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Abstract Swarm robotics studies the intelligent col-

lective behaviour emerging from long-term interactions

of large number of simple robots. However, maintaining
a large number of robots operational for long time

periods requires significant battery capacity, which is an

issue for small robots. Therefore, re-charging systems

such as automated battery-swapping stations have been
implemented. These systems require that the robots

interrupt, albeit shortly, their activity, which influences

the swarm behaviour. In this paper, a low-cost on-the-

fly wireless charging system, composed of several charg-

ing cells, is proposed for use in swarm robotic research
studies. To determine the system’s ability to support

perpetual swarm operation, a probabilistic model that

takes into account the swarm size, robot behaviour

and charging area configuration, is outlined. Based on
the model, a prototype system with 12 charging cells

and a small mobile robot, Mona, was developed. A

series of long-term experiments with different arenas

and behavioural configurations indicated the model’s

accuracy and demonstrated the system’s ability to
support perpetual operation of multi-robotic system.
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Artificial Intelligence Centre, Faculty of Electrical Engineer-
ing, Czech Technical University, Prague, Czechia

Fig. 1 Structure of the proposed system including: i) a
mobile robot, Mona, ii) a wireless charger receiver attached
to the robot, and iii) a charging pad including independent
charging cells.

1 Introduction

Mobile robots are employed with growing frequency

in many different fields such as exploration, education

and domestic use (service and entertainment). Whilst
robots could become our assistants and make our lives

easier, their capability of reliable and safe long-term

autonomous operation is still limited, which sometimes

causes them to be considered a burden rather than
a benefit [1,2]. One of the fundamental limitations is

that experimental robotic platforms cannot operate for

long time because of their limited battery capacity, and

therefore, experiments that verify reliability of robotic

methods in long-term scenarios are not common.

The scope of this work is concerned with the

power management aspect of robotic swarms which
are supposed to operate for arbitrarily-long periods

of time. Mobile, untethered robots must carry an on-

board power supply which needs to either be replaced

or recharged when it has been depleted. Whilst the
computation capabilities of small and medium sized

mobile robots has increased significantly over the last

decade, battery capacity did not follow Moore’s law.
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This severely limits the use of small robots in most

application areas to short missions (< 1 hour).

Swarm robotics is one of the promising approaches

for mobile robot coordination, which takes inspiration

from social insects seen in nature. In swarm robotics [3],
local interactions among a group of relatively simple

mobile robots, running a simple algorithm, result in a

flexible, collective problem solving capability as seen

in ants, bees and termite colonies. As highlighted
in the seminal work by Şahin [4], one of the main

criteria of swarm robotics is having a “large number of

robots”, typically at least 10–20. The number of robots

being used in swarm robotics research studies increased

significantly with swarm sizes now reaching up to
1000 robots [5]. Such a large number of robots itself

presents a significant power management challenge.

Furthermore, the emergence of some swarm-intelligent

behaviours might require time which far exceeds the
time of operation limited by the battery capacity.

In robotics, in order to tackle the power problem,

several different approaches have been employed to

date. The simplest, but most tedious way is to manually

connect robots with low battery levels to chargers [6],
or to (again manually) replace their batteries [7]. These

approaches become cumbersome and inefficient when

there is a large number of robots or when the experi-

ment requires long time. In more advanced approaches,
the robots seek charging stations by themselves when

their battery level drops below a critical value [8] or

they schedule their charging times in accordance with

anticipated users’ demands [9]. This still causes the

robots to spend a significant fraction of their operation
time on the charging station. Slow recharging can be

solved by automated battery swapping systems [10], but

even here the robot has to interrupt its current activity

and visit the battery-swapping station.

To avoid the battery problem completely, one can
supply the robots in a continuous manner. While single

robots can be tethered and connected to energy supply

directly [11], a tethered multi-robot system would be

hard to manage, as the cables would get entangled
over time. Another approach is a powered ground [12–

16], where the robots collect electricity continuously

via direct contacts that are in touch with the ground

they move on. These systems were successfully used

in swarm experiments lasting several hours. However,
the mechanical connectors get worn out and dirty

over time, which affects the energy flow to the robots

and that can significantly impact the behaviour of the

entire swarm. This effect needs to be avoided in swarm
experiments which are not concerned with energy

autonomy. Moreover, these methods would be hard to

combine with other systems where the ground is used

for other purposes, e.g. the simulated pheromone [17].

Finally, researches [18–20] suggest to use wireless power

transfer which does not suffer from the wear-and-tear

of contact-based systems.

In this paper, a novel on-the-fly charging for
robotic swarms is proposed. The system uses inductive

(wireless) energy transfer to continuously keep the

battery of each robot charged. Unlike other wireless

systems, the proposed one consists of several charging
pads, which allows to scale up its size simply by adding

more of them, see Fig. 1. Furthermore, multiple pad

configuration ensures homogeneous density of power

and prevents interruption of the swarm operation even

in case of charger failure. The system improves the
state-of-the-art in: (1) Seamless operation; robots are

not interrupted by charging, (2) Continuous charging

despite of charging system and robot wear-and-tear,

(3) Scalability; the system does not impose constraints
on the number of robots or arena size, (4) Reliability;

readily available commercial technology make the sys-

tem reliable, and (5) Low cost; off-the-shelf components

make the system inexpensive to build and operate.

The remainder of this paper is organised as follows:
Section 2 provides a review of the existing body

of work in terms of existing swarm robot platforms

and their related charging systems. Section 3 provides

an introduction to wireless inductive charging whilst
Section 4 presents the realisation of the proposed

system with different experimental configurations in

Section 5. In Section 6, a probabilistic model of the

charging scenarios is introduced and in Section 7, the

results of the experiments are presented. Sections 8
and 9 present the discussions and conclusions of the

work.

2 Related Work

A review of the most common swarm robotic systems

is presented in this section with a specific focus on their

power management capabilities and autonomy times.

Several mobile robot platforms exist for swarm
robotic applications (see Table 1). Alice [21], a very

small-sized platform, has been employed in many

different swarm projects. The first design of Alice

used two watch batteries, but solar panels and lithium

batteries were employed later to increase the autonomy
time [30]. AMiR [22] and Colias [23] are low-cost

open-hardware platforms for swarm robotics research.

