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Abstract Robot grasp quality metrics are used to eval-

uate, compare and select robotic grasp configurations.

Many of them have been proposed based on a diversity

of underlying principles and to assess different aspects

of the grasp configurations. As a consequence, some of

them provide similar information but other can pro-

vide completely different assessments. Combinations of

metrics have been proposed in order to provide global

indexes, but these attempts have shown the difficulties

of merging metrics with different numerical ranges and

even physical units. All these studies have raised the

need of a deeper knowledge in order to determine in-

dependent grasp quality metrics which enable a global

assessment of a grasp, and a way to combine them.

This paper presents an exhaustive study in order to

provide numerical evidence for these issues. Ten quality

metrics are used to evaluate a set of grasps planned by

a simulator for 7 different robot hands over a set of 126

object models. Three statistical analysis, namely, vari-

ability, correlation and sensitivity, are performed over

this extensive database. Results and graphs presented

allow to set practical thresholds for each quality met-

ric, select independent metrics, and determine the ro-

bustness of each metric,providing a reliability indicator

under pose uncertainty. The results from this paper are
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intended to serve as guidance for practical use of quality

metrics by researchers on grasp planning algorithms.
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1 Introduction

Many grasp quality metrics have been proposed in the

robot grasping research literature. A recent survey iden-

tifies up to 24 different grasp quality metrics designed

to quantify the goodness of a grasp [31]. Quality metrics

play a principal role in the so called analytical approach

to the grasp planning problem, also often referred as

grasp synthesis. Grasp planning consists in determin-

ing the finger contact locations on an object surface
and the appropriate gripper configuration which allow

the constraints, forces and torques produced on the ob-

ject through the contact points to reach one or more

desirable properties like dexterity, force-closure, stabil-

ity or equilibrium and other which has been defined in

the literature [36,42,4].

Analytical approaches try to solve the grasp plan-

ning problem by using kinematics and dynamics for-

mulations [36]. There exists a vast literature focusing

on the development of algorithms to find grasps under

a variety of assumptions regarding dimensionality, con-

tact models, object shapes and others [36,42,4]. Often

the proposed solutions produce a large number of pos-

sible grasps. Quality metrics are the tools that allow

these sets of solutions to be ranked. Actually, metrics

play a triple role: allowing relative comparisons between

grasps, providing an absolute quantitative assessment

of the goodness of a grasp, and, finally, serving as eval-

uation functions in grasp synthesis optimization algo-

rithms [28].
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In recent years, though more attention has been

paid to alternative data-driven and experimental ap-

proaches for grasp planning, many of them still rely

on analytical algorithms as an important part of their

pipelines. A recent survey on data-driven grasp synthe-

sis [5] points out that most methods assuming a previ-

ously known model of the objects perform an offline ini-

tial analysis of the possible grasps for each object using

analytical techniques, being quality metrics a critical

tool to rank grasps.

A limitation of the use of metrics is that each of

them is designed to assess a specific aspect of a grasp.

Recently, Roa and Suárez [31], in a detailed revision

of existing grasp metrics, have distinguished between

metrics associated with the contact points and those as-

sociated with the hand configuration. The former ones

are the most populated, being subdivided into metrics

based on the properties of the Grasp matrix, metrics

based on geometric relations, and those that consider

limitations of the applied forces.

They also reviewed several attempts to define global

metrics by combining existing metrics. Combined met-

rics can be a solution to overcome the specificity of each

one. An early correlation study of several quality met-

rics showed the existence of at least five independence

dimensions on the evaluation of human grasps[23]. Roa

and Suárez identify two trends for building combined

indexes, serial and parallel. On the serial approach one

metric is used to generate and select a subset of grasp

configurations, then a second metric is used to rank

them [16]. A most common approach is the parallel

combination of metrics. In this approach every grasp is
evaluated by a set of metrics, and the values obtained

are added to produce a unique evaluation index [6,1].

Different normalization procedures can be applied to

every metric for their combination, as well as different

weighting coefficients [7].

But combined indexes are not free of limitations.

First, each combinatorial method is still based on a sub-

set of quality metrics, and there are no clear criteria on

how to choose them. Some metrics might be measuring

the same property while others capture different under-

lying properties. And second, there is no obvious way of

merging metrics since they do not provide values on the

same range not even on the same physical magnitudes.

The main goal of the work described in this paper

is to answer the relevant questions about practical use

of grasp quality metrics. For each metric, which are

the practical ranges within a grasp that can be con-

sidered good or bad? How sensitive is the evaluation of

a grasp with respect to contact location uncertainty?

And, which quality metrics are similar or measure dif-

ferent grasp aspects?

To address these questions the paper describes a

numerical study of the characteristics of a set of ten

metrics selected among the most commonly used, with

the purpose of deepening the knowledge on them. This

provides factual data to decide about which metrics to

select and how to combine them. The assumed focus

of this work is on metrics oriented to the analysis of

static grasps performed by a robot gripper on rigid 3D

objects for holding and transporting them.

The contribution of this work is a set of numerical

ranges and thresholds which establish the practical pa-

rameters that can be used to interpret the grasp eval-

uation provided by the selected quality metrics. This

work is a complete extension and revision of results pre-

sented in [21,22]. As such, the methodology has been

completed, revised and improved, and more models of

objects has been added to obtain more general results.

The specific novelties of this work are the comparison

Table 1: Summary of the selected quality metrics

Name Normalised formula Min Max

Group A: Algebraic properties of G

QA1 Smallest singular value of G [24] σmin(G) 0 -

QA2 Volume of G in the wrench space[24]
∏r

i=1
σi 0 -

QA3 Grasp Isotropy Index[17] σmin(G)/σmax(G) 0 1

Group B: Distribution of contact points

QB1 Distance between the centroid of the contact polygon and the
object’s centre of mass[12,30]

1− distance(p, pc)/distancemax 0 1

QB2 Area of the grasp polygon[27] Area(Polygon(p1, p2, p3, p4P , p5P ))/Areamax 0 1

QB3 Shape of the grasp polygon[17] 1− 1
θmax

∑nf

i=1
|θi − θ̄| 0 1

Group C: Magnitude of Forces

QC1 Smallest maximum wrench to be resisted [13,19] minw∈CW ‖w‖/
√

2 0 1

QC2 Volume of the convex hull[26] Volume(CW )/Volumemax 0 1

Group D: Configuration of the manipulator

QD1 Posture of hand finger joints[25] 1− 1/nq
∑nq

i=1
((yi − ai)/(ai − yiM ))2 0 1

QD2 Inverse of the condition number of GJ[37,18] σmin(GJ )/σmax(GJ ) 0 1
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of different grasp generation methods and how they in-

fluence the quality measurements, and the extension of

the hand and objects set. Using different shaped objects

and hands with more varied characteristics, removes

the bias of previous studies. As a consequence, some of

the results and conclusions of the previous studies have

been better established.

The methodology followed in the paper consists in

the statistical analysis of the quality values obtained

for 10 different metrics used to evaluate the grasps of a

wide database, generated on a simulation environment

using 126 different models of rigid objects and 7 mod-

els of robot hands. The study contains three different

analyses:

– Variability analysis: The distribution of each met-

ric values is studied when grasping different objects

with different robotic hands and with different grasp

configurations. The range of values for each metric

is established and used to homogenise the scales of

the different metrics and to set practical thresholds

for good and bad grasps (see Section 4).

– Correlation analysis: The underlying relations be-

tween metrics are determined (see Section 5).

– Sensitivity analysis: Metrics are recomputed when

displacements and rotations are applied to grasp

postures. The robustness of each metric with respect

to inaccuracies in the placement of the finger con-

tact points is determined (see Section 6).

