
A Multi-Layered Component-Based Approach
for the Development of Aerial Robotic Systems:
The Aerostack Framework

Jose Luis Sanchez-Lopez · Martin Molina ·
Hriday Bavle · Carlos Sampedro ·
Ramón A. Suárez Fernández · Pascual Campoy

Abstract To achieve fully autonomous operation
for Unmanned Aerial Systems (UAS) it is neces-
sary to integrate multiple and heterogeneous techni-
cal solutions (e.g., control-based methods, computer
vision methods, automated planning, coordination
algorithms, etc.). The combination of such methods
in an operational system is a technical challenge that
requires efficient architectural solutions. In a robotic
engineering context, where productivity is important,
it is also important to minimize the effort for the devel-
opment of new systems. As a response to these needs,
this paper presents Aerostack, an open-source soft-
ware framework for the development of aerial robotic

systems. This framework facilitates the creation of
UAS by providing a set of reusable components spe-
cialized in functional tasks of aerial robotics (trajec-
tory planning, self localization, etc.) together with
an integration method in a multi-layered cognitive
architecture based on five layers: reactive, executive,
deliberative, reflective and social. Compared to other
software frameworks for UAS, Aerostack can provide
higher degrees of autonomy and it is more versatile
to be applied to different types of hardware (aerial
platforms and sensors) and different types of missions
(e.g. multi robot swarm systems). Aerostack has been
validated during four years (since February 2013) by
its successful use on many research projects, interna-
tional competitions and public exhibitions. As a repre-
sentative example of system development, this paper
also presents how Aerostack was used to develop
a system for a (fictional) fully autonomous indoors
search and rescue mission.

Keywords Aerial robotics · Robot architecture ·
Autonomous behavior · Distributed robot systems ·
Multi-robot coordination · Quadrotor · Mobile
robots · Remotely operated vehicles · MAV

1 Introduction

A high degree of autonomous operation of Unmanned
Aerial Systems (UAS), is important to simplify their
use by human operators and to increase the safety

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-017-0551-4&domain=pdf

of flights in dynamic environments. To provide fully
autonomous operation, the research community in
aerial robotics is proposing solutions for a number
of specific problems such as localization and mapping
on unstructured and dynamic environments, precise
control of the aircraft with collision avoidance, trajec-
tory and mission planning with a high level of cogni-
tion and intelligence, human-robot interaction, robot-
robot interaction, safety and fault tolerance among
others.

However, the development of a completely inte-
grated solution for full autonomy requires to combine
in a single architecture a number of highly interrelated
and specialized building blocks. This integration cre-
ates new challenges (e.g., efficient multi-tasking exe-
cution, adaptability to be used in different problems,
scalability, etc.).

A number of commercial and open-projects exist
that aim to develop complete software architectures
(see [11] for a complete survey). To the best of
the authors’ knowledge, the most well-known open-
source commercial oriented projects are the “PX4
Flight Stack”, and the “APM Flight Stack”. These
projects aim to create a full software stack that pro-
vide the UAS a high level of autonomy including
for example controllers to command the drone giv-
ing a predefined set of waypoints, a state estimator
that fuses the measurements given by different sensors
to provide an estimation of the full state of the UAS
(pose, velocity, acceleration), and a reactive obsta-
cle avoidance that generates the appropriate motion
commands to evade obstacles perceived. Neverthe-
less, despite of all these available components, the
user is required to be in the loop while the UAS is
performing a mission, because he or she has to take
control of the UAS in case of unexpected changes
of the environment, having to constantly monitor the
mission. In addition, the UAS has limited interac-
tion capabilities with the environment and with the
users.

On the other hand, the activity of several research
groups has produced some open-source research ori-
ented architecture frameworks for UAS, being the
most relevant ones, up to the authors’ knowledge:

– “asctec mav framework”, developed by ASL -
ETHZ, has a special focus on autonomous naviga-
tion of Ascending Technologies Aircrafts and it is
not compatible with any other aircraft platforms.

– “hector quadrotor” [10] framework, developed by
HECTOR - TU Darmstadt, focused on heteroge-
neous cooperation for search and rescue (SAR)
tasks.

– “telekyb” [8] framework, developed by HRI -
MPI. It allows the fully autonomous multi-UAS
navigation. Although it is very powerful, the main
drawback is its rigid architecture that even allow-
ing to exchange for modules with similar func-
tionalities depending on the user’s need, it does
not allow the user to easily change the architecture
design for new capabilities.

– “Paparazzi” [3] project, developed and used by
ENAC and MAVLAB - TUDelft. This project
includes not only the software framework but also
the hardware autopilot and sensors and it is not
compatible with any other commercial hardware.

– “Twirre” [12] architecture, developed by NHL
Computer Vision proposes a hardware and soft-
ware design. It is focused mainly on hardware and
it does not report a high level of autonomy.

Even though this line of research has produced
important advances, the referred work shows that there
are important remaining challenges related to: (1)
level of autonomy, i.e. more complex hybrid architec-
tures able to provide more degree of autonomy and (2)
versatility, i.e. more versatile integrated solutions able
to be used for different applications and physical aerial
platforms.

In order to fulfill these needs, this paper shows the
authors’ recent progress and main results in this line
of research. In [27], Aerostack1 (a software frame-
work for AErial RObotics) was firstly introduced. The
authors named Aerostack to a framework that inte-
grates and consolidates results of four years (since
February 2013) of research work on both research
of components for aerial systems and their integra-
tion with tests in efficient architectures [25, 29]. As
a result, Aerostack was created as a more mature,
robust, reliable, documented, tested and validated soft-
ware framework.

The advantages of Aerostack with respect to
other architectures and frameworks is twofold: (1) a
complete multi-layered architectural organization to
support fully autonomous flights and (2) a versatile

software framework for developing and integrating
new software components.

The multi-layered architecture includes both low-
level layers for reactive behavior and high-level layers
for intelligent behaviors. At the low-level, Aerostack
provides a number of specialized reusable compo-
nents for visual perception, motion controllers, etc.
At the high-level, Aerostack includes a number of
components to provide a high degree of autonomy
and self-adaptation in complex and dynamic environ-
ments with fault management procedures to increase
the degree of safety.

The versatility of Aerostack is based on the follow-
ing two main features. On the one hand, it is flexible
enough for a wide range of applications from tele-
operated flights of single UAS to highly autonomous
missions of multi-robot UAS platforms. On the
other hand, Aerostack is hardware-independent. It is
focused on software development that is designed to
work as part of the operative system, which means
that it requires the appropriate hardware design as
well as its proper firmware and middle-ware software
components.

The main contribution of this paper is to describe
Aerostack in depth, providing details of every subsys-
tem of its architecture together with implementation
examples that illustrate the general concepts. This
papers shows as well a complex mission where a set of
UAS navigate in a search and rescue mission in a com-
plex environment, with emergent cooperation between
the UAS and looking for a target. This mission allows
to demonstrate the full level of autonomy achieved by
Aerostack, with emergent cooperation, and adaptation
to changing environments.

The remainder of the paper is organized as follows:
Section 2 presents the key aspects of Aerostack frame-
work and its architecture. Section 3 describes in detail
the subsystems of Aerostack. In Section 4 a full mis-
sion demonstrates the capabilities and performance of
Aerostack. Finally, Section 5 concludes the paper and
points out some lines of future work.

2 Aerostack Framework

This section describes how the Aerostack frame-
work is organized in a multi-layered architecture. The
section also describes the library of reusable com-
ponents provided by Aerostack and how the library

can be used to build a new architecture for a specific
UAS.

2.1 The Multi-Layered Model

An important contribution of Aerostack is a solution
to organize robotic software components in an effi-
cient architecture. For this purpose, we have defined
a multi-layered organization model as an architectural
pattern with subsystems and functional components.

The multi-layered organization model follows the
hybrid reactive/deliberative paradigm, i.e., an archi-
tecture that integrates both a deliberative and reac-
tive approaches [1] and [14]. The presented design
(represented in Fig. 1) includes five layers: reactive,
executive, deliberative, reflective and social.

The first three layers correspond to the popular
hybrid design known as the three layer architecture
[7] and [23]: (1) reactive layer with low-level con-
trol with sensor-action loops; (2) executive layer (or
sequencing layer) that accepts symbolic actions from
the deliberative layer and generates detailed behav-
ior sequences for the reactive layer; this layer also
integrates the sensor information into an internal state
representation; and (3) the deliberative layer generates
global solutions to complex tasks using planning (e.g.,
planning optimal trajectories). The reactive layer func-
tions in the present while the deliberative layer uses
information from the past and projection to the future.

The reactive layer is a sensor-action loop that
includes feature extractors (in the feature extraction
system) and motion controllers (in the motor sys-
tem). Feature extractors may read simple states of
sensors or may implement complex computer vision
and pattern recognition algorithms (signal process-
ing, recognition of objects and basic relationships).
Motion controllers typically implement combinations
of Proportional-Integral-Derivative (PID) controllers
(e.g., cascade controllers). For example, these type of
controllers can accept orders about a desired value for
a variable (position, speed, altitude, and yaw) in form
of single commands or simultaneous commands that
are translated into low level commands to be sent to
actuators.

