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Abstract Impedance and Admittance Control are two well-known controllers to accom-
plish the same goal: the regulation of the mechanical impedance of manipulators interact-
ing dynamically with the environment. However, they both are affected by a strong limi-
tation deriving from their fixed causality, which causes their inability to provide good per-
formance over a large spectrum of environment stiffnesses. In this paper an adaptive hy-
brid system framework is proposed to unify Impedance and Admittance formulations and
consequently overcome this limit. Indeed, the hybrid framework interpolates the opposite
performance and stability characteristics of the above-mentioned impedance-based control
strategies leading to a family of controllers with intermediate properties, and thus suitable
for several conditions. Moreover, the adaptivity allows the hybrid system to operate properly
in an environment characterized by unknown and even time-varying stiffness. Especially, the
work focuses on the development of this latter aspect and an adaptive solution based on a
feedforward Neural Network is presented. The effectiveness of the novel control strategy is
demonstrated by means of numerical simulations.
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1 Introduction

In the last 40 years, the impact of robots in human life has increased significantly. Advances
in mechatronics and robotics have enabled the development of many machines capable of
supporting human beings in a growing number of activities.

Many efforts have been focusing on manipulation tasks involving dynamic interaction
between robot and environment, since they would open to new and fascinating perspectives.
The dynamic coupling between a manipulator and the environment generates reaction forces
that must be handled properly to avoid undesired effects. In this situation, classical position
control fails: contact forces cause deviations from the desired trajectory that the control
system tries to compensate leading to a build-up of that forces, until breakage of robot
hardware or manipulated object [22].

Historically, two fundamental control methodologies have been proposed to deal with
the manipulation issue. The first strategy is known as ”Hybrid Position and Force Control”,
proposed by Raibert and Craig [17] and then developed by Mason [14]. It is based on for-
mal models of the manipulator and the task geometry: since it is not possible to control
both position and force along the same degree of freedom (dof), the task space is split into
two domains, the position and the force subspaces. The reaction force is controlled in the
force subspace and the position of the end effector is controlled in the position subspace.
However, this approach does not consider the dynamic coupling between the robot and the
environment and this can be considered the main limit of this strategy.

On the other hand, Hogan [6, 7, 8] suggested a method to face this dynamic issue based
on the control of the relation between position and force: impedance control. He started from
the observation that two interacting physical systems must be complementary and since the
environment can be typically described as an admittance, i.e. it receives forces as input and it
gives displacements as output, the controller must be an impedance, which accepts motion
inputs and yields force outputs. Therefore, the idea behind the impedance control is the
regulation of the mechanical impedance of the manipulator.

Typically, impedance-based control can be implemented in two different ways, known
as ”Impedance Control” and ”Admittance Control” which differ from each other in the
causality. In the Impedance Control, the controller is an impedance and consequently the
controlled plant is treated as an admittance. Conversely, in the Admittance Control the plant
is position-controlled and it behaves as an impedance, and thus the controller must be an
admittance.

Later, some hybrid systems were introduced in order to combine the qualities of the
Hogan and Raibert and Craig methodologies. Anderson and Spong [1] pointed out the force
control inability of handling unmodelled dynamics due to coupling and impedance control
inadequacy in following a commanded force trajectory. Their solution is based on an inner
feedback linearization loop with force cancelation and an outer loop which joins Impedance
and Hybrid Force\Position Control in one strategy.

Afterwards, Liu and Goldenberg [11] pushed forward the idea of Anderson and Spong
proposing to add desired inertia and damping terms in force-controlled subspace in order
to improve the dynamic behavior. In addition, they introduced a PI controller to tackle the
uncertainties of the manipulator dynamic model.

Recently, Ott, Mukherjee and Nakamura [15, 16] developed a new way to implement
impedance-based control. They proposed a hybrid system which combines the advantages
of the Impedance and Admittance Control by rapidly switching between them. Indeed, the
two strategies have complementary performances, as shown by Lawrence [10], who investi-
gated their stability properties in the presence of non ideal effects, such as time delay. Start-
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ing from Eppinger and Seering observations [4] about the effects of high feedback gains
on stability, Lawrence pointed out opposite stability requirements for Impedance and Ad-
mittance control. For the Admittance Control, low values of stiffness and damping produce
high feedback gains, therefore it suffers the inability to provide soft impedance, giving as a
result instability during interaction with stiff environment. On the contrary, in the Impedance
Control high feedback gains are consequences of high values of stiffness and damping, and
thus it is difficult to provide large stiffness, causing poor accuracy in soft environment and
free motion.

