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Abstract In this paper, we consider the problem of

trajectory tracking of a multirotor Unmanned Aerial

Vehicle carrying a suspended payload. The movement

of the suspended payload influences the dynamics of

the multirotor, which must be appropriately handled

by the controller to achieve satisfactory tracking results.

We derive a mathematical model of the interconnected

multi-body system using Kane’s equations, and develop

a non-linear tracking controller based on the backstep-

ping technique. In addition to suppressing the effects of

the swinging payload, the controller also compensates

for an unknown constant wind disturbance. The ori-

gin of the tracking error is proven UGAS (Uniformly

Globally Asymptotically Stable) and ULES (Uniformly

Locally Exponentially Stable) through Lyapunov anal-

ysis. To reduce the swing motion of the suspended load,
a nominal swing-free path is generated through open

loop shaping filters, then further perturbed through a

delayed feedback approach from measured load deflec-

tion angles to achieve robustness.

The proposed controller structure is verified by sim-

ulations and experiments.

Keywords Unmanned Aerial Vehicles · Non-linear

control · Modeling

1 Introduction

Unmanned Aerial Vehicles (UAVs) have seen a rise in

public awareness in the past years. Although UAV re-

search is a field of long and rich history, the availability
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of cheap sensors and computing power have seen a new

generation of UAVs available at a fraction of the cost.

Where civilian applications were previously driven by

hobbyists and enthusiasts, new technology now enables

several new product opportunities. Aerial surveillance

is an obvious example, where autonomous vehicles can

be used to survey locations on a regular basis.

UAVs can also intervene with the environment in

the form of pickup, placement and transportation of

objects. These objects could be sensors [6], or deliv-

ery of packages to consumers [2]. The ability for air-

crafts, specifically Vertical Takeoff and Landing Vehi-

cles (VTOL), to carry an object suspended by a wire

has been much studied, ranging from military appli-

cations were a pilot manually transported supplies, to

comprehensive studies on the dynamics of coordinated

lifting operations [9]. Recently, smaller multirotor UAVs

have been used for such tasks. In [20], the authors study

it’s dynamics and present an adaptive scheme and de-

rives a path-planning algorithm that minimizes the load

swing. Highly agile movements with one or more such

UAVs is studied in [14].

In this paper, we consider a multirotor UAV charged

with the task of transporting a suspended payload. In

our earlier work [17], we developed a non-linear tracking

controller for the UAV, and provided validation by nu-

merical simulations. This paper expands that work by

adding robustness to the controller in the case of wind,

and experimental validation. After an initial overview of

the problem in Section 2, the dynamics of the multirotor-

load system is derived in Section 3 using Kane’s equa-

tions [10]. In Section 4, a non-linear backstepping con-

troller with integral action is proposed, followed by sta-

bility proofs using Lyapunov theory. The controller is

then verified by numerical simulations and experimen-

tal tests. This is the main contribution in this work.
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Methods from the literature for suspended load swing

angle control is discussed in Section 6, followed by a

second case-study of numerical simulations and exper-

iments. The paper is concluded in Section 8.

2 Problem Description and Control Strategies

We consider the objective of the UAV to safely trans-

port a suspended payload, by tracking a user defined

trajectory or waypoint route, while suppressing the dis-

turbance from the load swing and external environ-

mental effects, such as wind. The UAV in question is

equipped with an internal Inertial Measurement Unit

(IMU) and GNSS1 system, with the accompanied nav-

igation filter providing full state (attitude and position)

output for the controllers. Further, the attachment-point

of the suspended load is a gimbal-like structure, provid-

ing measurements of the displacement angles (relative

to the UAV body) of the load suspended by a wire, as

seen in Figure 1.

For control, there are two aspects that needs to be

addressed.

(i) Tracking control of the UAV, while suppressing ef-

fects from the swinging suspended mass and envi-

ronmental forces.

(ii) Reducing the swing motion of the suspended load.

Model-based techniques to cancel the effect of the

load, for objective (i), are popular in the literature. [21]

considers the effect of the swinging payload as a change

in CoG of the vehicle, and employs an adaptive scheme

to compensate for the motion. On the other hand, in [5],

the tension of the suspended payload is used as feedfor-

ward to cancel the effects on a small-scale helicopter.

The latter, objective (ii), can be a part of the control

objective for the vehicle as demonstrated in [15], as an

extra feedback to manipulate the reference trajectory

[8], or as part of the trajectory planning phase [7].

In this work, we will utilize a backstepping type

controller [18] to create stabilizing shaping functions

to achieve a robust tracking controller to solve objec-

tive (i). The results from [8], combined with well known

open-loop trajectory generation tools, will be utilized to

robustly solve objective (ii).

1 Global Navigation Satellite Systems

Fig. 1 Hexacopter type multirotor carrying a suspended
load. The mechanism under the UAV body provides mea-
surements of the deflection angle of the attachment wire.

3 Modeling

The dynamic modeling of a multirotor type UAV is well

studied in the literature. For a detailed survey, see [19]

and references therein. Different choices of kinematic

representation of attitude are made throughout the lit-

erature. Euler angles are popular and common, and

forms the basis for linearized PID control around the

hover-state. This is the controller-type found in many

commercial autopilots, due to it’s simplicity and strong

connection to the terms commonly used in fixed-wing

avionics. The inherent downside of this representation

is a representation singularity, typically when the pitch

angle is ±90◦. This is, however, outside the operating
range of the UAV in this paper.

