, by enabling new services

that cannot be performed by any device by itself. Con-

sider for instance the case of an ecology-supported robot

vacuum cleaner that avoids cleaning when any of the in-

habitants are home after receiving information from the

home alarm system, or, of a robot informing an elderly

person living alone that she has forgotten to switch off

the stove, after receiving a signal from a wireless sensor

installed in the kitchen.

Past research initiatives embracing a robotic ecol-

ogy approach [9, 10] have provided fundamental scien-

tific principles, and associated software solutions (mid-
dleware) that underpin the design and the services of

highly distributed heterogeneous robotic systems. How-

ever, the resulting systems strictly rely on pre-defined
models of the robots, of their users, of the environment,

and of its associated dynamics. These models can be

9 www.scat.or.jp/nrf/English/
10 Physically Embedded Intelligent Systems

used to find strategies to coordinate the participants

of the ecology and to react to perceived situations, but

they lack the ability to pro-actively and smoothly adapt

to evolving contexts. These limitations make such sys-

tems still difficult to deploy in real world applications,

as they must be tailored to the specific environment

and application. Relying on the same solutions to sup-

port the operations of robot ecologies in real settings

would quickly become ineffective, unmanageable and

prohibitively costly.

The main focus of the project RUBICON11 [11] is in

the endowing of robotic ecologies with information pro-

cessing algorithms such as perception, attention, mem-

ory, action, learning, and planning. This yields cheaper,

more adaptive and more efficient configuration and co-

ordination of robotic ecologies. Rather than addressing

the development of specific services and/or HRI capa-

bilities, or pursuing the integration of distinct entities

(robots, sensors, actuators), RUBICON fully embraces

the robotic ecology concept. Sensing devices spread in

the environment do not just provide sensed data or

control effectors. Rather, a RUBICON ecology exhibits

tightly coupled interaction across the behaviour of all of

its participants, including mobile robots, wireless sensor

and effector nodes, and also purely computing nodes.

This new generation of cognitive robotic ecologies

exploits the flexibility given by robots’ mobility to ac-

quire and apply knowledge about their physical set-

tings, and ultimately to adapt to evolving contexts and

the user’s evolving requirements, rather than be re-

stricted to only those situations and methods that are

envisioned by their designer. This has the potential to

greatly reduce the need of costly pre-programming and

maintenance of robotic ecologies, and thus ultimately

ease their application to a wide range of services and

applications.

Instrumental to this vision, the RUBICON project

has produced novel solutions to couple cognition, learn-

ing, control and communication for robot ecologies.

The following elements have been identified as piv-

otal to the realization of the above goals:

– flexible communication solutions able to connect and

share data, control and learning information among

heterogeneous and distributed components.
– machine learning methods, to build embedded, dis-

tributed and computationally efficient learning solu-

tions to model the distributed dynamic of the ecol-

ogy, and learn to recognize relevant situations out
of raw and noisy sensor data.

11 RUBICON (Robotic UBIquitous COgnitive Network,
http://fp7rubicon.eu) is a three year project supported by
the EU 7th framework programme
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– bio-inspired and self-organizing neural network mod-

els, to address the core cognitive problem of how the

robotic ecology can learn to analyse the situation of

the environment and of the user, and autonomously

decide what service should be performed under dif-

ferent situations.

– flexible planning mechanisms to decide which device

should be used to provide useful services, how they

should cooperate and what information should be

exchanged in the process, while also adapting these

collaborative strategies to changing objectives and

availability of resources.

Finally, supporting heterogeneous systems and vary-

ing computational constraints is an important and cross-

cutting issue for robotic ecologies and it has been a

primary concern for the RUBICON project, as target
environments may contain devices such as computers
with large processing and bandwidth capacities, as well

as much simpler devices such as micro-controller-based
actuators and sensor nodes, and even devices with no
(customizable) computational capability at all, such as

Radio Frequency Identifications (RFIDs).

We claim that any solution aiming at designing and

deploying practical robotic ecologies in real environ-
ments which can be seamlessly configured and contin-
uously adapted to the user’s need and to the changing
environment will need to create similar mechanisms as

the ones described in this paper.

The remainder of this paper is organized in the fol-

lowing manner: Section 3 introduces the most impor-
tant background technologies that enable the coordina-
tion of robotic ecologies and that have served as a start-

ing point for our efforts. It then provides an exhaustive
review of the work on the learning, cognitive and con-
trol aspects that are most closely related to our goals.
Section 4 outlines the architectural design of the inte-

grated system developed in RUBICON, before exam-

ining in detail each of its components. Section 5 helps
to illustrate the inner working and the interaction be-

tween these components, by using an AAL case study.

Finally, Section 6 concludes this paper by summarising
the lessons learned in this project and how they can

be used in other projects, and by outlining promising

directions for future work.

2 Background and Related Work

The research approach developed in RUBICON has been
informed by previous work on, respectively, robotic ecolo-
gies, learning, planning, and cognitive architecture so-

lutions. The following sections review the related work

in each one of these constituent directions.

The overarching goal for a robotic ecology is to pro-

vide sensing and actuating services that are useful, ef-

ficient and robust. This requires that arbitrary combi-

nations of a subset of the devices in the ecology should

be able to be deployed in unstructured environments,

such as those exemplified in a typical household, and,

there, efficiently cooperate to the achievement of com-

plex tasks.

Some of the background technologies used as a start-

ing point in RUBICON to face these problems were

developed as part of the PEIS Ecology project [8–10].

Interoperability and collaboration amongst robots, sen-

sors and actuators within the environment is ensured by

using different clients (C/Java) to the PEIS middleware

[8]. This includes a decentralized, peer-to-peer mech-

anism for collaboration between software components
running on separate devices. It also offers a shared,

tuplespace blackboard that allows for automatic dis-
covery of new components/devices, and for their high-
level collaboration over subscription based connections.

Specifically, PEIS components can indirectly communi-
cate through the exchange of tuples, key-value pairs,
which are used to associate any piece of data, to a log-
ical key.

The task of computing which actions are to be per-
formed by individual devices to achieve given applica-

tion objectives has been traditionally solved by using
classical AI planning techniques. We call the set of de-

vices that are actively exchanging data in a collabo-
rative fashion at any given time, the configuration of

the ecology. The task of computing the configuration
to be used at any given time in order to accomplish
the actions generated by such a coordinator can also

be modelled explicitly as a search problem and solved,
either, in a dedicated configuration planner or as an
integral step of the action planning.

For this purpose such configuration planners typ-
ically rely on introspection and semantic descriptions
of the available components in order to create a do-

main description that includes all the available devices

and the actions and data-exchange functionalities that
they support. This is illustrated Figure 1 where a con-

figurator plans for a subset of the available devices to

perform specific localization tasks in order to assist the
robot Astrid to navigate and open a refrigerator door.

The PEIS Ecology project explored two comple-
mentary approaches to the action and configuration

problems, including a plan-based, centralized approach
[12,13], and a reactive, distributed approach [14]. Both

approaches can be used to autonomously decide which

robotic devices must be used, what they need to do,
and what information they should exchange in the pro-

cess to achieve useful services. Crucially, however, both
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Fig. 1 A simple PEIS-Ecology (taken from [8]). Top (a):
The ceiling cameras provide global positioning to the robot.
The robot performs the door opening action by asking the
refrigerator to do it. Bottom (b): Corresponding functional
configuration of the devices involved

approaches rely on the existence of pre-programmed do-
main knowledge, in terms of ”crisp” rules stating rela-
tions that a human domain expert has identified be-
tween sensor readings (such as ”the pressure sensor un-

der the sofa is active while the TV is on”), inferred
context (e.g., human activities, such as ”the user is re-
laxing in front of the TV”) and actuation (i.e. plans

that provide contextualized assistance to the user, such
as ”fetch a drink to the user when she relaxes in front
of the TV”). Both approaches lack learning capabilities

and thus are not able to cope with noisy sensor data
and/or autonomously adapt their initial models of the
situations they need to handle and the services they
need to provide in each situation.

