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Abstract This paper presents four vision-based track-

ing system architectures for marine surface objects us-

ing a fixed-wing unmanned aerial vehicle (UAV) with

a thermal camera mounted in a pan/tilt gimbal. The

tracking systems estimate the position and velocity of

an object in the North-East (NE) plane, and differ in

how the measurement models are defined. The first

tracking system measures the position and velocity of

the target with georeferencing and optical flow. The

states are estimated in a Kalman filter. A Kalman fil-

ter is also utilized in the second architecture, but only

the georeferenced position is used as a measurement. A

bearing-only measurement model is the foundation for

the third tracking system, and because the measure-

ment model is nonlinear, an extended Kalman filter is

used for state estimation. The fourth tracking system
extends the bearing-only tracking system to let naviga-

tion uncertainty in the UAV position affect the target

estimates in a Schmidt-Kalman filter. All tracking ar-

chitectures are evaluated on data gathered at a flight

experiment near the Azores islands outside of Portu-

gal. The results show that various marine vessels can

be tracked quite accurately.
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1 INTRODUCTION

The use of unmanned aerial vehicles is increasing rapidly

and a lot of research is directed towards UAVs. Visual

sensors, such as infrared and visual spectrum cameras,

are often a part of UAV operations today, and can

be useful for navigation [1–5], search and rescue ap-

plications [6,7], sense and avoid technology [8], horizon

detection [9, 10], inspection [11], and obviously also in

many other applications.

An application where UAVs equipped with a visual

sensor can be of use is autonomous ship control. Au-

tonomous ships need to obey the International Regula-

tions for Preventing Collisions at Sea (COLREGS) [12].

The main challenge related to COLREGS is collision

avoidance. Therefore, a system for detecting and keep-
ing track of obstacles near the planned path of the ship

is required. On-board sensors such as a radar, LIDAR

and camera can be used to detect objects in the envi-

ronment of the ship [13–15]. However, in order to have

a robust system it might not be sufficient to only place

sensors on-board the ship. Limited range and resolution

as well as objects floating in the water-line can make

it challenging to detect objects. UAVs can be used to

overcome some of the challenges and make a robust sys-

tem in combination with sensors on-board the ship. By

monitoring the planned path of the ship with a UAV,

objects that are difficult to find with ship sensors can

be located [16]. It is necessary to keep track of the ob-

jects for a certain time period to make decisions that

obey COLREGS. This is where object detection and

tracking become important.

Object detection is the process of detecting objects

of importance with respect to some predefined criterion.

Tracking is the task of generating a time-dependent

position (often also velocity) trajectory for objects de-
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tected in a sequence of images. Object detection and

tracking have been studied thoroughly and the research

on the topics is mature [17]. However, the focus has

traditionally been directed towards applications where

the sensor is at rest or moving slowly. This is espe-

cially the case for segmentation techniques used to find

moving objects. Fixed-wing UAVs operate at relatively

high velocity, which causes the images captured on-

board to be more contaminated by blur than images

captured at rest. Moreover, the scene changes rapidly,

which makes many conventional detection methods in-

appropriate for UAVs. Since the UAV may move sig-

nificantly faster than tracked objects, the accuracy of

the UAV navigation system must be carefully consid-

ered. Therefore, suitable tracking systems utilizing im-

ages captured from a fixed-wing UAV operating at high

speed is an interesting research area.

A tracking strategy for vision-based applications on-

board UAVs is described in [18], and a correlation method

for ship detection with a visual sensor mounted in a

UAV is presented in [19]. However, a visual spectrum

sensor might not necessarily be the best option for ob-

ject detection at sea. A thermal camera is a more attrac-

tive option since the temperature or emissivity differ-

ence between the sea surface and surface objects (such

as a marine vessel) is often significant. A thermal cam-

era has successfully been utilized to detect and track

objects at sea in [20].

Inspired by the relationship between optical flow

and the velocity of a camera mounted in a fixed-wing

UAV [1, 21], a vision-based tracking system for marine

surface objects utilizing thermal images was presented

in [22]. The navigation states of the UAV were used to

acquire the NE positions of marine surface objects with

a georeferencing technique [23]. Moreover, optical flow

was used with the navigation data to recover the NE

velocities of the objects. A Kalman filter was utilized

to track the objects in the NE plane.

A drawback of the strategy in [22] is that the track-

ing system depends on accurate measurements (or esti-

mates) of the UAV pose without looking into the nav-

igation uncertainty of the UAV. Thus, the navigation

data from the autopilot were assumed to reflect the true

states perfectly. This will obviously affect the perfor-

mance and robustness of the tracking system in situ-

ations where the navigation data are unreliable. An-

other issue is the fact that visual sensors only have

bearing measurements and no range measurement. This

originates from the fact that only two coordinates in

the North-East-Down (NED) reference frame can be

acquired with two image coordinates. Therefore, [22]

solves this by making the flat-earth assumption, which

theoretically makes it possible to compute the range as

a function of the UAV attitude and altitude. However,

the calculated range is fragile for errors in the naviga-

tion states. A tracking system without the range calcu-

lation is a viable alternative and leads to the use of a

nonlinear tracking filter, such as the extended Kalman

filter (EKF).

The complete solution for handling navigation un-

certainty and track objects at the same time is equiva-

lent to simultaneous localization and mapping (SLAM)

with moving landmarks. Airborne SLAM is discussed

in [24] and bearing-only airborne SLAM is the topic in

[25] and [26]. In the SLAM context, the target position

and velocity are used to correct the navigation states

of the UAV. This is useful if absolute sensors, such as

GPS, are unavailable. However, erroneous data associa-

tion or landmark motion that deviates from the motion

model (maneuvering targets) can wrongly adjust the

UAV navigation states. This is obviously not desired

in situations where the navigation states are reliable.

Thus, it can be beneficial to only let the uncertainty of

the UAV pose affect the target and not the other way

around. This mindset leads to the Schmidt-Kalman fil-

ter. Target tracking with a Schmidt-Kalman filter is

described in [27–29].

1.1 Main Contribution of this Paper

This paper looks into the problem of tracking a single

target at sea in thermal images captured with a fixed-

wing UAV with a pan/tilt gimbal. The tracking sys-

tem in [22] is compared with three other alternatives.

The first alternative removes the velocity measurement

from the tracking system in [22] to investigate its use-

fulness. A bearing-only measurement model is the foun-

dation for the second alternative. The relative position

between the target and the UAV is used in the mea-

surement model, which removes the need to calculate

the range. The third alternative extends this system to

let navigation uncertainty in the UAV NED positions

affect the target estimates in a Schmidt-Kalman filter.

The methods are compared thoroughly on data gath-

ered at a flight experiment near the Azores outside of

Portugal.

1.2 Organization of this Paper

The remainder of this paper is divided into six sections.

Section 2 defines the notations for the derivations in

the rest of this paper. Section 3 derives the relationship

between optical flow and the NE velocities of a moving

target at sea and is based on the work in [22]. The

tracking systems are presented in Section 4. Section 5
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describes the experiments carried out to gather data.

The results are presented in Section 6, before the paper

is concluded in Section 7.