To increase the degree of autonomy of robots,
Aerostack includes a reflective layer based on cog-
nitive architectures [2, 4, 30, 31] to simulate certain
self-awareness able to supervise the other layers. The
reflective layer helps to see if the robot is actually

Fig. 1 Main components of the multi-layered architecture of
Aerostack. The architecture is formed by n heterogeneous
robotics agents and the human operators. Every robotic agent
shares the same layered architecture, although it can have differ-
ent component implementations as well as different hardware.
The architecture includes five layers: the social layer allows
the robotic agents to communicate with the rest of agents. The
reflective layer supervises the other layers to see if the robot

is making progress to its goals and to react in the presence
of problems. The deliberative layer generates global solutions
to complex tasks using planning. The executive layer takes
actions from the deliberative layer and generates detailed behav-
ior sequences for the reactive layer; it additionally integrates
the sensor information into an internal state representation.
Finally, the reactive layer counts with low-level control with
sensor-action loops

making progress to its goal and to react in the pres-
ence of problems (unexpected obstacles, faults, etc.)
with recovery actions.

Aerostack includes also a social layer with com-
munication abilities, as it is proposed in multiagent
systems and other architectures with social coordina-
tion (e.g., [5]). In this level is important to establish
an adequate communication with human operators and
other robots.

Aerostack has another functional organization in
seven subsystems. Their functional specification,
together with a description of their inputs and outputs
is done in an abstract level (thanks to a complete ontol-
ogy), avoiding to describe algorithmic or implemen-
tation details. The seven proposed subsystems, deeply
analyzed in Section 3, are the following: Feature
Extraction System, Motor System, Situation Aware-
ness System, Executive System, Planning System,
Supervision System, and Communication System.

The architecture is also consistent with the usual
components related to guidance, navigation and control

of unmanned rotorcraft systems [9]. In particular, the
Navigation System (NS) corresponds to our feature
extraction system and situation awareness system, the
Guidance System (GS) corresponds to our executive
system, planning system and supervision system and,
finally, the Flight Control System (FCS) corresponds
to our motor system.

2.2 Features of Aerostack Framework

Concerning the behavior of UAS, the proposed multi-
layered organization has the following characteristics:

– A cognitive model to support autonomous behav-
ior. The multi-layered model is a solution that
identifies and organizes the required cogni-
tive processes to support autonomous behav-
ior, integrating processes for perception, reac-
tive control, deliberative reasoning, supervision,
etc. The proposed model includes ideas from
the state of the art in artificial intelligence for
autonomous robotics such as hybrid paradigms

(reactive/deliberative), reflective behavior and
social coordination.

– Separate representations to facilitate communica-
tion. The organization is separated in layers which
is useful to have representations at different lev-
els. This is important, for example, to offer a more
natural interaction with operators using their lan-
guage (e.g., with concepts such as mission goals,
tasks, skills, etc.) instead of the low level techni-
cal jargon used for certain components (e.g., set
points for controllers).

– A functional division for efficient execution. The
architecture is divided into functional blocks, i.e.,
blocks that play a functional role. This facili-
tates the implementation of the architecture as a
set of processes using a distributed network plat-
form with different computers and a multitasking
operating system. This is important to provide the
required efficiency for real flights with real time
constraints.

Considering a robotic engineering viewpoint,
where productivity is important for rapid development
and easy maintenance of UAS, we have proposed a
multi-layered organization paying special attention to
the following features and advantages:

– Precise meaning of terms. We have formulated
the components of the architecture using common
and generally accepted precise meanings from the
state of the art of autonomous robotics. The use
of standard meanings facilitates acceptance by
general developers, understandability and, conse-
quently, makes it easier the work for maintenance.
Besides the names for architectural components,
an ontology has been defined for aerial robotics,
to be used as common terminology for component
interoperability.

– Uniform hierarchical organization. We have orga-
nized the architecture according to homogeneous
blocks at three abstract levels: layer, system and
process. The homogeneity and hierarchical orga-
nization also facilitates understanding the com-
plexity of the model.

– Implementation independent. The description is
formulated defining the role of components,
but independently from specific implementations.
Thus, the model is not committed with specific
hardware and software, which facilitates reusabil-
ity for different platforms.

2.3 The Aerostack Library of Aerial Robotic
Components

Aerostack provides a library of reusable software
components for aerial robotics. We use the name
of process to call each elemental component of the
library. The notion of process is appropriate since
it helps to divide the whole problem of automated
support for UASs into partial functional roles. Each
process has a function, i.e., a purpose or practical use
for which the process is designed, and it is named
as an agent according to its main function, for exam-
ple: mission planner (main function: planning a mis-
sion) or obstacle recognizer (main function: recognize
obstacles).

The computational support of a process is designed
as an atomic executable unit (a data processor) that
receives input data and, as a result of a certain infor-
mation processing, generates output data. The library
of processes is implemented using ROS (Robot Oper-
ating System) [22] and each process in Aerostack is
implemented as a ROS node. Aerostack runs concur-
rently processes in a multitasking operating system
using the inter-process communication methods pro-
vided by ROS: (1) a publish-subscribe mechanism
using messages and topics, and (2) a request-reply
scheme (services). This multitasking support is impor-
tant, for example, to execute independently processes
at lower level layers (executive and reactive, with fre-
quencies between 10 Hz and 1000 Hz) and higher
level layers (reflective and deliberative, with frequen-
cies between 0.1 Hz and 10 Hz). Planning algorithms
can be computationally more expensive, so they must
be decoupled for real-time execution and avoid slow
down the reaction time.

The library of components provides modularity and
it is open, so new processes can be included easily in
the future, without changing the core of the system
and the rest of processes. To create a new process it
is necessary to program the corresponding algorithms
and data structures in a class (e.g., in C++ language)
and apply certain Aerostack conventions to be part
of the library. For example, it must be created as a
ROS node and it must be subclass of a specific class
(called DroneProcess) that provides a common func-
tionality (supervision, execution control and standard
error messages)

Processes can also be used by developers outside a
multi-layered architecture to reuse certain algorithms

(e.g., computer vision algorithms) for a new UAS. In
this case, they can be used as single classes without
the dependence on the multi-layered architecture.

2.4 The Component Assembly Mechanism

To develop a software architecture for a particular
UAS, the developer follows a compositional mod-
eling approach using the processes from the library
as model fragments or building blocks. The devel-
oper can select the appropriate processes from the
Aerostack library and compose the global architecture
by assembling and adapting the selected components
configuring their inputs, outputs and local parameters
(if they have parameters). The developer selects the
components according to the required features for the
UAS. For example, if the developer wants to build a
UAS with the feature self-localization by visual mark-
ers she or he must select four processes: visual mark-
ers localizer, obstacle detector visual marks, obstacle
distance calculator and self localizer. The relation
between features and processes is documented in the
Aerostack library to facilitate this selection to the
developer.

Processes are grouped in systems. A system is a
complex module that includes a set of interconnected
processes that provides a common functionality. In
general, the idea of a process in Aerostack is similar to
the concept of an atomic functional block used in the
SysML (System Modeling Language, a general pur-
pose modeling language used in systems engineering)
with input/output ports. The idea of system similar
to the concept of functional block (composite block)
used in SysML, with input/output ports.

Aerostack uses an ontology to represent input/
output data of processes and facilitates the seman-
tic interoperability of the different components. The
ontology is organized according to the multi-layered
architecture. This ontology has been defined specif-
ically for Aerostack following common terminology
found in the research literature about robotics and
aerial systems. The ontology defines the formal and
explicit specification of shared concepts. The current
formalization of this ontology is based on common
data representations (using ROS messages). A com-
plete formal specification of this ontology using an
appropriate language (e.g., OWL) is a pending task to
be done in the future.

The terminology presented below shows categories
of data in aerial robotics that provide abstraction. The
level of abstraction has been carefully selected in order
to be usable in the domain of robotics, but they are
generic to be reusable, i.e., they do not define specific
data representations used in actual implementations.
We use these concepts in the rest of the paper to define
the types of inputs and outputs of the processes and
systems to describe the architecture in a general way.
The ontology includes the following concepts:

– Rawmeasurements: Values corresponding to direct
measurements recorded by sensors. Aerostack uses
sensor-independent parameters whose values are
obtained with the corresponding interfaces (e.g. all
the cameras, despite of being from different man-
ufacturers, use the same measurement data type
for representing the acquired images, allowing
therefore the interoperability between them).

– Extracted features: Single features extracted from
measurements of physical quantities. In gen-
eral, the extracted features can include a partial
interpretation of characteristics of the environ-
ment such as lines, intersections, visual markers,
approximate pose, etc.

– Self-localization: Robot localization in the envi-
ronment together with its kinematic values (e.g.,
velocities) as they are believed by the robot. For
example: pose, velocities, accelerations, forces,
torques, etc. This data encodes the Situation
Awareness of the Robot.

– Environment understanding: Characteristics of
the environment and its elements as they are
believed by the robot. For example: walls, pole
obstacles, other robots, distance to obstacles, etc.
This data encodes the Situation Awareness of the
Environment.

– Internal state: This encodes the Self-awareness
of the Robot, including the self characteristic of
the robot. For example: pose of the sensors in the
robot, battery level, etc.

– Perception mode: Representation of the percep-
tion set-up, including the enabled sensors, the
feature extractors and the situation awareness
components, together with their relationship.

– Robot commands: Motion values that are accepted
by the actuators. Examples are: voltage, or Pulse
Width Modulation (PWM).

– Motion references: Motion values to be consid-
ered as goals by controllers or planners. Examples
of references are: position, velocity, or yaw.

– Motion mode: Representation of the configura-
tion of the motor system, including the enabled
controllers and their relationships.

– Actions: An action is used to express an elemen-
tary goal that the aerial robot is able to achieve by
itself, using its own actuators. Actions might have
a finite duration or infinite duration until they are
disabled. An illustrative set of actions are: take
off, go to a point, move forwards, pick up item,
drop item, rotate yaw, and land.

We distinguish between two categories of
actions: Executive actions are the ones accepted
by the Executive System and work in present
time. Deliberative actions involve planning, and
therefore work in future time. These deliberative
actions are only accepted by the Planning System.