They have 1-3 h of autonomy time depending on the

tasks they are required to perform. Their batteries
are charged manually by connecting to a charger. E-

puck [24] is one of the most successful robots primarily

designed for education. Due to its price and simplicity,
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Table 1 Comparison of size, autonomy time and charging
method for some swarm robotic platforms

Robot Ref
Size Time Charging
[cm] [hours] method

Alice [21] 2.2 10 Manual/Solar
AMiR [22] 6.5 2 Manual
Colias [23] 4.0 1-3 Manual
Droplet [15] 4.4 - Powered ground
E-puck [24] 7.5 2-4 Manual
Foot-bot [25] 13.0 1-3 Autonomous
Jasmine [26] 3.0 1-2 Autonomous
Khepera [27] 5.5 1/2 Autonomous
Kilobot [28] 3.3 3-24 Manual
Kobot [7] 12.0 10 Manual
S-bot [29] 12.0 2 Manual
SwarmBot [8] 12.7 3 Autonomous

it is frequently employed in swarm robotics research. It

has user-replaceable batteries and an autonomy time of

2-4 h. Foot-bot (a version of MarXbot platform [10]) was
designed for swarm robotics research, specifically the

Swarmanoid project [25] and it remains one of the most

capable swarm platforms available. It has an autonomy

time of 1-3 h depending on the configuration. Its
battery can be changed both manually or automatically

by a battery swapping station. Jasmine [26] is a small

size robotic platform designed for implementation of

bio-inspired swarm scenarios [31]. It has infra-red (IR)

sensors both for proximity sensing and communication
and an autonomy time of 1-2 h. Khepera [27] is one

of the earliest modular robots designed for swarm

robotics. While having small size, it has communica-

tion, stereovision and object manipulation capabilities.
It has an autonomy time of 30 min and can be recharged

both manually or through a docking station. Kilobot

[28] is a relatively recent swarm robotic platform with

novel functions such as group charging and group

programming. Due to its simplicity and low power
consumption, it has a long autonomy time of up to 24 h.

Robots are charged manually in large groups. Kobot [7]

was specifically designed for swarm robotic research.

Its sensoric equipment makes it an ideal platform for
various swarm robotic scenarios such as coordinated

motion. It has approximately 10 h of autonomy time,

and its replaceable battery is recharged manually. S-

bot [29] is one of the most influential and capable swarm

robotic platforms ever built. Each s-bot has a unique
gripper design capable of grasping objects and other s-

bots. They have an autonomy time of approximately

1 h. It does not have replaceable batteries and it

is charged manually. SwarmBot [8] is another swarm
robotic platform with approximately 3 h of autonomy

time and the ability to find and dock to charging

stations which are placed on walls.

In autonomous charging, a charging station is used,

which a robot should locate and dock to when its

battery level is low. One of the earliest attempts in

autonomous charging relied on a light source attached

to the recharging station and light following behaviour
of the robot [32]. Another autonomous recharging

system used an environment map with known charging

station location [33]. Later methods use IR [34] or

vision [35,36] to localise the recharging station. In [37],
the use of a mobile charger robot, based on [38]

was proposed. The mobile recharger was larger than

the swarm robots and it could charge six robots

simultaneously.

In the powered ground method, robots with con-
ductive brushes move on a special floor with powered

strips, e.g. Krieger et al. [14] used this approach to

demonstrate ant-inspired foraging behaviour in several

30 minutes trial or Winfield and Nembrini [13] used
a 9-meter wide powered floor to investigate swarm

coherence. In Martinoli et al. [39] reported that their

powered floor had 95% efficiency due to contact

and frictional losses. Watson et al. [12] designed a

similar powered ground system for embodied evolution
experiments, which lasted over 3 hours. In the inductive

charging method, there is a primary coil (transmitter)

on the ground and a secondary coil (receiver) on the

robot. Changing the magnetic field on the transmitter
induces current on the receiver, which powers the

robot. An inductive charging system with a single

transmitter coil, that allowed perpetual, battery-less

operation of 5 robots, was presented in [18]. Kepelson

et al.[19] designed an inductive charging system with
one primary transmitting loop and several relay loops

to increase the charging coverage.

Except for a few platforms (Alice, Kilobot, and

Kobot) most of the robots have an autonomy time
around 1-3 h, which imposes a serious limitation

for many swarm robotics scenarios. Some charging

methods (tethering, manual charge) are not suitable

for swarm experiments because they do not scale well

with the number of robots. Other methods affect the
swarm behaviour in short-term perspective by requiring

that the robots interrupt their operation to recharge or

swap their batteries. Finally, the contact-based powered

ground methods are subject to wear-and-tear, which, in
long-term, affects the energy transfer rate to the swarm

and hence the swarm behaviour.

The most feasible alternative is based on wireless

energy transfer. However, the systems presented in [18,

19] used a single transmitter, which does not provide
the same magnetic flux across the entire arena, which

can result not only in inefficient energy transfer but also

can affect the swarm behaviour in undesired ways.
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Fig. 2 (a) Tight coupled system (inductive coupled) and
(b)Loose coupling system (magnetic resonance coupling) [41].

The solution proposed in this paper uses an induc-
tive charging system which ensures homogeneous power

distribution across the operational area of the swarm.

The system is both scalable and tested for swarm

applications and it was shown to be able to support
continuous swarm operation for several days. In theory,

the system could operate indefinitely. Unlike [18], the

proposed system is scalable hence suitable for robot

swarms and unlike [19], our system is more energy

efficient and enables continuous operation of more
numerous swarms in larger areas.

3 Wireless Charging

Wireless charging technology can be classified based on
its working principle. Common methods include elec-

tromagnetic radiation charging, electric field coupling

charging, and magnetic field coupling charging [40].

For short distance power transfer (∼cm), magnetic
field coupling in the form of electromagnetic induction

(inductive charging) is the primary technology in use.

3.1 Inductive Charging

Magnetic field coupling works by creating an alter-

nating magnetic field, flux, in a transmitter (primary)

inductor coil and converting the flux in a receiving

inductor coil (secondary). Depending on the distance

and alignment between the primary and secondary
coils, inductive charging can be classified as either tight

coupling or loose coupling. A model of how the system

works is shown in Fig. 2.

3.2 Tight Coupled Systems

Tight coupled systems, or inductive coupling, operate

when the primary coil generates a varying magnetic

field across a secondary coil. The coils cannot be far
from each other, as the near-field power attenuates to

the cube of the distance between the two coils [42]. For

more efficient operation, the secondary coil is tuned to

Fig. 3 Block diagram of a general wireless charging system

the operating frequency, which is normally in the kHz

range.

These systems have a higher efficiency when trans-
mitting power, however the distance between coils

should be less than the diameter of the coils [41]. These

type of systems are effective from a few millimetres

to a few centimetres, however they are susceptible to

misalignment.