2 Notation and Preliminaries

Vectors and matrices are represented by lowercase and

uppercase bold letters, respectively. X−1 denotes the

inverse of a matrix and X> the transpose of a matrix

or vector. A vector x = [x1, x2, x3]> is represented in

homogeneous coordinates as x = [x1, x2, x3, 1]>. The

operator S(x) transforms the vector x into the skew-

symmetric matrix

S(x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0


and 0m×n is a matrix of zeros with dimension m× n.

Several reference frames are considered in this pa-

per, but the three most important are: the body-fixed

frame {B}, the North-East-Down frame {N} (Earth-

fixed, considered inertial) and the camera-fixed frame

{C}. The rotation from {N} to {B} is represented by

the matrix Rn
b ∈ SO(3), with SO(3) representing the

Special Orthogonal group. Similar transformations ex-

ist between the other reference frames.

A vector decomposed in {B}, {N} and {C} has su-

perscript b, n and c, respectively. A point in the envi-

ronment decomposed in {N} is tn = [xn, yn, zn]>: note

that a point located at sea level corresponds to zn = 0.

The same point decomposed in {B} is tb = [xb, yb, zb]>.

The Greek letters φ, θ, and ψ represent the roll,

pitch, and yaw angles, respectively, defined according

to the zyx convention for principal rotations [30]. ψgb

and θgb are the gimbal pan and tilt angles, which cor-

respond to a rotation about the body z- and y-axis,

respectively. A 2-dimensional camera image has coor-

dinates (r, s) in the image plane. The derivative [ṙ, ṡ]>

of the image plane coordinates is called optical flow. sθ

and cθ denote the sine and cosine functions with θ as

input. The subscript f is used to indicate that the corre-

sponding parameter is related to a feature (landmark)

detected in the image. It should not be mixed with the

letter f , which will be used for the focal length of the

lens.

3 Machine Vision

This section presents the machine vision system nec-

essary for detecting objects at the sea surface and ob-

taining measurements that can be used in a tracking

system. The first part focuses on optical flow (OF) and

how objects are detected in the images. The second part

explains how the NED positions of a pixel in the image

can be recovered by georeferencing. The third part de-

rives the relationship between OF and the NE velocities

of detected objects.

3.1 Optical Flow and Object Detection

Optical flow can be defined as a velocity field that trans-

forms one image into the next in a sequence of images

[21] [31]. A single OF vector can be understood as the

2-dimensional displacement (in the image plane) of a

feature detected in two consecutive images.

SIFT [32] is a method that can be used to calculate

OF by locating scale and rotation invariant features

(keypoints) within an image. In practice, it means that

features, which change in size and/or orientation with

respect to the camera (between two images), can be de-

tected in both images. This is a significant advantage in

images captured from a UAV since the scale and rota-

tion of objects change rapidly with the attitude and al-

titude of the UAV. Another advantage with SIFT (and

other point detectors), is the fact that only the cur-

rent image is used to find features. Thus, a change in

background, which must be expected to occur in images

captured from a UAV, will not necessarily affect the de-

tection rate. This is not the case for methods relying on

some sort of background subtraction/modeling.

Each detected feature gets a descriptor, which is a

vector consisting of properties related to the feature.

The descriptors are used to find common features in

different images through a FLANN nearest neighbor

search [33]. OF vectors are calculated as the displace-

ment of common features in two consecutive images.

In this paper, it is assumed that features are only

located on the target, such that the mean position and

velocity of the features are measures of the position and

velocity of the target. This assumption is rarely violated

for the images captured in the experiment because ob-

jects at sea usually have a strong thermal signature.

Moreover, since the sea temperature is constant (ho-

mogeneous) it is not likely that features will appear on

the sea surface in thermal images, unless an object is

present. It is also important to emphasize that the issue

is less salient in situations where the number of features

on the target significantly exceeds the number of fea-

tures at other locations. Nevertheless, it is obviously

something to be aware of in cases where features are

located at other locations or when multiple targets can

be present in the images. In these situations, it is nec-

essary to combine SIFT with a method that can locate

the area of a target so that only the features of interest
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are used. An example of a method for extracting the

area of a target is presented in [20].

3.2 Recovering the NED Positions of a Pixel

This section seeks to explain how it is possible to ac-

quire NED coordinates of a pixel in the image plane,

normally referred to as georeferencing in the literature.

Georeferencing is described in [34–36]. The method de-

rived in this paper will be based on [22, 23] because a

similar payload setup is utilized.

The pinhole camera model [37] relates a point in the

image plane with coordinates decomposed in a camera-

fixed coordinate frame {C}. The relationship between

the frames is displayed in Fig. 1 and can be described

mathematically asrs
1

 =
f

zc

xcyc
zc

f

 , zc 6= 0 (1)

Equation (1) describes the connection between the pixel

(r, s) and the camera-fixed coordinates (xc, yc, zc). zc is

the distance between the lens aperture and the plane

the captured pixel is located in (range), and f is the

focal length of the lens. Equation (1) can be expressed

𝑟
𝑠

𝑧$

𝑥$𝑦$

𝑝

𝑓
𝑥)

Fig. 1 Illustration of the pinhole camera model. The letter
p marks the feature position in NED.

in matrix form as

zc

rs
1

 =

f 0 0

0 f 0

0 0 1


︸ ︷︷ ︸

A

xcyc
zc


︸ ︷︷ ︸

pc

= Apc (2)

where the pixel position (r, s) should be represented in

meters for (2) to be valid. It is more useful to decompose

pc in {N} since the origin of {C} moves with the UAV.

It can be achieved by utilizing a transformation Gc
n

between {C} and {N} [23]

zc

rs
1

 = AGc
npn (3)

where pn is the homogeneous coordinate vector of the

pixel decomposed in {N}. Gc
n is defined as

Gc
n :=

[
Rc

n −Rc
nrnnc

]
=
[
r1 r2 r3 −Rc

nrnnc
]

where Rc
n is the rotation matrix between {C} and {N},

with column vectors r1, r2 and r3, and rnnc is the the

position of the origin of {C} relative to {N} decomposed

in {N}.
The rotation matrix Rc

n can be expressed as

Rc
n = (Rn

b Rb
c)
−1 = (Rn

b (Rc
mRm

b )−1)−1 (4)

where {m} is referred to as the mounted frame. Rn
b is

the well known rotation matrix between {N} and {B},
defined according to the zyx convention and specified in

terms of the Euler angles (roll (φ), pitch (θ), yaw (ψ))

[30]. The rotation between {B} and {m} is given by the

gimbal orientation. {B} is aligned with {m} when the

gimbal has zero pan (ψgb) and tilt (θgb). In the body-

fixed frame, the pan and tilt movement correspond to

a rotation along the body z- and y-axis, respectively.

Hence, the rotation is defined as

Rm
b = (Rz(ψgb)Ry(θgb))

> = R>y (θgb)R
>
z (ψgb)

=

cosψgb cos θgb sinψgb cos θgb − sin θgb
− sinψgb cosψgb 0

cosψgb sin θgb sinψgb sin θgb cos θgb

 (5)

where Rz(α) and Ry(α) are principle rotations about

the z- and y-axis (by an angle α), respectively [30]. Since

the x-axis of {C} should be aligned with the horizontal

direction in the image plane (r) and not the body x-axis

(Fig. 1), the rotation from {C} to {m} is a rotation of

-90 degrees about the camera z-axis:

Rc
m = Rz(−90o) =

 0 1 0

−1 0 0

0 0 1

 (6)

By assuming that the origin of {C} coincides with

the origin of {B}, rnnc can be simplified as the NED

coordinates of the UAV. In practice, for the experi-

ment described in Section 5, the origin of {C} is located

within centimeters of the origin of {B}. Therefore, the

assumption is reasonable for a UAV at more than tens

of meters altitude.