Let {n} be the frame whos axes points in North,

East and Down (NED) direction, which is assumed iner-

tial. The multirotor position in {n} is given by p ∈ R3.

Further, let {b} be a body-fixed coordinate system. Its

orientation with respect to {n} is given by three consec-

utive rotations about the axis z, y, and x, respectively.

This corresponds to the Euler zyx representation [12].

ṗ = v (1)

Θ̇ = T(Θ)ω (2)

where Θ := [φ, θ, ψ]T is a vector of the roll, pitch

and yaw angles, ω is the angular body velocity, and

T(Θ) is

T(Θ) :=

1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ

 , cos(θ) 6= 0 (3)
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The dynamics can be derived by classical Newtonian

or Lagrangian methods, and readers are referred to [19]

for details on its derivation.

ṗ = v (4)

mcv̇ = mcg + R(Θ)f + w (5)

Θ̇ = T(Θ)ω (6)

Iω̇ = S(Iω)ω + M (7)

where p ∈ R3 is the UAV position in the inertial frame

{n}, v ∈ R3 the linear velocity in {n}, R(Θ) ∈ SO3

a rotation matrix from the inertial frame {n} to the

body-fixed frame {b}, ω ∈ R3 the angular velocity

of the UAV, represented in {b}. Further, the operator

S(·) is the skew-symmetric transformation, such that

p × q = S(p)q. mc is the mass of the UAV, and I the

body-fixed inertia matrix. f is vertical thrust directed

along the negative body-aligned z-axis, and M are ap-

plied torque about the UAV from the motors. w is ad-

ditional environmental forces, such as wind disturbance

and finally g =
[
0 0 g

]T
, where g is the gravitational

constant.

Consider now a load being suspended in the centre

of gravity of the UAV. This will affect the translational

motion (5) by a term τL, parameterized by the load

dynamics, but the rotational motion (7) is unaffected.

As control of the attitude of the multirotor is not the

task of the trajectory tracking controller, the model de-

scribing the translational motion is now

ṗ = v (8)

mcv̇ = mcg + R(Θ)f + τL + w (9)

Further, assume now that a sufficiently fast attitude

controller is present. The direction of the applied force

for translational motion is given by R, and by manip-

ulating the roll and pitch angles of the UAV we can

apply force in a desired direction. An example of such

a controller is given in [19], and directly for Euler angles

in Appendix A. Thus, the term R(Θ)f can be replaced

by an inertial control force F = R(Θ)f ∈ R3, resulting

in

ṗ = v (10)

mcv̇ = mcg + F + τL + w (11)

xn

zn

yn
φL

θL

p

Load

Multirotor

Fig. 2 Illustration of pendulum angle parameterization by
two consecutive rotations φL and θL about the x- and y-axis,
respectively.

Next, the suspended load dynamics is modeled as a

pendulum. This simple model has been used with suc-

cess in earlier work [6]. We consider the suspended load

as a point-mass, connected by a rigid link to the CoG

of the UAV. This is valid for non-aggressive maneuvers

where the wire remains taut. We parameterize the pen-

dulum displacements by φL and θL, which are the load

rotation angles about the inertial x- and y-axis, respec-

tively, see Figure 2. The generalized coordinates for the

system are thus η = [pT, φL, θL]T. Physical damping

of the pendulum swing is modeled by a linear damping

term, which is valid for low speeds. By utilizing Kane’s

equation [10], we get the dynamical model (12):

η̇ = ν

M∗(η)ν̇ + C∗(η,ν)ν + G(η) + Dν = τ + τ a
(12)

where M∗(η) and C∗(η,ν) can be seen in (13)–(14),

τ :=
[
FT 01×2

]T
, ν := [vT, φ̇L, θ̇L]T, τ a :=

[
wT 01×2

]T
and

G(η) =


0

0

−g (mL +mc)

LgmL cos θL sinφL
LgmL cosφL sin θL

 . (15)

The term Dν is the linear damping force, incor-

porating the effects of air drag at low speed. D =

diag{[0, 0, 0, d, d]}, where d > 0 is a drag coefficient.

w is an unknown disturbance acting on the body of

the UAV, typically wind. This is assumed constant, or

slowly varying.

As can be seen in (12), the equations are organized

in matrix form, which is typical in the literature of

robotic manipulation. This form greatly simplifies the

control analysis. In fact, as is common in robotic ma-

nipulators, the matrix Ṁ∗(η)−2C∗(η,ν) is skew sym-

metric, which is a very useful property in Lyapunov
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M∗(η) =


mL +mc 0 0 0 LmL cθL

0 mL +mc 0 −LmL cφL cθL LmL sφL sθL
0 0 mL +mc −LmL cθL sφL −LmL cφL sθL
0 −LmL cφL cθL −LmL cθL sφL L2mL cθL2 0

LmL cθL LmL sφL sθL −LmL cφL sθL 0 L2mL

 (13)

C∗(η, ν) =



0 0 0 0 −L θ̇LmL sθL

0 0 0 LmL

(
φ̇L cθL sφL + θ̇L cφL sθL

)
LmL

(
φ̇L cφL sθL + θ̇L cθL sφL

)
0 0 0 −LmL

(
φ̇L cφL cθL − θ̇L sφL sθL

)
−LmL

(
θ̇L cφL cθL − φ̇L sφL sθL

)
0 0 0 −1

2
L2 θ̇LmL s(2 θL) −1

2
L2 φ̇LmL s(2 θL)

0 0 0 1
2
L2 φ̇LmL s(2 θL) 0

 (14)

analysis. As can be seen from (13), M∗(η) is singu-

lar at θL = π/2. This is due to the representation of

the pendulum configuration, and it corresponds to the

case where the suspended load is directed out of the

nose of the UAV. Although while in this configuration

the rigid-link assumption is unlikely to hold in prac-

tice, and would most likely result in a crash due to

impact between the suspended load and multirotor pro-

pellers, this situation is prevented by the design of the

controller. We illustrate in the next section how a in-

finitesimal singularity avoidance term can be added to

use the model for theoretically valid control design and

analysis.