The key approach to enabling adaptive, proactive
and efficient behaviour in RUBICON is (i) to improve
the ecosystem’s ability to extract meaning from noisy

and imprecise sensed data, (ii) learn what service goals

to pursue, from experience, rather than by relying on
pre-defined goal & plan selection strategies, and (iii) en-

hance the planning abilities of the ecology by support-

ing reasoning upon different objectives and dynamic sit-
uations.

2.1 Learning

Numerous related works in the AAL and smart envi-
ronment areas have harnessed machine learning tech-

niques to recognize user’s activities in order to provide

context-aware services. Many works have also addressed
the prediction of what an inhabitant will do in the near

future, in order to enable planning and scheduling of

services ahead of time [4, 15], for instance, to imple-
ment energy-efficient control of appliances [16,17]. Typ-

ically, activity recognition solutions rely on static sen-

sors placed throughout an environment [15,18–21], but

more recently frameworks have been produced to rec-

ognize human activities with limited guarantees about

placement, nature and run-time availability of sensors,

including static and wearable ones [22,23]. However, the

strict computational and energy constraints imposed by

WSN-based environments have constituted a major ob-

stacle to translating the full potential benefits of these

results in robotic ecologies. For instance, much of these

solutions usually apply a data-centric perspective, in

which wireless sensor nodes are used for data collec-

tions and feature extraction while the actual learning is

performed, usually offline, on more capable computers.

Learning for event/activity recognition in smart envi-

ronments puts forward key challenges related to their
distributed nature (e.g. a Wireless Sensor and Robotic
Network), to the computational and power limitations

of the devices (e.g. mote-class sensors), to the number
and diversity of the learning task to be addressed, to
the noisy and dynamic nature of sensor data and to the

difficulty of identifying suitable and reliable teaching
information to drive the learning process. The KSERA

project [24] proposes a centralized hybrid learning sys-

tem for activity recognition that integrates a fuzzy rule-
based system with probabilistic learning based on Hid-
den Markov Models (HMM) and Conditional Random
Fields (CRF). Project OPPORTUNITY [23] [20] puts

forward an opportunistic approach where sensor devices
self-organize to achieve activity and context recognition
through a modular, though centralized, learning system

based on HMM modules that is capable of transferring
learning experience between modules

Artificial Neural Networks (ANNs) have found wide
application inWSANs, although with a limited exploita-
tion of its distributed architecture. Often the ANN re-

sides only in selected nodes of the WSAN: for instance,
[25] use an Hopfield network deployed on a sink to iden-

tify the minimum connected dominating set. Some dis-
tributed approaches can be found in literature, charac-

terized by variable degrees of learning cooperation. [26]

discuss a non-cooperative approach where a FuzzyART
learns to categorize time-dependent events in WSAN.

Other models allow some degree of cooperative learn-

ing: [27] exploits a distributed pulse-coupled ANN for
transmission synchronization, while [28] addresses rapid

re-coverage by treating each device as a neuron of a dis-

tributed ANN.

A common trait of works in literature is that learn-

ing techniques are used to find approximated solutions

to very specific tasks, mostly within static WSAN con-
figurations [29]. Learning solutions have a narrow scope,

resulting in poor scalability, given that different tasks
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are addressed by different learning models. In addition,

these solutions often neglect the sequential nature of the

sensor data produced within the ecology. This requires

learning models capable of capturing and processing the

temporal context in the input data, such as the Recur-

rent Neural Network(RNN) [30] paradigm. An example

is given by [31], where RNNs are exploited to achieve

centralized fault isolation by learning predictive models

of healthy and faulty nodes.

Recently, Reservoir Computing (RC) [32, 33] has

gained increasing interest as a modeling paradigm for

RNN. The RC paradigm is able to conjugate the power

of RNN in capturing dynamic knowledge from sequen-

tial information with the computational feasibility of

learning by linear models [34]. Hence, RC models ap-

pear suitable for deploying learning applications in the

computationally constrained WSAN scenario.

RUBICON puts forward the use of RC models, in
particular of the Echo State Network (ESN) [35,36], as

building block of a distributed ecology learning system

with application to Ambient Assisted Living (AAL).

Preliminary analysis of the trade-off between efficacy

and efficiency of the RC approach in AAL applica-

tions were investigated in [37–40]. Furthermore, pre-

liminary investigations on the predictive performance

of ESN modules in human activity recognition applica-

tions (targeted in particular to the EVAAL competition

scenario) can be found in [41].

2.2 Planning

In the last decades many planning techniques have been
proposed: many of them have been focused on partic-

ular and separated aspects (e.g. causal planning, tem-
poral reasoning, scheduling) but very few approaches

entail the possibility to reason about several facets of
the same problem at the same time or to handle dy-

namic goals. For instance, a considerable amount of

work has been done to integrate metric time into plan-
ning [42–47]. Including time has allowed some planning

systems to perform continuous planning, i.e., continu-

ously synthesize plans as new goals and contingencies
become known. Execution monitoring techniques have

been developed which leverage the explicit temporal
representation of these plans [48–50], thus effectively

providing a few examples of planning for real robots.

Although these constitute important steps towards ob-
taining planners that are appropriate for robots, they

address only partially (i.e., in the temporal dimension)

requirements 1 and 2.
Some work has addressed the issue of including fur-

ther dimensions into the planning problem, e.g., re-

sources. In addition to addressing more fully require-

ment 1, some of these approaches [51–53] would also be

well suited for use in closed loop with actuation and

perception, as they maintain a certain level of least-

commitment with respect to the timing of plan execu-

tion. Nevertheless, they are not proposed nor evaluated

as closed-loop planning systems. [54] propose an exten-

sion of the IxTeT planner [53] for closed loop execution

monitoring with resources. However, the technique is

exemplified on single robot navigation tasks.

To satisfy all the above requirements, RUBICON’s

planning solutions have been based on a configuration

planner [55] able to handle dynamic goals and produce

fine-grained plans for robotic systems which specify the

causal, temporal, resource and information dependen-

cies between the sensing, computation, and actuation

components in one or multiple robots.

2.3 Cognitive Architectures

The combined abilities to discover users behavioural

patterns and to learn to automate appliances, such as
lights, heating, and blinds, is already showcased in a
number of initiatives developing adaptive smart envi-

ronments, although not involving service robots [56]
[57]. Often these systems employ Q-learning [58] or other

adaptation policies based on utility maximization. How-
ever, the majority of activity discovery methods take

information collected by sensors as a starting point and
then discover frequent patterns by analysing the his-
tory of sensor data that can be associated with differ-

ent actions carried out by the user [59] [60] [61] [56].
Only a few of these methods, such as the data-mining
solution developed in the CASAS project [56] can op-
erate at run-time, which is of primary importance for

a smart environment that needs to assess the needs of

its users and to understand what to do to best assist
them. However, the same solution are usually limited

to use binary sensor data, such as infrared occupancy
sensors and switch sensors used to detect when the user

switches on/off appliances or opens drawers and doors.