An important consideration is that two tightly
coupled coils cannot resonate at the same time. This

means that there is a design trade-off for inductive

charging systems between more efficiency or better

performance when the coils are not aligned properly.

3.3 Loose Coupled Systems

Loose coupled systems are based on the principle
of magnetic resonance coupling, where the secondary

coil is part of a resonant circuit, which is tuned

to the primary coil frequency. High energy transfer

can be achieved over longer distances than inductive

coupling [41], and one transmitter can transmit to
multiple resonators [43]. These systems achieve a

reasonable efficiency even when the coils are misaligned

or not in the line of sight. A drawback is that they are

more complex to implement than inductive coupling.
The operating frequency is in the MHz range.

3.4 Implementation of Inductive Charging

A general block diagram of an inductive charging

system is shown in Fig. 3. The transmitter is formed

by an AC/DC rectifier, which is connected to a mains

power supply, a DC/DC converter to change the level
of voltage and a DC/AC inverter to make the varying

magnetic field on the transmitter coil.

The receiver system consists of a receiving coil

connected to an AC/DC rectifier to create a DC

voltage, then a DC/DC converter connected to the

system load.

Tight coupled systems are generally composed of a

single transmitting coil and a single receiving coil. Loose
coupled systems can exist in complex configurations

that contain up to four coils with impedance matching,

relay resonator, and domino resonator systems [44,45].
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Fig. 4 Propagation models: (a) SISO, (b) MISO, and (c)
MIMO.

3.5 Propagation Models

There are three fundamental near-field magnetic
propagation models: single-input-single-output (SISO),

multiple-input-single-output (MISO) and multi-input

multi-output (MIMO) configurations. These configura-

tions are shown in Fig. 4.

3.5.1 SISO

The transmission efficiency is highly dependant on

the mutual inductance between the two coils, the

quality factor Q, and the load matching factor. The

quality factor indicates the energy loss during power
transmission; the biggerQ is, the less energy is lost. The

load matching factor measures how tight the resonance

frequencies are matched. The power received at the load

of the receiver can be obtained with Eq. 1:

Pr = PtQtQrηtηrk
2 , (1)

where Pr is the received power, Pt is the transmitted

power, ηt and ηr are the efficiencies of the transmitter

and receiver, Qt and Qr are the quality factors of

the transmitter and receiver, and k is the coupling

coefficient that is determined by the coil alignment,
distance, ratio of diameters, and shape of the coils.

3.5.2 MISO

In MISO systems each coil of a charger is coupled,

at a resonant frequency, with a receiver. The power

delivered to each receiver can be determined from Eq. 2:

Pn
r = Pn

t Q
n
t Qrη

n
t ηrk

2

n(dn) , (2)

where Nt represents the number of transmitting coils,

Pn
t , Q

n
t and ηnt denote the transmitted power, quality

factor and efficiency of the coil n and dn denotes the

distance between the charger coil n and the receiver.

3.5.3 MIMO

In the MIMO transmission model, a receiver receives

the power from each individual transmission coil

separately. The receiver power at the load is given by

Eq. 3:

Pn,m
r = Pn

t Q
n
t Q

m
r ηnt ηrk

2

n,m(dn,m) (3)

Fig. 5 The utilised prototype charging pad (30×40 cm2)
including 12 independent cells (M4,3) supplied with a USB
hub (5 V, 1 A).

4 System Implementation

This section presents the design of the prototype system

in three parts: i) the design of the charging pad

and the robot platform, ii) the design of experiments
to investigate the feasibility of the proposed system

and iii) the behavioural improvement to increase the

performance of the system.

4.1 Arena Configuration

The arena is a charging pad with a matrix of indepen-

dent charging cells. In the developed prototype for this
work, 12 cells were utilised as shown in Fig. 5.

The charging pad is represented by a matrix Mm,n:

Mm,n =

c1,1 c1,2 · · · c1,n
c2,1 c2,2 · · · c2,n
...

...
. . .

...

cm,1 cm,2 · · · cm,n

, (4)

where cn,m is a charging cell at position (m,n) in the

arena. The cells have a binary state; on or off (1 or 0).
In this work the size of the cell matrix is M4,3.

Each cell is able to be activated or deactivated

independently and can provide a maximum charging

current of 1 A. However, this is limited to 500 mA to
prevent overheating. Fig. 6 shows (a) a charging cell

and (b) a receiver module.

The method of charging selected for this work

is a Tight Coupled SISO system, which deals with
the misalignment issues described in Section 3.2 by

using an RF communication to only provide power

to the transmission coil when the receiver is in the
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Fig. 6 (a) A charging cell with the extended active area and
(b) a receiver antenna that is attached to the bottom layer of
robot’s board.

correct location. This reduces the power consumption
and increases safety, as the transmission coils are

only turned on when required. The wireless power

transmitter and receiver circuits that were used in

this work have been developed based on the typical
application circuit proposed on the datasheets of the

modules (BQ500210 and BQ51013B). The schematics

of the circuits are presented in Appendix I.

The results of the preliminary experiments showed

that there was a delay caused by the time taken for
the receiver to connect to the transmitter, (tc), which

is about 1± 0.5 sec. This delay is a constant predefined

time which the charger’s and receiver’s processors

require to establish a connection and to avoid noise,
hence at this stage of the research, there was no method

available to eliminate this delay. The utilised charging

cells are low-cost (£4 per one) off-the-shelf modules

which can be easily added to extend size of the arena.

4.2 Robot Platform

To investigate the feasibility of the proposed system,

a mobile robot, called Mona, was developed. The

robot is a customised design of a previously developed

robot, Colias [23]. It is specially designed to utilise
an inductive charging approach as well as several

additional functions such as a radio frequency (RF)

transceiver and battery level monitoring module. It is

a low-cost (£30) and small yet capable robot with a

diameter of approximately 7 cm.
Fig 7 shows a Mona robot and its modules.

The robot has been designed as a modular platform

allowing deployment of additional modules that are

attached on top of the platform, such as a vision
board [46]. The upper board could be used for high-

level tasks such as inter-robot communication and user

programmed scenarios for swarm robotic applications.

Fig. 7 Mona Robot with a 3D printed case. It has a very
limited sensing ability including 3 IR proximity sensors,
RF transmitter module to send battery level, a Li-Po
battery charging circuit, two voltage regulators for motor
and main processing unit, two 29 mm diameter wheels, DC
motor drivers (H-bridge), two gearhead DC motors, and a
temperature sensor at the bottom of the robot to monitor
the ambient temperature.

