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Abstract— In this paper, a new intelligent robot motion control architecture – a highly accurate model-free fuzzy motion control- is 

proposed in order to achieve improved robot motion accuracy and dynamic performance. Its architecture combines a Mamdani fuzzy 

proportional (P) and a conventional integral (I) plus derivative (D) controller for the feedback part of the system, and a Takagi-

Sugeno-Kang fuzzy controller for the feed-forward, nonlinear part. The fuzzy P+ID controller improves the performance of the 

nonlinear system, and the TSK fuzzy controller uses a TSK fuzzy inference system based on extended subtractive- clustering method 

which integrates information on joint angular displacement, velocity and acceleration for torque identification. The advantage of this 

kind of model-free control is that it uses the information directly from the input/output of the nonlinear system, without any complex 

robot model computation, in order to decrease the control system’s sensitivity to any dynamical uncertainty. Furthermore, parametric 

search for clustering parameters in extended subtractive clustering secures the high accuracy of the system identification. 

Consequently, this proposed model-free fuzzy motion control benefits from the advantages of two kinds of fuzzy system. It not only 

incorporates flexible design, good performance and simple conception but also ensures precise motion control and great robustness. 

Comparisons with other intelligent models and results from numerical studies on a 4-bar planar parallel mechanism show the 

effectiveness and competitiveness of the proposed control. 

Key words—fuzzy systems, nonlinear dynamics, motion control,  fuzzy logic control, model-free control, intelligent control 

Nomenclature: 

AI:      artificial intelligence  

AMFFMC      accurate model-free fuzzy motion control 

ANFIS adaptive network-based fuzzy inference system 

FIS       fuzzy inference system 

FL:       fuzzy logic 

FLC:      fuzzy logic control 

FLS:       fuzzy logic system 

fuzzy P+ID    fuzzy logic proportional plus conventional integral and  derivative 

MF:      membership function 

MF-PID-FLC model-free PID fuzzy feed forward control 

MISO:   multi-input–single-output 

NN:       neural network 

PID:      proportional, integral, derivative 

RMSE:    root-mean-square-error 

TSK:      Takagi-Sugeno-Kang 
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1. Introduction

The development of new intelligent control techniques with nonlinear approximation capabilities, such as artificial neural 

networks (ANNs) [36], fuzzy logic systems (FLSs) [23, 37] called fuzzy logic controls (FLCs),  and hybrid  adaptive neuro-

fuzzy inference systems (ANFISs) [1, 2, 13],  has provided attractive alternatives in the identification of complex and essentially 

nonlinear systems. Intelligent controls are able to compensate for errors like dynamical uncertainty regardless of external 

disturbances caused by the outside environment. In the field of control, they are nonlinear mappings in the first place. Among 

them, FLCs [24, 39] have shown that such hybrid structures not only work well but also add more robustness to the control 

system's design. FLCs are able to deliver a satisfactory performance in the face of uncertainty and imprecision [9, 19]. Their 

suitability in nonlinear systems and in wide deviations from the set point has earned them their dominant position on the 

knowledge-rich spectrum of control algorithms. But most existing controls have to work with traditional conventional controls 

which are somehow dependent on human experience.  The fuzzy rules in some of these are not directly generated from the 

robot's dynamics but depend solely on expert knowledge. Consequently, these kinds of control are sometimes unreliable [37, 38]. 

Intelligent PID controllers, found in the literature with different definitions [3], have been proposed for incorporation into 

model-free control of nonlinear systems that are difficult to identify with relative accuracy. According to Fliess and Join’s paper 

[10], the key idea behind a model-free control is an ultra-local model instead of an unknown complex mathematical model. 

Existing model-free controls currently employ functional analysis, elementary differential algebra and online parameter 

identification approaches [4, 11, 14, 20, 21, 32, 35]. For example, iterative feedback tuning has been integrated into a PID 

controller to solve the controller tuning issues caused by model uncertainty of the nonlinear system [12]. Those  existing fuzzy 

controls [5, 16, 25, 31] aim at tuning controller parameters for the nonlinear system whose model is difficult to identify with 

relative accuracy through different mathematical identification of the system approaches. But these existing controls have fuzzy 

rules in the intelligent PID controllers which depend solely on expert knowledge. Moreover, mathematical identification 

approaches are unsuited to the non-deterministic nature of several parts of robotic systems.  