4 Control design

In this section, we design a nonlinear trajectory-tracking

controller for the UAV, to resolve objective (i). We uti-
lize the backstepping technique [18], to design the con-

trollers in two steps. To achieve this, with a slight abuse

of terminology, we view (12) as an underactuated sys-

tem, in which elements 4 and 5 of the control input

vector τ are constrained to be zero. The design proce-

dure is inspired by [11].

The model developed in the previous section has

a representation singularity at θL = π/2. This is an

undesired feature when designing the control system.

Thus, we create a perturbed model, in which we avoid

the singularity by adding an infinitesimal singularity

avoidance term at M∗4,4. The model used for control

design are then:

η̇ = ν (16)

M(η)ν̇ + C(η,ν)ν + G(η) + Dν = τ + τ a (17)

where M(η) = M∗(η), C(η,ν) = C∗(η,ν) except for

M(η)4,4 = L2mL cos θL
2 + ε sin θL

2, (18)

and

C(η,ν)4,4 = −1

2
L2mLθ̇L sin 2θL +

1

2
εθ̇L sin 2θL. (19)

ε > 0 is a small positive constant. As can be seen,

C(η,ν) is also perturbed to maintain the skew-symetric

property. This added term ensures that the mass matrix

is non-singular for all (θL, φL) and close to the original

model for small (θL, φL). This perturbed model is now

used in the rest of this section.

Consider now a sufficiently smooth desired trajec-

tory r(t). We define the error signals z1 ∈ R3 and

z2 ∈ R5 as

z1 := p− r (20)

z2 := [z2,1, z2,2, z2,3, z2,4, z2,5]T := ν −α (21)

where α := [α1, α2, α3, α4, α5]T ∈ R5 is a vector of

stabilizing functions to be specified later.

Now, we utilize a selection matrix H to select the

states of z1 we are interested in for control. Let

H =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

 (22)

such that the error-dynamics becomes

ż1 = Hν − ṙ (23)

and

M(η)ż2 = M(η)ν̇ −M(η)α̇

= τ + τa −C(η,ν)ν −G(η)

−Dν −M(η)α̇

(24)
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4.1 Step 1

Consider a Lyapunov function candidate (LFC) for the

first sub-system (23) as

V1(z1, t) =
1

2
zT1 z1 (25)

It’s derivative along the solution of z1(t) is

V̇1(z1, t) = zT1 (Hν − ṙ)

= zT1 (α1:3 + Hz2 − ṙ)
(26)

where (·)i:j represents elements i to j of the vector (·).
By designing the stabilizing functions α1:3 as

α1:3 = ṙ−K1z1, (27)

where K1 = KT
1 > 0 is a positive definite matrix. The

derivative of V1(z1, t) becomes

V̇1(z1, t) = −zT1 K1z1 + zT1 Hz2 (28)

4.2 Step 2

Take the second LFC as

V2(z1, z2, ξ, t) = V1(z1, t) +
1

2
zT2 M(η)z2 (29)

which is positive definite for (z1, z2) 6= 0. Taking the

derivative of (29) yields:

V̇2(z1, z2, t) = −zT1 K1z1

+zT2 (τ+τ a −Cα−G−Dν + HTz1 −Mα̇)

where we have utilized the skew-symetric property of
1
2Ṁ(η)−C(η,ν). Suppose now that the control τ can

be set to

τ = Cα+ G + Dα−HTz1 + Mα̇−K2z2 (30)

where K2 = KT
2 > 0. By remembering τ a = HTw, this

results in

V̇2(z1, z2, t) = −zT1 K1z1 − zT2 K2z2 − zT2 Dz2 + zT2 H
Tw

Clearly, if w ≡ 0, or if it was exactly known, it could

be cancelled by the controller. Since this is quite unre-

alistic, we use the augmented controller

τ = Cα+G+Dα−HTz1 +Mα̇−K2z2−HTŵ (31)

where ŵ is the estimate of w, given by

˙̂w = ρHz2 (32)

where ρ ∈ R is a tuning parameter.

In the following lemma, we show that with this choice

of τ and update law for ŵ, the origin of the system

(23)–(24) and (32) is Uniformly Globally Asymptoti-

cally Stable (UGAS) and Uniformly Locally Exponen-

tially Stable (ULES). However, as we cannot set a de-

sired moment about the suspension point of the load,

the fourth and fifth row of (31) must instead be equal to

zero. In Section 4.3, we design the remaining stabilizing

functions to achieve this.

The closed-loop system can be written as[
ż1
ż2

]
=

[
−K1 H

A21(t) A22(t)

] [
z1
z2

]
+

[
0

M−1(Θ(t))HT

]
w̃

(33)

˙̃w = ρHz2 (34)

where

A21(t) :=−M−1(Θ(t))HT

A22(t) :=M−1(Θ(t))(−K2 −D−C(Θ(t), Θ̇(t)))

and Θ(t) := [θL(t), φL(t)]T.