The paper is structured as follows. Section 2 de-

scribes the selected metrics. Section 3 details the soft-

ware platform used to carry out the experiments. Sec-

tions 4 to 6 explain the analyses and show their results.
Finally, section 7 discusses the results obtained and sec-

tion 8 presents the conclusions drawn and outlines fu-

ture research lines.

2 Grasp Quality Metrics

The taxonomy proposed by [31], which includes a re-

view of 24 metrics previously proposed in the robotics

literature, is used for selecting the metrics for this study.

Metrics are classified into 4 categories depending on

their underlying principles. Object and hand constraints

are considered in the evaluation through the contact

points, using either the Grasp Matrix G, the location

of the contact points, or the contact forces that should

be applied to resist external disturbances. Additionally,

hand constraints are also considered through the posi-

tion of the hand finger joints or through the measure-

ment of the capability to move an object in any direc-

tion with the same gain.

Ten quality metrics are selected based on several cri-

teria, Table 1 presents a summary of the metrics which

notation is defined in Table 2. First, task oriented met-

rics are discarded since this study aims to a general

grasp evaluation, and the methodological complications

of considerings different tasks would make the study too

extensive. Second, variety in the underlying principles

of the metrics is preserved. As can be seen in table 1 up

to four categories of metrics are considered. And third,

those most commonly used are included.

In an attempt to make them comparable, their defi-

nition is adapted; they are normalised considering their

maximal and minimal values, so that the best value is

1, and the worst value is 0. A more detailed description

of each metric can be found in the A.

3 Experimental platform

3.1 Simulation Framework

The simulation platform chosen to perform the experi-

ments is OpenHand [20], a simulation toolkit developed

Table 2: Notation

G Grasp matrix
r Rank of G
σmin Minimum singular value
σi Nonzero singular values
σmax Maximum singular value
p Centroid of contact polygon
pc Object centre of mass
pi Vertex of the grasp polygon
pip Projected vertex of the grasp polygon on a

plane
nf Number of fingers
θmax Sum of differences between the internal an-

gles when the polygon has the most ill-
conditioned shape and those of a regular
polygon

θi Inner angle at the vertexi of the grasp poly-
gon

θ̄ Average angle of all inner angles of the
grasp polygon

CW Convex hull of the primitive wrenches
w ∈ CW Generalised forces acting CW
||w|| Magnitude of a wrench
nq Number of joints of the hand
ai Middle range position of a joint
yi Angle of joint i
yiM Maximum angle limits of joint i
GJ Grasp Jacobian matrix
distancemax Maximum distance from the object’s centre

of mass to any point in the object’s contour
Areamax Maximum possible area of the hand calcu-

lated as the area of the polygon when the
hand is fully opened

V olumemax Maximum volume of the convex hull of the
primitive wrenches
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by the authors in which the selected quality metrics are

implemented. It is based on OpenRAVE [10], an open

architecture targeting a simple integration of simula-

tion, visualisation, planning, scripting and control of

robot systems.

3.2 Robotic Hands

The characterisation of the selected quality metrics is

performed by simulating the grasp of seven robot hands

with different number of fingers and DOF, including

common manipulators used in robotics and industrial

applications, as well as a prosthetic hand. The selected

hands are: the PR2 Hand [44], the Barrett Hand [3], the

Schunk SDH Hand [39], the Schunk SAH Hand [39], the

Shadow Hand [41], the Model T [46] and the Michelan-

gelo prosthetic hand [29]. Details of each hand are pro-

vided in Table 3.

3.3 Objects

A wide variety of objects commonly used for everyday

tasks are selected for this study: 125 objects from the

KIT object database [8], with the addition of a sim-

ple sphere. Objects include cereal boxes, drink bottles,

glasses, toys, containers for food, figurines, packed food,

etc (figure 1).

Fig. 1: Sample of the different objects used for grasping.

3.4 Grasp Generation

In pursuance of obtaining a significant set of candidate

grasps applicable to an object, a large set of grasp hy-

potheses needs to be generated and evaluated. A grasp

hypothesis is defined as the combination of an object, a

hand, an initial position of the hand with respect to the

object, and the initial configuration of the hand joints.

Generation of a variety of grasp hypotheses for a given

object with a given hand is performed using the Grasp-

ing Module from the Database Generators available in

OpenRAVE [9].

This algorithm provides a parametric approach to

generate a number of grasps distributed over the ob-

ject surface. Among the different algorithms to generate

candidate grasps we have chosen this because a number

of reasons: it is able to produce an almost uniform dis-

tribution over the object surface; it can be tuned easily

to produce more or less candidates; it starts from the

bounding box of the shape, which limits the candidates

to grasps able to approach the object with a gripper;

and last but not least, its implementation is fully avail-

able.

In short, the algorithm generates a square grid of

points uniformly distributed around the object bound-

ing box and projects it over the object surface (Fig.

2). From each of these points, an approach ray is cre-

ated pointing outwards the object surface. The hand

is placed along the approach ray, facing the object at

a given distance, and it can be rotated about the ap-

proach ray by a given angle.

The algorithm depends on five parameters (Fig. 3):

– δ: Distance between the points in the square grid

around the surface of the bounding box to place the

approach rays.

– α: Angle between the approach ray and the normal

to the object surface (default value of zero). Depend-

ing on the value of α, a set of oblique approaching

rays is generated.

– θ: Standoff distance along the approach ray where

the reference point of the hand is placed.

– Nr: The angles to rotate the hand (roll) about the

approach ray.

– HJ : Configuration of the hand joints (preshape) be-

fore the closing algorithm starts.

Using these parameters, a large variety of grasp hy-

potheses are generated, and subsequently evaluated with

the algorithm explained in the next section. The size of

the objects affects the number of hypotheses generated,

varying from a few hundreds to dozen of thousands.

Section 4 analyses the selection of these parameters.

The grasps generated in this study and the result of

their evaluation have been made available in an online-

repository in GitHub[33].

3.5 Grasp closure and evaluation algorithm

The OpenRAVE closure algorithm [9] is used for each

grasp hypothesis. This algorithm loads the initial hand
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Table 3: Hand Models

Details of the selected robotic hands used in the characterisation of the grasp quality metrics.

Hand Name Joints Actuators DOFs Description

PR2 Gripper 4 2 2
The two links in each finger are associated to the same actuator. When a contact
is detected, the closure in that finger stops.

BarrettHand 6 4 8
The two links in each finger are associated to the same actuator. When a contact
is detected in the proximal link, the closure in that link stops but it continues
closing the distal links. It has one actuator for the symmetric abduction of the
two nearby fingers.

Schunk SDH 6 7 8
It has one actuator for each link. When it detects a collision in the proximal link,
it also stops the closure of the distal link. It has one actuator for the symmetric
abduction of two nearby fingers.

Schunk SAH 12 13 13
It has one actuator for every link. When it detects a collision in the proximal link,
it also stops the closure in the distal links. It has one actuator for the abduction
of the thumb.

Shadow Dexterous Hand 5 7 17
It has one actuator for every finger. When it detects a collision in a link, stops
the closure of this finger. It has one actuator for the abduction of the thumb and
another for the little finger. Abduction for the little is fixed in the experiments on
this paper.

Model T 8 4 8
It has one actuator for every finger. When it detects a collision in the proximal
link, the closure in the distal link continues.

Michelangelo 6 2 2
It has one actuator for the thumb flexion and six pre-fixed positions for its abduc-
tion. The other actuator close the other four fingers. When it detects a collision
in one of them, it stops the closure of the others.