Different attempts of overcoming the two control laws limitations have been investigated
through the application of adaptive strategies to either Impedance or Admittance Control.
Slotine and Li [24] and Lu and Meng [13] proposed the adaptation of unknown param-
eters in robot and payload models in order to mitigate the effects of uncertainties on the
Impedance Control. Singh and Popa [23] exploited a Model Reference Adaptive Control
(MRAC) applied to Impedance Control and combined impedance and force control.

Conversely, Seraji [21] applied adaptive PID and PD controllers to Admittance Control
in an unknown environment.

Contrary to the previous studies, the aim of the strategy proposed by Ott, Mukherjee and
Nakamura is not to improve the performance of either Impedance or Admittance Controls,
but to combine them. Indeed, their proposal is an unified framework for Impedance and
Admittance Controls, which may even take advantage of advanced implementations of each
of the two controllers.

The hybrid system interpolates the response between Impedance and Admittance Con-
trol depending on the duty cycle of the switching system. Currently, the limit of the strategy
lies in the fact that the environment must be known in order to set the duty cycle properly.
Needless to say, a system capable of adapting itself to unknown and time-varying environ-
ment would lead to considerable improvements in the performance and versatility of the
hybrid solution.

To deal with uncertain environment, some authors proposed algorithms to estimate on-
line the environment stiffness [3, 12, 18, 19, 20, 25]. However, this strategy may be unfeasi-
ble in some applications due to the inevitable delay in the estimation and the fact that some
algorithms require particular excitations to work properly. In addition, if a time-varying
environment is considered, these algorithms may have some difficulties in following the
continuous variations, leading to bad performances of the control system.

In this paper a different strategy to face unknown and time-varying environment is pro-
posed. The duty cycle is adapted by a feedforward Neural Network with a single hidden
layer made up of four neurons. The network obtains information about the dynamic sys-
tem and the environment through the acquisition of the states and the interaction force. The
training of the network is carried out exploiting a genetic algorithm as optimization method.
Moreover, a step forward with respect to the work done in [16] is performed extending the
concept of the hybrid system to a 2-dof system.

The current paper is organized in the following way: in section 2 an overview of the
hybrid system is presented with application to the 2-dof case. In section 3 the problem of
making the hybrid system adaptive is introduced and the structure and training of the adopted
feedforward Neural Network are explained. Afterwards, some simulation results considering
fixed-stiffness and time-varying environment cases are shown in section 4. Finally, in section
5 the conclusions of the work are summarized.
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2 Overview of the hybrid system

Impedance and Admittance Control have opposite stability and performance characteristics
due to their different implementations and causalities, as highlighted in [10, 15, 16]. The
main limitation in Impedance Control concerns the impossibility of providing stiff behavior
and compensating friction adequately, resulting in poor accuracy in soft environments and
free motion. Conversely, it is robust to uncertainties in model parameters and can guarantee
very good performance and stability in very stiff environments thanks to its soft behavior,
that can limit the interaction forces.

On the other hand, Admittance Control can assure better performances in the interaction
with soft environments, thanks to its stiff feature, while it results in instabilities when the
environment stiffness increases.

Both formulations are limited by their fixed causality, which causes their incapability of
providing good performances in a large spectrum of environment stiffness, as illustrated in
Fig. 1. An ideal controller should provide consistently good performance, independent of
the environment stiffness.

The adaptive hybrid control aims to accomplish this task by rapidly switching between
Impedance and Admittance Control, overcoming the fixed causality and unifying the bene-
fits from both the controllers in a single framework.

Pe
rfo

rm
an
ce

Stiffness

Ideal	Controller

Fig. 1: Qualitative illustration of the performance of Impedance Control and Admittance
Control for different environment stiffness.

Before presenting the adaptive system, a brief introduction of the hybrid formulation,
along with the underlying Impedance and Admittance Control, is given. The discussion is
carried out extending the results in [16] for the 1-dof case to a 2-dof system.