The objective of this paper is to achieve the high accuracy  tracking control of an unknown nonlinear robot system, using a 

novel intelligent robot motion control – an accurate model-free fuzzy motion control (AMFFMC). The proposed AMFFMC is 

different from existing intelligent and model-free controls.  This kind of control combines a  hybrid Mamdani fuzzy proportional 

with a conventional integral plus derivative  (fuzzy P+ID) controller [15] for the feedback part of the system, and a Takagi-

Sugeno-Kang (TSK) fuzzy controller [28] based on extended subtractive clustering [29] for the feed-forward nonlinear part. 

This novel control not only has flexible design, good performance and simple conception but also ensures stable control quality 

and great robustness against disturbance effects in real world applications. The fuzzy P+ID control improves the dynamic 

response of the system, without using the information of the nonlinear system, which is necessary for accuracy. The highly 

accurate system identification model for the TSK FLC is constructed through training a FLS by integrating the robot's actual 

joint angular displacement (p), angular velocity (v), angular acceleration, (a) and joint torque (τ) data set, using an extended 

subtractive clustering technique. This kind of control acknowledges information directly from the nonlinear dynamics of the 

physical robot, without any complex robot model computation. The results of a numerical simulation and comparisons made on a 

planar 4-bar parallel mechanism show the effectiveness and satisfactory performance of the AMFFMC. 

In the remainder of this paper, a brief description of the fundamentals of FLCs and extended subtractive- clustering are given 

in Section 2. The proposed AMFFMC is presented in Section 3. Details of the AMFFMC design schemes are in Section 4. The 

numerical comparison of the proposed control and its sub-controls are in Section 5 to show its advantages and efficiency. 

Finally, the concluding remarks and future research recommendations are in Section 6. 
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2. Theoretical Foundation 

2.1 Fuzzy Logic Control 

The two most important classes of fuzzy logic system (FLS) used by today’s engineers are the Mamdani FLS and the TSK 

FLS.  Moreover, fuzzy logic control (FLC) and its well- accepted methodology for designing controllers is the most widely used 

application of fuzzy logic (FL)  

Mamdani was the first to apply fuzzy logic to control [18]. This topic has come to be known as fuzzy algorithmic control or 

linguistic control. The main problem, however, with fuzzy control is the designing of a fuzzy controller, where we usually take 

an expert-system-like approach. That is, we derive the fuzzy control rules from the human operator’s experience and/or the 

engineer’s knowledge, which are mostly based on their qualitative knowledge of an objective system.  

The rules in a Mamdani fuzzy expert system are usually of a form similar to the following: 

IF 
1x is 

1Q  and 2x  is 
2Q ,

 

             THEN   Z  is w                                                                                   (1) 

where 1x and 
2x are linguistic input variables, Z is a linguistic output variable. 

1Q  and 
2Q  are linguistic values defined by fuzzy 

sets on the universes of discourse
1X and

2X .  

Subsequently, the TSK FLS [22, 30, 33, 34] was proposed as a further qualitative modeling in an effort to develop a 

systematic approach to generating fuzzy rules from a given input-output data set. This model consists of rules with fuzzy 

antecedents and a mathematical function in the consequent part. Usually the conclusion function is in the form of dynamic linear 

equation. The antecedents divide the input space into a set of fuzzy regions, while the consequents describe the  behaviour of the 

system in those regions. But there is a need to develop a semi-automatic method to obtain these models, based on sets of input-

output data.  

  For a multi-input single-output (MISO) first–order generalized TSK FLS, its k
th

 rule can be expressed as: 

IF 
1x is 

kQ1
and 

2x  is 
kQ2

and … and 
nx is 

nkQ , 

THEN Z is 
n

k

n

kkkk xpxpxppw  ...22110
                                                                  (2) 

where 
1x , 

2x  …, 
nx  and Z are linguistic variables; 

kQ1
, 

kQ2
, …, and 

nkQ  are the fuzzy sets on universe of discourses U, V, …, 

and W, and kp0
, kp1

, kp2
, …, k

np  are regression parameters.  