The characteristic approach used in RUBICON is

to develop a two-tiered learning system, by coupling
a learning layer with a goal-oriented cognitive layer.
While the first layer processes sensor data and relies on

supervised information to detect and predict relevant

events, the latter reasons upon these events to support

online reasoning for the creation of a self-organizing and

goal-oriented robotic ecology.

Cognitive architectures are frequently used to model
human behaviour and reproduce aspects of such be-

haviour, in artificial systems. There are a number of

cognitive architectures in the literature. A comprehen-
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sive study on the cognitive architectures and their ob-

jectives is available in [62–64].

Symbolic architectures focus on information pro-

cessing using high-level symbols or declarative knowl-

edge. This is usually the approach of standard AI. The

use of symbols supporting information processing origi-

nates from the physical symbol systems hypothesis [27],

which states that symbol manipulation has the neces-

sary and sufficient means for general intelligence. SOAR

(State, Operator And Result) [65,66] and ICARUS [67,

68] are examples of this type of architecture.

Emergent architectures are composed of processing

nodes connected to form networks. Each node is a usu-

ally simple processing element. The nodes interact with

each other following the network connections, contin-

uously changing their internal state. The overall be-

haviour of the architecture is therefore the emergent re-

sult of the behaviour of all the single nodes. The mech-

anisms behind learning are highly dependent on the

network model in use. IBCA (Integrated Biologically-

based Cognitive Architecture) [69] and NOMAD (Neu-

rally Organised Mobile Adaptive Device) [70] are well

known examples.

Hybrid architectures are combinations of the above.
Symbolic architectures are able to process high-level in-

formation in a way that resembles human expertise.

However they are not suitable for processing raw data,

such as sensor streams or images. Conversely, emergent

architectures are better suited to handle large amount

of data and uncertainty, and to generalise to unfore-

seen situations. Yet they lack the capability to realise

high-level cognitive functions. Therefore attempts have

been made to combine symbolic manipulation and con-
nectionism in hybrid architectures. ACT-R (Adaptive
Components of Thought-Rational) [71, 72] and CLAR-

ION (The Connectionist Learning Adaptive Rule In-

duction ON-line) [73, 74] are examples of hybrid net-
work architectures.

Robotic ecologies demand multiple rules to be ac-

tivated at a time while processing a multitude of in-
formation. It is now widely recognised that fuzzy logic

offers a very powerful framework for approximate rea-

soning as it attempts to model the human reasoning
process at a cognitive level. Similarly, neural networks

offer a highly structured architecture, with learning and

generalisation capabilities. Their fusion in fuzzy neu-
ral network architectures provides a powerful frame-

work for cognition. To this end, RUBICON built its

cognitive system over self-organising fuzzy neural net-
works (SOFNN) for cognitive reasoning within a smart

home environment [75,76]. The main advantages of the
SOFNN are automatic identification of the structure

and parameters of fuzzy neural networks from data, and

evolution and update of the structure and parameters

by using new data to follow the dynamic changes in the

environment. In comparison to alternative models (AN-

FIS, OLS, RBFAFS, DFNN, GDFNN), the SOFNN is

able to retain a compact network structure whilst at-

taining a high accuracy [77].

3 RUBICON Architecture

RUBICON builds on existing middleware for robotic

ecologies, wireless sensor networks and home automa-

tion, and opportunistically harnesses distributed anal-

ysis, learning, cognitive and control mechanisms to ex-

tend the overall capabilities of the ecology and to drive

its continuous adaptation. The combination of these
techniques is realized in a system architecture of in-

teracting software layers. These are distributed across
all the participants of a RUBICON system to form an

application-agnostic infrastructure.

Fig. 2 Schematic representation of the RUBICON inte-
grated layered architecture.

Figure 2, above, depicts the RUBICON high-level
architecture, summarising the main responsibilities of

each layer and highlighting their main interactions. These

include:

– The Communication Layer is at the heart of the

system interfacing with all the other layers, deal-

ing with how data and functionalities are shared
between each component in the robotic ecology. To
this end, it provides different types of communicat-

ing mechanisms for exchanging sensor data and in-
formation between applications running on remote
devices (robot, pc, motes, etc). One of the key fea-

tures of the Communication Layer is a new messag-

ing protocol for the operation of synaptic channels
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(mimicking those in biological nervous systems), which

support the operations and exchange of information

between learning modules that reside in the RUBI-

CON ecology.

– The Learning Layer provides a set of core learning

services by implementing a distributed, adaptable,

robust and general purpose memory and learning in-

frastructure, comprising independent learning mod-

ules embedded on the nodes of the RUBICON ecol-

ogy. The Learning Layer employs recurrent neural

network models tailored to the very low-computational

capacity of the sensor motes used in current wire-

less sensor network solutions. These learning mod-

ules interact and cooperate through the commu-

nication channels provided by the Communication

Layer. The Learning Layer also uses the Communi-

cation Layer to access data generated by sensors and

by off-the-shelf software components. The high-level

goal of the Learning Layer is to deliver short-term

predictions based on the temporal history of the in-

put signals. The Learning Layer can be trained, for

instance, to forecast the exact location of the user

by examining the history of the RSSI measured be-

tween a wearable device worn by the user and an-

chor motes embedded in the environment, or to pro-

vide timely and predictive information on the activi-

ties being performed by the user, such as recognizing

that the user is cooking by analysing the signal and

temporal pattern received from sensors installed in

the kitchen, such as switches triggered upon opening

and closing the cupboards and refrigerator. Finally,

the Learning Layer allows the incremental acquisi-
tion and deployment of new computational learning
tasks by interacting with the Control and Cognitive

layers, that trigger and feed the incremental learn-
ing mechanism with teaching information related to
the task. Through these mechanisms the Learning

Layer is capable of adapting to new environmental

and/or user conditions.

– The Cognitive Layer enables the RUBICON ecol-
ogy to discover dependencies, regularities and nov-

elties in the observed patterns of events. The Cog-

nitive Layer analyses the situation and builds up
knowledge and understanding of the RUBICON ecol-

ogy based on reasoning over the events classified

by the Learning Layer, feedback from the Control
Layer, and its previous experiential knowledge. These

cognitive abilities are used to assign the goals for the

Control Layer to achieve under different environ-
mental scenarios, and to gather new knowledge in

order to understand which goals should be pursued

in each situation. A self-organising fuzzy neural net-

work (SOFNN) based learning technique has been

explored to achieve its objective.

– The Control Layer is the executive component

within the RUBICON system. It provides high level
control over the nodes within the ecology by formu-

lating and executing both action and configuration

strategies to satisfy the objectives set by the Cog-

nitive Layer. To this end, the Control Layer uses

a configuration planner that represents activities,

plans and configurations through a shared tempo-

ral network. This allows the Control Layer to char-

acterize activities with an explicit duration, which

can be made flexible in order to account for tempo-

ral constraints like deadlines about task completion,

and also absorb contingencies during the execution

of the plan.

Section 4 illustrates how the layers of the RUBICON

architecture can work together to drive the operations
of smart-home test-bed. The interested readers will find
in the following sections more details on each layer of

the RUBICON software system.