Actions might include, not only the symbolic
name that expresses the action to be done, but also
the complement of the action (called action com-
plement). Examples of actions and their action
complements are: go to point P , being the point P

the action complement of the action go to point;
pick up item A, begin the item A the goal of the
action pick up item.

Additionally, actions return a feedback (action
feedback), that is a performance value about the
incremental progress of an action. Similarly, once
an action is finished (because it is completed, or
because it is unfeasible), a performance value is
returned (Action Result).

– Skills: To represent a particular robot’s ability the
concept of skill is used. An illustrative set of
skills is the following: reactively avoid obstacles,
self locate using visual markers, and recognize
items. Skills can be active or inactive in a par-
ticular robot. In general, skills have influence in
the behavior of actions. Thus, skills can be under-
stood as global modifiers for sets of actions. Skills
have infinite duration until they are disabled. We
use here the concept of skill defined in [13], in
contrast to other meanings defined for skills in the
literature of robotics.

Skills might include, not only the skill by
itself, but also complements that add some extra
information. For example, self locate using visual

markers with camera C, being C the complement
that defines which camera measurements must be
used to detect visual markers and perform the self
localization.

Similarly to actions, skills return a feedback
(skill feedback), that is a performance value of the
enabled skill.

– Planning references: They indicate an specific
goal given to the planning components with the
objective to create a plan formed by motion ref-
erences. An example of a planning reference is a
point P that is required to be achieved and is given
to a trajectory planner.

– Mission: Complex goal to be executed by the
robot (e.g. search an object in a field, deliver a par-
cel, etc.). It can be specified by human operators
with a set of tasks that describe the different parts
of the mission to be done.

– Task: It encodes the same concept than the mis-
sion with the only difference of the size of the
mission. A task is a complex goal with smaller
complexity than a mission. The exact division
between Mission and Task depends on the final
user or developer decision.

– Society knowledge: This concept includes all the
shared information between robotic agents. This
shared knowledge might include raw sensor mea-
surements, extracted features, situation awareness
information, control and action goals, or in gen-
eral anything. Depending on the nature of the
shared information, it might be included in any
component of the architecture.

– Unexpected operation: To permit the Supervi-
sion System to react to environment or operation
changes, several variables require to be moni-
tored. In the case that one of the monitored vari-
ables acquires a certain value, a flag is enabled
and this monitored event message is sent.

– Process problem: This includes all the possible
problems related to the processes execution that
are monitored by the Process Monitor of the
Supervision System.

– Process management: To group the common pro-
cesses messages related to their performance,
state, problems, and in general, their management.
For example a sensor might report a problem
if the sensor stopped working (but the software
process is still running); or it might report a

performance issue if the measurement rate has
decreased because the hardware is too hot and
needs to cool down; or it might report an error if
the execution failed and the process stopped.

3 Detail of Aerostack Subsystems

This section describes in detail the main subsystems
of the Aerostack architecture. For each subsystem, a
general description is provided.

3.1 The Feature Extraction System

The goal of the Feature Extraction System is to
transform the raw measurements provided by the sen-
sors into a simpler and more usable information (see
Fig. 2). These extracted features simplify the raw mea-
surements in a way that the components that receive
them are able to use them more efficiently.

The inputs of this system are the raw measurements
given by the sensors; and the perception mode, given
by the Executive System, that encodes the configu-
ration of the complete perception system (including
the sensors, the Feature Extraction System, and the
Situation Awareness System). Its only output are the
extracted features.

Similarly to the other systems, the specification
of the Feature Extraction System imposes no prior
restriction on the type or quantity of its inputs and
outputs and the restrictions will only come with its
particular implementation (and its related systems).
Thanks to this on purpose open definition, any kind of
feature extractor, using any kind of sensor information
might be used in Aerostack architecture.

To ensure the correct operation of the Feature
Extraction System, the Executive System (described
in Section 3.4), enables, disables and connects, by
means of the perception mode input, the available
components in a way that they will never cause a fault
on the system. It is therefore a requirement that the
available components count with a proper start up and
a shutdown routine.

Aerostack counts on with a large number of com-
ponents included in the Feature Extraction System,
ranging from:

– Signal filters that extract a particular frequency
component of a measurement given by a sensor,
for example low-pass, high-pass, band-pass, etc.

– Computer vision based detectors and trackers, for
example a FAST keypoints extractor, or ArUco
visual marker detector [6].

– Point cloud based detectors.
– Etc.

3.2 The Situation Awareness System

The Situation Awareness System, represented in
Fig. 3, has the goal to interpret the information pro-
vided by the sensors and the Feature Extraction Sys-
tem to create a useful understanding of the current
situation to be used in the decision making and control
processes. The Situation Awareness System is highly
dependent on the mission, the environment, and the
sensors, architecture and robot setup.

The inputs of this system are the raw measure-
ments given by the sensors, the processed informa-
tion given by the Feature Extraction System, and the
motion references and actuator commands from the

Fig. 2 General description
of the Feature Extraction
System, and its relationship
with the rest of the
components of Aerostack

Raw
Measurements

Situation
Awareness

System

Extracted
Features Sensor 1

Sensor
Interface

Sensor
Interface

Sensor
Interface

Motor SystemExecutive
System

Perception
Mode

Feature Extractor

Feature Extraction
System

Feature Extractor

Feature Extractor

Fig. 3 General description
of the Situation Awareness
System, and its relationship
with the rest of the
components of Aerostack

Motor
System

Feature
Extraction

System

Self-Localization

Raw
Measurements

Extracted
Features

Environment
Understanding

Motion
References Actuator

Commands

Internal State

Perception
Mode

Sensor 1
Sensor

Interface

Sensor
Interface

Sensor
Interface

Situation
Awareness

System

Motor System. It is worth to note that this specifi-
cation of the Situation Awareness System impose no
prior restriction on the number, type, or nature of the
used sensors, or the exploited Feature Extractors. The
sensors can as well be located on board the robotic
agent or on ground. The restrictions will come only
with the particular implementation of the Situation
Awareness System.

In general and for completion, as the other sub-
systems, the Situation Awareness System could also
include as inputs, some additional information com-
ing from the Communication System (Section 3.7) and
given by other agents of the multi-robot system (if
any), like their estimated state, their estimated state of
the map, or other information given by their sensors
or Feature Extraction Systems. Including this informa-
tion provided by other agents of the system allows the
creation of a multi-robot Situation Awareness System.

The perception mode input, given by the Execu-
tive System, encodes the configuration of the complete
perception system (including the sensors, the Fea-
ture Extraction System, and the Situation Awareness
System).

The outputs of the Situation Awareness System,
that define its functionality, are the following:

– Self-localization: estimation of the full situation
state of the robot, as for example its pose, its
velocity and its acceleration.

– Internal state: information related to the inter-
nal variables of the aerial robot like battery level,
or kind, number, pose or range of the sensors
equipped on the robot, etc.

– Environment understanding: estimate of the map
of the environment in a format that is usable for
the rest of the components of Aerostack.

It is important to note that there is no restriction about
how the Situation Awareness System represents inter-
nally the map or environment. This internal model
needs to be converted to the appropriate representa-
tion, to make it usable for the rest of the components
of Aerostack, conferring more flexibility internally
but ensuring its performance within the rest of the
components.

Different examples of the Situation Awareness Sys-
tem can be found on [19, 21, 25, 29].

3.3 The Motor System

The Motor System, represented in Fig. 4, has the
responsibility to generate the actuator commands for
the hardware elements of the robot, ensuring that the
commanded motion references are followed, knowing
the motion feedback.

The inputs of the Motor System are grouped in:

– Motion references, that are motion values to be
considered as goals, and are given by the Execu-
tive System.

– Motion feedback, including the raw measurements
given by the sensors; the estimated state of the
robot and the environment given by the Situa-
tion Awareness System; and the extracted features
given by the Feature Extraction System.

– Motion mode, that encodes the configuration of
the Motor System and modifies its behavior, and
that is given by the Executive System.

The only output of the Motor System are the actua-
tor commands, used by the hardware of the robot.

Similarly to the other systems, the specification
of the Motor System imposes no prior restriction on
the type or quantity of its inputs and outputs and the

Fig. 4 General description
of the Motor System, and its
relationship with the rest of
the components of
Aerostack

Feature
Extraction

System

Situation
Awareness

System

Executive
System

Sensor 1

Actuator
Interface

Actuator
Interface

Actuator
Interface

Raw
Measurements

Environment
Understanding Extracted

Features

Actuator
Commands

Motion
References

Motion
Mode

Self-Localization
Internal
State

Sensor 1
Sensor

Interface

Sensor
Interface

Sensor
Interface

Motor
System

Controller

Controller

Controller

restrictions will only come with the particular imple-
mentation of the Motor System (and its related sys-
tems). Thanks to this on purpose open definition, any
kind of controller, using any kind of motion feedback
might be used in Aerostack architecture.

The Motor System comprises, therefore, a set of
controllers that can be used independently or in cas-
cade to allow the robot to follow a given motion
reference. To ensure the correct operation of the
Motor System, the Executive System (described in
Section 3.4), enables, disables and connects, by means
of the motion mode input, the available controllers in a
way that they will never cause a fault on the system. It
is therefore a requirement that the controllers included
in the Motor System count with a proper start up and
a shutdown routine.

The different controllers of the current version of
Aerostack are the following:

– Low-level embedded controllers (provided by the
hardware autopilot of the aerial platform): motor
speed controller, angular velocity control, hori-
zontal attitude control.

– Navigation controllers (deeply described in [15,
16, 18]): linear velocity controllers, position con-
trollers, heading controller, point to look control
component, path following component.

– Visual servoing controller (deeply described in
[17, 20]).