(a) (b)

Fig. 2: Example of the approach-rays generation process

used by OpenRAVE: (a) square grid of points around

the object and (b) the projection of this box over the ob-

ject surface (Images reproduced with permission from

[9]).

configuration and sets the joint values according with

the information of the grasp hypothesis. Then, it starts

to close all of the joints at a constant velocity. When

a collision between the object and the hand model is

detected, the closure of the proximal joints stops. The

remaining joints keep closing until all the fingers have

contacted either the object or the hand, or have reached

their joint limits. Although it is possible to define differ-

ent closure velocities and accelerations for every hand

joint, the same constant speed is used in this work for

all joints.

Once the hand is closed over the object, the contact

points are determined and used for the evaluation of

the grasp. In the first place, the force-closure condition

is evaluated. If the grasp does not meet this condition,

it is discarded; otherwise, the quality metrics for this

grasp are evaluated. The friction coefficient used had

a constant value of 0.4. As most of the metrics are in-

dependent of this parameter, we consider adding varia-

tions of this value could lead a misunderstanding when

comparing the correlations between metrics. The value

was selected as it is the most common friction coeffi-
cient for human grasping, as pointed in [38]. This value

is kept constant through all the experiments shown in

this paper.

Quality metrics are implemented in Python using

the Scipy and Numpy libraries [40], requiring a matrix

of contact points and the information of the hand and

object used as inputs.

4 Variability analysis

The distribution of the values for each of the selected

metrics is studied in this section. This is relevant, as

previous studies suggested that these values tend to be

contained in very narrow ranges [23,21,22]. In this sec-

tion, the range of values for each metric is experimen-

tally established and subsequently used for its normali-

sation, so that all the metrics have a more homogeneous

distribution in the range [0,1]. Also, the distribution is

used to set practical thresholds for good and bad grasps.
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Fig. 3: Example showing the parameters needed for

grasp generation.

4.1 Methods

The methodology consists in generating and evaluat-

ing a sufficiently large amount of grasp hypotheses for

every pair object-hand on the simulation environment.

For each of these selected grasps, the values for each

quality metric are obtained and statistically analysed.

With these results, appropriate thresholds are selected

to normalise each metric in the range of [0,1].

(a) Variations in δ (0.01 to
0.02 m)

(b) Variations in α (0 to
π/3 rad)

Fig. 4: Example showing the variations in δ and α stud-

ied to generate approach rays

A proper selection of the values for the parameters

presented in Section 3.4, especially for δ and α, is re-

quired to generate an appropriate set of grasps hypothe-

ses for every pair object-hand. Although [32,2] showed

a high efficiency when using orthogonal approach angles

for grasp success, considering only orthogonal approach

angles could introduce a bias on the grasp set.

As a preliminary study on the the influence of the

selection of δ and α values on the quality metrics is

performed. A subset of 21 different objects and two

hands (Barrett and Shadow) is selected. Two δ values

are tested: a small value (0.01 m) and a high value (0.02

m) (Fig. 4a). Additionally, three ways for generating the

direction of the approach rays are tested (Fig. 4b): or-

thogonal to the object surface (α = 0), at a fixed angle

(α = π/3), and at a variable angle (α ∈ [0, π/3]). To

summarize, four methods are tested with a combination

of the selected δ and α values, as presented in Table 4.

Table 4: Parameters used in each approach-rays gener-

ation method

Generation method α (rad) δ (m) N◦ hypotheses
1 Small delta 0 0.01 84968
2 Big delta 0 0.02 24208
3 Fixed alpha π/3 0.01 4078464
4 Variable alpha [0, π/3] 0.01 4163432

The other parameters needed to define the grasp hy-

potheses are selected as follows, and are kept unchanged

throughout the four methods:

θ = [0.01 m, 0.02 m]

Nr = [0, π/2, π, 3π/2, 2π]

HJ =


[0,0,0,0,0,0] if hand = Shadow

[0,0,0,0], [0,0,0,π/4],

[0,0,0,π/2], [0,0,0,3π/4]
if hand = Barrett

Using these parameters with procedure described

in section 3.4 a set of grasp candidates is produced .

The number of grasp hypotheses generated per object

ranges from a few hundreds with the first two methods

to hundred of thousands with the other methods. Thus,

in order to have a tractable number of candidate grasps

for these former methods, a 1% of the total amount of

candidates are randomly selected in this preliminary

study.

Next, the grasp quality values obtained using each
metric for all the candidates are statistically analysed;

median and interquartile ranges of the different dis-

tributions obtained from the use of the four different

methods are compared in order to select the most ap-

propriate to generate the approach rays.

Once all the required parameters are selected from

the results of the preliminary study, a set of grasp hy-

potheses is generated for each pair hand-object, us-

ing the selected parameters. Each grasp is simulated

and, using the contact information, the grasp quality

is evaluated according to each of the 10 selected met-

rics. Different options are considered to select appro-

priate thresholds to normalise each quality metric: 1)

Full Range, using the maximum and minimum values

obtained for each metric; 2) Soft Statistics, using the

mean ± the standard deviation to define the thresh-

olds (to minimise the effect of atypical values that may

appear in case of values grouped within smaller limits

[22]); 3) Percentiles, using the 10th and 90th percentiles

of the grasp quality values (to avoid negative values for
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(a) QA1 (b) QA2 (c) QA3 (d) QB1 (e) QB2

(f) QB3 (g) QC1 (h) QC2 (i) QD1 (j) QD2

Fig. 5: Results of the grasp quality metrics for the different approach-rays generation methods detailed in Table

4. The grasp quality scale varies to better show the results.

the minimum threshold in case of high standard devia-

tions).

Once the appropriate threshold values are selected

for each metric, the following formula is used to nor-

malise the values:

QN =
Q− Tmin

Tmax − Tmin
(1)

where Q is the grasp quality value and Tmax and Tmin
the selected lower and upper thresholds for each metric.

Finally, the normalised quality values are graded us-

ing a four level scale: bad, fair, good, and great quality.

The ranges for each grade are presented in Table 5.

The grasp falling under 0 are qualified as bad, those

between 0 and the 50-percentile value are labelled as

fair, those up to 1 are good, and finally those over 1

are considered great. In any case, this classification has

no practical implication and is given as a suggestion to

sort out grasps.

Table 5: Ranges to classify the quality of a grasp for

each metric

Bad Quality Fair Quality Good Quality Great Quality
QA1

[-∞, 0]

[0, 0.2887] [0.2887, 1]

[1, ∞]

QA2 [0, 0.0944] [0.0944, 1]
QA3 [0, 0.3018] [0.3018, 1]
QB1 [0, 0.6103] [0.6103, 1]
QB2 [0, 0.3092] [0.3092, 1]
QB3 [0, 0.4679] [0.4679, 1]
QC1 [0, 0.1684] [0.1684, 1]
QC2 [0, 0.1886] [0.1886, 1]
QD1 [0, 0.3015] [0.3015, 1]
QD2 [0, 0.0147] [0.0147, 1]

4.2 Results

The median and interquartile ranges of the quality met-

rics obtained in the preliminary study are summarised

in the box plots presented in Fig. 5. No significant dif-

ferences between the grasp qualities obtained using the

different methods can be observed from the box plots.

Furthermore, the results do not consistently show bet-

ter grasp qualities for any of the methods. The vari-

able method to generate approach rays provides a wider

range of possibilities for grasping, and it is, thus, se-

lected for analysing the full set of grasps. A summary

of the selected parameters used to generate the grasp

hypotheses is presented in Table 6.

With this method more than 25 million grasp hy-

potheses are generated. In order to make it computable,

we decided to select only 1.000 random grasps per ob-

ject and hand, being a total of 882.000 different grasps

evaluated within the 7 hand models.