3.1 Communication Layer

The Communication Layer [78] provides different paradigms
of communication on the basis of the type of hardware
involved in the communication. A robotic ecology con-

sists of a heterogeneous set of devices communicating
with each other. This means that in each device, appli-
cations and components may be developed with differ-
ent programming languages and APIs, considering dif-

ferent computational or memory limitations, and pos-
sibly employing dedicated communication mechanisms
and networks. To this end, the software has been de-

signed to be as interoperable, scalable and extensible

as possible with applications and networks, targeting
both capable hardware, such as Java-enabled devices,
and the small 8-bit micro-controllers used in wireless

sensor nodes operating over IEEE802.15.4 12. In both
cases, the communications specification provides flexi-
ble reuse of components in the network, addressing var-

ious quality of service (QoS) requirements while hiding
the underlying platform differences and decoupling the
applications from hardware/OS platforms.

Internally, the Communication Layer is composed of
two levels (see Figure 3): the (i) Network Level and
the (ii) Transport level. The Network Level provides

mechanisms for addressing and routing packets between

nodes. It furnishes a basic interface for receiving and
sending messages, also supporting transparent and re-

liable data transfer by controlling the reliability of a

12 http://www.ieee802.org/15/pub/TG4.html
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Fig. 3 High-level software architecture of the Communica-
tion Layer.

given link through segmentation/de-segmentation, and
flow and error control. Furthermore, in order to support
dynamic networks, with devices joining and leaving the

system at run-time, for instance, due to device mobility,
component failure and power outage, a simple discov-
ery protocol is defined to allow the network layer to

signal the presence of new devices, together with the
description of the type of the sensors and actuators in-
stalled on each device. The Transport level provides the

interprocess communication between two processes run-
ning on different nodes in either a connection-oriented
or a connectionless manner. Applications can access
the communication channel only through the transport

layer by availing either of the Java or the nesC imple-
mentation for TinyOS-enabled sensor nodes. Embedded
learning applications can communicate through appro-

priate mechanisms implemented by the Communication

Layer. This is achieved through the abstraction of the
Synaptic Channel, which provides a stream-based
communication channel between two nodes of the ecol-

ogy. All the nodes involved in a learning application

have an internal clock synchronized. This clock paces
the transmission of the synaptic channels. The synchro-

nization is guaranteed by means of special broadcast
messages, which are periodically sent by the sink mote

in order to keep the motes clocks aligned. Moreover,

when more than two nodes are involved in synaptic
communication of a learning application the system au-

tomatically accommodates delays between packet trans-
missions to avoid collisions. Control applications, such

as the RUBICON Control Layer or home automation
services, can access the Communication Layer via spe-
cial proxy components. These provide proxied sensing

and actuation by accepting subscriptions to sensors and/or
sensing and actuation instructions to be transmitted to
the underlying actuators. On one hand, the Proxy in-

teracts with the Communication Layer to make sure

that the desired sensor data is sampled and published

in the Peis tuplespace, and to configure specific sensors

or send actuation instructions (e.g. set-points) to spe-

cific actuators. On the other hand, the Communication

Layer uses proxies components to enable communica-

tion among distinct clusters of sensors and actuators,

for instance, to support synaptic connections between

heterogeneous networks or between wireless motes that

are too distant for their radio range. As long as each

of the mote can access a proxy connected to the same

LAN, they will be able to seamlessly operate as they

were on the same network.

3.2 Learning Layer

Overall, the RUBICON Learning Layer (LL) [39] [40]

[38] [41] [79] [80] takes an innovative approach in the
exploitation of RC models in a distributed scenario
comprising a loosely coupled network of computation-

ally constrained devices. Specifically, the LL realizes a
general purpose learning system capable of addressing
a large variety of computational learning tasks, con-
cerning the on-line processing of sensor-data streams,

through a scalable distributed architecture comprising
independent ESN learning modules deployed on a va-
riety of devices, including mote-class devices. The LL

provides learning services through a distributed neural
computation that, differently from the works in litera-
ture, is capable of catering for the dynamicity of both

the monitored environment as well as of the underlying
network: for instance, it tolerates devices dynamically
joining and leaving the ecology. Further, the LL pro-
vides mechanisms that allow to continuously adapt the

learned knowledge by incrementally adding new learn-
ing tasks or by re-training existing ones, based on the
RUBICON needs, through the synergy with the higher

layers of the RUBICON.

The LL is a complex distributed software system or-
ganized into 3 subsystems as depicted in Figure 4: these

are the Learning Network (LN), the Learning Network
Manager(LNM), and the Training Manager(TN). Each

subsystem is realized by a variable number of software

components that are distributed over a heterogeneous
network comprising both TinyOS-enabled motes and

more powerful Java-enabled devices.

The LN realizes an adaptive environmental memory
for the RUBICON ecology by means of a distributed

learning system where independent learning modules

(represented as circles in Figure 4) reside on the ecol-

ogy nodes and cooperate through Synaptic Connections
(thin arrows in Figure 4) to perform a distributed neu-
ral computation. The single learning module mainly

processes local information gathered by the on-board
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device sensors and integrates this with remote inputs re-

ceived from other learning modules and delivered through

the Synaptic Connection mechanism. Synaptic Connec-

tions are a multiplexing/demultiplexing mechanism that

is used to route input/output information towards/from

the neurons of the distributed learning network. They

serve as an abstraction of the underlying Communica-

tion Layer that is responsible of the actual transmis-

sion of neural information across the ecology. Learning

modules and Synaptic Connections are implemented in

NesC [81], for mote devices, and in Java for powerful

nodes. The LN interfaces is a Java component that pro-

vides a unified access point to the LN services, provid-

ing methods to interact with the LN and allowing to ab-

stracting from technical details of its implementation,

such as distribution. The LN subsystem, as a whole,

implements the computational learning tasks provid-

ing the run-time predictions that serve to the RUBI-

CON ecology to achieve its high-level objectives. The

range of computational learning tasks that the Learn-

ing Layer addresses include event detection, support to

adaptive planning and control, localization and move-

ment prediction using signal strength information. The

LN predictions are made available to the other RUBI-
CON components through a PEIS interface.

Fig. 4 High-level software architecture of the Learning
Layer.

The LNM is a Java software agent hosted on a gate-
way device, that is responsible for the configuration and
management of the Learning Layer. It acts as an inter-

face towards the other RUBICON layers, by receiving
their instructions and transforming them into appro-
priate control and configuration actions (e.g. synaptic

connection setup) that are delivered to the appropri-

ate Learning Layer internal component (e.g. the LN in-
terface). Also, the LNM provides mechanisms for con-

figuration and control of the devices participating in

the Learning Layer, as well as of the learning modules
hosted on such devices. In particular, it provides au-

tomated strategies for gracefully recovering from the

loss of a learning module (self-adaptation) consequent

to the disconnection of a device from the ecology. Fur-

ther, it interacts with the TM to control the LN training

phases, to incrementally learn a new task or to refine an

existing task based on the training information received

from the upper RUBICON layers.

The TM is responsible for the learning phases of the

Learning Layer and for the management, training and

self-adaptation of the LN. Two learning mechanisms

are available within the Learning Layer. The former,

referred to as incremental learning, allows the dynami-

cal deployment of a novel computational learning task

(and associated prediction) while maintaining the LN

fully operational. For instance, the Cognitive Layer can
exploit information on novel user activities ongoing in
the ecology to guide the formation of a training set of

sensor measurements corresponding to the novel event
which, in turn, can be used to train the LN to recog-
nize the novel activity. The second, referred to as on-

line refinement, allows to exploit teaching information

from the higher layers, to refine a target LN prediction
by performing learning directly onboard the distributed
nodes.