It is worth to highlight that nowadays, some com-
mercial multirotors, specially the most advanced ones,
include embedded in their hardware many controllers
that can be used with different control modes, having
internally its own Motor System (and optionally its

own Situational Awareness System). Nevertheless, as
this is not a general fact, and it was even less common
in the moment that Aerostack was firstly designed,
Aerostack provides its own controllers. However, the
definition of the Motor System of Aerostack does not
enforce to use Aerostack controllers, being possible to
use these embedded controllers.

3.4 The Executive System

The main goal of the Executive System (represented
in Fig. 5) is to accept directives from the delibera-
tive layer (or from a human operator) and to sequence
them to be performed by the reactive layer. To be
able to properly sequence these directives, the Execu-
tive System uses the feedback given by the perception
components.

Two different kinds of directives are accepted from
the deliberative layer, actions and skills (described in
Section 2).

An important property of the Executive System is
that it creates a clear separation between two rep-
resentation levels: (1) a symbolic level, where goals
are described with linguistic symbols, which is very
useful as an operator language for the specifica-
tion of missions, and (2) a controller or perception
level, where goals are described with quantitative val-
ues that are used as reference values for controllers,
or commands of the components of the perception
system.

The Executive System has a symbolic represen-
tation of the dynamic state of the aerial robot. For
example, the state of the robot might be landed, taking
off, hovering, or landing. These states can be divided

Fig. 5 General description
of the Executive System,
and its relationship with the
rest of the components of
Aerostack

in (1) states with a finite duration (for example, the
taking off state automatically ends when the aerial
robot has reached a specific altitude), and (2) states
with undetermined duration (for example, the hover
state only ends when the Executive System disables it).

These states and their transitions can be described
using a finite state machine. The transitions between
states describe the feasible actions that the Executive
System can accept. The skills are modifiers of these
states and transitions. For example, the action take-off,
that represents a transition from the landed state to the
taking-off state, only exists if a skill for measuring the
flying altitude is enabled.

Actions are therefore augmented with skills. Some
skills are required for the execution of a particular
action, but some other skills are optional and only
chosen by the operator. The notion of skill is use-
ful as an intuitive concept to express more easily
what complex abilities should be active, without con-
sidering low-level technical details. Internally, a skill
is automatically supported by a set of running pro-
cesses. Thus, the activation of skills is associated to
the increase of resource consumption (memory space,
processing time, battery charge) so it is important to
deactivate unnecessary skills when it is possible.

The Executive System has therefore a complete
knowledge of all the possible actions and skills,
together with their possible effects. The Executive
System has the responsibility of ensuring that the tran-
sitions between states is feasible. For example, a take
off action is only allowed from a landed state, and
never from the hovering state.

Another additional task of the Executive System is
to prepare all the components (motion and perception
components) involved on a specific requested action
or skill, enabling them in the proper instant of time

in a way that they do not collide with other com-
ponents, monitoring their state, and in case of being
unavailable, generating a response to the requested
action or skill.

It is important to note that the Executive System
is only checking the feasibility of an action or skill
in the present time, unlike the Planning System, that
is checking the feasibility in the future time. For
example, since a take off action requires to start the
propellers of the aerial robot, if the propellers cannot
be started, the Executive System will notice that the
action take-off is not feasible, nevertheless, the Execu-
tive System will never check for example if the battery
level would allow to complete an specific mission
before taking off.

The Executive System is able to enable, disable
and reconfigure all the motion components (Motor
System and Actuator Interfaces) by means of the
motion mode command; and to enable, disable and
reconfigure all the perception components (Situation
Awareness System, Feature Extraction System, and
Sensor Interfaces) by means of the perception mode.

Different architectures for the Executive System
have been tested in Aerostack. The tested approach
range from a centralized architecture where a single
component performs the complete functionality of the
Executive System (an example of this centralized ver-
sion is shown in [13] where the Executive System
is implemented as a main process called Manager of
Actions and Skills), to a distributed layered architec-
ture (presented in Fig. 6), where there is a coordinator
component (the Behavior Manager) that interacts in
two different levels of specialized components (the
first level distinguish between actions and skills, and
the second level distinguish between motion compo-
nents and perception components). A further analysis

Fig. 6 Detail of the
Executive System

of the proposed architectures of the Executive System
is out of the scope of this paper, being only worth to
mention that distributed layered architectures perform
better than centralized ones, being their complexity
and the effort to add new states and actions smaller.

3.5 The Planning System

The Planning System, represented in Fig. 7, gener-
ates goals to accomplish a particular complex mission,
task or deliberative action. These generated goals are
represented as executive actions and skills that are for-
warded to the Executive System. Additionally, it reacts
to changes in the operation provided by the lower-level
layers and to unexpected operation events given by the
Supervision System, generating new goals that mod-
ify the previously produced ones. Unlike the Executive
System, the Planning System works in future time,
taking into account the current state of the robot, pre-
dicting the consequences of the planned actions in the
future.

The Planning System has to be able to generate
goals fast enough to make possible an efficient reac-
tion to changes in the mission, in the environment, or
in the state of the robot. This is specially critical in
aerial robots, since their unstable nature disqualifies
them to passively wait a slow response of the Planning
System.

The Planning System can be divided in three
components:

– Missionplanner. The mission planner (Section 3.5.1)
is a deliberative component that receives as input
a mission, a task or a deliberative action to be
performed and generates as output a sequence of
executive actions to be executed together with
their corresponding required skills. The mission
planner generates such actions considering the
dynamic changes in the environment.

– Action specialist. The action specialist helps the
mission planner during the deliberation to antici-
pate if a tentative actions is feasible, according to

Fig. 7 General description
of the Planning System, and
its relationship with the rest
of the components of
Aerostack

the current situation. For this purpose, the action
specialist has a knowledge of all possible actions
and their effects. For example, the action special-
ist can verify in advance that a certain spatial point
is too far to be reached, considering the current
charge of battery. The action specialist is also able
to predict physical magnitudes of certain actions
such as required time, distance to cover, amount of
battery to consume, required free space, etc. It is
important to know, that this estimation is approxi-
mate, i.e. it is done using inexact models and help
to find more efficiently the solution, anticipating
certain clear solutions. This means that, when the
actions are executed, the robot can behave in a
different way due to specific changes in the envi-
ronment. It is important to note that, unlike the
Executive System, the action specialist is check-
ing the feasibility of the actions, not only in the
present time, but also in the future time.

– Micro planners (optional, chosen by the mission
planner). The micro planners generate motion
references that can be followed by the robot,
given the current (self-localization, and internal
state) and desired (planning references) state of
the robot, and the environment map (environment
understanding). An example of a micro plan-
ner is the trajectory planner (Section 3.5.2), that
generates trajectory references.

3.5.1 Mission Planner

The mission planner receives as input a mission, a task
or a deliberative action to be performed and generates
as output a sequence of executive actions to be per-
formed together with their corresponding skills which
the Executive System is able to manage. To do this, it
is able to request motion references to several micro
planners by sending them planning references. For
example, the deliberative action “go to point (P) with
active obstacle avoidance”, being the point (P) the
action complement that describes the coordinates of
the the destination point, and it has to be transformed
in the following executive action, “follow path (T) in
path following mode”, being the path (T) the action
complement formulated as a sequence of waypoints.
To do so, it is used a path planner (see Section 3.5.2)
that generates a collision-free path (T) to reach the
point (P).

The mission planner is able to react to changes
in the operation provided by the lower-level layers.
These changes in operation might include: changes in
the environment (e.g. a new obstacle appeared) or in
the knowledge of the environment (e.g. a new obsta-
cle is mapped), changes in the internal state of the
robot (e.g. low battery warning), changes in planned
events (e.g. a planned action has finished, a planned
trajectory is not collision-free anymore).

The mission planner is able to react to unex-
pected operations given by the Supervision System
(Section 3.6). These unexpected operations might be
any kind of difficulties, including action problems
(e.g. an action cannot be executed) or processes prob-
lems (e.g. a process has unexpectedly finished).

Finally, the mission planner has the responsibil-
ity to send to the Executive System, if feasible, the
planned executive actions and skills.

Aerostack proposes, but not limits, to use task-
based mission planners, that decompose a complete
mission in a task tree. Tasks are defined as a basic
component to structure a mission with a modular
organization. At the same time, every task might be
decomposed in another simpler task tree. An impor-
tant requirement is that every task tree always ends
with actions (either executive or deliberative).

The first mission planner used in Aerostack (pre-
sented in [19, 21, 25, 28, 29]) proposes to use a basic
task-based mission planner, whose missions have a
predefined sequential behavior. Missions are defined
as a task tree by the operator using a particular lan-
guage using XML syntax to be readable by both
humans and machines.

The mission definition includes the possibility to
use while-loop and conditional-clauses allowing to
change the mission flow and reacting therefore to
some monitored events. An example of a while-loop is
the following: while battery level is greater than a spe-
cific value, keep doing the current task. An example
of a conditional-clause is: if a specific visual marker
is detected, perform a particular task.

A second mission planner available in Aerostack,
presented in [13], is an extension of a task based
approach (with task trees) together with reactive plan-
ning (using event handlers formulated with rules) to
facilitate a more flexible specification of plans to be
adaptive to a dynamic environment. This representation
is supported by a formal language, the TML language

(Task-based Mission specification Language), that
incorporates deliberative terms about actions and
skills that were not considered in previous planners of
Aerostack. This language formalization creates a new
simpler but complete grammar and vocabulary that
is verified after the mission definition by the opera-
tor, allowing to correct errors, giving robustness to the
mission planner.

Another mission planner available in Aerostack
(see [24]) proposes a task-based mission planner able
to work in dynamic environments.