Table 6: Parameters selected to generate grasp hypothe-

ses

Value Hand
δ 0.01 m All
α [0, π/3] All
θ [0.01 m, 0.02 m] All
Nr [0, π/2, π, 3π/2, 2π] All
HJ [0,0] PR2

[0,0,0,0], [0,0,0,π/4], [0,0,0,π/2], [0,0,0,3π/4] Barrett
[0,0,0,0], [0,0,0,π/4], [0,0,0,π/2], [0,0,0,3π/4] Schunk SDH
[0,0,0,0,0,0,0,0,0,0,0,0,0] Schunk SAH
[0,0,0,0,0,0] Shadow
[0,0,0,0] Model T
[0,0,0] Michelangelo
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The values for the ten metrics described in 2, for

the grasp hypotheses generated using the selected pa-

rameters for each of the hand-object combinations (126

objects and 7 hands), are summarised in Table 7. The

statistical description for each metric includes all infor-

mation required to obtain all different thresholds pro-

posed. Results corroborate that the Full Range thresh-

olds are much higher than the Soft Statistics and Per-

centiles thresholds, because of the high amount of atyp-

ical values, especially for metric QA2. Also, the high

standard deviations of metrics QA2, QA3, QC2, and

QD2 result in negative minimum thresholds for the Soft

Statistics thresholds. Figure 6 illustrates an example of

the distribution of values of the QB1 metric using both

the Soft Statistics and Percentiles thresholds to nor-

malise the values. Although both methods provide a

distribution of grasps along the [0,1] range, the Soft

Statistics method produce a high amount of outliers

grasps, whilst using percentiles provide more grasps in

the mid-range. The Percentiles thresholds were, there-

fore, finally selected to normalise the metrics.

(a) (b)

Fig. 6: Comparison between normalisation using the
(a) Soft Statistics and (b) Percentiles thresholds for the

QB1 metric

Figure 7 shows the distribution of each of the grasp

quality metrics using the Percentiles thresholds, ob-

tained from Table 7, to normalise the metrics. It can

be seen that most of the metrics are distributed along

the [0,1] range, with the notorious exception of metric

QD2, which presents 50% of the grasp quality values

within the range [0, 0.1]. Also note QC1 and QD2 have

a lot of values under 0, due to their Percentile 10 coin-

cide with Percentile 30.

5 Correlation analysis

The purpose of this study is to find out which metrics

provide similar evaluations for the wide set of grasps

considered in this work. This would indicate that such

metrics are basically representing the same underlying

property and, consequently, that one of them is suffi-

cient to evaluate that property, while the others are

redundant. As a final consequence, this would allow

the reduction of the number of metrics to be computed

without losing any relevant information.

5.1 Methods

For this study, the same set of grasp generated in Sec-

tion 4 is used, since it is sufficiently exhaustive and rep-

resentative of grasping. The grasps are compared with-

out any normalisation method. This is done to avoid

distorting the numeric values, as the correlation coeffi-

cients could be influenced by this variations. The Pear-

son correlation coefficient is calculated for each combi-

nation of metrics. However, this method is highly sen-

sitive to outliers and, as it was shown in Section 4, this

is quite common in data from quality metrics. Thus,

the Spearman correlation coefficient is also calculated,

as it has been shown to be more robust in front of out-

liers [14]. Spearman correlation is also interesting since

it can measure non-linear mappings between metrics.

5.2 Results

Table 8 shows the results for the Pearson and Spear-

man correlation coefficients for each pair of metrics.

Cells with weak correlation values (≥ 0.4 and ≤ 0.7)

are coloured in yellow; cells with strong correlation val-

ues (≥ 0.7) are coloured in green and full correlation

cells (≥ 0.95) are coloured in blue. When using the

Pearson coefficient, only a strong case of correlation

is found, QA1 with QA3; when the effect of outliers is

mitigated using the Spearman coefficient, three strong

binary correlations are found, the ones between all met-

rics of group A.

6 Sensitivity analysis

A sensitivity analysis is conducted to assess the robust-

ness of each quality metric with respect to the uncer-

tainty in the object’s pose. The effect of inaccuracies in

the positioning of the real robot hand on the quality of

the grasp is investigated. This problem may arise when

the final execution of a selected grasp does not succeed

in placing the contacts in the desired grasp locations.

6.1 Methods

An initial set of grasp configurations are selected as

reference. Several modifications of the hand position



Characterisation of Grasp Quality Metrics 9

Table 7: Statistics and thresholds of the grasp quality values for each metric

Statistic Values Full Range Thresholds Soft Statistics Thresholds Percentiles Thresholds No of

Median Mean SD Min Max Mean-SD Mean+SD 10thpercentile 90th percentile Grasps
QA1 0.3137 0.4218 0.3747 0.0000 1.8773 0.0471 0.7965 0.0398 0.9820 882000
QA2 3.4270 12.9225 24.4199 0.0000 735.5761 -11.4975 37.3424 0.0671 35.6456 882000
QA3 0.1486 0.2104 0.2131 0.0000 0.9997 -0.0026 0.4235 0.0267 0.4323 882000
QB1 0.6175 0.5808 0.2248 -0.1365 0.9987 0.3561 0.8056 0.2764 0.8423 882000
QB2 0.0770 0.0953 0.0732 0.0000 0.9992 0.0220 0.1685 0.0237 0.1907 634446
QB3 0.4653 0.4668 0.1666 0.0001 0.9988 0.3001 0.6334 0.2648 0.6892 634446
QC1 0.0136 0.0282 0.0364 0.0000 0.2804 -0.0082 0.0647 0.0000 0.0803 634446
QC2 0.0104 0.0200 0.0271 0.0000 0.9988 -0.0071 0.0471 0.0013 0.0499 634446
QD1 0.3925 0.4689 0.2430 0.0000 1.0000 0.2259 0.7119 0.2116 0.8636 882000
QD2 0.0021 0.0528 0.1381 0.0000 0.9954 -0.0853 0.1910 0.0000 0.1839 882000

(a) QA1 (b) QA2 (c) QA3 (d) QB1 (e) QB2

(f) QB3 (g) QC1 (h) QC2 (i) QD1 (j) QD2

Fig. 7: Values of each quality metric for all postures normalised with the Percentiles thresholds. Red line points

out the Percentile 50.

are computed for each reference grasp configuration by

introducing a random translation and rotation on each

of the hand position axes (see Fig. 8).

Fig. 8: Variations in the hand posture along their axes.

The measurement variation of the metric values for

a given object is computed using the Sensitivity Index

(SI), which is defined as the mean value of the standard

deviations with respect to the metric calculated for the

reference grasp:

SI = 1
n

n∑
x=1

σx

where n is the number of grasps for each object and σx
the standard deviation calculated as:

σx = 1
nv

√
nv∑
i=1

(xi − x0)2

where nv is the number of variations of the reference

grasp, x0 the value of the metric of the reference grasp

and xi the value of the metric calculated for each varia-

tion. Finally, a Global Sensitivity Index (GSI) has been

calculated for each metric, as the mean value of the SI

per object previously calculated:

GSI = 1
no

n∑
i=1

(SIi)

where no is the number of objects and SIi is the Sen-

sitivity Index calculated for each object.