The platform board is designed for low-level functions

such as a power management, motion control, and
communication between the robot and the charging

cells.

An AVR 8-bit microcontroller (ATMEGA-168PA,
with 16 KB in-system self-programmable flash memory

and 1 KB internal SRAM) is utilised as the main

processor. Two micro DC gearhead motors (with a

high gear ratio of 400:1) and two wheels with diameter

of 29 mm move Mona with a maximum speed of
15 mm/s. The arena’s surface is made of methyl

methacrylate (Perspex) which ensures no slippage of

the robot wheels with a rubber tire. Based on results

of preliminary experiments on the effective distance
between transmitter and receiver coils, the size of

wheels were chosen 29 mm. This size allows to keep

the transmitter-receiver distance below 10 mm, which

maintains the efficiency of the power transmission.

The receiver we attached to the robots is relatively
light (approx. 5 g) and hence robots behave as

without an additional payload. The rotational speed

for each motor is controlled individually using a pulse-

width modulation (PWM) approach which is explained
in [47]. Each motor is driven separately by an H-bridge

DC motor driver, and consumes between 100 mW and

200 mW of power, depending on the load and speed.

Mona employs three short-range IR proximity
sensors in front to detect and avoid obstacles within

a distance of approximately 2±0.5 cm [48]. Since Mona

uses basic IR proximity sensors without encoders or

filters, it is not possible to deploy it outdoors. Power
consumption of the robot with full forward motion

with all devices on (in an uncluttered arena with only

walls) is about 700 mW, but with LEDs off and with
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Table 2 Power consumption of Mona’s modules at 3.7 V

Module Mode Power [mW]
Motors 4 mm/s 225
Motors 12 mm/s 340
IR Proximity continuous 190
IR Proximity ∼5 Hz 50
RF Tranceiver transmitting 70
RF Tranceiver idle 30
LEDs - 50
Others - 50

optimising the IR proximity sensors and RF operation,

the robot consumes about 450 mW. A 3.7 V, 240 mAh
lithium battery is utilised as the main power source,

which allows for approximately an hour of continuous

operation. Table 2 illustrates the power consumption of

Mona’s modules.
The power consumption outlined in the Table 2

shows that the highest power consumption is for the

motors, especially when the speed is high. The IR

proximity sensors are the second highest consumer

of power. However, with careful management through
their occasional use only, the operational time of the

robot can be increased.

To avoid transmitter magnetic field from interfering

with Mona’s processor, electromagnetic (EMI) shield is
attached to the bottom of the main board in between

receiver’s coil and the robot’s PCB. The shielding layer

also isolates the receiver from magnetic field generated

by the DC motors.

5 Experimental Setup

Three different sets of experiments were conducted: i)

to test the feasibility of an inductive charging; a single

transmitter in the pad and a single receiver attached

to a robot, ii) to investigate the effects of different
pad configurations on the performance of the system,

and iii) to apply behavioural adjustments to the robots

to provide a longer autonomy time and to achieve

perpetual autonomy.

5.1 Static Configuration Experiments

5.1.1 Hardware Feasibility

A random walk scenario was performed at a speed

of 10 mm/s without any active charging. The results

of the experiment provided a diagram of a long-term

trajectory path of the robot showing how uniformly
it covered the arena. The walking algorithm was a

simple forward motion, with the robot turning to a

random direction to avoid collisions with the walls.

A visual localisation system, developed in [49,36], was

used to track the robots during the experiment using

an overhead camera.

To demonstrate the amenability of the charging pad

to be used in various swarm robotic scenarios, where
the robot remains on a charging cell for a long period

of time (e.g. as a food source, a nest, or a defined

charging station [50–53]), an experiment was conducted

to evaluate the pad’s thermal profile. A Mona robot
was placed, stationary, in the middle of a charging cell

and the battery level and charging pad’s temperature

were recorded. During this experiment, the battery was

charged from 3.4 V to 4.2 V.

5.1.2 Robot Speed

The proposed system is a simultaneous charging ap-

proach which provides a small amount of power over a

short span of time, during which the robot’s receiver

and arena transmitter are in resonance. The typical
duration of the resonance strongly depends on the robot

speed. To investigate the effects of the robot’s speed on

the performance of the system when all 12 chargers were

activated. three sets of experiments were run, with the

robot’s forward speed set at vo ∈ {4, 8, 12} mm/s. The
duration of each experiment was 60 min and it was

repeated for each configuration 5 times. The battery

level was logged every 5 sec using an RF transmitter.

For comparison, the experiment was run for each speed
with the charging pads deactivated.

5.1.3 Number of Cells

To investigate the effects of the number of charging

pads on autonomy time of Mona, a set of experiments

were conducted where different numbers of cells (nc ∈
{4, 8, 12}) at random locations were activated. The

robot moved with a minimum defined speed of 4 mm/s.

The experiment was repeated for each configuration 5

times with activated chargers in random positions for a
duration of 60 min. The battery level was logged every

5 sec.

5.1.4 Cell Topology

In this setup, different numbers of chargers with

different arrangements in the arena were activated.
Three different cell arrangements were tested (see

Fig. 8): i) six chargers along walls (CC-a), ii) six

chargers at the centre and sides (CC-b), and iii) four

chargers at the corners of arena (CC-c). The robot
moved at minimum speed of 4 mm/s and its battery

level was recorded during 60 min of experiment. Each

experiment was repeated 5 times.
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Fig. 8 Different cell configurations (CC-a: six chargers at
top and bottom lines near the walls are activated, CC-b: six
charger in centre line and sides are activated, and CC-c: four
chargers at the corners are activated).

5.2 Behavioural Performance Improvement

These experiments investigated the effects of the robot

charging behaviour on its ability of perpetual operation.

The aim was to define the robot’s behavioural

functions to improve the performance of the system.

Here, a basic behaviour was proposed, which did not
affect the robot’s main task, yet provided a longer

charging time. The behaviour was to reduce the speed

of the robot to vc when detecting a charging cell.

This would prolong the total time a robot stays on an
active area of a charging cell, resulting in harvesting

more energy. A similar modification of the behaviour

of individuals – dynamic velocity – to increase the

performance of an aggregation scenario in a swarm

robotic system was proposed in [54].

In this scenario, a robot moved at a speed of vo=8
mm/s and reduced its speed down to vc=3 mm/s

when detecting a charging cell. To investigate the

performance of the proposed behavioural modification,

two sets of experiments with different numbers of

chargers were conducted (nc ∈ {6, 12}). In the case
of 6 active chargers, cells were randomly chosen for

each run. The battery level was logged during 60 min

of experiment.