The operator only has to define the high level mis-
sion without specifying the complete mission tree, but
only high level tasks. These high level tasks (called
behaviors) are internally represented as a task tree
that might be called by the operator and have been
included in the mission planner. Examples of these
behaviors are: explore an area (that requires to sample
the area to explore and concatenate several navigation
to a point P actions); or find an object (that requires
to explore an area until the object is found, including
specific stops to look for the object with the onboard
camera).

Together with the behaviors, a set of restrictions
and conditions that have be satisfied for every task,
have been included in the mission planner. Examples
of the restrictions and conditions are: before moving to
point P , a take-off is needed; or, when trying to navi-
gate to a point PA, if it is occupied, navigate to a point
PA′ in the neighborhood of point PA.

The complete mission tree can be generated from a
very simple set of tasks and behaviors. The missions
and tasks are therefore automatically nested, creating
complex missions without the operator intervention.
Additionally, it allows to interact with dynamic and
changing environments.

3.5.2 Trajectory Planner

The trajectory planner generates deliberative motion
references for the aerial robot. These motion refer-
ences might include pose references, velocity refer-
ences and acceleration references (among others) with
or without time constraints. The generated motion ref-
erences have to be compatible with the input of the
used controllers available in the Motor System.

For the sake of simplicity, only pose references
without time constraints are considered as the out-
put of the trajectory planner since the existing path

following controller incorporates an acceleration and
velocity along path planner.

In common under-actuated multirotor aerial robots,
only four degrees of freedom are controllable, nor-
mally its heading (yaw angle) and its position in world
coordinates. Additionally, the commanded heading
and position can be decoupled, so the pose path plan-
ner might be divided in:

– Position path planner. It generates collision-free
paths that can be followed by the aerial robot,
given the current and desired position of the aerial
robot, and the shape of the obstacles (obstacles
includes static environment obstacles and moving
obstacles). The available position path planner is
implemented based on PRM, Potential Field Map
and A� (see [19, 21, 25, 29] for more details about
the trajectory planner).

– Heading path planner. It generates heading mo-
tion references that must be followed by the aerial
robot. For example, the yaw value can be speci-
fied as a point to look or as a yaw to look. This
can be used with different objectives, like maxi-
mizing the performance of the on-board sensors
(for example a camera), or to achieve a particular
goal (for example to watch over some target).

Both proposed path planners, position and heading,
might be used independently, depending on the mis-
sion planner requirements. Common under-actuated
multirotor aerial robots are normally symmetric in
their horizontal dimensions, and therefore, for com-
mon navigation tasks, to changing the heading angle
is not needed to reach a particular position point, and
consequently, the heading planning might be decou-
pled from the position planning.

It is important to note, for the sake of general-
ity, that aerial robots with more than four degrees
of freedom (e.g. multirotors with tilting propellers or
multirotors with manipulators) might be used, with
more complex path or trajectory planners. The pro-
posed architecture allows to use any kind of aerial
robots, despite the simplification done in this section.

3.6 The Supervision System

The goal of the Supervision System (represented in
Fig. 8) is to ensure the correct autonomous behav-
ior of the whole aerial robot. It evaluates if the robot
is actually making progress to its goals and to react

Fig. 8 General description
of the Supervision System.
Since it is supervising all the
other layers, it has a tight
relationship with all the
components of Aerostack

in the presence of problems or unexpected situations
(e.g. faults, lost communications, etc.) with recov-
ery actions. The Supervision System helps to provide
therefore a fault-tolerance execution. In general, han-
dling fault-tolerance typically consists of three steps:
failure detection, notification, and recovery.

The general structure of the Supervision System
includes (1) a set of specialists in kinds of events and
problems, and (2) an event and problem manager.

Each specialist, called an system operation monitor,
is specialized in detecting a particular class of events or
problems, receiving as input the necessary information
about situation and actions, and generating as output
a category of event or problem. A specific important
system operation monitor is the process monitor, that
supervises the correct operation of the processes.

In addition to the system operation monitors, the
Supervision System includes an event and problem
manager, that is able to generate a response to events,
malfunctions or unexpected situations, depending on
the level of emergency and the nature of the event or
problem received.

3.6.1 System Operation Monitor

The system operation monitors are specialized in
detecting a particular class of events or problems,

Fig. 9 Example of system operation monitors

receiving as input the necessary information about sit-
uation and actions and generating as output a category
of event or problem.

Examples of the system operation monitor (see
Fig. 9) are the following:

– Motor monitor. It detects events and problems
related to the Motor System and the Actuator
Interfaces. An example would be a controller giv-
ing an incorrect actuator command, such as an
NaN value or an infinite value.

– Perception monitor. It detects events and prob-
lems related to the Situation Awareness System,
the Feature Extraction System, and the Sensor
Interfaces. Example of these events are incor-
rect measurements given by the sensors, like
NaN values; or large covariances values in the
estimated self-localization that require to run re-
localization algorithms.

– Executive action monitor. It monitors the execu-
tive actions and skills feedback from the Exec-
utive System. It supervises the execution of a
requested action and informs when the action has
been completed or when it has failed. For exam-
ple, if the requested action is to move to a certain
point, the action monitor verifies periodically the
distance between the robot and the desired point
and, when the distance is less than a threshold
(established by a configuration parameter), the
action monitor notifies that the requested action
has been completed.

– Deliberative action monitor. It monitors the delib-
erative layer, in the same way than the executive
action monitor.

3.6.2 Process Monitor

The process monitor has the mission of supervis-
ing the correct operation of the processes. The pro-
cess monitor is capable of monitoring all different

processes hosted in different computers and is respon-
sible for acquiring and informing about the different
errors related to processes, including when a process
stops its execution unexpectedly.

To check if a process is alive, the process moni-
tor uses a watchdog technique. This technique consists
of periodically sending signals to a supervisor (in
this case, the process monitor) to ensure that the
supervised component is still alive. If the supervised
component stops sending signals for a certain amount
of time, the supervised component is considered to be
offline. By using a watchdog in Aerostack, every pro-
cess sends an alive signal to the process monitor, so
that the monitor can track if a process has interrupted
its correct execution.

In addition, the process monitor gets the execution
state (e.g. paused, running, etc.) of the processes. Each
process automatically notifies its execution state to
the process monitor when the process sends the alive
signal.

3.6.3 Event and Problem Manager

Recovery actions can be performed as a response to
malfunctions or unexpected situations, detected by the
problem monitors. In order to recover problems and
depending on the level of emergency and the nature
of the problem, the problem manager acts on a dif-
ferent level of the Aerostack. A priority scheme is
needed, since the presence of a failure can propagate
several detected errors. For example, if the altitude
sensor fails, it can generate a fault detection in the
sensor interface but also in other processes that use

Fig. 10 General description of the Communication System,
and its relationship with the rest of the components of Aerostack

the altitude measurement (for example the Situation
Awareness System or the Motor System).

3.7 The Communication System

The goal of the Communication System, represented
in Fig. 10, is to allow a robotic agent to exchange
information with the human operators and with the
rest of the robots of the system. This system is able,
if needed, to establish a bidirectional communication
with all the components of the agent, to permit this
information transfer.

The Communication System can be separated in
two main parts, (1) the robot side, that is included in
every robot agent architecture, and (2) the human side,
that has one instance per human operator.

Both sides include interfaces (in Fig. 10, called
X − Y Interface, being X, Y = {Robot, Human})
that convert data between different formats and net-
works allowing the intercommunication between all
the agents (human or robotic) of the system. In gen-
eral, the implementation of the communication inter-
faces is highly dependent of the kind of network used.
For example, internally, every robotic agent might use
ROS as the middleware for interprocess communica-
tion, but, between agents, MavLink middleware might
be used for inter-agent communication.

The human side of the Communication System also
includes multimodal user interfaces with graphics,
speech, visual images, hand gestures, among others,
that can simplify the interaction between the human
and the aerial robot. A review of the multi-modal user
interfaces that are available in Aerostack can be found
in [32].

4 Aerostack Evaluation

Aerostack is fully operative, validated since its first
alpha version in February 2013, by simulations and
real flight tests with multiple aerial robots flying
simultaneously (up to five), and with five different
aerial platforms equipped with diverse sensors. In
the following sections, we describe additional evi-
dences related to the evaluation of Aerostack, enu-
merating first a set of reported used (Section 4.1),
then describing a full experiment (Section 4.2)
and finishing with some general evaluation metrics
(Section 4.3).

4.1 Reported uses of Aerostack

Aerostack has been used from its first pre-release in
the development of many different projects.

In the one hand, it has been used in three different
aerial robotics competitions:

– In IMAV 2013 [19, 21], where a swarm of up
to five Parrot ARDrone 2.0 platforms were fly-
ing simultaneously executing a navigation indoors
mission. The competition ended, being awarded
with the first place in the category of indoor
autonomy.

– In IARC 2014 [26], an AscTec Pelican equipped
with an AscTec Mastermind computer and mul-
tiple cameras was performing a very complex
LIDAR-denied indoors mission, obtaining two
awards: the best system control and the best target
detection.

– In IMAV 2016, where a custom custom PixHawk
based quadrotor equipped with an Intel NUC was
performing a fully autonomous indoor mission.

Simultaneously, Aerostack has been used as the
main framework for other research activities:

– In [25, 29], Aerostack was first used to per-
form complex navigation missions of a fully
autonomous swarm (up to five) of aerial robots.

– In [17, 20], using Aerostack, the authors demon-
strated that a fully autonomous aerial robot was
able to follow any object using computer vision
algorithms.

– In [27], a fully autonomous search and rescue
mission was carried out thanks to Aerostack.