Only two coordinates of the NED positions can be

recovered by the pixel coordinates (r, s). However, since

objects at the sea surface is of interest, the down posi-

tion of pixels in the image is close to zero as long as the

origin of {N} is placed at sea level. Consequently, one

can identify the NE coordinates with the two image co-

ordinates and use zero as the down position. For this to

be valid, it is necessary to assume that all pixels in the

image are located at sea level (unless a digital elevation
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map is available) and have a limited height compared to

the altitude of the UAV. This is normally referred to as

the flat-earth assumption in the literature. In practice,

an object height of 10 meters did not degrade the results

significantly when the UAV operated at an altitude of

100 meters, but the accuracy obviously decreases with

the height of the object.

The NE coordinates of the pixel (r, s) are given by

(3) asNobj

Eobj

1

 = zcG−1NEA−1

rs
1

 (7)

where GNE is defined as

GNE :=
[
r1 r2 −Rc

nrnnc
]

In order to find the NE coordinates, the range zc

needs to be computed with an altitude measurement.

When deriving the relationship between OF and ve-

locity, it will also be necessary to calculate xc and yc.

These coordinates can be expressed as a function of the

UAV navigation states and gimbal orientation. This is

explained in Appendix A.

The georeferencing algorithm depends on measure-

ments (or estimates) of the UAV NED positions, the

Euler angles (roll, pitch and yaw), the gimbal orien-

tation (pan and tilt angles), the focal length of the

lens and the pixel position in the image plane. The

accuracy depends on the sensors used to measure or

estimate these parameters. The NED positions of the

UAV can be measured by GPS, but the down position is

not very accurate with single frequency GPS receivers

without differential correction. Therefore, an altimeter

might be useful in low-altitude applications. The Euler
angles can be estimated with an inertial measurement

unit (IMU) and some heading reference. The gimbal

orientation cannot necessarily be measured, but a set-

point should be available. The focal length of the lens

is given in the lens specification, but a more accurate

estimate of the focal length is obtained with camera

calibration [23]. The pixel position is known from the

feature extraction.

3.3 Transformation Between Optical Flow and

Velocity

This section derives the relationship between OF and

velocity. Assume that a feature at pixel position (r, s) is

of interest. Differentiation of the pinhole camera model

(1) yields[
ṙ

ṡ

]
=

1

zcf

f 0 −f xc
f

zc
f

0 f −f yc
f

zc
f

ẋcfẏcf
żcf

 (8)

where [ṙ, ṡ]> is the OF vector of the feature. The vector

[ẋcf , ẏ
c
f , ż

c
f ]> on the right-hand side is recognized as [21]

ṗc
f =

ẋcfẏcf
żcf

 = vc
f/c + ωc

f/c × (pc
f − oc

f ) (9)

where vc
f/c and ωc

f/c are the linear and angular veloc-

ities of the feature with respect to {C} decomposed in

{C}, respectively. pc
f = [xcf , y

c
f , z

c
f ]> is the position of

the feature decomposed in {C}. oc
f is the feature point

of rotation decomposed in {C} such that (pc
f − oc

f ) is

the arm of rotation. All rotations seen in the image are

rotations about the camera center, hence the rotation

point oc
f coincides with the origin of {C}. Since it is also

assumed that the origin of {C} coincides with {B}, the

rotation of features caused by the UAV motion will be

about the camera center. Thus, oc
f is simply the zero

vector.

The assumption of {C} coinciding with {B} has

been tested experimentally. It was not possible to find

an increase in accuracy when the distance between the

origins was accounted for (when the true distance is

limited to a few centimeters). Therefore, since the fol-

lowing derivation is simplified with the assumption, it is

not accounted for in this paper. In situations where the

origin of {C} is far from the origin of {B} one should

be aware of the simplification.

Equation (8) might be rewritten by inserting (9):

[
ṙ

ṡ

]
=

1

zcf

[
B B

] [ vc
f/c

ωc
f/c × pc

f

]
(10)

B =

f 0 −f xc
f

zc
f

0 f −f yc
f

zc
f


By the properties of the crossproduct [22], and using

the skew-symmetric matrix S (defined in Section 2), it

is possible to rewrite (10) and establish the relationship

between OF and the linear and angular velocities as

[
ṙ

ṡ

]
=

1

zcf

[
B −B · S(pc

f )
]

︸ ︷︷ ︸
M(f,pc

f )

[
vc
f/c

ωc
f/c

]
(11)

where

M(f,pc
f ) =

1

zcf
·f, 0, −f xc

f

zc
f
, −f xc

f

zc
f
ycf , fzcf + f

xc
f

zc
f
xcf , −fycf

0, f, −f yc
f

zc
f
, −fzcf − f

yc
f

zc
f
ycf , f

yc
f

zc
f
xcf , fxcf





6 H̊akon Hagen Helgesen et al.

If the velocities of the UAV decomposed in {B} is

known, it is possible to find the OF caused by the cam-

era (UAV) motion. It will from now on be referred to

as the theoretical flow [ṙt, ṡt]
>, which is defined as

[
ṙt
ṡt

]
:= M(f,pc

f )

[
vc
n/c

ωc
n/c

]
(12)

where vc
n/c and ωc

n/c are the linear and angular ve-

locities of the sea surface (NED) with respect to {C}
decomposed in {C}. Waves are not considered as a part

of the velocity and act like a disturbance to the system.

Since the origin of {C} coincides with {B}, both {B}
and {C} have the same linear velocity with respect to

{N}. Therefore, it can be rewritten as

vc
n/c = Rc

bv
b
n/c = Rc

bv
b
n/b = −Rc

bv
b
b/n

where vb
b/n is the body-fixed linear velocity of the UAV

with respect to {N} decomposed in {B}.
The angular velocity can be rewritten as

ωc
n/c = ωc

n/b + ωc
b/c

= Rc
b(ω

b
n/b + ωb

b/c)

= −Rc
b(ω

b
b/n + ωb

c/b)

where ωb
b/n is the angular velocity of {B} with respect

to {N} decomposed in {B}. ωb
c/b is the angular velocity

of {C} with respect to {B} decomposed in {B}. It is

given by the gimbal motion and should be accounted

for. A pan/tilt gimbal can only rotate about the body

z- and y-axis. Thus, ωb
c/b can be approximated as [38]

ωb
c/b = ωz(ψ̇gb) + Rz(ψgb)ωy(θ̇gb)

=

 0

0

ψ̇gb

+ Rz(ψgb)

 0

θ̇gb
0


where ψ̇gb and θ̇gb are the derivatives of the pan and

tilt angles, respectively. They need to be measured or

approximated by e.g. a Taylor-series approximation. A

first-order Taylor-series approximation is utilized in this

paper.