 

 Both Mamdani and TSK FLC systems are characterized by IF-THEN rules and have the same antecedent structures. However, 

there are some differences between them. First, the structure of the consequents for a TSK rule is a function instead of a fuzzy set as in 

a Mamdani rule.  Second, the output of a TSK FLS is a crisp value, whereas the output of a Mamdani FLS is a fuzzy set; defuzzication 

is needed to obtain the crisp output by using the composition operator. Third, uncertainty can be accounted for in both the antecedent 

and consequent MFs in a Mamdani FLS, but in a TSK FLS, only in the antecedent MFs. To reiterate, Mamdani FLSs are intuitive and 

well- suited to human input whereasTSK FLSs are computationally effective but lose linguistic interpretability. They work well with 

optimisation and adaptive techniques, which makes them very attractive in solving control problems, particularly in dynamic nonlinear 

systems.  

Fuzzy Logic Control (FLC) has proven to be a successful control approach to many complex nonlinear systems or even non- 

analytic systems [8, 17]. The basic structure of a fuzzy control system consists of four conceptual components: the knowledge 

base (fuzzy rule), the fuzzification interface, the inference system, and the defuzzification interface.  Fig. 1 shows a typical FLC 

block diagram. The physical robot's input and output variables are a crisp number. However, inside the fuzzy control, the input 

and output variables are fuzzy numbers. 
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Fig. 1 Fuzzy logic control block diagram 

2.2 Extended Subtractive Clustering 

 The generality of the TSK FLSs makes data driven identification very complex. In this paper, extended subtractive -clustering 

[26] is used for fuzzy system structure identification and least square estimation is used for parameter identification. The former 

is the determination of the number of rules and variables involved in the rule premises, while the latter is the estimation of the 

membership function parameters and the estimation of the consequent regression coefficients. 

Chui’s subtractive-clustering method [7] assumes that each data point is a potential cluster center and calculates a measure of 

the likelihood that each data point would therefore define the cluster center, based on the density of the surrounding data points. 

The four clustering parameters- hypersphere cluster radius, squash factor, accept ratio and reject ratio, have great inference on 

the number of clusters and the number of training iterations to be employed. They should be defined as parameters in the 

configuration of the fuzzy inference system (FIS). As a result of parametric search in Demirli’s extended subtractive clustering 

[6], ranges of clustering parameters that provide the best models are also identified.  

The recommended values from Chiu and Demerli of these four clustering parameters are listed in TABLE I. According to  

Demirli, parametric searches have to be done for all four clustering parameters, and the search range for cluster parameters is 

much larger than that of Chiu.  

TABLE I  

RECOMMENDED VALUES FOR PARAMETERS IN SUBTRACTIVE CLUSTERING 

Symbol Chui [36] Demirli [37] 

Cluster radius [0.25, 0.50] [0.15, 1] 

Squash factor 1.25 [0.05, 2] 

Reject ratio 0.15 [0, 0.9] 

Accept ratio 0.5 [0, 1] 

 

The extended subtractive-clustering algorithm is depicted in Fig. 2.A detailed description can be found in [27]. 
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Fig. 2 Extended subtractive-clustering algorithm   

 

3. The Accurate Model-Free Fuzzy Motion Control 

3.1 The Accurate Model-Free Fuzzy Motion  Control 

 The proposed control system, an AMFFMC is a combination of a Mamdani fuzzy P+ID feedback control [25] and a TSK 

fuzzy feed-forward control system. Its control law is written as   

TSK

dd

fuzzy dtppKivvKdKpu    )()(
                                             

   (3)  

The three controller parameters Kp, Ki and Kd are the proportional, integral, and derivative gains; p
d
 and v

d
 are the desired joint 

position and velocity;t is the running time and 
fuzzyu  is the Mamdani FLS output. 

TSK  is the TSK FLS output.  

In comparison with existing intelligent controllers, the proposed AMFFMC combines the advantages of both the fuzzy P+ID 

control and the TSK fuzzy control. In the fuzzy P+ID control, the fuzzy P term improves the performances of  nonlinear systems. 

The conventional integral I is responsible for the reduction of steady-state error, and the conventional derivative D predicts 

system behaviour and thus improves settling time and stability. In TSK fuzzy control, the precision of the system is greatly 

improved by using extended subtractive clustering for the TSK fuzzy system's pre-identification [27]. 