– In [24], the authors expanded Aerostack capabil-
ities to demonstrate the benefit of using a global
coordinator to accomplish high-level missions
requested by the user with a fully autonomous
swarm (more than three) of aerial robots.

– In [32] Aerostack was used for research and
development of Natural User Interfaces for
Human-Drone Interaction using hand gestures,
speech, body movements and visual cues.

– In [13] a task-based mission specification lan-
guage was developed to enhance the previous
Aerostack mission planner.

Finally, Aerostack has been employed in multiple
shows and exhibitions for both general and specialized
public, highlighting the 2016 European Night of the

Researchers2 where three Parrot ARDrone 2.0 did an
autonomy demonstration which was attended by more
than 400 people.

The excellent results achieved in the international
competitions, the success in the diverse research activ-
ities, and the high level of satisfaction of the audi-
ence in the public demonstrations, evidences the good
performance of Aerostack in terms of functionality,
usability, and reliability, awakening the interest of the
scientific community in Aerostack.

4.2 Experiment

This section describes an experiment as a represen-
tative example of system development and mission
execution to demonstrate and illustrate the capabilities
of Aerostack.

The experiment described here is based on a search
and rescue mission. In this mission, an emergency sit-
uation is emulated inside a house and the first response
to the emergency, until the human rescue team arrives
to the accident area, is demonstrated (Fig. 12).

Two exploratory fully autonomous aerial robots
navigate from the rescue equipment base to the inside
of the house, entering through an open window or
door, searching for a target (e.g. an injured human
subject).

As soon as an subject is detected, a rescue aerial
robot is called, arriving to the position where the sub-
ject has been found. This rescue aerial robot has the
responsibility of guaranteeing the survival of the sub-
ject while the human rescue team arrives to the area.
The rescue aerial robot might therefore, for example
deliver a first aid package, and track and monitor the
human subject, interacting with him or her by means
of natural interfaces. Thanks to this aerial robot, the
rescue equipment is able to monitor the state of the
injured person, being able to generate an efficient
response.

If the emergency situation has been stabilized and
the subject does not need assistance anymore, or if the
human rescue team has arrived to the area, the rescue
aerial robot might be commanded (by the subject or
the rescue team) to come back to the rescue equipment

Table 1 Summary of the
software components used
for the specific system
architecture corresponding
to the experiment

Layers System Processes

Physical layer Hardware Interface ARDrone drivers (13 proc.)

Reactive layer Feature Extraction System Front image rectifier

ArUco Eye

TLD tracker (2 proc.)

Motor system Trajectory controller

Visual servoing controller

Heading commander

Executive layer Situation Awareness System Odometry based self localizer

Visual marker based localizer

Tracker eye

Obstacle recognizer

Obstacle distance calculator

Executive System Manager of actions

Deliberative layer Planning System
Mission planner

Trajectory planner

Reflective layer Supervision System Process monitor

Social layer Communication System Robot-robot interface

Alphanumeric user interface

Graphical user interface (GUI)

TLD GUI

ArUco GUI

Speech and sound interface (3 proc.)

base. In the mean time, the search aerial robots keep
searching for more targets. As soon as the house is
completely explored, or the emergency situation has
been stabilized, the search aerial robot finish their
exploratory mission, and they autonomously return to
the rescue equipment base.

4.2.1 Hardware Configuration

To execute Aerostack, we used three Unix based lap-
tops: (1) computer A with Intel i7-4510U (2.00GHz,
4 cores) and 8 GB of memory (2) computer B with
an Intel i7-3612QM (2.1GHz, 4 cores) and 8 GB of
memory and (3) computer C with Intel i7-6700HQ
(2.4 GHz, 4 cores) and 20GB of memory. The three
of them had WiFi and ethernet connection. The lap-
tops were connected in a LAN using their Ethernet
interface and a switch.

For simplicity, we used AR Drones 2.0 as the aerial
platforms, but other types of aerial platforms could
also be used. Each aerial platform was individually
connected to an associated laptop by means of the

WiFi connection, creating as many additional WLANs
as aerial platforms were used (three in this case).

4.2.2 Specific System Architecture for the Experiment

This section illustrates how we used the general
Aerostack architecture and the library of processes for
building the particular software system architecture
for the concrete search and rescue problem corre-
sponding to the experiment. Table 1 summarizes the
components that we used for each aerial robot.

Figure 11 shows the organization of the processes
of the Situation Awareness System. The figure shows
a block diagram where each rectangle represents a
process or a system (e.g., odometry based pose esti-
mator, visual marker based pose estimator, etc.) and
they are interconnected using flow ports (e.g., Aruco
observations, estimated speeds, etc.).

In this case, the Situation Awareness System uses
two processes for the self-localization and mapping
that are (1) odometry based self localizer that uses
the model of the quadrotor, the information given by

Fig. 11 Block diagram of the Situation Awareness System used for the experiment

the IMU, the optical flow sensor and the altitude sen-
sor to estimate the odometric pose of the aerial robot,
and (2) a visual marker based localizer to estimate the
pose and velocities of the aerial robot using the visual
markers in the environment (e.g., Aruco visual mark-
ers) together with its odometric pose estimation with
respect to the world reference frame, and the pose of
the visual markers with respect to the world reference
frame.

Three processes are used for the environment
understanding that are (1) obstacle processor that con-
verts the map of visual markers, that is only useful for
the localization estimation processes into a usable map
of geometric primitives (obstacles) based on a previ-
ous knowledge of the relationship between the visual
markers and the geometric primitives; (2) obstacle dis-
tance calculator that extracts additional information
of the map of geometric primitives like the distance
between the current position of the aerial robot and the
closest obstacle; and (3) tracker eye, that analyzes the
information coming from the TLD tracker, estimating
if the the object to track is present in the image.

The architecture implemented for this experiment
includes the majority of the components defined in
the general description along Section 3. However,

the functionality of certain generic components has
been distributed in this particular architecture for his-
torical reasons to keep the compatibility with previ-
ous software versions. For example, the functionality
of the action monitor is included in the manager
of actions process. Additionally, the mission planner
process incorporates some of the functionalities of the
event detector. Furthermore, the trajectory controller
process includes the management of all the con-
trollers that this component has (velocity controller,
position controller, trajectory controller), which corre-
sponds to the Executive System in the general archi-
tecture. We are currently working on building new
versions of such components to follow the general
architecture.

This example corresponds to an application that
uses the complete Aerostack framework, selecting the
appropriate components. This means that it was not
necessary to develop additional components (e.g., new
type of sensors, new computer vision algorithms), and
therefore, the effort carried out by the developers to
perform this experiment was limited to:

– Software architecture configuration. Design the
architecture of processes for each aerial robot.

Write the launch files that use the appropriate
software components from Aerostack.

– Configuration of every component of every aerial
robot. Write xml files that configure every com-
ponent, including the environment map and the
mission specification.

4.2.3 Mission Execution

The global goal is to search for a subject in a spa-
tial area (Fig. 12) and to naturally interact with him
or her. The global search goal is distributed in differ-
ent local sub-goals with two different aerial robots.
Each robot covers a different local search area. A third
aerial robot is used for the natural interaction with
the subject. The environment is an indoors area, with
simple shape (walls and poles) static elements, aug-
mented with visual markers (ArUco markers). Both
the obstacles and the searched subject are uniquely
labeled thanks to the visual markers. We used ArUco

markers to perform the localization and mapping task
for simplicity although other more advanced methods
could be also used.

In more detail, the mission is as follows:

– Two aerial robots take-off at the same time from
one specific take-off point in the rescue equip-
ment base.

– Each aerial robot covers a different search area
defined as a set of waypoints as destination points.

– Unknown simple shape static obstacles are
present and each aerial robot must detect them and
avoid them. In addition, each aerial robot must
avoid collisions with the other robots. The aerial
robots must cross narrow areas and they must
decide how to enter in the appropriate order to
avoid collisions amongst themselves.

– When an aerial robot recognizes the presence of
the subject, it notifies the third aerial robot with
the location of the subject, and both initial aerial

Fig. 12 Different frames of
the search and rescue
mission

(a) (b)

(c) (d)

(e) (f)

robots return to their respective take-off points
and land.

– After receiving the notification about the location
of the subject, the third aerial robot takes-off from
its specific take-off point at the rescue equipment
base and approaches the subject.

– The third aerial robot remains near the subject and
naturally interacts with him or her until receiving
a command from the subject to return to its take-
off point and land.

Figure 12 shows different frames of the search and
rescue mission. The rescue base (where the aerial
robots take-off) is located in the left side of the
images. The accident area is supposed to be the inte-
rior of a house, where the subject (highlighted in
green) is supposed to be. A video with the com-
plete execution of the mission can be watched in
https://youtu.be/t2mJftbBHWc.

The trajectories followed by the aerial robots dur-
ing the execution of the search and rescue mission,
are shown in Fig. 13. The two search aerial robot fol-
lowed the trajectories plotted in red and green, while
the rescue aerial robot followed the blue trajectory.

Due to the complexity of the mission and the diffi-
culty to understand the trajectories shown in Fig. 13,
the experiment is divided in the different instant times
displayed in Fig. 14. These plots also represent with
dashed lines, the collision-free planned path provided
by the Planning System. Similarly than before, the two
search aerial robots followed the trajectories plotted in

red and green, while the rescue aerial robot followed
the blue trajectory.

The search and rescue mission is executed as
follows:

In Fig. 12a, the two search aerial robots (high-
lighted in red) take-off from the rescue base and start
their exploratory mission, needing to access to the
building (either through the window or the door).
Figure 14a shows the trajectories followed by the two
search aerial robots at this time instant.

Once inside the building, every search aerial robot
explores the accident area, searching for targets (see
Fig. 12b). Every aerial robot explores a different part
of the accident area as in the trajectories in Fig. 14b.