Lemma 1 The origin of (33)–(34) is UGAS and ULES.

Proof To prove UGAS and ULES of the equilibrium

point (z1, z2, w̃) = 0 of (33)–(34), we apply the results

from [13]. To this end, the closed-loop system (33)–(34)

can be restated in the form:

ẋ1 = h(x1, t) +G(x, t)x2 (35)

ẋ2 = −PG(x, t)T
(
∂W (x1, t)

∂x1

)T

, P = PT > 0 (36)

where

x1 :=
[
z1 z2

]T
x2 := w̃

h(x1, t) :=

[
−K1 H

A21(t) A22(t)

]
x1

G(x, t) :=
[
0 M−1(Θ(t))HT

]T
P := ρI

W (x1, t) =
1

2
zT2 Mz2 +

1

2
zT1 z1

⇒ ∂W (x1, t)

∂x1
=
[
z1 M(Θ(t))z2

]
[13, Theorem 1] states that if the conditions (A1)–

(A2) below hold, the origin of the system (35)–(36) is

UGAS and ULES. Let G0(x2, t) := G(x, t)|x1≡0, and

ρj : R≥0 → R≥0, (j = 1, 2, 3) be continuous nonde-

creasing functions. The conditions of A1 are
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max

{
‖h(x1, t)‖ ,

∥∥∥∥∂W (x1, t)

∂x1

∥∥∥∥} ≤ ρ1(||x1||)||x1||

(A1.a)

max {‖G(x, t)‖ , ‖G0(x2, t)‖} ≤ ρ2(||x||) (A1.b)

max

{∥∥∥∥∂G0(x2, t)

∂x2

∥∥∥∥ ,∥∥∥∥∂G0(x2, t)

∂t

∥∥∥∥} ≤ ρ3(||x2||)

(A1.c)

Indeed, (A1.a) holds because M(Θ(t)) is non-singular,

and is bounded for allΘ(t). Further, as we haveG0(x2, t) =[
0 M−1(Θ(t))HT

]T
, (A1.b) holds since M(Θ(t)) has

an upper bound. In fact, there exists mm,mM ∈ R s.t.

Imm ≤M(Θ(t)) ≤ ImM .

By noting that the system (35)–(36) is forward com-

plete [3], we have existence and boundedness of Θ̇ ∀t.
Thus, the partial time derivative ofG0(x2, t) is bounded,

and (A1.c) holds. Additionally, we need the condition

G0(x2, t)
TG0(x2, t) ≥ bmI (A1.d)

which holds with in our case with bm = (1/m2
M )I

Further, let κ1, κ2 be class-K∞ functions, and c > 0

a strictly positive real number. Then, we need

κ1(‖x1‖) ≤W (x1, t) ≤ κ2(‖x1‖) (A2.a)

∂W (x1, t)

∂t
+
∂W (x1, t)

∂x1
h(x1, t) ≤ −c ‖x1‖2 (A2.b)

Clearly, by setting κ1 = 0.5k1 ‖x1‖2, κ2 = 0.5k2 ‖x1‖2

where k1 = min(mm, 1), k2 = max(mM , 1), (A2.a) holds.

(A2.b) expands to

−zT1 K1z1 − zT2 K2z2 ≤ −c ‖x1‖2 (37)

with c = min{inf(K1), inf(K2)}. In addition, we have

κ2(s) ∝ s2.

We have now shown that all the assumptions (A1-

A2) of [13, Theorem 1] holds, and conclude that the

origin of(35)–(36) is UGAS and ULES. ut

4.3 Remaining stabilizing functions

We now design the remaining stabilizing functions α4

and α5 to ensure that the fourth and fifth row of (31)

is indeed zero. By extracting these rows from (31), we

get the constraint equations

τ 4:5 =

[
0

0

]
= C4:5;4:5α4:5 + G4:5 + D4:5;4:5α4:5

+M4:5;4:5α̇4:5 + M4:5,1:3α̇1:3 −K2,4:5z2,4:5

where the arguments of C and M have been dropped

for notational clarity, and (·)i:j;k:l extracts rows i − j,

columns k − l of (·) Solving for α̇4:5, this results in a

dynamic equality constraint

Mα(η)α̇4:5 = −Dαα4:5 −Cα(η,ν)α4:5

+γ(η, z1, z2, r̈)
(38)

where

Mα(η) = M4:5;4:5(η),

the lower 2x2 block of M(η)

Cα(η,ν) = C4:5;4:5(η,ν),

the lower 2x2 block of C(η,ν)

Dα = diag{[d, d]} > 0

and

γ(η, z1, z2, r̈) =−G4:5 + K2,4:5z2,4:5

−M4:5,1:3(r̈−K1Hz2 + K1K1z1)

in which we have used the fact that

α̇1:3 = r̈−K1ż1

= r̈−K1Hz2 + K1K1z1
(39)

Also, note that the matrix Ṁα − 2Cα retains the

skew-symetric property. The variables α4:5 becomes a

dynamic state in the controller, according to (38). In

fact, (38) is a stable differential equation driven by the

converging error signals (z1, z2) and the bounded signal

r̈. As z2,4:5(t)→ 0, it follows that |α4:5− [φ̇L, θ̇L]T| → 0

as t→∞. This is stated more formally in Theorem 1.