 

Furthermore, this controller has the following features: 

1) Once Kp, Ki and Kd are determined, only one additional parameter – the output of the fuzzy P system - has to be adjusted to 

achieve the fuzzy P+ID control. Moreover, the MF-PID-FLC is generated directly from the experimental data set (p, v, a and τ). 

These FLCs are developed with no knowledge of the mathematical model of the robot being controlled. Thus, the AMFFMC is 

easy to design. 

2) The AMFFMC has a simple structure. It is not necessary to modify any hardware parts of the original control system for its 

implementation. 

3) This AMFFMC, with its simple conception - that of a fuzzy P+ID control for the feedback part of the system and a MF-

PID-FLC based on extended subtractive clustering for the accurate nonlinear part of the system guarantees accurate control and 

robustness against disturbance effects in real world applications. 
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3.2 The Mamdani Feedback Controller 

The Mamdani feedback controller is a fuzzy P+ID controller which combines fuzzy logic and conventional techniques. It 

generally provides better control performances than a PID controller alone. A hybrid fuzzy P+ID controller is designed by using 

a fuzzy logic controller in place of the proportional term, while the integral and derivative terms are kept unchanged.  

From the expression (1), the fuzzy rules of this Mamdani FLC are described in terms of the input variables ep and ev and the 

output variable ufuzzy ; ep and ev are the robot's position and velocity tracking error. The k
th

 rule can be written as 

IF ep is xk and ev is yk                                                                               (4) 

THEN ufuzzyis zk , 

where  x, y, z are the fuzzy subsets of inputs ep, ev and output ufuzzy. The MAX-MIN method with the MAX aggregation operator 

and the MIN AND operator are used as inference engines. The defuzzification method is the “center of mass”. 

 The control law for the fuzzy P+ID feedback controller is 

dtppKivvKdKpu dd

fuzzy )()(  
   ,                                          (5) 

 A detailed description of the fuzzy P+ID control can be found in [25]. 

3.3 The Takagi-Sugeno-Kang- Fuzzy Feed- Forward Controller 

A fuzzy learning system based on the extended subtractive-clustering algorithm in Fig. 2 is used to  integrate the information 

of p, v, a and τ (the position, velocity, acceleration and torque of the active robot joints), and pre-identify a reliable FIS. From the 

expression (2),  the expression of the k
th

 fuzzy rules  for this TSK fuzzy feed forward controller can be written as 

IF p is 
pkQ and v is 

vkQ and a is 
akQ , 

THEN 
TSK  is ),,( avpfTSK

k   or 

             apvpppp kkkkk

3210                                                                         (6) 

where 
pkQ , 

vkQ and 
akQ  are the MFs in the k

th
 rule associated with p, v and a. The output τ is a polynomial linear function of p, v 

and a. 

 Using the generated TSK FIS, a Model-free PID TSK fuzzy logic controller (MF-PID-FLC) is then conceived. Its control law 

can be written as  

TSK

ddd dtppKivvKdppKp    )()()(                                                 (7)     

where 
TSK is a polynomial function of p

d
, v

d
 and a

d
 ,where a

d
 is the desired joint acceleration : 

),,( ddd

TSKTSK avpf .                                                           (8) 

A detailed description of the TSK fuzzy control system in the MF-PID-FLC can be found in [26]. 

 

 

4. The Numerical Study 

4.1 The Simulink Model  

 Simulating robot motions allows the testing of control strategies and provides an insight into motion planning techniques 

without the need of a physically available system. The parallel robot torque control study was conducted on a planar quadrilateral 
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linkage. The kinematics and dynamics of planar four-bar linkages are simpler but similar to other more-than-four-bar parallel 

robots. The parallelogram four-bar mechanism is a drag link with four rotating joints, as depicted in Fig 3. The initial parameters 

are used only for establishing the Matlab Simulink mechanical system model. None of them will be used in the design of the 

proposed control.  

 

Fig. 3. Four-bar mechanism used for experimental study 

 

The Fuzzy P+ID Controller 

The fuzzy P system consists of a Mamdani type of inference system with two inputs ep and ev and one output ufuzzy. The inputs 

ep and ev are the active joint position and velocity tracking errors. They are ranged by ep [-0.01 0.01] and ev [-0.1 0.1] based 

on the simulation result from the PID feedback control system, whose control law is written as 

dtppKivvKdppKp ddd )()()(  
                                              (9) 

To be consistent with the input range, the ufuzzy(ep, ev)  is ranged by ufuzzy
 
[-0.01 0.01]. 