As soon as the subject is detected, the rescue aerial
robot (highlighted in blue) takes off from the rescue
base, with the objective to reach the subject (Fig. 12c).
Figure 14d shows the trajectories of the search aerial
robots when the subject is detected. In parallel, the
search aerial robot conclude their mission and come
back to the rescue base. Although it is not needed, the
subject has a visual marker to be properly identified
by the search robots.

As can be seen in Fig. 12d and the corresponding
trajectories in Fig. 14e, the search robot is faster leav-
ing the house than the rescue robot entering in it, so to
avoid a collision, the search robot autonomously waits
until the accesses to the house are clear.

In Figs. 12e and 14g, the rescue robot interacts with
the subject by means of natural interfaces.

(a) (b)

Fig. 13 Trajectory followed by all the aerial robots in the entire search and rescue mission

https://youtu.be/t2mJftbBHWc

(a) (b) (c)

(d) (e)

(g) (h)

(f)

Fig. 14 Different trajectories of the aerial robots in several time frames

Feature
extrac�on

Situa�on
awareness Mission Planner Trajectory

planner Execu�ve system

T = 0 seg
Requested ac�on:
Take off

T = 21.965231 seg
Requested ac�on:
Go to point

Motor system

T = 0.000008 seg
High level ac�on:
Take off

T = 22.447246 seg
Mission point:
<1.5, 7.25, 1.3>

Mission planning system

T = ...
Set points:
"..."

T = = 27.297939
Trajectory ref:
<1.418, 0.997, 1.299>,

..., <1.5, 7.25, 1.299>

Supervision
system

T = 4.316588 seg
Completed ac�on:
Take off

...T = 76.604266 seg
Event detected:
"Subject detected" T = 76.655892 seg

Requested ac�on:
Land

T = 78.517481 seg
Completed ac�on:
Land

T = 0.257479 seg
Ini�ated ac�on:
Take off

T = 21.965446 seg
High level ac�on:
Move

Social
communica�on

T = 22.466686 seg
Society pose:
<..., ..., ...>

...

...
...T = 76.587279 seg

Marker detected:
"2"

T = 76.656448 seg
HL ac�on:
Land

...

Hardware
interface

T = ...
Set points:
"..."

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...............

Fig. 15 Example of inter-process communication among
Aerostack systems. The figure shows a sample of low level ROS
messages sent and received between systems corresponding to

one of the complex experiments that we performed to evaluate
Aerostack. The example shows the sequence of the messages
using time stamps to illustrate the temporal delays

After the emergency situation is stabilized, the res-
cue aerial robot autonomously returns to the rescue
team base (Figs. 12f and 14h).

Figure 15 shows the inter-process communication
between some of the involved systems in the exper-
iment. This example shows only a few messages for
illustrative purposes. This figure shows, for example,
the role that the supervision system plays to monitor
the action execution. The example also illustrates how
the event corresponding to the subject detection trig-
gers the landing action by the mission planner. In the
figure, the time stamps indicate (in seconds) the delay
of the sequence of messages.

4.3 Evaluation Metrics

This section provides a number of quantitative evi-
dences (about modular organization, processes, etc.)
based on previous experiments that demonstrate some

performance and quality features of the software
framework.

Aerostack is a modular and specialized software
with 89 software modules (defined as ROS pack-
ages), apart from multiple standard ROS packages.
Aerostack organizes modules taking into account their
functionality in different processes and sub-systems.
For the previous example, it was necessary to use
22 software modules per robot agent. In addition,
Aerostack also provides a modular organization of
components (division in groups of software packages)
according to the type of use and their level of depen-
dency of ROS and other components of Aerostack.
The previous flight experiment corresponds to a case
of an application that uses the complete software
framework.

As described, Aerostack uses asynchronous mul-
titasking, where different processes run concurrently,
with inter-process communication provided by ROS.

Depending on the application, one can execute from
10 to 50 processes simultaneously per robotic agent in
a single computer or along multiple distributed com-
puters. The computational needs are highly dependent
on the specific implementation of the used modules,
but, as stated in Section 4.1, the available components
have run in very different computers. In the exam-
ple presented on Section 4.2, one single agent was
operated with 40 processes executed simultaneously
and the ROS messages were published on about 180
different ROS topics. Even with this amount of pro-
cesses and information exchanged, Aerostack worked
fluidly and efficiently in real time.

The examples where Aerostack has been used also
demonstrate other software quality features such as
usability and scalability. Usability in Aerostack is pro-
vided by its modularity and a uniform documentation,
both in source code and text documents. Aerostack
counts also with manuals and tutorials that presents
the main aspects of Aerostack with case of uses and
examples ranging from basic users to developers.

The experience with Aerostack has also proved
its scalability. In the last four years, since the origi-
nal implementation in February 2013, Aerostack has
grown gradually by including new components for
more complex problems.

The first public release counted with 41 software
modules, while the presented one has more than
double this amount, 89 software modules. Currently,
Aerostack is a live and evolving product supported
by our academic team at the Technical University of
Madrid that keeps updating the software framework
and adding new components and functionalities.

5 Conclusions and Future Work

A fully autonomous operation of UAS is needed with
the objective to simplify their use and to extend its
utilization to a great number of applications. To solve
this challenge, many open-source architecture frame-
works for UAS have been developed, but they still
present two main weakness: (1) in most of the cases,
the acquired level of autonomy is limited, focusing on
semi-autonomous missions. (2) versatility is typically
restricted, being the available open-source architec-
ture frameworks limited to some applications or aerial
platforms.

To fill these gaps, this paper described Aerostack,3

a system architecture and open-source multipurpose
software framework for fully-autonomous single and
multi-UAS.

Aerostack aims to help developers design their
own implementation of their system architecture by
having a reference model with a full specification
of the required components. In addition, Aerostack
provides a reusable open-source software framework
formed by flight proven and ready to use executable
software components and libraries which help devel-
opers to speed up the build process of their designed
system.

Aerostack was firstly presented in [27], and is
based on the authors’ previous work [25, 29]. Com-
pared to the initial publication of Aerostack, the main
contribution of this paper is that it provides a deeper
description of Aerostack, providing details of every
subsystem of its architecture together with implemen-
tation examples which can be useful for researchers
and developers for a more complete understanding
of the framework. The paper also includes a more
detailed discussion and justification of the frame-
work organization and a more complete experiment to
demonstrate the capabilities of Aerostack.

The formalization of the system architecture using
the state of the art of intelligent, cognitive and social
robotics knowledge, based on five layers: reactive,
executive, deliberative, reflective, and social, confers
Aerostack’s architecture more autonomous capabili-
ties and a higher level of versatility.

The open-source software framework of Aerostack
includes the main components to execute the archi-
tecture for fully autonomous missions of swarms of
aerial robots. This release includes as well a collec-
tion of components with two-dimensions modularity
that can be used in specific environment conditions
and mission requirements that allows the users and
developers to have a fully autonomous swarm of aerial
robots ready-to-use and flight-proven. The provided
framework counts with the compatibility of five well
known aerial platforms, as well as a high number of
sensor interfaces. In addition, Aerostack’s framework
includes a documentation for basic users and develop-
ers, guiding them when using it; and also the support

of a multidisciplinary team of researchers at the Tech-
nical University of Madrid that is actively working
with Aerostack, which ensures the continuous evolu-
tion and update of Aerostack.

Aerostack has been tested through four years (since
February 2013) of successful use on research projects,
international competitions and exhibitions. To confirm
this, this paper presented Aerostack carrying out a
fictional fully autonomous indoors search and rescue
mission.

As Aerostack is alive because of its active use,
two clear lines of future work exist: Firstly, the main
components of Aerostack’s software framework can
be improved, making it more robust and efficient.
Secondly, researchers can use Aerostack as is, limit-
ing their contributions to new components with more
functionalities than the existing ones, such as state
estimators, controllers, planners, or computer vision
algorithms among others.

Acknowledgements This research work has been partially
supported by the Spanish Ministry of Economy and Compet-
itiveness through the project VA4UAV (Visual autonomy for
UAV in Dynamic Environments), reference DPI2014-60139-R.
The authors would like to thank, as well, the Consejo Superior
de Investigaciones Cientificas (CSIC) of Spain for the JAE-
Predoctoral scholarships of one of the authors and his funded
research stays.

The authors would like to thank other members from the
Computer Vision and Aerial Robotics (CVAR) research group
and the Department of Artificial Intelligence (UPM) for their
help in software programming and the development of fight
experiments: David Palacios, Adrian Diaz-Moreno, Guillermo
de Fermı́n, Alberto Camporredondo and Carlos Valencia.