GSI is expressed in percentage (GSIN ) by using the

metric ranges obtained in the variability analysis (see

Table 7):
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Table 8: Correlation coefficients

(a) Pearson correlation coefficient

QA1 QA2 QA3 QB1 QB2 QB3 QC1 QC2 QD1 QD2

QA1 1

QA2 0.65 1

QA3 0.86 0.31 1

QB1 -0.13 0.07 -0.36 1

QB2 0.21 0.26 0.16 0.07 1

QB3 -0.12 -0.15 -0.06 0.03 0.01 1

QC1 0.34 0.43 0.24 0.23 0.22 -0.04 1

QC2 0.38 0.35 0.33 0.23 0.22 -0.02 0.66 1

QD1 -0.20 -0.16 -0.09 -0.05 0.17 0.16 0.16 0.22 1

QD2 -0.30 -0.17 -0.24 0.00 0.15 0.18 -0.07 -0.01 0.40 1

(b) Spearman correlation coefficient

QA1 QA2 QA3 QB1 QB2 QB3 QC1 QC2 QD1 QD2

QA1 1

QA2 0.86 1

QA3 0.98 0.79 1

QB1 -0.04 0.09 -0.05 1

QB2 0.26 0.34 0.21 0.08 1

QB3 -0.13 -0.22 -0.07 0.03 0.00 1

QC1 0.34 0.46 0.26 0.19 0.27 -0.02 1

QC2 0.49 0.56 0.44 0.23 0.39 -0.02 0.59 1

QD1 -0.22 -0.31 -0.19 -0.01 0.18 0.11 0.19 0.31 1

QD2 -0.28 -0.24 -0.28 0.05 0.08 -0.06 0.06 0.32 0.48 1

Yellow: soft correlation (≥ 0.4), Green: strong correlation (≥ 0.7)
and Blue: full correlation (≥ 0.95). In both tables, the significance
values are less than 0,05.

GSIN = GSI
max−min100%

where min y max are any of the proposed minimum

and maximum thresholds, respectively.

A preliminary study is carried out to determine the

number of variations required for the analysis. Two

hands (Barrett and Schunk SDH and 10 objects are

chosen for this study. For every pair hand-object, 10

reference grasps are selected randomly from those gen-

erated in the experiments described in Section 4. Grasp

variations are generated by introducing random trans-

lations and rotations on each of the hand position axes

obtained from Gaussian distributions with standard de-

viation of 1 cm and 0.1 rad for translations and ro-

tations, respectively (these Gaussian distributions pro-

vide 68% of the deviations inside the bell curve). Set

sizes from 10 to 300 variations are investigated (with

increments of 10 variations until set size of 50 varia-

tions, and with increments of 50 variations afterwards).

Grasp variations not meeting the force-closure condi-

tion were discarded, as well as variations resulting in

an initial collision between the hand and the object in

order to avoid unstable grasps. The metrics’ values are

computed for all variations, and the GSIN is calculated

for each metric, using the 10%-90% percentile thresh-

olds determined in Section 4. The number of variations

from which the GSIN gets stabilised is used as the set

size Nvar to be considered in the full analysis.

The full analysis considers 126 objects and 7 hand

models. A set of 20 reference grasps is randomly se-

lected for every pair hand-object from those generated

in the experiments described in Section 4. For each

reference grasp, Nvar grasp variations are generated

analogously as in the preliminary study. GSIN values

are computed for each metric using the three different

methods for setting range thresholds: full range of vari-

ation of the metric, percentiles and soft statistics. Qual-

ity values are normalised using the thresholds defined

by the Percentiles method. For each metric, a distinc-

tion between good and bad reference grasps is consid-

ered as those for which the metric value is over or be-

low the 50th percentile threshold (thresholds taken from

the table 5). Finally, an analysis is conducted regard-

ing the different distribution of variations that improve

or worsen the value of the metric from their respective

reference grasp.

6.2 Results

Figure 9 shows the GSIN values calculated in the pre-

liminary study for each metric versus the different set

sizes considered. GSIN gets stable for sets equal or

larger than 50 variations. Thus, the number of varia-

tions Nvar to be used for the full analysis was set to 50.

This preliminary study also revealed that only 20-23%

of the variations randomly generated meet the neces-

sary force-closure condition (see Tab. 9).

Fig. 9: Graph comparing the Global Sensitivity Index

between different set sizes for each quality metric.

The full analysis considers, then, a subset of 50 vari-

ations for every reference grasp, which makes a total

amount of 1020 grasps (references plus variations) per

object, 882000 total variations, and 128520 different

grasps for each hand. The force-closure analysis per-

formed to discard unstable grasps provides, in average,
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Table 9: Percentage of grasps accomplishing force-

closure

Set Size 10 20 30 40 50 100 150 200 250 300

Valid Grasps (%) 22.8 21.2 22.8 20.1 20.2 22.4 22.5 21.4 21.6 22.0

only 20.06% of feasible grasps (176,900 from the initial

set of 882,000 variations).

QB3 showed to be the most sensitive metric with

a GSIN of 35.91%, and QB1 the less sensitive with a

GSIN of 12.76%.

Table 10: GSIN (%) for every metric

QA1 QA2 QA3 QB1 QB2 QB3 QC1 QC2 QD1 QD2

23.19 30.12 25.39 12.76 33.23 35.91 31.76 27.98 15.25 25.88

Figure 10 shows, for each metric, the GSIN values

computed for the reference grasps, distinguishing be-

tween good or bad reference grasps. Higher GSIN val-

ues are observed for bad reference grasps than for good

ones, especially for QA2, QD2, and QC2 metrics; very

low differences between good and bad reference grasps

are found for QB1 and QD1. Also, Fig. 10 shows the

GSIN values computed for their variations, distinguish-

ing between those variations that improve or worsen

the metric values from the reference grasp. The high-

est differences for variations from good reference grasps

are observed for QA1, QB2, and QB3 (15%, approxi-

mately), while variations from bad reference grasps are

found for and QA3, QB3, and QC1 (20-25%, approx-

imately). These differences match the differences be-

tween the percentages of grasps in each category shown

in Fig. 11 (referred only to those grasps meeting the

force-closure condition), with the exception of those ob-

served for variations from bad reference grasps for QA3.

The values corresponding to these graphs are detailed

in Appendix B. Finally, Fig. 12 shows the relations be-

tween the quality variation versus the distance from a

grasp to its reference grasp. Deviations are clearly dif-

ferent for some metrics depending on the hand consid-

ered; lowest deviations correspond to the Shadow Hand

for all metrics, while the Michelangelo prosthetic hand

produce high deviations for the metrics QA1, QA3, QD1,

and QD1, as well as PR2 Gripper for metrics QD1 and

QD2.

7 Discussion

Sections 4 to 6 describe the three analyses that have

been carried out on an extensive set of simulated data.

(a) QA1 (b) QA2

(c) QA3 (d) QB1

(e) QB2 (f) QB3

(g) QC1 (h) QC2

(i) QD1 (j) QD2

Fig. 10: GSIN for each quality metric. In each graph

there are three groups of columns. The left one shows

the results for the good references grasps (value over the

50% threshold); the middle group for the bad reference

grasps; and the third group for all reference grasps. In

each group blue column is the GSIN of all the variations

in the category; the orange, the GSIN of those which

improve the metric values; and the yellow column the

mean GSIN which worsen the metric.

The amount of results presented in the form of figures

and tables is large and a careful review of them is nec-

essary in order to reach useful conclusions. The most

relevant of them are discussed in this section.

First, Section 4 describes the variability analysis,

and the first question addressed is how to generate an

unbiased set of grasps. Four alternatives are proposed
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(a) QA1 (b) QA2

(c) QA3 (d) QB1

(e) QB2 (f) QB3

(g) QC1 (h) QC2

(i) QD1

Fig. 11: Distribution of grasps in each category for each

quality metric. In each graph there are three groups of

columns. The left one shows the percentage of good ref-

erence grasp (value over the 50% value); the middle

group for the bad reference grasps; and the third group

for all the reference grasps. In each group the blue col-

umn is the percentage of the variations in the category;

the orange, variations which improve the reference val-

ues; and the yellow column variations which worsen the

reference values.