There were a total of nine rules between inputs and output that are summarized in the following TABLE 2. 

TABLE 2  

FUZZY RULES IN THE FUZZY P+ID CONTROLLER 

 

 

 The control diagram block is shown in Fig. 4. 

 

 

Fig. 4 Block diagram of the fuzzy P+ID controller 
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4.2 The Model-free PID Fuzzy Logic Controller 

 Using a dynamic model to solve motion simulation requires the knowledge of the values of each dynamic parameter used in 

the model.  

 The  PID feedback control law used in the training is written as  

dtppKivKdppKp dd )()()(    .                                                  (10) 

 This control law was used to generate the experimental data set (p, v, a and τ) for the analysis of the system, and to train the 

fuzzy rules for the fuzzy control. The desired position trajectory was a composite of multiple step signals, which were as rich as 

possible to allow the learning process of the TSK FIS to include all the characteristics of the nonlinear dynamics of the system. 

This step attempts to obtain motion data sets directly from the parallel mechanism that encounters manufacturing tolerances and 

assembly errors, without any calibration, in order to identify a precise intelligent control in the next step and decrease the 

sensitivity of the control system to any dynamical uncertainties whatsoever. 

 The data sets used for training were collected during 25 seconds, as depicted in the following Fig. 5. The experimental data 

set (p, v, a and τ) contained 10001 samples of data corresponding to a sampling time of 0.005 s. The first three parameters were 

used as fuzzy identification input variables and the torque as the output variable. The system to be learned is thus the inverse of 

the robot model, which is an appropriate feed-forward controller that predicts the input of the system corresponding to the 

desired trajectory.  

 

(a) Angular displacement (position p) 

 

(b) Angular velocity (velocity v) 

 

(c) Angular acceleration  (acceleration a) 
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(d)  Torque  (torque τ) 

Fig. 5. Fuzzy learning data 

  

 By the extended subtractive clustering based TSK fuzzy modelling algorithm, a fuzzy model with 96 fuzzy rules is generated. 

The parameters used in this FIS (hypershere cluster radius, squash factor, accept ratio and reject ratio) are 0.25, 0.6, 0.6 and 0.15.  

There are 96 MFs for each input variable. They are indicated in Fig 6. The identified fuzzy learning outputs are shown in Fig. 7. 

Fuzzy learning root-mean-square-error (RMSE) is 0.0025.  

 

 

  

 

Fig. 6 Membership functions 
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Fig.7 Fuzzy learning output 

 

 One example of the 96 fuzzy rules is given as follows: 

 

IF     















 


644.0

6809.2

2

1
exp

p
Qp

, 
















 


1245.5

0243.0

2

1
exp

v
Qv

  and 
















 


0148.278

8487.1

2

1
exp

a
Qa

 

         

THEN 

037.0*30.0*604.9*47013.6  avepe                                  
   (11) 

 

   The 96 MFs for each input, the fuzzy learning outputs and the FIS output surfaces can be found in [24] 

  The block diagram of the MF-PID-FLC used for simulation is shown in Fig. 6. 

 

Fig. 8 Block diagram of the MF-PID-FLC  

 

4.3 An Accurate Model-Free Fuzzy Motion Control 

 The block diagram of the proposed AMFFMC is shown in Fig. 9 below with the control law as the expression (2). Compared 

with Fig. 7, the position error ep is replaced by the output of the fuzzy  P+ID control ufuzzy. The inference engines of the fuzzy  

P+ID control and  the MF-PID-FLC provide a set of control actions according to the fuzzified inputs. 
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Fig. 9  Block diagram of the AMFFMC 

 

 To investigate the robustness, stability and tracking error convergence of the proposed AMFFMC, three desired motion 

trajectories, as listed in TABLE III, were used to test the novel trajectory control scheme.   