Another behavioural adjustment was to use IR

emitters only occasionally. Mona could scan proximity
sensors with a very low frequency (e.g.<5 Hz) to reduce

the power consumption. As shown in Table 2, this ad-

justment significantly reduces the power consumption.

5.3 Marathon Walk

For this experiment, all 12 chargers were activated and
a robot was deployed to perform a marathon walk so

that the performance of the proposed charging pad in a

long-term random walk scenario over 12 hours could

be investigated. The robot utilised the behavioural
improvements (dynamic velocity) which were tested in

Section 5.2. The proximity sensors were operated with

a frequency of 3 Hz.

The energy level of the battery was tracked during

the 12 hour marathon walks with two different sets of

speeds, (vo, vc) ∈ {(5, 3), (8, 4)} mm/s.

5.4 Multi-robot Exercise

In this set of experiments, three Mona robots were

deployed with a similar random walk scenario as

the marathon walk (see Section 5.3). No inter-robot

interactions were defined (e.g. swarm robotic scenarios)
to test the feasibility of the proposed system without

getting the benefits from swarm interactions. The only

impact on the behaviour of the robots would be the

additional number of turns due to collision avoidance.

Samples of battery voltage were recorded every
10 sec for each robot separately during 12 h of

experiments.

5.5 Metrics and Statistical Analysis

The metric used to evaluate the performance of the

charging system on the robot’s autonomy was the

energy of the battery. For the purpose of this work,

the measured variable was the battery voltage, Eb. The

autonomy time of the robot (its life span) was measured
as the time taken for the battery voltage to drop below

3.4 V.

The results of all of the experiments were statis-

tically analysed. A multi-factor analysis of variance
(ANOVA) and the F-test method [55] were used in

the analysis. The Tukey Pairwise Comparisons were

also used to find the most significant setting for the

investigated configurations.

The standard values of the constants and variables,
which were used in this study are listed in Table 3.

Table 3 Experimental values or range for variables and
constants

Values Description Range / Value(s)
nc Number of deployed chargers {4, 8, 12}
nr Number of deployed robots {1, 3}
vo Robot forward velocity {3, 4, 5, 8, 12} mm/s
vc Charging forward velocity {3, 4} mm/s
Ta Autonomy time 0 - 12 hours
tc Time of connection 1± 0.5 sec
t Time 0 to 12 hours

6 Probabilistic Modelling

Due to the stochastic characteristics of swarm scenar-

ios, a probabilistic approach is the most appropriate
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method of modelling the behaviour of the robots.

Several probabilistic models have been proposed in

swarm robotics [56,57]. A macroscopic model of an

aggregation behaviour was proposed by Soysal and

Şahin [58], which predicted the final distribution
of the system. Bayındır and Şahin [59] proposed a

macroscopic model for a self-organised behaviour using

probabilistic finite state automata, which modelled the

behaviour of the swarm system. A Langevin equation to
model the collective behaviour of a swarm was used by

Hamann [60]. Schmickl et al. [61] proposed macroscopic

modelling of an aggregation scenario using a Stock

& Flow model. In previous work [62], a power-law

equation model to predict the behaviour of a swarm
was proposed.

For the model in this study, it was assumed that

the robot had a circular cross-section with a diameter

dr, the shape of the individual charging cells was
rectangular with dimensions xc, yc and that the arena

was also rectangular with its length and width denoted

by xa, ya.

Since a robot can move only inside of the arena

walls, its centre can move only inside of a Minkowski
difference between the arena and the robot shape, i.e.

inside of a (xa − dr) × (ya − dr) rectangle. Similarly

to that, a robot charges only if its charging coil and

the charging cell overlap significantly - that is, the
receiving coil centre is inside of the (xc − dc) × (yc −

dc) rectangle, where dc/2 corresponds to the minimal

distance of the charging coil centre from the charging

cell border. Moreover, coupling of the robot to the

charging cell takes a finite time, denoted as the time
of connection, tc, and thus, a robot that enters a

charging cell with speed vo, will start to charge when

its centre is already vo tc + dc/2 inside of the charging

cell. Thus, assuming that a robot moves in a way that
the probabilistic distribution of its position inside of the

arena is uniform, the probability that it is charging is:

p′c = nc

ac
aa

vo
vc

=
ncvo(xc − dc − vo

tc
2
)(yc − dc − vo

tc
2
)

vc(xa − dr)(ya − dr)
,(5)

where nc is the number of charging cells, vc is the robot

speed when detecting the charging signal, vo is the

robot operating speed and ac and aa are the effective

areas of the arena and the charging cells respectively.
Since a robot can operate perpetually only if its energy

balance is non-negative, then

p′cwc − wo ≥ 0, (6)

where wc is the charging power and wo is the robot’s

power consumption during routine operation. The
above equations consider only a single robot moving

inside of an arena. In the case of a higher number

of robots, the fact that the charging cells work in

an exclusive way needs to be taken into account. In

particular, if a robot enters the charging cell area, it

will only charge if there is not another robot using the

cell already. Thus, if there are nr robots on the arena,

the probability that a robot charges is

pc = nc

ac
aa

vo
vc

(1−
nr − 1

nc

pc). (7)

Expressing pc from (7) gives

pc = nc

ac vo
aa vc + (nr − 1)ac vo

, (8)

which allows the probability to be calculated that a

robot is charging on an arena with nc charging pads
and nr robots.

Since a perpetual operation of the robot swarm

requires that Eq. (6) is satisfied for every robot,

combining Eq. (8) and (6) results in

nc

wc

wo

ac vo
aa vc + (nr − 1)ac vo

≥ 1, (9)

which gives a relationship between the number of robots

nr, charging cells nc, effective cell areas ac, arena area

ac, charging power wc, power consumption wo and

robot operating speed vo and robot’s speed when it is
charging vc.

Note, that if a charging cell lies close to the arena

border, the probability of a robot standing on it is

higher, because the robot has to turn in order to avoid
the arena wall, which increases the probability of the

robot being on such a ‘border’ cell. In this model,

this effect is neglected, but it should be kept in mind

that cells around arena borders are more likely to be
occupied by robots. To determine how many charging

cells are needed to be placed under an arena in order

to support a swarm of nr robots, Eq. (9) needs to be

rewritten as

nc ≥
wo

wc

(
aa vc
ac vo

+ nr − 1). (10)

6.1 Current Arena with a Single Robot

The arena used for these experiments was 400
×300 mm2 and the robot diameter was 70 mm.