The theoretical flow can now be calculated with

(12). It is still, however, some work needed before the

velocity of the feature itself is identified. The OF is a

sum of the camera and feature motion with respect to

{N}:[
vc
f/c

ωc
f/c

]
=

[
vc
f/n + vc

n/c

ωc
f/n + ωc

n/c

]
(13)

Equation (13) can be inserted into (11) where ṙm and

ṡm now are defined as the measured OF, obtained with

e.g. SIFT. Consequently,[
ṙm
ṡm

]
= M(f,pc

f )

[
vc
f/n

ωc
f/n

]
+ M(f,pc

f )

[
vc
n/c

ωc
n/c

]
(14)

where the second term is recognized as the theoretical

flow. Thus, it is possible to rewrite (14) as[
ṙm − ṙt
ṡm − ṡt

]
= M(f,pc

f )

[
Rc

nvn
f/n

Rc
nω

n
f/n

]
(15)

Equation (15) only has two terms on the left side

and six unknown velocity parameters on the right side.

However, since the main motivation is to locate surface

objects at sea, the angular velocity of the features lo-

cated on the objects is assumed to be zero (constant

object heading between successive images). Therefore,

the final three columns of M(f,pc
f ) disappears and (15)

can be further simplified. Consequently,[
ṙm − ṙt
ṡm − ṡt

]
=

1

zcf

f 0 −f xc
f

zc
f

0 f −f yc
f

zc
f

Rc
nvn

f/n (16)

In addition, since the down velocity is expected to be

zero, the third column of Rc
n can be discarded in (16)

and the NE velocities (vNf/n and vEf/n) of the feature can

be calculated as[
vNf/n
vEf/n

]
=

 1

zcf

f 0 −f xc
f

zc
f

0 f −f yc
f

zc
f

 [r1 r2
]−1 [ṙm − ṙt

ṡm − ṡt

]
(17)

The NE velocities of the feature are now identified.

The velocity calculation depends on measurements of

the parameters described at the end of Section 3.2 (for

georeferencing). Additionally, the body-fixed linear and

angular velocities of the UAV and an approximation of

the pan and tilt angle derivatives need to be obtained.

The linear velocity can be measured by GPS (when

the attitude is known) and the angular velocity can be

measured by gyros. The pan and tilt angles are approx-

imated with a first-order Taylor-series approximation.

4 Target Tracking

This section presents four different architectures for

tracking of marine surface objects. A single target is of

interest and problems related to multiple target track-

ing, such as data association, are not within the scope

of this paper. Measurements of the object position in

the image plane and OF vectors are assumed available,
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and this section looks into how these measurements can

be utilized in a tracking system. The first part presents

the motion model. The rest of this section describes the

tracking architectures.

4.1 Target Motion Model

The goal in target tracking is to estimate the position

and velocity of an object of interest. A motion model for

the target is required in order to use e.g. a Kalman fil-

ter for state estimation. How to choose a motion model

is described in [39]. In this paper, a constant veloc-

ity model (white noise acceleration) is chosen. This is

because the dynamics of typical surface objects are as-

sumed to be slow. The position and velocity in the NE

plane are of interest. The discrete time constant veloc-

ity motion model at time step [k] is defined as

xt[k + 1] = Ftxt[k] + Etvt[k] (18)

where xt = [pNt , p
E
t , v

N
t , v

E
t ]> is the state vector con-

sisting of the target position and velocity, and vt =

[vNv , v
E
v ]> is assumed to be zero-mean Gaussian white

noise with covariance Q. Ft and Et are the system ma-

trices defined as

Ft =


1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

 , Et =


1
2T

2 0

0 1
2T

2

T 0

0 T


where T is the sampling period of the camera. The down

position is zero for surface objects at sea (given that the

origin of NED is placed at sea level) and not a part of

the state vector. Note that the motion model is linear.

4.2 Tracking System based on Georeferencing and

Optical Flow

The first tracking architecture is based on the work con-

ducted in Section 3 and [22]. Georeferencing is used to

obtain measurements of the NE positions for features

detected on the object. Moreover, OF is used to obtain

measurements of the NE velocities for the features. The

mean position and velocity of every feature on the tar-

get are used as measurements in the tracking system. A

Kalman filter can be used since the measurements are

equal to the states. The measurement model is

zt[k] = xt[k] + wt[k] (19)

where wt is zero-mean Gaussian white noise with co-

variance R.

The main advantage with this architecture is that

linearization is avoided and that velocity information

can be acquired directly. This is usually not the case

for tracking systems with a single camera. Furthermore,

the approach leads to a completely observable system.

The main drawback is the complexity of the trans-

formation for extracting position and velocity measure-

ments from the pixel position and OF. Additionally, the

NED positions, attitude and gimbal orientation have to

be accurately known in order to get reliable measure-

ments for position and velocity. An error of just a cou-

ple of degrees in roll or pitch will increase the error in

position and velocity significantly, especially at larger

altitudes. This is because the calculated position and

range strongly depend on the attitude. Moreover, it is

not straightforward to describe the noise related to the

measurements since the ”real” measurements (pixel po-

sition and OF) are used in a nonlinear transformation

to obtain NE positions and velocities. The nonlinear

transformation depends on states that are assumed per-

fectly known, but in practice all of these quantities will

be somewhat uncertain. Thus, it is necessary to make

a qualified guess for the uncertainty of the measure-

ments since little is known about the real uncertainty

of the parameters in the nonlinear transformation. In

other words, this approach sacrifices some robustness

in order to make the system linear.

No correlation between the target estimates and the

navigation states of the UAV is maintained. In practice,

this means that the tracking system works as a stan-

dalone system and trusts that the UAV pose is known

accurately at all times. This is a major difference from

the SLAM approach. A sketch of the system is displayed

in Fig. 2.

Tracking	System	-
Kalman	Filter

Object	Detection	with	SIFT

Convert	Measurements

Target Position and 
Optical Flow in Image

NE Target Positions 
and Velocities

Estimated Position and 
Velocity

UAV	Navigation	
System

Attitude
Position
Velocity

Fig. 2 A sketch of the tracking architecture based on geo-
referencing and optical flow.
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4.3 Tracking System based on Georeferencing

The second tracking system is almost equal to the track-

ing system based on georeferencing and OF. However,

the velocity measurement is removed and only the posi-

tion of the target is used in the Kalman filter. Therefore,

the measurement model can be written as

zt[k] =

[
1 0 0 0

0 1 0 0

]
︸ ︷︷ ︸

H

xt[k] + wt[k] (20)

where wt is zero-mean Gaussian white noise with co-

variance R. The main motivation behind this architec-

ture is to evaluate the usefulness of the velocity mea-

surement. This architecture shares the strengths and

weaknesses with the tracking system in Section 4.2.

4.4 Tracking System based on Bearing-only

Measurements

A camera makes relative bearing observations to the

object in the image [25]. Therefore, it is possible to

use the pixel location in the image directly instead of

converting the pixel coordinates to NED. Remember

that the pinhole camera model (1) relates pixel coordi-

nates to coordinates in {C}. The position of the object

decomposed in {C} (pc
f/c) is related to the UAV po-

sition (pn
uav) and object position (pn

f ) decomposed in

{N}, and the attitude of the UAV through the following

model:

pc
f/c =

xcfycf
zcf

 = Rc
n(pn

f − pn
uav) (21)

Since the pixel coordinates of a feature can be mea-

sured by the object detection algorithm, the measure-

ment model can be defined as

zt[k] =

[
z1
z2

]
=

[
r

s

]
=

f

zcf

[
xcf
ycf

]
︸ ︷︷ ︸

Insert eq. (21)

≡ ht(pn
uav[k],Rc

n[k],pn
f [k], k) + w[k]

(22)

where w is zero-mean Gaussian white noise with covari-

ance R. Equation (21) is inserted to get a model de-

pending on the UAV attitude, gimbal orientation, UAV

NED positions, and the NED positions of the target.