Theorem 1 Let the trajectory tracking problem (20)–

(21) of a multirotor UAV be solved by applying the first

three rows of the control law (31) to (17):

F = C1:3;4:5(η,ν)α4:5 + G1:3 − z1

+ M1:3;1:3(r̈−K1Hz2 + K1K1z1)

+ M1:3;4:5α̇4:5 −K2,1:3z2,1:3 − ŵ

(40)

where K1 > 0 ∈ R3×3, K2 > 0 ∈ R5×5, z1 := p − r,

z2 := ν −α, and

α1:3 = ṙ− z1 (41)

The smooth reference signals r, ṙ and r̈ are provided by

an external guidance system or a reference model, while

α4:5 are given by the dynamic system

Mα(η)α̇4:5 = −Dαα4:5 −Cα(η,ν)α4:5

+γ(η, z1, z2, r̈)
(42)

Then the equilibrium point (z1, z2) = 0 is UGAS, α4:5 ∈
L∞ and satisfies

lim
t→∞

|α4:5(t)− [φ̇L(t), θ̇L(t)]T| = 0 (43)
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Proof The closed-loop system can be expressed as

Σ1


[
ż1
ż2

]
=

[
−K1 H

A21(t) A22(t)

] [
z1
z2

]
+

[
0

M−1(Θ(t))HT

]
w̃

˙̃w = ρHz2
(44)

Σ2

{
Mα(η)α̇4:5 = −Dαα4:5 −Cα(η,ν)α4:5

+γ(η, z1, z2, r̈)
(45)

From Lemma 1 we know that the origin of Σ1 is

UGAS and ULES. The unforced α4:5 system, Σ2 with

γ = 0, is globally exponentially stable. This can be seen

from the Lyapunov function

Vα(α4:5, t) =
1

2
αT

4:5Mα(η)α4:5 (46)

whos derivative along (38) is

V̇α(α4:5, t) = αT
4:5(−Dαα4:5 + γ)

≤ −1

2
αT

4:5Dαα4:5 ≤ 0

for ||α4:5||2 > 2||γ||2/d. Since (z1, z2) ∈ L∞, r, ṙ, r̈ ∈
L∞ and since η enters γ through the bounded functions

cos and sin , we have γ(η, z1, z2, r̈) ∈ L∞. Thus, the

α4:5 subsystem is input-to-state stable from γ to α4:5

by [16, Theorem 4.19]. Hence, α4:5 converges to the

bounded set {α4:5 : ||α4:5|| ≤ (2/d)||γ||}. The limit

(43) is obtained from the fact that z2,4:5(t) → 0 as

t→∞. ut

Remark 1 Note that the global results presented in The-

orem 1 applies to the perturbed model (17). This model

is valid as long as the wire is taut, and we stay away

from the representation singularity at θL = π/2. At this

point, the model is perturbed by the infinitesimal con-

stant ε, which in practice will have negligible impact on

the results.

Remark 2 Also, note that the load angles φL and θL
are not included in the coordinate change (20)–(21),

but their derivatives are. The angles acts as external

inputs to the system dynamics through the saturating

geometric functions cos and sin, and are thus treated

as bounded inputs in the analysis. See Figure 3.

r(t)

Σ1

cos(·)

sin(·)
Bounded, measured signals

η4,5

ν4,5

[·]

Σ2

Fig. 3 Structure illustrating the proof. By Theorem 1, the
feedback law (40) renders the origin of [z1, z2] globally
asymptotically stable. The signal α4,5, needed by (40), is
shown to be bounded. The load angles act on both sub-
systems through the saturating trigonometric geometric func-
tions cos(·) and sin(·), and ν4,5 is bounded by (43).

4.4 Implementational Aspects

When implementing backstepping controllers, it is often

advantageous to re-write the final control output in the

original UAV coordinates to facilitate easier tuning of

the various gains. Indeed, by re-writing the controller

equation (40), and define the error signal p̃ := p − r,

the PID-like structure can be recovered:

F =β(·) + G(η) + (mL +mc)r̈

−Kd
˙̃p−Kpp̃−Ki

∫ t

0

p̃ dτ
(47)

where we recognize the gravity compensation, refer-

ence acceleration feed forward, the proportional, deriva-

tive and integral feedback terms. In addition, the sta-

bilizing load compensator β(·) which is a function of

(η,ν, r, ṙ, r̈,α4,5), acts to cancel the effects of the sus-

pended load. It is given by

β = C1:3,4:5(η,ν)α4:5 + M1:3,4:5α̇4:5 (48)

and where α4:5 is driven by the dynamic constraint

Mαα̇4:5 =− (Dα + Cα(η,ν) + K2,4:5)α4:5

−G4:5 + K2,4:5Θ̇ −M4:5,1:3(η)(r̈−K1
˙̃p)

(49)

and the gains are given by

Kp = I + K2,1:3K1 + ρI (50)

Kd = (mL +mc)K1 + K2,1:3 (51)

Ki = ρK1 (52)

As the dominating elements of (47) are the proportional

and derivative terms, (50)–(52) allows the use of tools

like pole-placement for linear systems to be used when

tuning the final controller.
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4.5 Generating Reference Signals

The controller presented above requires a smooth C3
trajectory. Given a sequence of waypoints given by the

operator, the trajectory can be generated by feeding

the waypoints through a reference model of sufficient

order. Consider a fourth order low-pass filter:

x(4)+4ζω0x
(3)+(2+4ζ2)ω2

0ẍ+4ζω3
0+ω4

0x = ω4
0xd (53)

where x ∈ R3 is the reference signal, xd ∈ R3 is the

current desired position (waypoint), and ζ, ω ∈ R are

tuning parameters. Consider only the first dimension

of x, a reference position of xd,1 = 20 would give the

trajectory illustrated by the dashed lines in Figure 4.