2.1 Problem statement

A manipulator made up of 2 rigid joints connected by as much rigid links is considered (see
Fig. 2). It interacts with an environment modeled as an inclined frictionless wall. Consider-
ing a point contact, the system is governed by the equation of motion:

M(q)q̈+C(q, q̇)q̇+g(q) = τ +JTFext (1)

where q, q̇ and q̈ are respectively the joints position, velocity and acceleration vectors, J is
the geometric Jacobian, τ is the control action, applied to the joints, and Fext the external
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Fig. 2: 2-dof system graphic representation.

force vector. M(q), C(q, q̇) and g(q) represent the system inertia matrix, the centrifugal and
Coriolis matrix and the gravitational terms, respectively.

Manipulator control based on the impedance/admittance scheme aims to provide a con-
trol action realizing a prescribed relation between external force and the error response of
the system:

Md,eë+Dd,eė+Kd,ee = Fext,e (2)

with:
e = xe−x0,e (3)

where Md,e, Dd,e and Kd,e are the desired inertia, damping and stiffness matrices, respec-
tively, Fext,e is the external force vector, xe is the end-effector position and x0,e is the com-
manded virtual position. All the quantities are expressed in the environment reference frame,
illustrated in Fig. 2. The desired impedance relation is considered in the external force di-
rection, which is orthogonal to the wall.

2.2 Impedance Control

In the Impedance Control, the plant is an admittance, i.e., it receives force as input and
gives position as output, while the controller behaves as an impedance, as schematically
represented in Fig. 3.

Considering the 2-dof manipulator, the expression of the desired control force can be
derived from Eqs. (1) - (2). Once the quantities are rotated in the base reference frame x− y
(see Fig. 2), the desired end-effector acceleration can be computed as follows:

ẍ = M−1
d (−Ddẋ−Kd(x−x0)+Fext) (4)

where commanded velocity and acceleration are considered equal to zero.
Since a control action expressed in the joint space is required, the joint acceleration can

be derived from the velocities relationship encoded by the Jacobian.

ẋ = Jq̇ (5)
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Fig. 3: Impedance Control system structure.

then

q̈ = J−1(ẍ− J̇q̇) (6)

At this point the end-effector acceleration is substituted by the desired one reported in
Eq. (4).

q̈ = J−1M−1
d (−Ddẋ−Kd(x−x0)+Fext)−J−1J̇q̇ (7)

From the dynamics (see Eq. (1)) the control torque can be derived as:

τImp = M(q)q̈+C(q, q̇)q̇+g(q)−JTFext (8)

Combining Eq. (7) with Eq. (8) the Impedance Control torque can be obtained:

τImp =M(q)J−1M−1
d (−Ddẋ−Kd(x−x0)+Fext)+

−M(q)J−1J̇q̇+C(q, q̇)q̇+g(q)−JTFext
(9)

The C(q, q̇)q̇ and g(q) terms compensate the centrifugal, Coriolis and gravitational ef-
fects.

In an ideal case, without friction, uncertainties and measurement delays, the controlled
system satisfies exactly the desired impedance relation in Eq. (2).

2.3 Admittance Control

In the Admittance Control, the motion control problem and the impedance control problem
are separated. One controller generates a motion trajectory from the interaction force mea-
surement, guaranteeing the desired dynamic behavior (Eq. (2)). A second controller receives
the reference trajectory and provides the related control action to the plant. Fig. 4 shows a
schematic representation of the Admittance Control.

Different kind of control law can be implemented to realize the position controller. In
this case a simple PD regulator is used:

τAdm = kp(qd−q)−kvq̇+C(q, q̇)q̇+g(q) (10)
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Fig. 4: Admittance Control system structure.

where kp and kd are the proportional and derivative coefficients of the PD controller, C(q, q̇)q̇
and g(q) are the centrifugal, Coriolis and gravitational compensating terms, respectively,
and qd represents the desired joint trajectory, which can be found from Eq. (4) by inverse
kinematics.