Barrett Hand Michelangelo Model T PR2 Gripper

Schunk SAH Schunk SDH Shadow Hand

(h) QA1 (i) QA2

(j) QA3 (k) QB1

(l) QB2 (m) QB3

(n) QC1 (o) QC2

(p) QD1 (q) QD2

Fig. 12: Variation in the quality metric of each grasp

with respect to the distance to its reference grasp. Each

point represents a grasp and grasp on different hands

are coloured differently. Horizontal lines are drawn to

indicate the limits containing 10%, 50% and 90% of the

grasps.
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and compared. The results shown in Fig. 5 indicate

that the four methods produce indistinguishable sets

of grasps, as long as these sets are sufficiently large.

The results of the complete variability study are sum-

marised in Fig. 7 and Table 7. These results are rele-

vant, as they can be used to assess the room for im-

provement of a specific grasp, regarding a given quality

metric. An important phenomenon observed on these

results, also, is the characteristic distribution of most

of the values of the metrics which tend to concentrate

in narrow ranges with an important number of atypical

values above and below these ranges. This phenomenon

complicates the selection of upper and lower thresholds

for normalisation if the aim is to obtain an almost uni-

form distribution of values within the proposed limits.

Several approaches to set those range limits have been

tested, and finally the use of 10th and 90th percentiles

seem to be a good compromised option for all metrics.

Some of them, however, still show a non uniform dis-

tribution, especially QD2 and QC1, and more refined

approaches could be used for these specific metrics. In

practical terms a normalisation based on the 10/90 per-

centiles and the thresholds derived form them seem to

be most advisable since it provides the most uniform

distributions, but with the limitations discussed above.

The second study is the correlation analysis pre-

sented in Section 5, aimed to determine relations be-

tween metrics. The results from this analysis are again

deeply affected by the presence of atypical values in the

metrics. This problem has been addressed by using the

Spearmam correlation coefficient. Table 8 shows the re-

sults using both the Pearson and Spearman correlation

rules. The latter table shows higher correlations than

the former. These results indicate that all the metrics

based on the algebraic properties of G matrix (QA1,

QA2, and QA3) represent the same underlying princi-

ple. Metrics of Group C, shows a weak correlation with

this group. Finally, QC2 also shows a weak correlation

with metric QC1, from its same group. In short, the

ten metrics could be reduced to seven groups composed

of five independent metrics QB1, QB2, QB3, QD1, and

QD2, a pair of metrics, QC1 and QC2, and a triplet

of metrics, QA1, QA2, and QA3. Because of the weak

correlations between the metrics from groups C and A

(both groups based on algebraic properties of G), all

these metrics could be even reduced to the same group

without losing a significant amount of assessment infor-

mation.

The third and final analysis is the sensitivity study

detailed in Section 6, which is aimed to determine the

behaviour of the metrics in front of uncertainty in hand

positioning. According to table 10, all metrics present a

GSIN over 10%. Globally, the most robust metrics are

QB1 and QD1, while QB3, QC1, and QA2 are the more

fragile ones. More detailed information can be obtained

from Fig. 10, that shows the GSIN distinguishing be-

tween good and bad reference grasps. The obvious con-

clusion from this figure is that reference grasps whose

values are over 50th percentile are more fragile than

those under 50th percentile for most of the quality met-

rics, and especially for the cases of QA2, QC2, and QD2.

Metrics QD1 and QB1, which are the most robust ones

globally, have a similar robustness independently of the

goodness of their quality value. Also, for good reference

grasps, the metrics are more fragile for those grasps

variations that worsen the quality metric, except for

metrics QD1 and QD2; while for bad reference grasps,

the metrics are more fragile for those grasp variations

that improve the quality metric.

Once analysed the robustness of the different met-

rics, we can postulate that QA1 could be a good choice

for representing the triplet of metrics: QA1, QA2, and

QA3, as it is the one among them that has the lowest

GSIN .

It is also interesting to note on Fig. 12 that quality

deviations are significantly different depending on the

robotic hand considered. The Shadow Hand presents

the lowest deviations for all metrics, while the PR2

Gripper and the Michelangelo prosthesis present the

highest deviations for several metrics, which could be

related with the low number of actuators of both hands,

that greatly reduces their versatility. Grasp quality is,

thus, highly dependent on the robotic hand design. There-

fore, the design of robotic hands and prostheses could

benefit from the grasp simulation and computation of

grasp quality metrics if improvement of these magni-

tudes were used to guide design modifications.

Finally, an important result of this third analysis

that should not be neglected is the high rate of grasp

variations that do not meet the force-closure condition.

Almost four fifths of them are discarded for this reason.

We have decided to do so because some of the metrics

require the force-closure condition to be met so the met-

ric values make sense. It should be considered if some

more relaxed condition could be chosen and how this

could affect the results, and more importantly whether

results sensitivity are relevant with such amount of vari-

ations discarded.

To conclude, some comments are necessary regard-

ing the results obtained in this work in comparison to

those in previous works [34][35]. In the first place, this

work contributes with more reliable thresholds to nor-

malize and classify the metrics since they are based on

grasps obtained from a larger number of objects and

hand models. On the second place, while the correla-

tion between metrics in Group A are mantained, new
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ones appear in Group C, though they are weaker, and

those between Groups B and D are discarded. Results

on sensitivity slightly differ from those obtained in pre-

vious studies, being QB3 more sensitive, and QD1 more

robust.

8 Conclusion

This paper presents a numerical study on the practical

parameters that characterise the use of ten quality met-

rics for evaluating grasps performed by robot hands on

rigid objects. In the first place, the thresholds that indi-

cate the practical upper and lower limits of the quality

metrics have been established. These thresholds allow a

more realistic normalisation of the metrics values. How-

ever, the influence of object’s size on these thresholds

should be addressed in future work. Second, a correla-

tion analysis has revealed the underlying relations be-

tween some metrics and the independence of others,

which leads to conclude the existence of at least seven

relevant grasp aspects to be taken into account when

evaluating a grasp. Finally, the sensitivity analysis has

shown the fragility or robustness of the metrics in front

of positioning uncertainty.

The results presented in this paper may provide sev-

eral benefits. First, they provide parameters regarding

quality metrics which allow a better use of them in

grasp planners, by the setting of data-based thresholds

for evaluating and ranking of grasps. Second, the re-

sulting data are a guidance in the selection of metrics

in terms of robustness and equivalence between differ-

ent alternatives. And finally, the results also give good

hints in order to build combined metrics, which can cap-

ture more relevant aspects of a grasp and, thus, provide

a better prediction of the grasp performance.

However, this study has also some limitations that

should not be disregarded. First, this work only con-

siders ten quality metrics, while at least 24 have been

surveyed [31]. Though some of them were not compat-

ible with the present study, i.e., biologically oriented,

combined, and task oriented metrics, others could have

been included, but were discarded. Second, this paper

is focused on static grasp for holding objects, conse-

quently, no task-oriented grasp metrics or analyses have

been considered. An obvious complementary extension

of this work would be to include task oriented analyses.

Third, only static contacts and states were simulated.

Dynamic behaviour of objects during grasping would

provide a much more realistic study of the metrics as

quality predictors. This should be possible using physics

engines in order to simulate dynamic effects of grasps,

though the unreliable physical fidelity that kind of en-

gines are able to achieve poses some shadows on this

approach.

Fourth, the selection of hand models may introduce

a bias, as the metrics could be giving better or worst val-

ues depending on the hand used, as was demonstrated

by the authors in previous works [34,35]. In any case,

we believe that the wide variety of hands and models

used is enough the reduce if not eliminate this possible

bias. And fifth, the election of OpenRave as simulation

tool can also affect the results as information of contact

points may differ from those that could be obtained us-

ing other simulators. Replicating the study, using other

simulators and grasp generation procedures could clar-

ify the concerns.