However, this is not a feasible trajectory for the UAV

as the UAV encompasses certain dynamic constraints,

like maximum acceleration and jerk, that is not taken

into account. Further, the operator would typically like

to set a prescribed velocity for the maneuver. Thus,

in this work, we re-arrange (53) as a set of cascaded

controllers, and impose saturations on each level of the

cascade to facilitate the constraints of the UAV. That

is;

x(4) = u (54)

τ1 = sat(k1(xd − x), vmax) (55)

τ2 = sat(k2(τ1 − x(1)), amax) (56)

τ3 = sat(k3(τ2 − x(2)), jmax) (57)

u = k4(τ3 − x(3)) (58)

The parameters ki, i ∈ {1, . . . , 4} are found by inspec-

tion of (53) as

k4 = 4ζω0 k3 =
(2 + 4ζ2)ω2

0

k4

k2 =
4ζω3

0

k4k3
k1 =

ω4
0

k4k3k2

We are now able to impose constraints on the motion

by setting vmax, amax and jmax appropriately. Consider

again the first dimension, with the aforementioned con-

straints set 3 m/s, 1.5 ms2 and 3 m/s3 respectively, the

resulting trajectory can be seen by the solid lines in

Figure 4. Clearly, we see that the response is slower,

but complies the constraints. This reference-model is

now used to generate feasible, smooth C3 trajectories

for the controller.

0 2 4 6 8 10 12

time [s]

-5

0

5

10

15

20
Reference model step response

Position

Velocity

Acceleration

Fig. 4 Step response of the reference model. The dashed lines
corresponds to a regular low-pass filter, while the solid lines
represents the response of the augmented reference model,
which complies with the dynamical constraints of the UAV.

5 Results Tracking Controller

This section presents the results of the performance of

the controller structure derived above. The results are

verified in a numerical simulation and in a UAV exper-

iment, with a step-like trajectory.

The simulation parameters are set to match that of

the experimental platform, and are summarized in Ta-

ble 1. The simulation is conducted in MATLAB, using

the model presented Section 3. Integration is performed

using Runge-Kutta-4 at 20 Hz.

Table 1 UAV Data

UAV Mass 2.5 kg
Payload Mass 250 g
Suspension Length 4.2 m
Speed Setpoint 4 m/s
Maximum Acceleration 7 m/s2

5.1 UAV Platform

The UAV platform is a hexacopter, equipped with the

Pixhawk [24] autopilot system running Ardupilot [4]

software. This autopilot handles sensor fusion from its

internal IMU and GNSS systems, as well as low level

attitude control. It receives attitude and thrust set-

points from an on-board Linux computer, a Beaglebone

Black, which contains the custom controller described

in this work. The Beaglebone is a 1 GHz single-board

ARM computer, running the LSTS toolchain [23]. This

toolchain consists of a Linux distribution (Glued), a

ground station segment (Neptus) and a vehicle software
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stack (DUNE). All implementations for the experimen-

tal validation is implemented in DUNE using C++. See

Figure 1.

The displacement angles of the suspended load is

measured by two magnetic encoders, the MTS360 [22].

At the day of testing, the wind conditions were moder-

ate (about 3-4 m/s), with gusts up to 5-6 m/s.

5.2 Step-like Trajectory

In this validation case, the desired trajectory is a 20 m

displacement in the horizontal plane. In both the sim-

ulation and experiment, the controller needs to com-

pensate for an unknown wind disturbance. Figure 5 il-

lustrates the distance traveled during the test, while

Figure 6 shows the tracking-error of the controller in

both the experimental and simulated setting. As can

be seen, the controller tracks the desired trajectory sat-

isfactorily, where in the experimental case the average

tracking error is 12.5 cm. There are peaks approaching

60 cm however, which corresponds to the time when

the UAV stops at the final position. The wind distur-

bance estimation magnitude is illustrated in Figure 7,

which we see for the simulation case that the controller

approaches the correct steady-state value. In the exper-

imental case, we see fluctuations, which is induced by

wind gusts and the elevated tracking error during ag-

gressive parts of the maneuver. As Figure 8 shows, there

is naturally a substantial load deflection during accel-

eration. Especially for the simulated case, we see that

the load continues to oscillate when the UAV reaches

hover state. Due to un-modeled effects the response in

the experiments are of lower amplitude, but the oscilla-

tions are clearly visible. In the next section, we discuss

how to design the reference trajectory as to minimize

the suspended load swing.
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Fig. 5 The distance trajectory during the step test case.
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Fig. 6 Tracking error when running the controller with a
step-input. The desired position is 20 m away from the initial
position.
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Fig. 7 Magnitude of the wind disturbance estimation dur-
ing the step test case. In the simulated case, the magnitude
trends towards the unknown constant bias. For the experi-
mental case, the wind estimate fluctuates significantly more
due to the shifting wind conditions during the experiment.
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Fig. 8 Angles of the suspended load running the step type
trajectory. The lower-left plot illustrates the Power Spectral
Density over the frequency range of pendulum swing.

6 Damping of suspended load oscillations

To safely transport a suspended payload with an UAV,

the swing motion of the payload should be kept small.