As depicted in Figure 4, the TM comprises the Train-
ing Agent, the Network Mirror and a Repository. The
Training Agent is a Java component that manages the

activation of the training phases, by processing the con-
trol instructions received from the LNM and by or-
chestrating the learning in the Network Mirror compo-
nent through appropriate control messages. The Train-

ing Agent receives online learning feedbacks from the
upper RUBICON layers, and administers the appropri-

ate refinement signals to the LN. Further, it receives

training data and stores it into the Repository; these
data are used for the incremental training on novel com-

putational tasks, that are then deployed to the LN, once

appropriately learned. The Network Mirror handles the
bulkier learning phases of incremental learning by im-

plementing the mechanisms to learn new computational
tasks and to deploy them to the LN. To this end, the

Network Mirror maintains a copy of all the LN modules

deployed in the ecology. Such a mirrored copy of the LN
is also useful to ensure LN robustness when a device

(and its associated learning module) disappears from

the ecology. If the parameters of the missing learning
module encode critical knowledge, this is maintained in

the Network Mirror, which can clone the module and

deploy it to a new available sensor.
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3.3 Cognitive Layer

The objective of the RUBICON Cognitive Layer is to

implement a cognitive model which reflects the dynam-

ics of inhabitant’s behaviour and supports their daily

activities. There are three core modules in the Cogni-

tive Layer: (i) a cognitive memory module , (ii) a

cognitive reasoning module and (iii) a cognitive

decisions module . The cognitive memory is respon-
sible for holding current and historical states of the

RUBICON ecology as perceived and processed by the

Learning, Control and Cognitive layers. The cognitive

reasoning module reasons across events to determine

current and desired state of the RUBICON world based

on event data from the Learning Layer. The cognitive

decisions combines and reasons across the outputs of
the reasoning block, to determine the actual goals to

be transmitted to the Control Layer. These modules
are integrated to achieve the overall architecture of the
cognitive system and to facilitate communications with
the other layers, through the Communication Layer.

The Cognitive Layer employs a self-organizing fuzzy
neural network (SOFNN) as a learning component of
the cognitive system. The developed SOFNN has the

ability to adapt its neuronal structure through adding
and pruning of neurons according to the incoming data.
This facilitates the compactness of the computational

structure and makes it suitable for real-time opera-
tion [75], [82]. The rules of the SOFNN explore the
relations of the inputs and the desired reasoning out-
puts. As the user exhibits different behaviour aspects

(cooking, relaxing etc.) the system should manage mul-
tiple inputs and multiple outputs. To this end, we de-
veloped a multi-input-multi-output (MIMO) structured

SOFNN for the reasoning module as shown in Figure

5.

Fig. 5 The MIMO structure for cognitive operation.

Since the system is required to operate in online

mode, we developed a first-in first-out sliding-window
based technique for environmental data handling which

utilizes current information and a limited historical in-

formation [83]. The training method is depicted in Fig-

ure 6. The structure of the SOFNN is self-organised

during the learning process. A new SOFNN structure

is generated if EBF neurons have been added or pruned

in the existing SOFNN structure. In the recursive pa-

rameter matrix learning algorithm (described in detail

in [83]), the size of the Hermitian matrix (Q-matrix) de-

pends on the number of neurons asQ(t) = [PT (t)P (t)]−1

and P (t) = ΨT . If the number of neurons in the SOFNN

structure is changed, the data organized in the sliding

window will be used to update the matrix. A recursive

parameter matrix learning algorithm is then applied to

update the parameters during subsequent learning. It

is clear that if the width of the sliding window is the

same as the number of entire training data, then this

can be considered as offline training.

Fig. 6 First-in first-out sliding-window based training for the
Cognitive Layer.

Fig. 7 The overall structure for the cognitive operation.

In addition, a prediction model has been designed

to support continuous learning based on historical in-
formation. A memory module complements the overall

operations of the system in the context of an Ambient

Assisted Living (AAL) within a smart home [76]. The
overall architecture is shown in Figure 7.
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3.4 Control Layer

The RUBICON Control Layer is a hierarchical multi-

agent system that models each device in the ecology
as an autonomous agent with sensing and acting capa-

bilities, and which uses a central configuration planner

to find ways for these agents to cooperate to achieve a

number of useful services [84].

Figure 8 shows how the Control Layer is organized

in two levels: (i) a coordination level and (ii) a proxy

and an agent-based service level . In the coordina-

tion level, the Self -OSGi agent system [85] is used as

interface toward the Cognitive Layer: It accepts cogni-

tive goals set by the Cognitive Layers, and posts them

to the RUBICON’s Configuration Planner (CPM). The

latter is used to oversee the main operations and col-

laborations among the distributed devices in the robot
ecology cooperating in a peer-to-peer fashion thanks to
the RUBICON Communication Layer.

Fig. 8 The Hierarchical Architecture of the Control Layer:
goals are posted by the Cognitive Layer to an agent-based
interface, and processed by the Configuration Planner. The
resulting plans are executed by distributed service agents.
Both the service agents and the planner can account for sensor
information collected by multiple and heterogeneous networks
through different instances of proxy components connected
through the PEIS middleware

Access to heterogeneous sensing and acting capa-

bilities of the RUBICON ecology is facilitated by a

number of proxy and agent components. Specifically,
the integration of sensor and actuator networks, in-

cluding low-power and wireless sensor and actuator de-

vices (motes), within the Control Layer is provided by
a proxy component, which oversees the communication

between specific networks and the peer-to-peer PEIS

framework. The Self -OSGi agent system provides the
Control Layer with PEIS-enabled interfaces toward (ex-

isting) robotic functionalities operating within the Robotic
Operating System (ROS). The proxy and agent-based

service layer of the Control Layer lends each robotic

device a degree of autonomy, by instantiating and con-
trolling local functionalities. Such an organisation sim-

plifies the job of the planner, which does not need to

deal with every single device-specific detail, and to re-

duce the use of communication bandwidth necessary to

communicate status updates between each device and

the planner.

The interface between the planner and the rest of

the system happens through the PEIS middleware. The

structure of the planner can be conceptually represented

as a set of reasoners able to produce and correct, if nec-

essary, the plan. The latter is represented by means of

a temporal network whose nodes represent both the ex-

ecution of software modules running on the robots as

well as interesting (in terms of planning context) fea-

tures of the environment. In our particular case, the

planner exploits the following reasoners:

– information reasoner: it is in charge to link all the

needed software modules in order to produce a con-

sistent information flow ( e.g. the motion of the
robot, performed by the moveto module, can hap-
pen while the localization algorithm, performed by

the AMCL algorithm, provides the necessary infor-
mation)

– causal reasoner: it is in charge to generate actions

in order to manipulate the environment according
to the requirements of the plan

– environmental scheduler: this scheduler checks that

the representation of the environment is consistent
over time (e.g. that contradictory states for a vari-
able do not overlap over time)

– resource scheduler: it checks for and solve incon-

sistencies about overuse of resources. Our sched-
ulers (one for each resource) cope with renewable
resources, i.e. resources that are fully available when

not used by any component of the system

the description of the algorithm managing the genera-
tion of the plans is detailed in [86].