Measurements showed that the centre of the robot’s

coil had to be at least 10 mm inside the 80×40 mm2

charging pad in order to start charging. Thus, if the

operational speed of a robot is 8 mm/s and the time
of connection is 1 s, then the effective area of the

charger is 56×16 mm2. Moreover, the power provided

by the charging pad was about 2 W and the robot

consumption was about 0.45 W. Substituting these
values into Eq. (9) gives

12 ≥
vc
vo

450

2000

330× 230

56× 16
, (11)
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Charging velocity 5.0mm/s
Charging velocity 7.5mm/s
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Fig. 9 Maximal swarm size vs charger cell dimensions.
Nominal robot velocity is 10mm/s. The graph shows that
lowering robot velocity during charging allows to support
larger swarms.

which gives a relationship between the charging and

operational speed of a single robot:

vo ≥ 1.59 vc, (12)

which means that the robot has to slow down by ∼40%

when detecting the charging station in order to stay

perpetually operational. Note that in this case, the

effective charging area ac is negligible compared to the
size of the area aa, and therefore, the probability of

conflict with another robot p
f
would be about 3%. This

indicates that each additional robot requires that the

charging speed is decreased only slightly (see the last
part of Eq. (10)). In other words, setting the charging

speed vc to 50% of the normal operational speed vo
should allow operation of at least 10 robots.

6.2 Supporting Larger Swarms

To determine how many robots could be supported by

a given configuration, Eq. (9) could again be rewritten
as

nr ≤ nc

wc

wo

−
aa vc
ac vo

+ 1 (13)

which suggests that the maximal swarm size nr

increases linearly with the number of charging cells nc.

6.3 Optimal charger cell size

The logical progression of the model is to examine what
the maximal swarm size is that could be perpetually

supported by an arena of given parameters. Assume

that the size of the charging cells could be chosen

and that they can be used to cover the entire arena
without overlapping each other. If the assumption is

made of a square arena with sides xa, ya and square

xc × xc charging cells, the question is what is the

optimal size xc of the charging cells. A larger number

of smaller cells decreases the competition for energy

between the swarm robots by lowering the probability

that two robots are located on the same charging cell.

Conversely, in the extreme case, a single charging cell
that covers the entire arena xc = xa can support only

one robot.

A larger number of smaller cells provide a smaller
charging area than a lower number of larger cells

because of the fact that a robot has to be inside of a

cell completely in order to charge. Again, if the cell sizes

are equal or smaller to the robot charging coil size, i.e.

xc = dc, then the number of conflicts will be minimal,
but the effective charging area of each cell will be zero.

Assuming that the entire arena is covered with charging

cells of a uniform size, i.e. the number of chargers nc is

(xa/xc)(ya/xc), then

nr ≤
xa

xc

ya
xc

wc

wo

−
vc
vo

(xa − dr)(ya − dr)

(xc − dc − vo
tc
2
)2

+ 1. (14)

For the estimated parameters of the system, the

dependence of the swarm size on the charger size will

look as shown in Fig. 9. As the model suggests, the

optimal size of the charging pad for a 40×30 cm2

arena is 5 cm. Thus, the array of 8×6 chargers could

theoretically provide energy for a swarm of almost

100 robots, which would roam with velocities of up to

10 mm/s.

7 Experimental Results

This section presents the results of the experiments
outlined in Section 4.

7.1 Hardware Feasibility Test

7.1.1 Trajectory and Coverage

The first experiment was to check the moving behaviour

of the robot. In this experiment, Mona moved with a

speed of 10 mm/s without any active charger. Fig. 10
illustrates a trajectory path of Mona during a one hour

random walk. The tracking path showed that the robot

uniformly explored the arena, hence the chosen random

walk algorithm was a suitable scenario that passes all

the charging cells.

7.1.2 Heating Profile

In this experiment the robot’s temperature and battery

voltage were recorded, and the temperature at a charg-

ing transmitter that was placed inside of the charging
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Fig. 10 Trajectory plan of Mona during 60 min random walk.
The arena size is 30×40 cm.

Fig. 11 Temperature profile of the robot receiver and the
inside of the charging pad during 80 min of the battery
recharging process.

pad. Fig. 11 shows two temperature profiles during 80
min of the recharging process of the robot’s battery. The

recorded data reveals that the temperature inside the

pad increased to 52 ◦C. Since the charging pad does

not have any cooling channels, the temperature rise

was expectable as a result of trapped hot air. However,
the temperature change at the robot’s receiver was not

noticeable.

7.2 Speed of Motion

Fig. 12 illustrates the voltage level of the battery during

60 min experiments with a random walking robot at

different speeds of vo ∈ {12, 8, 4} mm/s. The results

show that in all sets of experiments the reduction

in battery level improved when the charging pad is
activated. However, the median of the results from the

robot at speeds of 4 mm/s and 8 mm/s showed a

higher performance improvement in comparison to the

robot with a speed of 12 mm/s. It can be seen that,
as the probabilistic model in Section 6 suggests, the

charging period relies on the motion speed of the robot.

The results obtained when using different robot speeds

illustrated that a low speed robot received a higher

amount of energy than a faster robot due to the longer

period its receiver overlapped with the transmitter cell.

Therefore, reducing the speed of the robot increased its

autonomy time.

The results of different sets of experiments were
statistically analysed using two-way ANOVA. The time

and speed of the robot were used as two independent

factors and the battery voltage (Eb) as the response.

Table 4 shows the results of the statistical analysis. The
results revealed that both factors – time and speed of

robot – have a significant (P ≤ 0.05) impact on the

energy harvesting of the robot.

Table 4 Statistical analysis of the results (ANOVA)

Factors P-value F -value
Time, t 0.000 3.952
Speed, vo 0.000 4.285

7.3 Number of Charging Cells

This set of experiments investigated the effects of the
number of active chargers, nc, on the performance of

the system. Fig. 13 shows the obtained results from

three different configurations, nc ∈ {4, 8, 12}. The

results revealed that an increase in the number of
active chargers increased the performance of the system

by harvesting more energy during the robot’s random

walk.

The results of statistical analysis with two factors –

time and number of active chargers – are illustrated in

Table 5. The results showed that both factors impact
the performance significantly (P ≤ 0.05).

Table 5 Statistical analysis of the results (ANOVA) with
different number of active chargers

Factors P-value F -value
Time, t 0.000 7.524
No. of Charger, nc 0.000 24.628

7.4 Charging Cells Arrangements

This set of experiments investigated the effects of the

different cell topologies on the performance of the

energy harvesting. Fig. 14 illustrates the results from
three different topologies (which are defined in Fig. 8).