This type of problem has a vast history in the literature,
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especially for usage on overhead cranes [1], but also

on various flying vehicles. The use of Input Shaping is

one of the most practical open-loop control strategies

for these problems, and has been widely used [25]. Its

main concept is that by giving the UAV two consecutive

step inputs, the oscillatory response between the two

cancels each other out, and resulting in a oscillation free

maneuver. However, it as it is open loop, it is sensitive

to modeling uncertainties.

The impulse response of the simplest input-shaping

filter I can be seen in Figure 9 as two pulses at times

t1 = 0 and t2, of amplitudes A1 and A2, respectively.

Given the damped natural frequency ωd and damping

ratio ζ, the filter coefficients can be calculated as [7]:

t1 = 0 t2 =
π

ωd
(59)

A1 =
1

1 +K
A2 =

K

1 +K
(60)

K = exp

(
−ζπ√
1− ζ2

)
(61)

For a suspended load, the natural frequency of os-

cillations is given by ωn =
√
g/L. Given a reference

trajectory ξ̄(t) := [r(t), ṙ(t), r̈(t)], the resulting desired

trajectory is obtained by the convolution of the shape

filter:

ξI = ξ̄ ∗ I (62)

t2

A1 A2

t

Fig. 9 Impulse response of the input shape filter I, tuned
after the frequency response of the pendulum-motion of the
suspended load.

In Figure 10, an illustrative example shows the effect

of shaping the reference trajectory in this matter. As

can be seen, the response is lagging behind the original

trajectory, but the residual swings are greatly reduced.
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Fig. 10 Illustrative example of the effects of open-loop tra-
jectory generation using input shaping.

Another technique would be to use feedback from

a measured load angle as means to damp the oscilla-

tory motion of the suspended load. In this article, we

are utilizing an approach called Delayed feedback con-

trol [8] to actively damp the swing motion. As illus-

trated in [8], it is capable of damping out the residual

swing during hover or steady transit. The technique is

based on adding a feedback-component from the mea-

sured deflection angle on the reference signal sent to

the controller. Consider the one dimensional auxiliary

reference signal

xr(t) = GdL sin (θL(t− τd)) (63)

where Gd and τd are design-parameters, designed as
to dampen out the swing load. As can be seen, the

added reference signal purposefully induces a delay in

the feedback loop to achieve the damping. While the

readers are referred to [8] for details on the design pro-

cedure, for the multirotor UAV we sutilize the following

parameters:

Gd = 0.325, τd = 0.325
2π

ωd
(64)

To utilize the delayed feedback controller, consider

the y-axis equivalent of (63), yr(t) = −GdL sin (φL(t− τd)),
and aggregate the first and second derivatives to

ξD =
[
xr yr 0 ẋr ẏr 0 ẍr ÿr 0

]
(65)

The structure of the total feed forward plus delayed

feedback reference generator can then be seen in Fig-

ure 11. This is a similar structure as presented in [8].
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rd ξ̄

θL(t), φL(t)

Reference
Model

Input
Shaping

Delayed
Feedback

ξI

ξD

ξ

Fig. 11 Traditional overall structure for combining feed-
forward input shaping with delayed feedback for trajectory
generation.

An example showcasing the delayed feedback con-

troller (compared with the input-shaping feed forward)

is seen in Figure 12. As can be seen, the feedback con-

troller is removing all of the residual oscillations. How-

ever, during start and stop, it produces unnecessary

large oscillations in the load angle and resulting UAV

velocity, as can be seen by the peak in Figure 12.
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Fig. 12 The delayed feedback controller cancels out the
residual swing, but produces unwanted peaks in reference ve-
locity.

As can be deducted from this, the feedforward shap-

ing filter does a good job during the transients, but

are susceptible to modeling errors and residual swings.

The feedback term on the other hand, is overreacting

during the transients but does a good job at canceling

the lingering oscillations. The direct combination of the

two, as illustrated in Figure 11, does a fairly decent job

at maintaining the benefits of both terms. But, there

is still some unwanted velocity peaks and overreacting

from the feedback structure during the transients. This

is kind of natural, as the job of the feedforward is to

allow an initial swing, but then cancel it by the second

impulse. By having the feedback term active all of the

time, it renders parts of the feedforward terms more in-

accurate. Thus, we would like to smoothly disable the

feedback term during the transients.

By examining the full dynamic model in (12), it can

be observed that the UAV only influence the suspended

load motion through acceleration. Thus, we propose to

introduce a smooth gain-scheduling approach for the

delayed feedback, using the recent history of reference

acceleration as input. Specifically, let

ak :=
[
ak ak−1 ak−1 · · · ak−N

]
(66)

where ak := ||r̈(tk)|| ∈ R is the total reference acceler-

ation at time tk, for some constant number of samples

N . Further, let pk be the percentage of values in ak less

than a acceleration threshold at. That is;

pk =
1

N

N∑
i=0

{
1 if ak−i<at
0 else

(67)

Let pk be the input to a sigmoid-type function. We

utilize the logistic function

S(pk) :=
1

1 + e−k(pk−pc)
(68)

where k, pc ∈ R can be tuned to vary the shape of

S(pk). Figure 13 shows such a sigmoid function for

k = 30, pc = 0.7. Subsequently, we get the structure

depicted in Figure 14 where we can see that the sig-

moid gain block S(pk) adjusts the contribution from

the delayed feedback based on the reference accelera-

tion of the unperturbed trajectory ξI . The effect of this

scheme can be seen in Figure 15, where we can see that

the residual oscillations are cancelled out and the UAV

avoids the unnecessary velocity peaks.