Finally, the friction coefficient through this analysis

has a constant value of 0.4, which adds another limita-

tion. The friction cones produced at the resulting con-

tact points are affected when changing the value of the

friction coefficient, which could lead to different evalu-

ations of the quality measures for the same grasp pose.

Therefore, the friction coefficient has a major role as a

filter to discard more or less candidates. The sensitivity

of the metrics to friction coefficient changes has been

previously studied to some extent[47,15] and it is not

discussed in this work as it is a topic for a whole new

paper.

And last but not least, the most obvious limitation

is the problem of transferring results from simulation to

real robots. There are some studies that compare and

analyse the performance of metrics for real applications.

In fact, recent experiments have questioned the utility

of analytical metrics. In [11,2] the authors show that

grasps highly ranked by the ε-metric (QC2 in this pa-

per, see Table 1) perform poorly on real robots. It has

also been demonstrated that this metric has a high sen-

sitivity to positioning errors [43]. There can be several

reasons for this fragility of the grasp quality metrics. On

the one hand, the metric used in the above works, QC2,

has shown to be very sensitive to uncertainty, a key

aspect on the execution on real robots. On the second

hand, the correlation analysis has shown that there are

at least seven independent dimensions for evaluating

a grasp. Grasp planners which rely on a single metric

and ignore the other dimensions are probably providing

incomplete grasp quality predictions.

The results on this paper are exclusively based on

static simulation. They might be taken with cautions

until a proper validation and correlation with results

obtained from a real-world scenario. However, the prepa-

ration and realization of such experimentation is com-

plex and out of the scope of this work. We see the results

presented here as the first and necessary phase of such

a work which we are currently addressing.
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We foresee applications which could take profitable

use of the results and methodology proposed in this pa-

per. The results on this paper constitute a huge back-

ground database to be used as reference for evaluating

hand designs. The methodology would consist on test-

ing a hand on a sufficiently large database of objects,

and employing a large number of grasps in each case.

The results could be statistically compared against the

ones shown in this paper, and evidence-based conclu-

sions could be reached regarding the capabilities of the

novel design. The methodology and results described in

this paper could be easily adapted for this application.

A promising preliminary work [21] has been already

published following this approach.
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R31 - 2008 - 000 - 10062 - 0), by Ministerio de Ciencia e
Innovación (DPI2011 - 27846), by Ministerio de Economı́a y
Competitividad (DPI2014 - 60635 - R) by Generalitat Va-
lenciana (PROMETEO/2009/052, PROMETEOII/2014/028
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A Definition of Grasp Quality Metrics

Group A: Algebraic properties of G

A.0.1 QA1 - Smallest singular value of G

It measures how far the grasp configuration is from falling into
a singular configuration, losing the capability of withstanding
external wrenches [24]. When a grasp is in a singular config-
uration, at least one of the singular values of G is zero. It is
calculated as:

QA1 = σmin(G) (2)

where σmin(G) is the smallest singular value of the matrix
G. It has to be maximised and has no units. The lower limit
is zero and the upper limit is not determined.

A.0.2 QA2 - Volume of G in the wrench space

It gives an idea of the global contribution of all the contact
forces [24], and can be calculated as:

QA2 = v(G) =

r∏
i=1

σi (3)

where r is the rank of G, and σ1 ≥ σ2 ≥ . . . ≥ σr denote
the nonzero singular values of G. This metric should be max-
imised and has no units. The lower limit is zero and the upper
limit is not determined.

A.0.3 QA3 - Grasp Isotropy Index

It looks for a uniform contribution of the contact forces to
the total wrench exerted on the object [17]. It is calculated
as:

QA3 =
σmin(G)

σmax(G)
(4)

This metric has to be maximised and has no units. It
approaches to one at a desirable configuration (isotropic) and
is equal to zero at the singular configuration. Therefore, it is
already normalised into the range 0 to 1.

Group B: Distribution of contact points

A.0.4 QB1 - Distance between the centroid of the

contact polygon and the object’s center of mass

It aims to minimise the effect of gravitational and inertia
forces during the motion of the robot, measuring the distance
between the center of mass p of the grasped object and the
centroid of the contact points pc [12,30]. The centroid of the
contact points is calculated as:

pc =
1

nc

nc∑
i=1

ci (5)

where nc is the number of contact points and ci is the location
of each contact point. Then the metric is calculated as:

QB1 = distance(p, pc) (6)

This metric has to be minimised and has units of length.
We propose its normalization taking into account that its
lower limit is zero and the upper limit can be calculated as
the maximum distance from the center of mass of the object
to any point in the object’s contour (distancemax), which can
be obtained as the maximum distance from the center to any
of the corners of the object bounding box. Additionally, the
metric has been adapted to have 1 as its best value:

QB1 = 1− distance(p, pc)/distancemax (7)

A.0.5 QB2 - Area of the grasp polygon

This metric is defined as the area of the polygon formed by
the contact points [27]. A larger area is argued to give a more
robust grasp, i.e. with the same finger force, the grasp can re-
sist larger external torques [45]. It has been used in robotics
for three finger hands, but for more than three finger hands,
the indicator is extended generating the contact plane by se-
lecting three fingers and the remaining contacts are perpen-
dicularly projected onto that plane. The index is calculated
as:

QB2 = Area(Polygon(p1, p2, p3, p4P , p5P , . . .)) (8)

where p1, p2, p3 are the contact points for the three selected
fingers, and p4P , p5P , . . . are the projected points of the other
fingers onto the plane.

This metric has to be maximised and has units of [area].
We propose to normalise this metric taking into account that
its lower limit is zero and the upper limit (Areamax) can be
calculated as the area of the polygon when the hand is open
in a plane with the joints at their maximum abduction limits.
Then, the normalised metric can be calculated as:

QB2 = Area(Polygon(p1, p2, p3, . . .))/Areamax (9)
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A.0.6 QB3 - Shape of the grasp polygon

This metric is defined for planar grasp polygons and compares
how far the internal angles of the grasp polygon are from those
of the corresponding regular polygon [17]. For the five fingers
of the human hand, a planar grasp polygon is obtained in the
same way as for QB2. This index is calculated as:

QB3 =
1

θmax

nf∑
i=1

|θi − θ̄| (10)

where nf denotes the number of fingers, θi is the inner angle
at the ith vertex of the polygon, θ̄ denotes the average angle
of all inner angles of the grasp polygon and θmax is the sum of
the differences between the internal angles when the polygon
has the most ill-conditioned shape (degenerates into a line)
and those of the regular polygon.

θmax =

nf∑
i=1

|θi − θ̄|ill conditioned

= (nf − 2)(180− θ̄) + 2θ̄

(11)

This metric has to be minimised and has no units. The lower
limit is zero and upper limit is 1. We propose to adapt this
metric to have 1 as its best value:

QB3 = 1−
1

θmax

nf∑
i=1

|θi − θ̄| (12)

Group C: Magnitude of forces

A.0.7 QC1 - Smallest maximum wrench to be resisted

The grasp quality is defined as the largest perturbation wrench
that the grasp can resist with independence of its direction
[13,19]. Only the directions of forces are used and their mag-
nitudes are upper-bounded to 1. Defining GWS as the set of
all possible wrenches w acting on the object, the maximum
of w ∈ GWS lies on the boundary approximated as the con-
vex hull over the discretised frictions cones (CW ). Then the
quality metric is the radius of the largest sphere centred at
the origin, which is contained in GWS:

QC1 = min
w∈CW

‖w‖ (13)

This metric has to be maximised and it has [force] units
if the torque in w is divided by a parameter ρ with units of
[length]. The index depends on the choice of the origin of the
reference system used to compute torques. In this work, we
use the center of mass of the object and limited the magnitude
of the torques to 1 choosing ρ as distancemax defined previ-
ously for the metric QB1. Then, the upper limit of the index
is
√

2 and the lower limit is zero. Then, we can normalise this
index as:

QC1 =
minw∈CW ‖w‖√

2
(14)

A.0.8 QC2 - Volume of the convex hull

This metric is defined to avoid the dependence of the previous
index on the selection of the origin of the reference system.
The metric calculates the volume of the boundary of the set
of all possible wrenches acting on the object [26].