The testing procedure used p
d
, v

d
 and a

d
 as input data sets to compute the fuzzy output - torque values in the three different 

cases. Each experimental data set contained 2001 samples of data, corresponding to a sampling rate of 0.005 s. TABLE III shows 

both the position and velocity tracking errors in the last five seconds using the three desired motion trajectories. From the last 

two lines, it is observed that, overall,  the  ep  is smaller than 1.4e-3. and ev is smaller than 0.09. 

 

TABLE III 

 FUZZY MODEL TESTING DYNAMICS AND ERRORs  

  

Testing 

Test 1 Test 2 Test 3 

Desired 

Position pd=1-cos(8t) pd=1-cos(4t) pd=sin(t) 

Velocity vd=8*sin(8t) vd=4*sin(4t) vd=cos(t) 

Accele 

-ration ad=64*cos(8t) ad=16*cos(4t) ad=-sin(t) 

Position error 

interval (rad) 

[-6.41e-4  

-1.17e-4] 

[-2.67e-3 

-7.47e-5] 

[-6.41e-4  

4.53e-4] 

Velocity error 

interval (rad/s) 

[-6.41e-4 

 7.42e-3] 

[-1.17e-2  

4.79e-3] 

[-6.49e-3  

3.07e-3] 

 

5. Comparisons and Discussions 

5.1 Comparisons 

 For an in-depth analysis of the proposed AMFFMC to show its advantages and capability, one desired joint trajectory (p
d
=1-

cos(8t), v
d
=8*sin(8t) and a

d
=64*cos(8t)) was used to compare the performance of the AMFFMC ( ep and ev )with  that of its sub-

controls: the PID feedback control, the fuzzy P+ID control, and the MF-PID-FLC, with their controls listed as eq.(10), eq.(9) and 

eq.(5). The PID gains always always remained the same. 

 The position and velocity tracking errors (ep and ev) are compared in Fig. 8 and Fig. 9. The solid blue curves in Fig. 8, are the 

ep and ev of the system under AMFFMC. The dotted black curve, the dashed red curve and the dashed green curve are under 

fuzzy P+ID control, MF-PID-FLC and PID control. It is clear that the AMFFMC ensures the smallest error and results in the best 

performance. These curves also show that the fuzzy P+ID controller without fuzzy feed-forward is better than the traditional PID 

controller without fuzzy feed-forward.   
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 (a) Position tracking errors 

 

(b) Velocity tracking errors 

Fig. 10 Position and velocity errors pd=1-cos(8t) 

In order to analyse the results accurately, the worst positive and negative errors during the last 5 seconds are compared in Fig. 

9. It clearly shows the differences between the AMFFMC  and its sub-controls.   

 

(a) Position tracking error interval values when pd=1-cos(8t) 
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(b) Velocity tracking error interval values when pd=1-cos(8t) 

Fig. 11 Position tracking error interval values 

 In position tracking, the AMFFMC performs more than 2.5 times better than the MF-PID-FLC, 26 times better than the PID 

control and 25 times better than the Fuzzy P+ID control. In velocity tracking, the AMFFMC performs more than 1.7times better 

than the MF-PID-FLC, 20 times better than the PID and 18 times better than the Fuzzy P+ID. It has been shown, therefore, that 

the AMFFMC has the capability of reducing the tracking errors, and providing higher accuracy and greater reliability in 

controlling a nonlinear parallel mechanism. 

  

5.2 Discussion 

5.2.1 Differences between the controllers 

These numerical results can be explained by the character of these controllers. The PID control with constant gains has a 

simple implementation and low computational cost, but it is linear. It cannot perform in nonlinear systems. The structure of the 

fuzzy P+ID controller is also very simple since it is constructed by replacing the proportional term in the conventional PID 

controller with a Mamdani FLS which has fuzzy rules based on expert knowledge. The Fuzzy P+ID controller, therefore, 

somehow improves the control performance. The MF-PID-FLC uses a TSK FLS based on extended subtractive clustering, which 

ensures the high precision of systematic approach so that the system performance is greatly improved. Consequently, the 

AMFFMC combines the advantages of the fuzzy P+ID control and the MF-PID-FLC and obviously, has the best performance 

with the least joint position and velocity tracking errors. 