This is beneficial because the measurement model now

directly depends on parameters of interest, and not the

camera-fixed coordinates of the target.

The measurement model is nonlinear and the most

common solution then is to use an Extended Kalman

filter (EKF). In this tracking architecture, as for the

tracking systems in Section 4.2 and 4.3, the UAV NED

positions, attitude and gimbal orientation are assumed

perfectly known. However, the need to calculate the

range is removed and, thus, a weakness for the tracking

system in Section 4.2 and 4.3 is eliminated. In order

to use the EKF, it is necessary to find the Jacobian

of zt with respect to the states. The equations for the

Jacobian gets the form

∂ht

∂xt
=

[
∂z1
∂xn

f
|x̂t

k|k−1

∂z1
∂yn

f
|x̂t

k|k−1
0 0

∂z2
∂xn

f
|x̂t

k|k−1

∂z2
∂yn

f
|x̂t

k|k−1
0 0

]
(23)

where x̂t
k|k−1 is the predicted state x at the current

time step. The last two columns of the Jacobian are

zero because the measurement model not depends on

the target velocities. Note that the motion model for

the target is still linear.

The tracking system based on bearings-only mea-

surements are somewhat less simplistic than the track-

ing system based on georeferencing since it is nonlinear.

The problems with linearization and initialization fol-

low with the EKF and the measurements (pixel coordi-

nates) might in many cases be less informative than the

NE positions (for humans). However, [40] demonstrates

a way to handle the lack of global stability for the EKF

with a Double Kalman filter. This solution is especially

interesting in applications where initialization and the

stability of the EKF are troublesome.

The velocity of the object is not measured in this

tracking system because it is impossible to calculate
the NE velocities of the object without computing the

range. Avoiding the range calculation is one motivation

behind this tracking system, and, therefore, it is not an

option to calculate the range in order to find the object

velocity. Nevertheless, since the position estimates are

expected to be more accurate without the range calcu-

lation, it is likely that the object velocity is estimated

well without the velocity measurements from OF. This

is also supported by the fact that the velocity measure-

ment is a differentiation of the georeferenced position

measurement, which means that you in practice do not

provide the tracking filter with more information. Thus,

one could argue that the velocity calculation is more in-

teresting as a measure of the velocity at one time instant

and not that useful for estimation.

This architecture is less computationally complicated

since the georeferencing operation is not conducted, es-

pecially if the Jacobian is evaluated numerically. It may

also be less affected by uncertainty in the UAV navi-

gation system since the relative position between the
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UAV and the target is used instead of the camera-fixed

coordinates of the object, and this is why the range cal-

culation (zcf ) is avoided. Correlation between the nav-

igation system of the UAV and the tracking system is

not maintained in this architecture either. This might

be problematic for the same reasons as described at the

end of Section 4.2.

The covariance of the measurement noise is easier

represented in this architecture. It can be designed as

a diagonal matrix with a chosen pixel uncertainty re-

lated to each measurement. The tracking architecture

is displayed in Fig. 3.

Tracking	System	–
Extended	Kalman	Filter

Object	Detection	with	SIFT

Linearization

Target Position 
in Image

Estimated Position and 
Velocity

UAV	Navigation	
System

Attitude
Position

Most Recent 
EstimateJacobian

Measurement 
Model

Fig. 3 A sketch of the tracking architecture based on
bearing-only measurements.

4.5 Tracking System based on a Schmidt-Kalman
Filter

The last target tracking architecture studied in this pa-

per is based on a Schmidt-Kalman filter. A Schmidt-

Kalman filter is used to maintain correlations between

the target and the UAV without letting the target influ-

ence the UAV navigation system. In the SLAM frame-

work, the target could influence the UAV pose, but this

is not desired in situations where the UAV pose can be

estimated relatively accurately by itself.

In this paper, a simplified version of the Schmidt-

Kalman filter will be investigated. The bearing-only

measurement model depends on the UAV attitude, gim-

bal orientation and NED positions. The attitude and

the gimbal orientation will still be assumed perfectly

known, but the error in the UAV position will be a

part of the state-vector. The true NED positions xo of

the UAV can be written as

xo = x̂o + δxo (24)

where x̂o is the nominal state (given by the estimate

from the navigation system) and δxo is the error be-

tween the nominal state and the true state. In situa-

tions where the nominal state is unbiased, δx will be

a zero-mean random variable with uncertainty equal to

the uncertainty of the estimate x̂o. x̂o is not considered

as a random variable, but rather a true measure of the

state xo. Correlation between the target and the UAV is

achieved by augmenting the system (18) with the error

state of the UAV NED positions:[
xt[k + 1]

δxo[k + 1]

]
=

[
Ft 0

0 I3×3

] [
xt[k]

δxo[k]

]
+

[
Etvt[k]

vo[k]

]
(25)

where I3×3 is the identity matrix of dimension 3×3 and

vo is white noise affecting the error state with known

covariance. Ideally, one should estimate the error-state

in an error-state Kalman filter as in [29] and use the cor-

responding state space model and estimated covariance

in (25). However, since inertial sensor data (IMU) are

unavailable, the error-state are in this case considered

to be constant with a time-invariant known covariance.

Therefore, vo[k] is assumed to be zero. This is in cor-

respondence with the case described in [28]. The main

difference between the structure in this case and [29] is

the fact that the covariance increases at each time up-

date until a correction is available in [29]. This is more

in line with navigation systems because the covariance

of the position estimates is time-variant, and increases

when the states are predicted with inertial sensors until

the estimates are corrected by e.g. GPS measurements.

Nevertheless, a constant covariance is also assessed to

accentuate the advantage with the Schmidt-Kalman ar-

chitecture.

The measurement model is still given by (22), but

it is now necessary to evaluate the Jacobian with re-

spect to the UAV NED positions in addition. The new

measurement Jacobian gets the form

∂ht

∂x
=

[
∂z1
∂xn

f

∂z1
∂yn

f
0 0 ∂z1

∂xn
uav

∂z1
∂yn

uav

∂z1
∂zn

uav

∂z2
∂xn

f

∂z2
∂yn

f
0 0 ∂z2

∂yn
uav

∂z2
∂yn

uav

∂z2
∂zn

uav

]
(26)

where the partial derivatives are evaluated at the cur-

rent best estimate for xt and x̂o. The covariance matrix

for the augmented system gets the form

P =

[
Pt Pto

(Pto)> Po

]
(27)

where Pto is the cross-covariance between the target

and UAV NED positions, and Po is the covariance for

the UAV NED positions. The equations for the Schmidt-

Kalman filter is described thoroughly in [28] and will

not be explained further here. It is important, however,

to point out that you don’t want to estimate or predict
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the state δxo, but rather account for the uncertainty.