The results showed that the configuration CC-a has a

higher amount of energy harvesting than the other two
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Fig. 12 Recorded battery voltage during 60 min of experiments with a forward speed of vo ∈ {12, 8, 4} mm/s. The red line
indicates the median of results with active chargers, the shaded area indicates range of results (between min and max) and
the black line indicates the results of experiments without an active charger (control).

Fig. 13 Recorded battery voltage during 60 min of random walk at a speed of 4 mm/s with different number of active chargers,
nc ∈ {4, 8, 12}. The red line indicates the median of results and the shaded area indicates range of results (between min and
max).

settings. In the first cell configuration (CC-a), where

six cells were activated along the top and bottom walls,

Mona stayed longer on the chargers’ area due to the

turn-in-place trajectory of the obstacle avoidance. This
resulted in harvesting higher amounts of energy than

the other two scenarios.

The results were statistically analysed as shown in

Table 6. It can be seen that both factors (time and

topology) significantly impact (P ≤ 0.05) the system.

Table 6 Statistical analysis of the results (ANOVA) with
different configurations of active chargers

Factors P-value F -value
Time, t 0.000 9.861
Topology 0.004 5.704

7.5 Behavioural Improvement

This set of experiments improved the walking behaviour
of the robot by using a dynamic velocity approach. As

shown in the diagrams (see Fig. 15), the performance

of the system improved significantly.

The results of the statistical analysis revealed

that time, t, did not have a significant impact on

the performance of the system (P -value=1 and P -

value=0.574 with 6 and 12 chargers, respectively).
The results were also analysed using the multi-factor

ANOVA method and the results are shown in Table 7.

The most important result is to demonstrate that the

reduction in battery energy of the robot does not

depend on time t.

Table 7 Statistical analysis of the results (ANOVA) for
improved walking behaviour

Factors P-value F -value
Time, t 0.980 0.582
No. of Charger, nc 0.686 0.897

7.6 Marathon Walk

The purpose of this experiment was to investigate the
main proposal of a perpetual swarm. Mona walked non-

stop for 12 hours and more than 8600 battery samples

were recorded. Fig. 16 illustrates the recorded battery
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Fig. 14 Recorded battery voltage during 60 min of random walk at a speed of 4 mm/s with different cell configurations (CC-a,
CC-b and CC-c, as shown in Fig. 8). The red line indicates the median of results and the shaded area indicates range of results
(between min and max).

Fig. 15 Recorded battery voltage during 60 min of random
walk using an improved walking scenario (dynamic velocity)
with different numbers of chargers (nc ∈ {6, 12}). The red line
indicates the median of results and the shaded area indicates
range of results (between min and max).

energies during experiments with the robot operating

at two different speeds. The voltage of the battery in
both speed settings did not drop lower than 4.2 V.

Therefore, the results clearly demonstrated the battery

level remained in the fully charged condition regardless

of the duration of experiments.

There were slight differences in the results of

the two experiments. There are two reasons for this

phenomenon: i) Mona’s power consumption was slightly
higher when it runs at a fast speed (see Table 2) and ii)

the span of time (δt) which Mona stayed on an active

charging area relies on speed of the robot. However,

a fast speed helped Mona to pass the gaps between
charges faster than when it runs with slow speed.

7.7 Multi-robot Exercise

The last set of experiments in this study was a long-

term random walk using three Mona robots. Fig. 17
shows the recorded battery levels for each robot. The

results show that the battery level remained fully

charged during the long-term (12 h) scenarios. The

Fig. 16 Recorded battery voltage during 12 hours of random
walk using an improved walking scenario (dynamic velocity)
with two different speed settings ({vo, vc} ∈ {{5, 3}, {8, 4}}
mm/s).

slight differences in the diagrams were due to differences

in the batteries of the robots, although all have a

similar capacity (240 mAh). The results demonstrated
the success of the proposed perpetual autonomy for a

robot swarm system.

8 Discussion

8.1 Temperature Profile

The recorded temperature during a continuous charging
period showed that it increased to 52 ◦C. This could be

reduced by improving ventilation or heat dissipation

such as providing an air channel connecting all cells

together or heat sinks. Generally, the robots moved
continuously on the charging pad and connected to a

charging cell for a short span of time depending on their

speed. Therefore, each charging cell in the pad’s matrix

was activated for a few seconds, which did not result in

significant heating.
In addition, the robot’s battery is placed on top

of the robot and it is in room temperature (20◦C

and 25◦C). Hence, the transmitters’ heating and the
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Fig. 17 Recorded battery voltage during 12 hours of multi-robots random walk using an improved walking scenario (vo = 8
mm/s and vc = 4 mm/s).

slight heating in the receiver do not impact the robot’s

operation and its battery.

8.2 Speed of Motion

Results of the experiments showed that an increase in

speed of the robot increases the swept area during a

unit of time which resulted in crossing more charging
cells. However, a robot must stay on a transmitter’s coil

to recharge and increase its battery level. Therefore, in-

creasing the speed of the robot (vo) reduces the energy

harvesting time and also increases power consumption

slightly (see Table 2). The trade-off is that the speed
of a robot cannot be simply reduced, as it results in

prolonging accomplishment time of the main task of a

swarm instead of improving the performance.

8.3 Charging and Discharging Characteristics

The differences in the discharge characteristics of the

individual batteries were revealed as a grey shaded

area in Figures 12 to 15. Although all the batteries

are Li-Po with the similar capacities, these differences
were due to non-homogeneity in the manufacturing

of lithium batteries that were reported in [63,64]

and they were also related to the low resolution

8-bit ADC module of the deployed microcontroller.
However, due to the nature of swarm robotics, these

minor heterogeneities in the behaviour of robots are

acceptable, since heterogeneity is also observed in the

behaviour of social animals. Similar heterogeneities in

robot sensory systems and precision of motion were
reported in [31]. Note, that the uniform distribution

iand proximity of the chargers to each other ensures

that the robots crosss the charging pads (and recharge)

frequently – typical time between rechargings is 15-30
seconds idepending on the robot speed and situations,

where a robot did not recharge for more than a

minute were very sparse. Therefore, the robots could

potentially use lower capacity batteries than the ones

in the experiments performed.

8.4 Behavioural Improvement

Performing this set of experiments illustrated that

a small adjustment to the walking algorithm could

significantly improve the performance of the system.
The results showed that the robot’s battery level

was independent of the duration of the experiment

when it utilises a dynamic velocity (varying motion

speeds) based on different circumstances. It was a

promising result towards a perpetual swarm robotic
system. Similar flexibility has been observed in the

decision making of insects [65,66] and mammals [67].