Another distinctive feature of the RUBICON Con-
figuration Planner is the ability to close the loop with

sensing measures, i.e. the plan can react (to a lower
extent than replanning from scratch) to unexpected

contingencies taking into account the sensorial read-
ings gathered during the execution, and also to adapt

to dynamic goals. A detailed description the respon-

siveness of the planner to unexpected contingencies is
reported in [87] [55]. A representation of the structure

of the configuration planner is depicted in Figure 9

4 AAL Case Study

The layered architecture presented in the previous sec-
tions focuses on the creation of application-agnostic

cognitive capabilities for robotic ecologies. Each soft-
ware layer of the RUBICON system has been validated

both in isolation or as part of integrated systems [88].
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Fig. 9 High level reasoners (causal reasoner, information rea-
soner, schedulers) modify the constraint network so as to
achieve the dynamically changing desired state (dynamic goal
posting). Their decisions are temporally validated (temporal
reasoning) and sent to the system as control signals. Rea-
soning accounts for the current state of the system, which is
continuously maintained in the constraint network (observer).

4.1 The HomeLab test-bed

This section illustrates how the communication, learn-
ing and control abilities of our architecture can operate

together to drive the operations of a RUBICON ecol-
ogy, by focusing on the description of the AAL system
we have built at the Tecnalia-H&QoL Homelab test-bed

to exercise the RUBICON integrated architecture. The
Homelab is a fully functional apartment of over 45m2

with a bedroom, living-room, kitchen area, bathroom,

and a corridor. Figure 11 is a view of the Homelab. The
test-bed includes different sensors and actuators con-
nected to a Konnex (KNX)13 home automation system.
We have extended the test-bed with one Turtlebot14

mobile robot and a IEEE802.15.4 compliant wireless
sensor network. We employ motes based on the original
open-source TelosB platform15. In addition, the user

wears a bracelet carrying a mote providing radio sig-
nal strength (RSS) data. The bracelet is also equipped

with a 2-axis accelerometer sensor. Overall, the consid-

ered test-bed comprises more than 50 sensors of differ-
ent types, including pressure, magnetic, tv state and

motion sensors, microphones, and accelerometers. Fig-
ure 10 shows an example of the data gathered from such

sensors, where a subset of the sensors and the ground-

truth for two activities are considered for the sake of
graphical representation.

With such a setup, the Communication Layer is

used to: (i) read the data gathered from sensors in-

13 KNX is approved as an International Standard (ISO/IEC
14543-3) as well as a European Standard (CENELEC EN
50090 and CENEN 13321-1) and Chinese Standard (GB/Z
20965)
14 http://www.turtlebot.com/
15 http://telosbsensors.wordpress.com/tag/telosb-mote/

Fig. 10 Example of data gathered in the HomeLab test-bed,
reporting the activation of a subset of the available sensors
and the ground-truth for two activities among those consid-
ered.

Fig. 11 Photo from the TECNALIA HomeLab AAL test-
bed used to test some of the AAL services developed availing
of RUBICON solutions

stalled in the environment, such as switch sensors sig-

nalling when the drawers/doors are open or closed, and
occupancy sensors signalling when the user moves in
certain areas, (ii) send instructions to effectors, such as

lights, blinds, door locks and appliances, (iii) sense the

status of these effectors and know when the user in-
teracts with them (i.e. when he/she manually switches

on/off the TV, lights, etc), (iv) recognize when new sen-

sors are added or existing ones are removed, and notify
these events to all the higher layers of our architecture.

The information provided by the resulting system

is forwarded to the PEIS peer-to-peer system, where is
accessed by the Learning, Cognitive and Control layers
of the RUBICON. Together, these layers are used to

identify and react to user needs, activities, and prefer-

ences, learning to automatically switch on appliances
and/or robotic services in relation to activities of the

user, such as closing the blinds when the user is sleep-

ing, cleaning the floor after the user has had her meal
in the kitchen, or reminding the users to measure their
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pressure and fetch their blood pressure monitor if they

are indisposed.

4.2 Experiments

We tested the AAL system described in the previous

section with several experiments aimed at exercising the

combined communication, learning and control abilities

of our architecture.

This section describes the data collection and the

training of our learning system before illustrating one

example test run in which we executed the fully inte-

grated system.

In order to train our system, we employed a pur-
posefully designed logging application [89] to collect a
dataset of sensor readings from all the sensors installed

in the test-bed. The recording phase was performed by
5 different volunteers. All of them carried out all the
planned activities in the Homelab. More than 50 sen-
sors and actuators sent the generated values every 500

ms. The only exception to the collection of raw data was
made for the microphones and for the 2-axis accelerom-
eter. In the first case, rather than logging the raw sound

signal, we employed a centralised module to analyse it
at run time, and only the recognition confidence as-
sociated to a list of known sounds (door bell, water

pouring, microwave bell, ...) was considered as input to
the Learning Layer. In the case of the accellerometer,
the Communication Layer published the average and

the variance of the last 10 accelleration measurements
sampled every 50ms over the last 500ms. Each activity

had an average duration of 12 minutes.

In order to obtain the ground truth description of

the events represented in the dataset, user activities

were annotated by the volunteers themselves using a
mobile phone application. Different activities were an-

notated, namely: ’Sleeping’, ’Preparing Coffee’, ’Setting
Table’, ’Eating’, ’Washing Dishes’, ’Cleaning’, ’Relax-

ing’ and ’Exercising’.

In addition, in order to test the system’s ability to
detect users’ preferences and facilitate the habits of the
user, some of these activities involved robot services.

Specifically, all the users were instructed to switch on
the TV while they were eating their meals in the kitchen
(to do that, they had to move to the sitting room, where

the TV and the remote were located). Every user was

also instructed to ask the robot to vacuum clean the
kitchen floor after they had finished their meal16.

16 These user interface functions were implemented with a
Wizard of Oz interface

Figure 12 shows a series of pictures depicting one of

the users performing a sequence of the scripted activi-

ties.

Fig. 12 Frames from one of the video sequences captured
by the cameras installed in the HomeLab while an actor per-
formed a number of activities. From top to bottom, left to
right: the user enters in the apartment; prepares her break-
fast; sets the table; starts eating her meal on the kitchen’s ta-
ble; decides to get up to switch on the TV to watch the news
while eating her breakfast; washes the dishes after asking the
robot to clean around the kitchen’s table; cleans the table;
moves to the living room to exercise with her video-game con-
sole. The white circle emphasises the location of the robot,
respectively, while the user is eating, during the cleaning op-
erations, and after it returned to its resting location. Details
on how the video sequences and the sensor data captured
by our system during the training phase can be accessed are
published on the project web-site, at http://fp7rubicon.eu.

4.3 Learning Layer

The data collection process described in Section 4.2,

resulted in the definition of a number of binary classi-

fication tasks, one for each activity. Accordingly, each
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learning module implemented in the Learning Layer is

trained on a specific learning task, and receives in input

a subset of the HomeLab sensors described in Section

4.1, consistently with the type of actions and with the

spatial context of the corresponding involved activities.

The type of sensors considered for each classification

task is reported in Table 1. In this regard notice that

for the detection of Exercising and Relaxing activities

we also used accelerometers data, as it provides infor-

mation which is not obtainable from the other sensors.

For what concerns the training of the ESN modules,

Table 1 Type of sensors considered in input for each classi-
fication task.

Task Name Sensors Type
Prepare Coffee magnetic, pressure, sound recognition
Set Table magnetic, pressure, tv state,

sound recognition
Eating magnetic, pressure, tv state,

sound recognition
Wash Dishes magnetic, pressure, sound recognition
Cleaning magnetic, pressure, tv state,

sound recognition
Exercising pressure, tv state, sound recognition,

accelerometers
Relaxing pressure, tv state, sound recognition,

accelerometers
Sleeping pressure, tv state, motion

for each task, the total number of available sequences

is 41, which were split into a training set (with ≈ 75%
of the total number of sequences) and a test set (with
≈ 25% of the total number of sequences). Training was

performed separately for each activity recognition task,
using data concerning the specific activity as positive
samples, and the data pertaining to other activities as

negative samples. Moreover, for each computation task,
training was performed by balancing the specific train-
ing set, such that the number of positive and negative

samples resulted the same.