References

1. Arkin, R.C., Riseman, E.M., Hanson, A.R.: Aura: An archi-
tecture for vision-based robot navigation. In: Proceedings
of the DARPA Image Understanding Workshop (1987)

2. Brachman, R.J.: Systems that know what they’re doing.
IEEE Intell. Syst. 17(6), 67–71 (2002). doi:10.1109/MIS.
2002.1134363

3. Brisset, P., Drouin, A., Gorraz, M., Huard, P.S., Tyler, J.:
The paparazzi solution. In: MAV 2006, 2nd US-European
Competition and Workshop on Micro Air Vehicles (2006)

4. Davis, D.N.: Computational Architectures for Intelligence
and Motivation. In: Proceedings of the 2002 IEEE Interna-
tional Symposium on Intelligent Control, 2002. IEEE (2002)

5. Duffy, B.R., Dragone, M., O’Hare, G.M.: Social robot
architecture: a framework for explicit social interaction.

In: Android Science: Towards Social Mechanisms, Cogsci
2005 Workshop, Stresa, Italy (2005)

6. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas,
F., Marı́n-Jiménez, M.: Automatic generation and detec-
tion of highly reliable fiducial markers under occlusion.
Pattern Recogn. 47(6), 2280–2292 (2014). doi:10.1016/
j.patcog.2014.01.005. http://www.sciencedirect.com/science/
article/pii/S0031320314000235

7. Gat, E.: On three-layer architectures. In: Kortenkamp, D.,
Bonnasso, R.P., Murphy, R. (eds.) Artificial Intelligence
and Mobile Robots, AAAI Press (1998)

8. Grabe, V., Riedel, M., Bulthoff, H., Giordano, P., Franchi,
A.: The telekyb framework for a modular and extendible
ros-based quadrotor control. In: 2013 European Conference
on Mobile Robots (ECMR), 19–25 (2013). doi:10.1109/
ECMR.2013.6698814

9. Kendoul, F.: A survey of advances in guidance, navigation,
and control of unmanned rotorcraft systems. J. Field Rob.
29(2), 315–378 (2012)

10. Kohlbrecher, S., Meyer, J., Graber, T., Petersen, K., von
Stryk, O., Klingauf, U.: Robocuprescue 2014-robot league
team hector darmstadt (Germany). RoboCupRescue 2014
(2014)

11. Lim, H., Park, J., Lee, D., Kim, H.: Build your own
quadrotor: Open-source projects on unmanned aerial vehi-
cles. IEEE Robot. Autom. Mag. 19(3), 33–45 (2012).
doi:10.1109/MRA.2012.2205629

12. Van de Loosdrecht, J., Dijkstra, K., Postma, J., Keuning,
W., Bruin, D.: Twirre: Architecture for autonomous mini-
uavs using interchangeable commodity components. In:
IMAV 2014: International Micro Air Vehicle Conference
and Competition 2014, Delft, The Netherlands, August
12–15, 2014, Delft University of Technology (2014)

13. Molina, M., Diaz-Moreno, A., Palacios, D., Suarez-
Fernandez, R.A., Sanchez-Lopez, J.L., Sampedro, C.,
Bavle, H., Campoy, P.: Specifying complex missions for
aerial robotics in dynamic environments. In: International
Micro Air Vehicle Conference and Competition, IMAV
2016, Beijing, China (2016)

14. Murphy, R.: Introduction to AI robotics. MIT press (2000)
15. Pestana, J.: On-Board Control Algorithms for Quadro-

tors and Indoors Navigation Master’s Thesis. Universidad
Politécnica de Madrid, Spain (2012)

16. Pestana, J., Mellado-Bataller, I., Fu, C., Sanchez-Lopez,
J.L., Mondragon, I.F., Campoy, P.: A General Purpose Con-
figurable Navigation Controller for Micro Aerial Multirotor
Vehicles. ICUAS (2013)

17. Pestana, J., Sanchez-Lopez, J., Campoy, P., Saripalli, S.:
Vision based gps-denied object tracking and following
for unmanned aerial vehicles. In: 2013 IEEE Interna-
tional Symposium on Safety, Security, and Rescue Robotics
(SSRR), 1–6 (2013). doi:10.1109/SSRR.2013.6719359

18. Pestana, J., Mellado-Bataller, I., Sanchez-Lopez, J.L., Fu,
C., Mondragón, I.F., Campoy, P.: A general purpose config-
urable controller for indoors and outdoors gps-denied nav-
igation for multirotor unmanned aerial vehicles. J. Intell.
Robot. Syst. 73(1-4), 387–400 (2014)

19. Pestana, J., Sanchez-Lopez, J., de la Puente, P., Carrio,
A., Campoy, P.: A vision-based quadrotor swarm for the
participation in the 2013 international micro air vehi-

http://dx.doi.org/10.1109/MIS.2002.1134363
http://dx.doi.org/10.1109/MIS.2002.1134363
http://dx.doi.org/10.1016/j.patcog.2014.01.005
http://dx.doi.org/10.1016/j.patcog.2014.01.005
http://www.sciencedirect.com/science/article/pii/S0031320314000235
http://www.sciencedirect.com/science/article/pii/S0031320314000235
http://dx.doi.org/10.1109/ECMR.2013.6698814
http://dx.doi.org/10.1109/ECMR.2013.6698814
http://dx.doi.org/10.1109/MRA.2012.2205629
http://dx.doi.org/10.1109/SSRR.2013.6719359

cle competition. In: 2014 International Conference on
Unmanned Aircraft Systems (ICUAS), 617–622 (2014).
doi:10.1109/ICUAS.2014.6842305

20. Pestana, J., Sanchez-Lopez, J., Saripalli, S., Campoy, P.:
Computer vision based general object following for gps-
denied multirotor unmanned vehicles. In: American Control
Conference (ACC), 1886–1891 (2014) doi:10.1109/ACC.
2014.6858831

21. Pestana, J., Sanchez-Lopez, J.L., de la Puente, P.,
Carrio, A., Campoy, P.: A vision-based quadrotor multi-
robot solution for the indoor autonomy challenge of
the 2013 international micro air vehicle competition. J.
Intell. Robotic Syst. 1–20 (2015). doi:10.1007/s10846-015-
0304-1

22. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot
operating system. In: ICRA Workshop on Open Source
Software, vol. 3 (2009)

23. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern
Approach, 2nd edn. Pearson Education (2003)

24. Sampedro, C., Bavle, H., Sanchez-Lopez, J., Suarez-
Fernandez, R., Rodriguez, A., Molina, M., Campoy, P.: A
flexible and dynamic mission planning architecture for uav
swarm coordination. In: 2016 International Conference on
Unmanned Aircraft Systems (ICUAS) (2016)

25. Sanchez-Lopez, J., Pestana, J., de la Puente, P.,
Suarez-Fernandez, R., Campoy, P.: A system for the
design and development of vision-based multi-robot
quadrotor swarms. In: 2014 International Conference on
Unmanned Aircraft Systems (ICUAS) (2014). doi:10.1109/
ICUAS.2014.6842308

26. Sanchez-Lopez, J., Pestana, J., Collumeau, J.F., Suarez-
Fernandez, R., Campoy, P., Molina, M.: A vision based
aerial robot solution for the mission 7 of the international
aerial robotics competition. In: 2015 International Confer-
ence on Unmanned Aircraft Systems (ICUAS), 1391–1400
(2015). doi:10.1109/ICUAS.2015.7152435

27. Sanchez-Lopez, J., Suarez-Fernandez, R., Bavle, H.,
Sampedro, C., Molina, M., Pestana, J., Campoy, P.:
Aerostack: An architecture and open-source software
framework for aerial robotics. In: 2016 International Con-
ference on Unmanned Aircraft Systems (ICUAS) (2016)

28. Sanchez-Lopez, J.L., Pestana, J., de la Puente, P., Carrio,
A., Campoy, P.: Visual quadrotor swarm for the imav 2013
indoor competition. In: Armada, M.A., Sanfeliu, A., Ferre,
M. (eds.) ROBOT2013: First Iberian Robotics Conference,
Springer, Advances in Intelligent Systems and Computing,
vol. 253 (2013). doi:10.1007/978-3-319-03653-3 5

29. Sanchez-Lopez, J.L., Pestana, J., Puente, P., Campoy, P.: A
reliable open-source system architecture for the fast design-
ing and prototyping of autonomous multi-uav systems:
Simulation and experimentation. J. Intell. Robotic Syst. 1–
19 (2015). doi:10.1007/s10846-015-0288-x

30. Singh, P., Minsky, M.: An architecture for cognitive diver-
sity. Visions of mind: architectures for cognition and affect
312, 166 (2005)

31. Sloman, A.: What sort of architecture is required for a
human-like agent? In: Wooldridge, M., Rao, A. (eds.) Foun-
dations of Rational Agency, Kluwer Academic Publishers
(1999)

32. Suarez-Fernandez, R., Sanchez-Lopez, J., Sampedro, C.,
Bavle, H., Molina, M., Campoy, P.: Natural user interfaces
for human-drone multi-modal interaction. In: 2016 Interna-
tional Conference on Unmanned Aircraft Systems (ICUAS)
(2016)

http://dx.doi.org/10.1109/ICUAS.2014.6842305
http://dx.doi.org/10.1109/ACC.2014.6858831
http://dx.doi.org/10.1109/ACC.2014.6858831
http://dx.doi.org/10.1007/s10846-015-0304-1
http://dx.doi.org/10.1007/s10846-015-0304-1
http://dx.doi.org/10.1109/ICUAS.2014.6842308
http://dx.doi.org/10.1109/ICUAS.2014.6842308
http://dx.doi.org/10.1109/ICUAS.2015.7152435
http://dx.doi.org/10.1007/978-3-319-03653-3_5
http://dx.doi.org/10.1007/s10846-015-0288-x

	A Multi-Layered Component-Based Approach for the Development of Aerial Robotic Systems: The Aerostack Framework
	Abstract
	Introduction
	Aerostack Framework
	The Multi-Layered Model
	Features of Aerostack Framework
	The Aerostack Library of Aerial Robotic Components
	The Component Assembly Mechanism

	Detail of Aerostack Subsystems
	The Feature Extraction System
	The Situation Awareness System
	The Motor System
	The Executive System
	The Planning System
	Mission Planner
	Trajectory Planner

	The Supervision System
	System Operation Monitor
	Process Monitor
	Event and Problem Manager

	The Communication System

	Aerostack Evaluation
	Reported uses of Aerostack
	Experiment
	Hardware Configuration
	Specific System Architecture for the Experiment
	Mission Execution

	Evaluation Metrics

	Conclusions and Future Work
	Acknowledgements
	References