Comparable performance improvements have been

reported previously. These reports show that several
decisioning adjustments based on individual behaviour

of a robot swarm resulted in the improved performance

of the collective task, such as dynamic velocity and

comparative waiting time [54], vector averaging [68],

and fuzzy decisioning [53,69].

8.5 Statistical Analysis

In most research studies that are involved with physical

experiments, clear conclusions cannot be drawn based
purely on diagrams and the averages of recorded data.

Therefore, there is a need to process all the obtained

results with a statistical analysis method. In this paper,

the obtained results were analysed with ANOVA to

decide the significant factors on the performance of the
system. Since all swarm scenarios and battery discharge

curves are time-dependent, the time factor (t) is one

of the factors in the statistical analysis performed.

According to the observed results from the statistical
analysis, all the investigated settings (speed of robot,

arena configurations, behavioural improvements, and

topology of active chargers) have a significant impact on
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the performance of the system. However, the time factor

did not have a significant impact in the battery’s energy

reduction when applying the behavioural improvement.

To find the most significant factor on the perfor-

mance of system between all the studied configurations,
all of the results were analysed together in one test

using Tukey Pairwise Comparisons. Table 8 shows

the results of grouping information from the Tukey

method with 95% confidence. These groupings mean
that those configurations which do not share the same

characterisation ’letter’ are significantly different.

Table 8 Tukey Pairwise Comparisons of all the studied
configurations

Configuration Mean Value Grouping
Behaviour, 12 Cells 4.24922 A
Behaviour, 6 Cells 4.23155 A
Speed, 4 mm/s 4.07171 B
12 Active Chargers 4.07171 B
8 Active Chargers 4.07119 B
Topology, CC-a 4.06076 B C
Topology, CC-b 4.03625 C D
Speed, 8 mm/s 4.02901 D
Topology, CC-c 4.02554 D
4 Active Chargers 3.98922 E
Speed, 12 mm/s 3.94978 F

The results revealed a comprehensive conclusion

about the most important factors on the performance

of the proposed system. It was observed that applying
a behavioural improvement (dynamic velocity) clearly

made the system independent of the duration of

an experiment. It can be seen that the top two

factors which impact the system were behavioural
improvements (group ‘A’) even when only 50% of the

chargers were used.

The second level factors (experimental configura-

tion) which significantly impacted the system were

shown within a separate group (‘B’). It can be seen
that the speed of motion and density of chargers

were the most important physical factors in this

study. By investing in these parameters, which are

significantly effective, the performance of the system

could be improved. This leads to proposals for several
improvements/adjustments on the system including:

– To reduce the delay of the receiver and cell coupling,

tc, which results in a faster connection between the

charger and the robot, to get more benefit in a small
span of time, δt.

– To increase the density of the charger cells allowing

robots to cross more chargers after a short gap.

8.6 Probabilistic Modelling

The probabilistic model introduced in Section 6 pre-

dicted that since the ratio of the effective charging

area to the total arena area was lower than the

robot consumption/charging power ratio, achieving

perpetual operation required that the robot adjusted
its behaviour in order to increase the total time spent

on the charging pads. In particular, the model correctly

predicted that the robot had to reduce its velocity

during charging by approximately 40%.
However, the current model does not reflect the

inter-robot interactions, which might influence the

probability of charging, and therefore, the accuracy of

the model’s predictions for larger swarms is yet to be

verified.

9 Conclusion and Future Work

This paper proposed a novel on-the-fly charging system

that increased autonomy time of small size mobile
robots. This helps research of swarm robotics, allowing

implementation of very long duration experiments

without frequent interruptions because of battery

replacement or recharge. The results showed that

behavioural adjustments can improve the performance
significantly in comparison to arena configurations,

which also had an impact on the performance. A

drawback of this system is that recharging the battery

in short, discrete time spans may cause a reduction
in the long-term battery life. In order to tackle this

issue, a recharging management unit is being developed

which employs a super-capacitor that is charged at each

wireless charging connection. Therefore, the unit will

recharge the LiPo battery continuously using the saved
energy in the capacitor. The future work is to prepare

a large arena (200×80 cm2) with hundreds of charging

cells. Based on the predicted values from the proposed

probabilistic model, this size of arena can be an ideal
platform for large population swarm scenarios.
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“Investigation of cue-based aggregation in static and
dynamic environments with a mobile robot swarm,”
Adaptive Behavior, vol. 24, no. 2, pp. 102–118, 2016.

52. E. Ferrante, A. E. Turgut, E. Duéñez-Guzmán,
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59. L. Bayindir and E. Şahin, “Modeling self-organized
aggregation in swarm robotic systems,” in Swarm Intelli-
gence Symposium. IEEE, 2009, pp. 88–95.

60. H. Hamann, “Space-time continuous models of swarm
robotics systems: Supporting global-to-local program-
ming,” Ph.D. dissertation, Department of Computer
Science, University of Karlsruhe, 2008.

61. T. Schmickl, H. Hamann, H. Worn, and K. Crailsheim,
“Two different approaches to a macroscopic model of
a bio-inspired robotic swarm,” Robotics and Autonomous
Systems, vol. 57, no. 9, pp. 913–921, 2009.

62. F. Arvin, A. Attar, A. Turgut, and S. Yue, “Power-
law distribution of long-term experimental data in
swarm robotics,” in Advances in Swarm and Computational
Intelligence, ser. Lecture Notes in Computer Science,
Y. Tan, Y. Shi, F. Buarque, A. Gelbukh, S. Das, and
A. Engelbrecht, Eds., 2015, vol. 9140, pp. 551–559.

63. P. Taheri, A. Mansouri, B. Schweitzer, M. Yazdanpour,
and M. Bahrami, “Electrical constriction resistance in
current collectors of large-scale lithium-ion batteries,”
Journal of The Electrochemical Society, vol. 160, no. 10,
pp. A1731–A1740, 2013.
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Appendix I

In this work, inductive charging circuits were developed using
wireless power transfer module BQ500210 and wireless power
receiver module BQ51013B. The receiver and transmitter
circuits were designed as the typical application circuit
proposed in the modules’ datasheets. Figure 18 shows
schematics of the transmitter and receiver, which were used
in the work presented.
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Fig. 18 Schematics of (a) transmitter and (b) receiver used in this work. Schematics is based on the simplified diagram in
datasheets of the modules’ manufacturer (www.ti.com).