Therefore, the Schmidt-Kalman filter forces the corre-

sponding elements in the Kalman gain to zero. Both

the Kalman gain and covariance for the target are in-

fluenced by Pto and Po. The tracking architecture is

displayed in Fig. 4.

This architecture shares the strengths and weak-

nesses with the tracking system based on bearing-only

measurements. However, the main advantage with this

architecture is that the estimated covariance for the

target states accounts for uncertainty in the UAV NED

positions. Hence, the estimated covariance is expected

to reflect the true uncertainty more accurately so that

the estimates are more consistent. That can for exam-

ple be crucial for data association purposes in multiple

target tracking.

This approach is obviously not useful in situations

where the sensor position and orientation are known

perfectly. Moreover, it complicates the system slightly

since a direct link between the target tracking system

and the UAV navigation system is created. The Schmidt-

Kalman filter is also a suboptimal approach since infor-

mation only are allowed to flow from the UAV naviga-

tion system to the tracking system, and not the other

way around (as in the SLAM approach).

Tracking	System	–
Schmidt-Kalman	Filter

Object	Detection	with	SIFT

Linearization

Target Position 
in Image

Estimated Position and 
Velocity

UAV	Navigation	
System

Attitude
Position

Jacobian

Measurement 
Model

Covariance UAV 
Position

Most Recent 
Estimate

Fig. 4 A sketch of the tracking architecture based on a
Schmidt-Kalman filter.

5 Experimental Setup

A flight experiment consisting of several flights has been

conducted near the Azores outside of Portugal. The X8

Skywalker fixed-wing UAV interfaced with a retractable

pan/tilt gimbal was used to gather data. A light-weight

payload [23], with a FLIR Tau2 640 thermal camera

with a focal length of 19mm and resolution of 640×480

pixels, was used to capture images from the flights. The

thermal camera has a frame rate of 7.5 frames per sec-

ond, and has been calibrated with the method proposed

in [23] to increase the accuracy of the camera intrinsic

matrix. The experiment was conducted at sea with ma-

rine vessels operating in the area. An image captured

at the experiment is displayed in Fig. 5.

Fig. 5 A thermal image captured at the flight experiment.
A small boat is present in the image.

The images and the navigation data gathered at

the experiment have been processed off-line. The Open

Source Computer Vision Library (OpenCV) [41] has

been used to implement SIFT, which is used for feature

extraction and OF calculation. Matched features be-

tween successive images are assigned a value indicating

the uncertainty of the match. Matches with more than

twice the uncertainty of the best match have been re-

moved to increase the reliability of the OF vectors. Fig.

6 displays a single image captured in the experiment

with OF vectors acquired by SIFT.

Fig. 6 Optical flow vectors acquired by SIFT on an image
captured at the flight experiment.

The data used to evaluate the tracking systems con-

sist of thermal images with the target (the vessels dis-

played in Fig. 5 and 6), GPS measured position and
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speed for the vessels (used as a reference for valida-

tion) and navigation data for the UAV (estimated by

the autopilot). The navigation data are stored with a

frequency of 10Hz. The GPS measurements for position

and speed of the vessels (target) are stored with a fre-

quency of 2Hz. The mean pixel position for the features

are used as a measurement of the target position in the

image plane for the tracking systems in Section 4.4 and

4.5. The mean pixel position for all features is used

for georeferencing in the tracking system in 4.3. Each

feature on the target is treated independently for the

tracking system in Section 4.2 because the magnitude

of optical and theoretical flow varies with the pixel po-

sition. The NE positions and velocities of each feature

are calculated, and the mean position and velocity for

all features are used as measurements in the tracking

system.

The gimbal pan and tilt angles were both controlled

manually and automatically with a gimbal controller

[42] during the flight. The pan and tilt angles cannot be

measured directly and only the commanded set-point is

available. Therefore, a possible source of uncertainty in

the results is the accuracy of the pan and tilt angles.

How this is handled in practice is described more care-

fully in [22].

The measurement models require time-synchronized

data. The images, navigation data and gimbal orienta-

tion are stored by the on-board computer. The data are

not synchronized in hardware, and thus the time stamp

is given by the on-board computer software. Hence, the

time stamps can be somewhat uncertain when the on-

board computer has a lot of tasks. This is because a

delay will be added to when a sensor actually obtained

the measurement. Moreover, the GPS receiver and se-

rial communication have a typical delay of 100-200 ms

[43]. To reduce the impact of uncertainty in the time

stamps, the images have been synchronized off-line by

adjusting the time stamp for images where the time be-

tween subsequent images differs substantially from the

frame rate. Furthermore, the mean time between con-

secutive images (without any adjustment) was in ac-

cordance with the frame rate of the camera. This was

also the case for the navigation and gimbal data. More-

over, since it is less time consuming to store navigation

data (compared to an image), the time stamps for the

navigation and gimbal data were accepted without ad-

justment between samples.

The tracking systems are implemented in Matlab.

Prediction is performed for every received image. Mea-

surements are used to correct the prediction whenever

the target is detected in the images. One of the main

goals with the tracking systems is to be able to pre-

dict the trajectory of the target when measurements are

unavailable. Therefore, the experiment contains longer

periods where the target is outside of the field of view

of the camera. The tracking systems are able to run

in real-time on a MacBook Pro (2015 version) with an

Intel dual core i7 processor when images arrive at a fre-

quency of 7.5 Hz. A non-optimized implementation of

SIFT in OpenCV is used, and it can process more than

13 images each second.

6 Results

This section presents the results for the off-line process-

ing of the data gathered at the flight experiment. The

results are divided into seven parts. The first part seeks

to verify the relationship between OF and velocity. The

second part describes the flight used to evaluate the dif-

ferent tracking system architectures. The latter parts of

this section present the results for the tracking systems

and an evaluation of the consistency of the estimates.

6.1 Flight 1 - Finding the Position and Velocity of a

Marine Vessel at Rest

The first test is based on images with the large ma-

rine vessel displayed in Fig. 6, which is located in the

camera field of view for a short period on two separate

occasions. The main motivation behind this test is to

extract measurements for the position and velocity of

the vessel, as described more closely in Section 3. The

vessel is approximately 70 meters long and has a width

of 13 meters. Fig. 7 shows the UAV path (estimated

by the navigation system) and the path of the vessel

(measured by GPS) for a period of 80 seconds. Fig. 8

shows the gimbal orientation in the same time span.

The vessel has almost zero speed, but the system has

no knowledge about the motion of the vessel.

The vessel is not in the camera field of view in the

the time intervals [20, 50] and [72, 80]. Furthermore,

SIFT is not able to find features on the ship in some

images. 600 images were captured in the time period

and features were detected on the vessel in 250 images.

A part of the vessel is visible in approximately 400 im-

ages. However, 100 of these images only contain a very

small part of the vessel. The whole vessel is visible in

200 images.

Fig. 9 and 10 show the theoretical flow and OF mea-

sured by SIFT in horizontal (r) and vertical (s) direc-

tion in the image plane. Since the vessel is at rest, the

theoretical flow is expected to be equal to the mea-

sured OF. The noise level is fairly large in s and the

accuracy is better in r, but you can clearly see that the

theoretical flow and OF are correlated. Considering the
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Fig. 8 Gimbal orientation in the first test.

uncertainty related to synchronization of data and the

accuracy of the sensors [23] into account, the results

look reasonable.