ESN hyper-parameters were selected on a valida-
tion set (≈ 33% of the training set size), according to a

holdout model selection scheme. The predictive perfor-

mances achieved by the learning models on the consid-
ered AAL tasks are shown in Table 2, which reports the

average test per-class accuracy, precision, recall and F1

score for each task (details for the computation of such
measures can be found e.g. in [90]). From Table 2 it

is possible to observe that the predictive performances
achieved are generally good, with per-class accuracy,

precision, recall and F1 values above 0.95, 0.78, 0.64 and

0.71, respectively, for every task. Moreover, the values
of the per-class accuracy, precision, recall and F1 values

averaged over all the learning tasks are 0.97, 0.87, 0.75

and 0.80, respectively.

Table 2 Per-class test accuracy, precision, recall and F1
score achieved by ESN models on the whole set of compu-
tational learning tasks for activity recognition.

Task Name Accuracy Precision Recall F1
Prepare Coffee 0.97 0.89 0.80 0.84
Set Table 0.98 0.78 0.64 0.71
Eating 0.96 0.85 0.81 0.83
Wash Dishes 0.96 0.93 0.66 0.77
Cleaning 0.98 0.78 0.64 0.71
Exercising 0.96 0.82 0.82 0.82
Relaxing 0.96 0.97 0.84 0.90
Sleeping 0.96 0.90 0.76 0.83

In order to exercise the whole RUBICON system

over a minimal yet self-consistent case study, a subset

of four events was selected, including ’Prepare coffee’,

’Set table’, ’Eating’ and ’Wash dishes’.

Accordingly, the deployed LN networks comprises

a set of four learning modules, deployed on a Java-
enabled device, each responsible for the prediction of
one of the four target events. The learning modules
receive in input a subset of the HomeLab sensors de-

scribed in Section 4.1, and were trained based on data
resulting from data collection described in Section 4.2.
Input data are routed and delivered from the actual

transducer to the appropriate learning modules through
Java-based synaptic connections, that exploit the un-
derlying distributed communication mechanism realized

by means of PEIS tuples. Note that each LN provides an
output related to the occurrence of one specific event,

whereas the aggregation and interpretation of the set of
individual event classifications is performed by the Cog-

nitive Layer, which reasons across the events to deter-
mine global goals and, more in general, for discovering
regularities, dependencies and novelties (see Section 3).

During the testbed evaluation, the learning modules
continuously provided their predictions at a constant
rate defined by the global RUBICON clock (500ms).
The predictions of the single learning modules are, again,

routed to the centralized Learning Network Interface
component by means of Java-PEIS synaptic connec-
tions. From there, they are processed and made avail-

able to the Cognitive Layer through the PEIS-interface
of the Learning Layer. This is realized by a PEIS tuple
that is subscribed by the Cognitive Layer and where the

Learning Layer posts appropriately formatted strings

containing information on events’ occurrence and pre-
diction confidence.

Figure 13 shows the predictive output of the ESN

modules logged during the testbed, for the four com-
putational tasks considered. The ground-truth data is
shown by shady colored areas over the plots in Fig-

ure 13, and consists in the sequence of activities: ’Pre-

pare coffee’, ’Set table’, ’Eating’ and ’Wash dishes’,
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Fig. 13 Output of the LN modules in correspondence of the
four computational tasks associated to the testbed case study.
Ground-truth information is shown by shady colored areas for
each task. The sequence of ground-truth activities is: Prepare
Coffee, Set Table, Eating, Washing Dishes. Note that each
each learning network in the Learning Layer in trained on a
single binary classification task for activity recognition. The
outputs of these learning networks are then fed to the Cog-
nitive Layer, which uses them to predict the need to activate
appliances and/or robot services.

which highlights the coherence and the goodness of the
Learning Layer’s predictions. It is also noteworthy to

observe that the testbed data were collected consid-
ering a different actor with respect to those involved
in the production of the data used for training (see

Section 4.2), which represents a further assessment of
the robustness and generalization ability of the learning
modules used in the Learning Layer.

4.4 Cognitive Layer

In this experiment, two supportive tasks are consid-

ered for the user. As mentioned before, the user turns
on the TV during the eating activity and subsequently
washes the dishes after. Upon completion of the wash-

ing event, a robot service is called for the cleaning op-

eration pertaining to the vacuuming of the floor. Thus,
the cognitive network is trained for multiple tasks i.e.
TV requirement and robot cleaning service based on

the events from the Learning Layer. With reference to

Fig. 5, the cognitive system has four inputs and two
reasoning outputs. Fig. 14 shows the cognitive reason-

ing outputs based on the activities of the user in the

AAL scenario.

As per the reasoning outputs, the Cognitive Layer
posts goals for the Control Layer. Due to the contin-

ual process of updating the event information from the

Learning Layer at it inputs, the reasoning module will
continually generate outputs which may lead to further

goals. Any action performed by a robot or the Con-

trol Layer requires some time to complete, therefore
the Cognitive Layer refrains from posting the same goal

Fig. 14 Cognitive reasoning outputs related to the testbed
case study

Fig. 15 Control goals related to the testbed case study

over a specified period of time. This enables the Control
Layer to attend the current task before the same goal
is posted again. Figure 15 shows the requested control

goals related to the case study.

4.5 Control Layer

The control Layer can be conceptually divided into a

core component (the CPM) and peripheral modules.
The former provides reasoning capabilities to the sys-

tem relying on a symbolical representation while the

latter are able to directly interact with the environment,

either gathering data or acting on the world, taking into
account quantitative aspects. Nonetheless these mod-

ules, although relying on quantitative (metrical) data,

are able to provide a meaningful symbolical abstraction
to the CPM, i.e. they are able to update the symbolical

representation stored in the RUBICON blackboard as

well as to receive symbolical commands to trigger the
execution of actions.
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In this experiment the control layer, beside the CPM,

is constituted by the software modules managing the

TV and a Turtlebot, respectively. In particular the TV

settings are tuned through the Connex system while

the robot can be commanded to move in the apartment

and to perform cleaning tasks.

The Cognitive Layer provides goals in terms of de-

sired states of the world: upon these requests the CPM

reacts by planning, if needed, actions to achieve such
states.

Fig. 16 Timeline of events concerning the control layer: the
TV and cleaning goals are launched at time t1 and t2, respec-
tively. The transition concerning the state of the TV (TV
STATE) is obtained by tuning the TV settings (TV ACT)
while the position of the robot (R-POS) changes when the
robot moves (R-MOVE). The second goal, KIT-CLEAN is
achieved after the robot performs the VACUUM action while
being in the kitchen. This last action can be performed since
the user is not in the kitchen (RELAXING implies the user
to be in the livingroom)

A timeline of the experiment is depicted in Fig. 16:
as it can be noticed the Cognitive Layer sends two goals.

The first is to have the TV on, while the second reflects
the necessity to clean the kitchen. In both cases the de-
sired state is different in the current symbolical repre-

sentation: for example the need of having the TV turned

on is issued when the device is on sleep. The CPM then
manages the transition between these two states by dis-

patching an action to the Connex system. In relation

to the second goal it is possible to note a more sophis-
ticated behavior: the Cognitive Layer posts the goal to

clean the kitchen, therefore the planner sends first the

robot in the proper room and then triggers the vacu-
uming. This simple plan hides a peculiarity given by a

constraint imposed on some tasks: in fact a rule that has
been imposed to the ecology is to not perform cleaning

operations if the user is in the same room. If this would

have been the case, a resource scheduler associated to
this rule would have reacted to this contingency delay-

ing the vacuuming as long as the user would have been

in the kitchen [55].