5.2.2 The PID Gains 

The PID gains could greatly influence the control performance. If their values were well-chosen, the parallel system would 

move along the trajectory with smaller error. As shown in Section V(A), which compares the fuzzy P+ID control with the PID 

control, and the AMFFMC with the MF-PID-FLC, the systems  with proportional gain, self-tuning fuzzy control exhibit less 

tracking error and better performance than those with fixed  gains. 

5.2.3 The stability 
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The proposed AMFFMC is a combination of  the fuzzy P+ID controller for the feedback part of the system, and the TSK 

fuzzy controller for the feed-forward, nonlinear part.  In this section, it is proven that the state vector of this closed loop system is 

always bounded when the desired trajectory is bounded. For the simplicity of the proof, the P+ID fuzzy controller is reduced to a 

P+D fuzzy controller (i.e. the integral term is avoided). However, the proof could be extended in order to include the integral 

term by using the Lyapunov function. By avoiding the integral term of the P+ID controller, for any robot, the dynamics of the 

closed loop system can be expressed as follows: 

                                                      ),,,,(),()( 0 vp

ddd

dp eepvavKpKvvpVapM                                                   (12) 

where M(p)  is symmetric and positive definite matrix, V(p,v) is a matrix that can be chosen such as that ),()(
.

2
1 vpVpM  is anti-

symmetric [38] and where  

),(),,(),,,,( 0 vpfuzzyp

d

d

d

p

ddd

ANFISvp

ddd eeuKvKpKpvaeepva                               (13)
 

is bounded since the desired trajectory is assumed to be bounded and the output of both fuzzy controllers are always bounded. 

Thanks to the bound of  , it is known [38] that the state vector composed by the position p and velocity v, is then bounded 

when the following system is asymptotically stable at 0 equilibrium point: 

                                                                   0),()( 0  vKpKvvpVapM dp
                                                              (14) 

To prove the asymptotic stability of system (14), the following Lyapunov function, which is positive definite when
0pK  is 

assumed to be symmetric and positive definite, is considered as candidate: 

pKpvpMvv p

TT

02
1

2
1 )(                                                                                (15)

 

The derivative of this function along the trajectory of the system is given by 

pKvvKvpKvvvpVvvpMvv p
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),()(                                                 (16)
 

Since ),()(
.

2
1 vpVpM   is anti-symmetric, vKvv d

T
.

 is semi negative definite when Kd is assumed to be symmetric and 

positive definite. Then, according to Lasalle theorem [38], the trajectory of the system will converge into the invariant set 

characterised by 0vKv d

T . This set combined with the dynamics of system (14) implies that both position and velocity vectors 

will converge to zero, which implies that the system is asymptotically stable. The state vector of the complete system (12) 

composed by any robot combined with the double fuzzy controller is thus bounded. 

 

5.2.4 Limitation  

 In this paper, the AMFFMC is in continuous-time form and the full nonlinear dynamics are used. Moreover, the control 

demands the measurement of the joint acceleration either by a rather expensive accelerometer,  or by a complicated, or inaccurate 

and noisy calculation of acceleration from other measurements. 

 

5.3 Perspective 

To avoid the use of acceleration measurements and be closer to the real implementation, our further research will focus on a 

technique that employs position and velocity measurements by a model-free intelligent control in a discrete time domain. It is 

expected that the discrete-time version of the model-free intelligent control will not only have a flexible design and simple 

implementation but also will ensure good motion control quality and provide great robustness against discretization effects. 
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6. Conclusion 

This paper has proposed an accurate model-free fuzzy motion control (AMFFMC) for the control of a parallel robot. This 

AMFFMC combines a fuzzy P+ID controller and a TSK fuzzy controller. The fuzzy P+ID controller has a Mamdani fuzzy P 

term together with a conventional I plus D term to control the feedback part of the system. The TSK FLS controls the feed-

forward part of the system, ensures  good control quality and small tracking error. The TSK FIS directly integrates on-line 

information from the nonlinear dynamics of the robot's joint displacement, velocity and acceleration in order to control motor 

torque without any complex computing of the robot's dynamic model. Moreover, the parametric searches for clustering 

parameters in extended subtractive- clustering ensure the accuracy of the system identification. The simulation results on a 4-bar 

parallel mechanism demonstrate the reliability of the AMFFMC in torque identification which, compared with several other 

intelligent controls, results in minimized joint position and velocity errors.  
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