Fig. 11 shows the georeferenced position of the ves-

sel together with the UAV and vessel position. The geo-

referenced position does not vary significantly, which is

the expected behavior for a target at rest. However,

there seem to be a connection between the UAV nav-

igation states and the obtained position since it varies

with where the UAV is located on the path in Fig. 7.

This is visible in the beginning and at 55 seconds since

the georeferenced position is correlated at these time

instants, and the UAV is located at approximately the

same place on both occasions. Moreover, the georefer-

enced North and East position decrease as the UAV

moves on the trajectory in Fig. 7. Ideally, the georef-

erenced position should be constant with small oscilla-

tions (because of measurement noise) about this value.

Note that both the attitude, gimbal orientation and po-
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Fig. 9 Comparison of theoretical and measured optical flow
in the horizontal direction (r). They should, in theory, be
equal for objects at rest.
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Fig. 10 Comparison of theoretical and measured optical flow
in vertical direction (s). They should, in theory, be equal for
objects at rest.

sition can be the reason for the correlation between the

georeferenced position and the UAV position on the

path. Nevertheless, considering the issue with synchro-

nization, the accuracy of the obtained position is not

too troublesome. It should also be emphasized that, as

shown in Fig. 6, features are not necessarily uniformly

distributed on the target. Hence, the mean position of

features can be quite far from the center of the vessel,

which is were the GPS is located. This will obviously

also affect the accuracy, especially with length of the

vessel in mind.

Fig. 12 shows the velocity of the ship obtained by

OF. The noise level is quite large, but the mean error is

within 1m/s in both the North and East velocities. The

calculated velocity is particularly vulnerable for the is-

sues with synchronization of data since it is important
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to know the exact attitude, velocity and position of the

UAV when two consecutive images are captured. This

is somewhat problematic since the sampling rate of the

UAV navigation states just slightly exceeds the frame

rate of the camera. Thus, it would be more beneficial

to estimate the states of the UAV at a much higher

frequency to minimize the impact of synchronization.
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Fig. 12 Measured velocity of ship obtained with optical flow.
The ship was not in the field of view of the camera in the time
interval [20, 50] and [72, 80].

6.2 Flight 2 - Description

This section describes the flight data used to evaluate

the tracking architectures in Section 4. The results are

based on images with the small marine vessel displayed

in Fig. 5. Fig. 13 shows the UAV path estimated by the

navigation system together with the path of the ves-

sel (measured by GPS) for approximately 55 seconds,

which is the tracking period. Fig. 14 shows the gimbal

orientation in the tracking period.
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Fig. 13 Position in the NE plane for the UAV and the vessel
in the second flight.

0 10 20 30 40 50 60

time [s]

0

20

40

60

80

100

120

140

a
n
g
le

 [
d
e
g
]

Gimbal Pan and Tilt Angles

pan

tilt

Fig. 14 Gimbal orientation during the tracking period in the
second flight.

The vessel is only in the field of view of the camera

in the time intervals [0, 5] and [37, 48]. Thus, the es-

timates are in a very large part of the tracking period

solely based on prediction. 420 images were captured

in the tracking period and features were detected on

the vessel in 97 images. The initial covariance for the

target states was chosen to be a diagonal matrix with

a variance of 36m2 for the NE positions and 10(m/s)2

for the NE velocities. The process noise covariance (in

continuous time) Q was designed as a diagonal matrix

with a variance of (3m/s)2, although smaller accelera-

tions are expected in practice. The estimated position

and velocity are initialized with the position obtained
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by georeferencing in the first image and zero, respec-

tively. Details related to each tracking system is de-

scribed more closely in the relevant section.

6.3 Flight 2 - Tracking System based on

Georeferencing and Optical Flow

The tracking system based on georeferencing and OF

(referred to as the first tracking system) uses measure-

ments of both position and velocity. The covariance of

the measurement noise was designed as a diagonal ma-

trix with a variance (in continuous time) of (12m)2 for

the position measurements and (6m/s)2 for the velocity

measurements.

Fig. 15 and 16 display the estimated position and

speed. The estimated position is quite close to the ref-

erence. Obviously, the estimates are slightly more ac-

curate in the time intervals when measurements are

available. Nevertheless, the predicted position is quite

reasonable in both North and East when measurements

are unavailable, especially since the target operates out-

side the field of view of the camera for 30 seconds and

the vessel is maneuvering in that period. The estimated

speed is also quite accurate. It is slightly above the GPS

measured speed in the first part of the tracking period.

This is most likely because the set of measurements are

so limited in the beginning, and thus it is challenging

for the estimates to converge before measurements are

unavailable.

It is important to point out that the whiteness of

the measurement noise is somewhat questionable. This

is because the measurements strongly depend on the

UAV navigation data, and thus, it is likely that sub-

sequent measurement noise is correlated. If this is the

case, it is also a violation of the conditions related to

the optimality of the Kalman filter, which explains why

the estimates are somewhat inaccurate at times. This

is discussed more closely in Section 6.7.

6.4 Flight 2 - Tracking System based on

Georeferencing

The tracking system based on georeferencing (second

tracking system) uses measurements of position. The

covariance of the measurement noise was designed as a

diagonal matrix with a variance (in continuous time) of

(12m)2. This is in line with the chosen covariance for

the measurement noise in the first tracking system.

Fig. 17 and 18 display the estimated position and

speed. The estimated position is more accurate than for

the tracking system based on georeferencing and OF.

An increase in accuracy is especially visible in the time
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Fig. 15 Estimated position compared with the GPS mea-
sured position for the tracking system based on georeferenc-
ing and optical flow.
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Fig. 16 Estimated speed compared with the GPS measured
speed for the tracking system based on georeferencing and
optical flow.

period where only prediction is used (measurements not

available). This is mainly because the estimated speed

is more accurate when the target moves outside the field

of view of the camera (at approximately 5 seconds).

These results indicate that the velocity measure-

ment actually leads to less accuracy for the estimates

in the beginning of the tracking period. However, it

is important to emphasize that the accuracy of the

first tracking system is comparable to the second sys-

tem near the end of the tracking period. Therefore, one

cannot claim that the velocity measurement is useless.

Moreover, the comparable accuracy in the end may in-

dicate that the last couple of velocity measurements

(before the target leaves the field of view in the begin-

ning) are inaccurate, and perhaps the main reason for

the error in estimated speed. Nevertheless, the results

show that the reward for using the velocity measure-

ments not compensates for the growth in complexity

in this case. One cannot rule out the results could have
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been different in other scenarios, for example if the syn-

chronization of data had been better.
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Fig. 17 Estimated position compared with the GPS mea-
sured position for the tracking system based on georeferenc-
ing.
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Fig. 18 Estimated speed compared with the GPS measured
speed for the tracking system based on georeferencing.

6.5 Flight 2 - Tracking System based on Bearing-only

Measurements

The tracking system based on bearing-only measure-

ments (third tracking system) uses measurements of the

target position in the image plane. The measurement

noise was designed as a diagonal matrix with a variance

of (75 pixels)2 and (60 pixels)2 for the horizontal and

vertical dimension, respectively (converted to meters).

Fig. 19 and 20 display the estimated position and speed.