The complete interconnected slung-load controller

is now depicted in Figure 16.
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Fig. 13 Illustration of the sigmoid function. By looking at
the history of reference accelerations, the gain is increased
when we are at steady state for maneuvering.
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Fig. 14 Proposed structure for combining the feed for-
ward input shaper with delayed feedback. Using the current
and recent reference accelerations from ξI , the block S(pk)
smoothly activates the feedback path only on constant veloc-
ity part of a maneuver (including hover).
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Fig. 15 The result when using the proposed sigmoid gain
function

7 Results: Tracking Controller with Swing

Damping

7.1 Step-like Trajectory

To verify the performance of the tracking controller

with the proposed swing-damping technique, we first

do the same step-maneuver as in Section 5. Figure 17

shows the experimental results with and without swing

damping. Clearly, there is substantially less angular mo-

tion of the suspended load with the swing damping

enabled. This is also visible from the power spectral

density in the lower-left of Figure 17, where we see that

the natural frequencies are now less dominant than sec-

ondary oscillatory effects from the UAV motion. Fig-

ure 18 shows the lag-effect of the input shaper, where

the second experiment lags a bit behind the first with-

out the swing damping enabled. For most applications,

this is a viable tradeoff when taking the pronounced

benefit of the reduced load motion into account.
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Fig. 17 Angular response during the experiment, running
a step-like input. With the swing damping enabled, the os-
cillations are of lower amplitude and are damped faster. The
lower-left plot shows the power spectral density of the angular
signal.
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Fig. 18 Distance travelled during the step-like input.

7.2 Figure-8-like Trajectory

Further, we tested the performance for a more compli-

cated figure-8 like trajectory which we compare with a

similar trajectory without any swing damping. For both

cases, the trajectory includes a 20 second hover state

at the beginning the maneuver. The resulting North-

East path can be seen in Figure 19. From Figure 20,

it can be seen that the tracking error is of the same

magnitude as without the swing damping, but looking

at the angular displacements in Figure 22, the differ-

ence is more striking. The suggested structure is able

to greatly reduce the angular displacements. The wind

disturbance estimation can be seen in Figure 21, which

in both cases varies over the course of the experiment.

This is partly due to gusts, but it is also reacting to the

somewhat higher average tracking error during the end

of the maneuver due to aggressive turning. Also, note
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Slung
damping
adjust-
ments

Trajectory
Generator

Waypoint
Sequence

Non-linear
trajectory
tracking
controller

Pixhawk
Low-level
Controller

xd ξ̄ ξ

η, ν

Θ, f Multirotor
Slung
System

Position, attitude and
slung load measurements.

Fig. 16 The complete controller structure, illustrating the signals flowing through the various main components. The physical
system, including state estimation and measurement of the slung load deflection angles, is represented in the block Multiro-
tor Slung System.

that due to the sequence of experiments conducted, the

case where the swing damping was enabled had a soft-

start of the bias estimation. However, due to the ini-

tial hover state, the controller have a reasonable time

to reach estimation steady state before the maneuver

commences which can be observed in the plot.
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Fig. 19 Trajectories during the figure-8-like maneuver. The
discrepancies is due to the altered desired trajectory from the
swing-damping.
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Fig. 20 Tracking errors along the desired trajectory.
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Fig. 21 The estimated wind disturbance magnitude during
the figure-8-like maneuver.
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Fig. 22 Suspended load displacement angles during the
figure-8-like maneuver. The peak of the power-spectral-
density graph on the lower left corresponds to the natural
oscillation frequency of the undamped load.

8 Final Discussion and Conclusion

In this paper, we have studied a multirotor UAV car-

rying a suspended load. By utilizing Kane’s equation,

a non-linear model of the interconnected dynamics was

derived. Further, a trajectory tracking controller based

on the backstepping technique was designed. Due to the

presence of wind disturbances, the controller includes a
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wind bias compensator in the form of an added inte-

gral effect. The origin of the tracking error was proven

UGAS and ULES.

To dampen the deflection angles of the oscillating

suspended load, we considered an open-loop and a feed-

back type trajectory generation approach from the liter-

ature. We proposed a new method to combine these two

approaches using a gain-scheduling procedure based on

recent acceleration reference points.

The controller and proposed swing damping method-

ology was verified using both numerical simulation and

experimental data from a in-house built low-cost UAV

platform. All experiments were conducted outside, and

implementation was done in a application framework

applicable for continuous use and research.
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A Desired Force to Attitude

This section outlines how one translates a desired force Fd to
desired Euler angles φd, θd and ψd. It turns out, the desired
yaw angle ψd can be set independently of the desired force.
The body-oriented forces Fb̄ obtained by a principal rotation
of F around the z-axis with the current yaw ψ relates to the
roll- and pitch angles as follows

F b̄
x = −kff cosφ sin θ (69)

F b̄
y = kff sinφ (70)

F b̄
z = −kff cosφ cos θ (71)

where f ∈ [0..1], and kf ∈ R is a coefficient of the thrust
configuration typically s.t. at f = 0.5 the vehicle is at hover.
This equation set can be solved by first solving (71) for f
using the current values for ψ and θ. Then, solve (69)–(70)
for φ and θ, giving the desired values.

To further simplify; if one assumes low vertical accelera-
tions, the desired roll- and pitch angles can be found by

θd = arctan
−F b̄

x

mg
(72)

φd = arctan
F b̄
y cos θd

mg
(73)
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