QC2 = Volume(CW ) (15)

The reference system and ρ have been chosen as described
in the previous metric. The index has to be maximised and
has units of [force]6. Lower limit is zero and upper limit is
no determined so that it is initially not possible to normalise
the index in the range 0 to 1. However, we used the Monte
Carlo method to estimate the upper limit for each hand. The
method was used to randomly generate wrenches and deter-
mine QC2 for a very large number of iterations. The vari-
ables that could be randomised are the contact normals ni =
(nxi, nyi, nzi) and the contact points ci/ρ = (cxi, cyi, czi)/ρ.
For each of their components, their values can vary in the
range between [-1,1]. In order to assure that ni is normalised,
it has to satisfy the following equation:

n2
yi + n2

zi = (1− n2
xi) (16)

which can be interpreted as the equation of a circle with ra-

dius
√

1− n2
xi. Therefore nyi and nzi can be calculated as:

nyi =
√

1− n2
xicos(θ) (17)

nzi =
√

1− n2
xisin(θ) (18)

Giving random values to nxi in the range between [1, -1]
and to θ in the range between [0,2π], we obtain a normalised
value of ni uniformly distributed. In order to give values to ci,
initial experiments were performed given random values be-
tween [-1,1] to cxi, cyi, czi. They were represented as a cube
centred at the origin and with dimensions 2 x 2 x 2. As it was
expected, greater volume is obtained when the contacts ap-
proach the surface of the cube. The parameter ρ is calculated
as
√

3 from the center of the cube to one of the corners. Hav-
ing the contact points fixed at the surface of the cube, nxi
and θ are randomised using different number of iterations un-
til two consecutive trials give the same results of Volumemax
with an allowable error. The normalised metric then can be
calculated as: QC2 = Volume(CW )/Volumemax.

Group D: Configuration of the manipulator

A.0.9 QD1 - Posture of hand finger joints

This index metrics how far each joint i is from its maximum
limits [25]:

QD1 = 1/nq

nq∑
i=1

(
yi − ai
Ri

)2

(19)

where nq is the number of hand joints, yi the current position
of the joint and Ri is the joint angle range between the ref-
erence position ai and either the upper or lower angle limit,
used to normalise the index. It is defined as:

Ri =

{
ai − yim if yi < ai
yiM − ai if yi > ai

where yiM and yim are the maximum and minimum angle
limits of the ith joint. In this work, the reference position ai
was selected as the initial posture of each hand as this will
be the more efficient in terms of energy consumption.

The index has to be minimised, so that the grasp is op-
timal when all joints are at the reference position, having a
quality metric of zero, and it goes to one when all its joints are
at their maximum angle limits. The metric has been modified
to have 1 as its best value:

QD1 = 1− 1/nq

nq∑
i=1

(
yi − ai
Ri

)2

(20)
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A.0.10 QD2 - Inverse of the condition number of GJ

The condition number of a matrix is defined as the ratio of its
maximum singular value to its minimum singular value. For
the Jacobian, the inverse condition number gives a metric of
the sensitivity of the magnitude of the end-effector velocity
to the direction of the joint velocity vector [37,18]. It is a
dexterity metric that considers the capability of the hand to
move an object in any direction with the same gain, which
implies a good manipulation ability [31]:

QD2 =
σmin(GJ )

σmax(GJ )

where σmin and σmax are the smallest and largest singular
values of the grasp Jacobian matrix GJ [20]. This metric has
to be maximised and has no units. Lower limit is zero and
upper limit is one, indicating a uniform transformation and
a grasp with the maximum quality. Therefore, this metric is
already normalised into the desired range 0 to 1.

B Numeric Results from Sensitivity

Analysis

Table 11 details the GSIN values for every metric computed
for the reference grasps, distinguishing between good or bad
reference grasps and between those variations that improve
or worsen the metric values from the reference grasp. This
table is related to Figure 10.

Table 11: GSIN calculated for each quality metric dis-

tinguishing between good or bad reference grasps and

variations that improve or worsen the metric values

Good Quality Bad Quality All Grasps
All Variations 28.36% 11.57% 11.64%

QA1 Improve 19.89% 21.11% 10.95%
Worsen 33.89% 4.11% 10.87%
All Variations 42.72% 3.98% 1.46%

QA2 Improve 43.21% 6.62% 1.18%
Worsen 44.57% 1.28% 1.44%
All Variations 28.01% 16.25% 10.30%

QA3 Improve 22.63% 31.29% 11.54%
Worsen 33.43% 4.56% 8.86%
All Variations 11.27% 11.24% 6.36%

QB1 Improve 9.44% 12.62% 6.08%
Worsen 12.94% 9.95% 6.47%
All Variations 31.38% 12.63% 5.55%

QB2 Improve 26.89% 25.15% 4.59%
Worsen 40.66% 11.38% 5.23%
All Variations 28.32% 20.95% 15.26%

QB3 Improve 23.40% 37.84% 15.66%
Worsen 39.94% 18.57% 14.79%
All Variations 28.27% 10.96% 9.09%

QC1 Improve 24.53% 33.37% 9.24%
Worsen 31.88% 8.34% 9.49%
All Variations 33.13% 4.94% 1.36%

QC2 Improve 30.66% 11.32% 1.22%
Worsen 37.86% 5.76% 1.45%
All Variations 12.99% 14.19% 9.94%

QD1 Improve 12.82% 17.82% 12.30%
Worsen 11.10% 7.73% 7.78%
All Variations 34.04% 2.18% 4.78%

QD2 Improve 37.52% 8.59% 7.24%
Worsen 32.08% 0.33% 8.12%

Table 12 shows the distribution of the variations of good
and bad reference grasps according to whether the variation

improve or worsen the reference quality value. This table is
related to Fig. 11.

Table 12: Distribution of the variation of reference

grasps (good or bad) according to whether the varia-

tion improve or worsen the reference quality value.

Good Quality Bad Quality All Grasps
All Variations 53.12% 46.88%

QA1 Improve 33.60% 52.29% 43.22%
Worsen 66.39% 46.88% 56.20%
All Variations 58.40% 41.60%

QA2 Improve 34.92% 50.54% 41.95%
Worsen 65.08% 49.35% 57.86%
All Variations 52.64% 47.36%

QA3 Improve 34.07% 54.41% 44.66%
Worsen 65.90% 44.48% 54.60%
All Variations 54.71% 45.29%

QB1 Improve 43.48% 54.41% 46.81%
Worsen 56.45% 45.53% 50.25%
All Variations 51.51% 48.49%

QB2 Improve 30.74% 64.92% 30.16%
Worsen 69.18% 34.97% 36.86%
All Variations 42.37% 57.63%

QB3 Improve 28.39% 72.34% 34.09%
Worsen 71.11% 27.31% 32.71%
All Variations 59.91% 40.09%

QC1 Improve 43.91% 68.10% 31.77%
Worsen 55.93% 19.13% 34.00%
All Variations 49.31% 50.69%

QC2 Improve 37.03% 50.27% 28.25%
Worsen 62.70% 46.78% 37.97%
All Variations 60.33% 39.67%

QD1 Improve 48.85% 63.84% 53.51%
Worsen 51.05% 33.90% 45.72%
All Variations 64.99% 35.01%

QD2 Improve 42.65% 29.02% 37.88%
Worsen 56.84% 10.94% 40.90%
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