The estimated position is quite accurate. Moreover, it

has slightly less drift than the tracking systems in Sec-

tion 6.3 and 6.4 in the period without measurements.

The estimated speed is also more accurate than for the

tracking system based on georeferencing and OF. The

increased accuracy is most likely because the system is

less affected by uncertainties in synchronization of data

than the system in Section 6.3. Additionally, it is not

necessary to calculate the range explicitly.

The estimates from this tracking system are quite

trustworthy, but it is very challenging to increase the

accuracy when the set of available measurements are

so limited. This is because measurements that are re-

ceived just before the target disappears from the field

of view, get a large influence on how the states are pre-

dicted when measurements are unavailable. This prob-

lem is enhanced when you have a small set of measure-

ments because the tracking filter not necessarily con-

verges with a small set of consecutive measurements.

It is also worth noticing that the vessel is maneuver-

ing (see Fig. 13), and not behaves as assumed in the

constant-velocity motion model. Therefore, increased

accuracy would have been expected if the set of mea-

surements had been larger. This is obviously something

that are relevant for the other tracking architectures as

well.
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Fig. 19 Estimated position compared with the GPS mea-
sured position for the tracking system based on bearing-only
measurements.

6.6 Flight 2 - Tracking System based on a

Schmidt-Kalman Filter

The tracking system based on a Schmidt-Kalman filter

(fourth tracking system) has the same measurements

and measurement noise covariance as the bearing-only

tracking system (Section 6.5). Because measurements

of specific force were unavailable, the UAV NED posi-

tions were extracted from the autopilot and not esti-

mated in an error-state Kalman filter. In order to use
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Fig. 20 Estimated speed compared with the GPS measured
speed for the tracking system based on bearing-only measure-
ments.

a Schmidt-Kalman filter, a constant covariance was de-

signed to represent the effect of uncertainty in the UAV

NED positions. The variance was chosen to be 10m2 for

the North and East positions and 50m2 for the down

position. Fig. 21 and 22 display the estimated position

and speed, which are comparable to the results in Sec-

tion 6.5. There is no obvious increase in accuracy for

the estimates when accounting for uncertainty in the

UAV NED positions. The factors discussed in Section

6.5 is also highly relevant for this tracking architecture.

The benefit of using the Schmidt-Kalman filter is high-

lighted in the next section.
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Fig. 21 Estimated position compared with the GPS mea-
sured position for the tracking system with a Schmidt-
Kalman filter.

6.7 Flight 2 - Consistency Analysis

This section discusses the consistency [44] of the esti-

mates from the different tracking systems. The normal-
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Fig. 22 Estimated speed compared with the GPS measured
speed for the tracking system with a Schmidt-Kalman filter.

ized innovation squared (NIS) for the tracking systems

is displayed in Fig. 23. The NIS is almost equal for

the third and fourth tracking system, and thus only

visible as one graph. All tracking systems have innova-

tions within the 95 % confidence interval. The second,

third and fourth tracking system have two measure-

ments and, therefore, two degrees of freedom (DOF).

The first tracking system has four measurements and

4 DOF. Fig. 23 clearly shows that the velocity mea-

surement from OF increases the NIS significantly (com-

pare the NIS for the first and second tracking system).

This indicates that the velocity measurements are far

away from the predicted measurements at several sam-

ples. Comparable NIS is achieved for the other tracking

systems. Nevertheless, all tracking systems have NIS

within the confidence bounds, and therefore, the first

part of consistency is fulfilled.
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Fig. 23 Normalized innovation squared for all tracking sys-
tems. The black lines indicates the 95% confidence intervals
with 2 and 4 degrees of freedom.
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The second part of the consistency analysis is the

whiteness test for the innovations [44]. The autocorre-

lation of the innovations shows that the innovations in

velocity can be considered white (95% confidence inter-

val) for the first tracking system. The innovations for

the rest of the measurements are on the other hand not

white for any tracking system. Hence, the measurement

noise is correlated for consecutive time-steps and this

violates the assumptions of the Kalman filter. Thus, one

cannot conclude that either of the tracking systems are

consistent, solely based on the definition of consistency

[44]. This is suspected to be because the attitude of the

UAV seems to influence the measurement noises more

than the pixel and UAV position. Nevertheless, in a sce-

nario where one only wants to track a single target, it is

reasonable to claim that consistency is less important

than the accuracy of the estimates.

In order to clarify the effect of the uncertainty in the

UAV NED positions, the norm of the covariance matrix

is investigated. Fig. 24 shows the norm of the covariance

matrices in the time interval [38,52] for all tracking sys-

tems. The estimates in the Schmidt-Kalman filter have

a more rapid increase in covariance when measurements

are unavailable. This is in compliance with the expected

behavior because the uncertainty related to the UAV

NED positions is accounted for. Moreover, since the

measurements are affected by the UAV position, the

norm of the covariance in the Schmidt-Kalman filter

decreases slower than for the other architectures when

measurements are available. Notice that the covariance

of the linear architectures have a slightly slower increase

in covariance when measurements are unavailable (after

48 seconds).
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Fig. 24 Norm of covariance matrix for all tracking systems.

7 CONCLUSIONS

This paper presented four vision-based tracking sys-

tems for marine surface objects utilizing thermal im-

ages captured in a fixed-wing unmanned aerial vehicle

with a retractable pan/tilt gimbal and a thermal cam-

era. Experimental results show that it is possible to

estimate the position and velocity of a vessel with ther-

mal images captured from a fixed-wing UAV operating

at high speed. More importantly, the systems are able

to predict the position of the vessel quite well when it

operates outside the field of view of the camera. The

results indicate that measurement errors in the UAV

NED positions do not influence the performance signif-

icantly, and it is suspected that measurement errors in

attitude has a much larger influence.

A Calculating Camera-fixed Coordinates in

terms of the UAV Navigation States

This appendix seeks to explain how the camera-fixed coordi-
nates of a feature at pixel (r, s) can be computed as a func-
tion of UAV navigation states and gimbal orientation. Let
the homogeneous coordinates of the feature be written as
tn = [xnf , y

n
f , z

n
f , 1]> and tc = [xcf , y

c
f , z

c
f , 1]> decomposed

in {N} and {C}, respectively. The relationship between the
coordinates is

tc = Tc
nt

n (28)

where Tc
n is the homogeneous transformation between {C}

and {N} defined as

Tc
n :=

[
Rc

n −Rc
nr

n
nc

01×3 1

]
By inserting (28) into the pinhole camera model (1) the equa-
tion can be solved with respect to xnf and ynf by assuming

that znf is known (znf is zero in this case). The solution de-

composed in {C} is calculated with (28) and given as

tc∗ =

xcfycf
zcf

 =
1

r′sψgbsθ + fcθgbcφcθ + s′cψgbcθgbsθ−

fcψgbsθgbsθ + r′cψgbcθsφ+ s′cφcθsθgb−

s′cθgbcθsψgbsφ+ fcθsψgbsθgbsφ

−r
′(znuav − znf)

−s′(znuav − znf )

−f(znuav − znf )


where r′ and s′ are the pixel coordinates and s and c are
the sine and cosine functions. znuav is the down position of
the UAV. tc∗ only depends on known parameters, and thus
the camera-fixed coordinates of features are known as long
as all features are located at sea level, which is a sensible
assumption in this case.
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