Figure 17 shows a number of frames from the video

captured one of the cameras installed in the HomeLab
during the test run described in this section.

Fig. 17 Video frames captured during the specific test run il-
lustrated in this section. From top to bottom, left to right: the
user entering in the apartment; setting the table after prepar-
ing his breakfast; having his breakfast on the kitchen’s table
(the TV, marked in the white circle is switched on automati-
cally); hidden from the camera while washing dishes while the
robot (shown in the white circle) moves to clean around the
kitchen’s table. All the video sequences and the sensor data
captured by our system during the test runs can be down-
loaded from the project web-site, at http://fp7rubicon.eu.

5 Conclusion

RUBICON is a research project dedicated to build robot

ecologies consisting of software components, sensors, ef-
fectors and mobile robot devices collectively able to de-
liver adaptive and personalized services thanks to cog-

nitive capabilities such as learning, reasoning and plan-
ning.

RUBICON learns through an incremental and pro-

gressive approach driven by the observation of user’s
preference and activities, while also self-organizing the

manner in which it uses available sensors, actuators,

robots, and other functional components in the process.

The software outputs have been purposefully de-

signed to be as open, flexible and extensible as possible,
to ensure that they can be re-used beyond the duration

of the project, as part of different systems and employed

in different application domains.

A number of lessons can be learnt from our work.

We have examined some of the background tech-
nologies, by discussing their advantages and limitations.

We have argued that adaptation is a strong require-

ments for robotic ecologies, to reduce the need for costly
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pre-programming and maintenance operations that would

make them impractical in real-world applications.

We have shown how adaptive and proactive robotic

ecologies can be obtained by exploiting (i) a learning

infrastructure to extract meaning from noisy, imprecise

and heterogeneous sensed data, (ii) cognitive reasoning

capabilities to learn what service goals to pursue, from

experience, rather than by relying on pre-defined goal

& plan selection strategies, and (iii) advanced planning

solutions that are able to reason upon different objec-

tives and dynamic situations. These are clear improve-

ments over past control solutions for robotic ecologies,

such as those put forward in the PEIS project, which

demanded for all goal rules and context conditions to be

specified a priori. We have provided a review of related

work in learning, planning and cognitive reasoning solu-

tions, and outlined the rationale behind the particular
research directions pursued in RUBICON.

This paper has then illustrated the innovations we

have advanced in each of those fronts, and described
how the resulting techniques address the characteris-
tic requirements and computational constraints posed

by adaptive robotic ecologies, and how they have been
integrated and applied to a smart home scenario.

While all our techniques have been evaluated in iso-
lation, the smart home scenario allowed us to exercise

the integration among all the components of the RU-
BICON system and provide a proof of concept of their
suitability to this type of applications.

Our experiments have demonstrated the effective-

ness of:

1. the Communication Layer’s ability to support the
integration of heterogeneous networks and compo-
nents and the exchange of learning and control in-

formation within diverse computational constraints.

In particular, the combination between the peer-to-
peer middleware and the proxy-design pattern ex-

ploited in the Communication Layer have allowed
us to easily integrate our different software layers

while also addressing the stringent computational

and communication constraints posed by our WSN-
based deployments.

2. the Learning Layer’s ability to learn a large varie-
gate set of human activity recognition tasks: experi-

mental results on a large set of activities showed the
flexibility and the efficacy of the Reservoir Comput-
ing learning approach in recognizing relevant sensed

information (events) from time-dependent data pro-
viding prediction (classification) of human activities
in domestic settings. The Learning Layer demon-

strates how this type of learning solutions can be ef-

ficiently implemented on computationally constrained

devices, such as tinyWSNmotes running the TinyOS

platform.

3. the Cognitive Layer’s ability for cognitive reason-

ing, which is used to learn relevant context patterns

and to post the goals necessary to automate the

delivery of the services of the robotic ecology, thus

ultimately tailoring the behaviour of the ecology to

the preferences of its users.

4. the Control Layer’s ability to account for dynamic

goals, resources, temporal and spatial constraints in

order to achieve the application objectives set by

the Cognitive Layer

One of the advantage of building adaptive robotic

ecologies with the methods outlined in this paper is that

system developer are provided with generalizable cog-

nitive solutions but also with the important ability to
choose the level of granularity at which domain mod-
elling occurs. Specifically, all the solutions integrated
in RUBICON can be initialized, respectively, with pre-

programmed control options, initial learning tasks (e.g.
to recognize common users’ activities) and initial asso-
ciations between events and goals. Noticeably, a robotic

ecology can use this as a starting point, while it collects
data to adapt to its environment and to its user(s). Such
a process allows the system to be driven by using eas-

ily identifiable (albeit rough) rules, while delegating,
over time, symbolic reasoning to data-driven inference

for the purpose of increasing flexibility, robustness and
adaptation. Pre-existing functional modules and pre-

programmed rules provide a base-line behaviour, which
guarantees that the system will not behave too errati-
cally in the initial period after it is installed in a new

environment.
Our work has demonstrated the validity of the gen-

eral principles and the flexibility of the integrated cog-

nitive capabilities that we have built throughout the

duration of the project. However, further evaluation of
their effectiveness and their potential should be carried
out by exercising some of their most advanced capabili-

ties. Specifically, the integrated RUBICON architecture

provides system developers with more advanced mech-
anisms, which can be used to define, at run-time, new

learning requirements, and provide the Learning Layer

with new information to adapt to changes in the set-
tings of the ecology or to newly discovered situations

and users activities. These mechanisms can be used by

the Control, the Cognitive Layer, but also by external
components, such as user interfaces, to extend the capa-

bilities of the robotic ecology and to drive its continuous

adaptation.
Although tested in a limited scenario, the two-layer

interaction between the Learning and Cognitive layers

has showed promising results by enabling our solution
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with the ability to account for heterogeneous and noisy

sensor data and leverage a rich selection of both binary

and non-binary sensors while performing online reason-

ing on context and automation patterns.

Future work will focus on extending the range of ap-

plications, further the validation of our system architec-

ture and of its self-adaptation properties, and address

some of the limitations of our solutions

This paper has highlighted how user interfaces in

RUBICON have been simulated in order to focus on

the exercise of our learning and cognitive mechanisms.

A cognitive robotic ecology can learn to modify its

behaviours to suit the preferences of its users, for in-

stance, by observing repeated instances in which the

user switches off the vacuum cleaning robot to learn

that it is not appropriate to vacuum clean the sitting
room when the user is watching TV. However, the cog-
nitive robotic ecology approach implemented in RUBI-

CON also have disadvantages; typically that learning in
this way takes time, and often takes many iterations,
before the system can adapt to the habits and the pref-

erences of its user. Introducing explicit user interfaces
to collect user’s feedback and thus speed-up the learn-
ing of the system is not straightforward in such cases.
In order to move these solutions from research labora-

tories to real world environments, by enabling and car-
rying out long-term evaluation with real users in their
own homes, future work needs to be directed toward

improving the user’s experience when dealing with cog-
nitive robotic ecologies, and also tackle the lack of ded-
icated studies aimed at reconciling social, personalized

and effective users’ interaction with these systems.
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