2.4 Hybrid system structure

The hybrid system switches between Impedance and Admittance Control providing the fol-
lowing control action τHyb:

τHyb =

{
τImp : t0 + kδ ≤ t ≤ t0 +(k+1−n)δ
τAdm : t0 +(k+1−n)δ ≤ t ≤ t0 +(k+1)δ

(11)

where τImp and τAdm are the control torques provided by Impedance and Admittance Con-
trol, respectively, t0 is the initial time, δ is the switching period, n ∈ [0,1] is the duty cycle
and k is an integer that takes on values 0,1,..., N, where N is the considered number of
switching periods.

Note that for n= 0 the hybrid system behaves exactly as the Impedance Control, whereas
for n = 1 it uses the Admittance Control with periodic resetting.

The continuity in the control force can be maintained by defining a proper state variable
mapping when the system switches from Admittance to Impedance Control and viceversa,
as explained in [16].

Figure 5 shows the scheme of the hybrid controller.

2.5 Simulation example

In order to illustrate the performances of the the hybrid system, some simulations are pre-
sented in this section.

The 2-dof system described in section 2.1 is considered and friction, model uncertain-
ties, time delays and noise are introduced. The equations of motion become:

M(q)q̈+C(q, q̇)q̇+g(q) = τ +JTFext + τf (12)

with the unmodelled friction term:



8 Francesco Cavenago et al.

Admittance
Control

Plant 
Dynamics𝜏

𝐹#$%
𝑥

𝑥'

Position
Control

𝑥(

Impedance 
Control

𝑛, 𝛿

Fig. 5: Concept of Hybrid Control.

τ f i =−sign(q̇i)(cv|q̇i|+ τc) i ∈ [1,2] (13)

where cv and τc represent the viscous coefficient and the Coulomb friction for the ith joint,
respectively.

The parameter values used in the simulation are reported in table 1.

Table 1: Simulation parameters.

Real Parameters

M1 1.0 kg
M2 1.0 kg
m1 0.8 kg
m2 0.8 kg
J1 0.001 kgm2

J2 0.001 kgm2

l1 0.7 m
l2 0.5 m
cv 4 Nms/rad
τc 1 Nm
α 45 deg

Model Parameters

M̂1 0.8∗M1
M̂2 0.8∗M2
m̂1 0.9∗m1
m̂2 0.9∗m2
Ĵ1 0.8∗ J1
Ĵ2 0.8∗ J2

M̂1, M̂2, m̂1, m̂2, Ĵ1 and Ĵ2 are the masses and inertias implemented in both impedance and
admittance strategies, introducing a certain level of uncertainties. In addition, a time delays
of 2 ms is added in the state measurements and a Gaussian noise with zero mean and unity
variance is considered on the external force measurement.

The control parameters set in the simulation are as follows:

Md,e =

[
1 0
0 1

]
, Kd,e =

[
100 0

0 100

]
Dd,e = 2∗0.7∗

√
Kd,e ∗Md,e

kp =

[
106 0
0 106

]
, kv =

[
500 0

0 500

]
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δ = 0.02s

At the initial time the mass is considered to be already in contact with the wall and the
environment stiffness is expressed as:

Ke =

[
ke 0
0 0

]
in the environment reference frame, and thus:

Fext,e =−Kexe (14)

Without loss of generality the rest position of the environment is considered equal to zero.
Figs. 6-7-8 show the error response, with respect to the ideal behavior of the closed loop

system (see Eq. 2), of the hybrid system to a step position command, considering differ-
ent value of n. Results are shown for stiffness equal to 10 N/m, 1400 N/m and 3200 N/m,
respectively.

As expected, in a soft environment the performance improves as n tends to 1, i.e. when
the hybrid system behaves as the Admittance Control. On the contrary, when ke increases, n
must decrease, and the hybrid system tends to behave as the Impedance Control. These
results prove the capability of the hybrid system of interpolating the response between
Impedance Control and Admittance Control by properly choosing the value of n. The hybrid
system combines the robustness property of the Impedance Control in stiff contact with the
accuracy of the Admittance Control in soft contact.

Note that the results for the 2-dof system are similar to the ones found in [16] for the
1-dof case. This fact represents a first evidence of the scalability of the presented control
strategy to more complex robotic systems.

Finally, it should be mentioned that the idea behind the design of the hybrid system is
the development of a general framework capable of unifying Impedance and Admittance
Control. This means that, in order to reach the desired impedance relation, potentially, every
already existent Impedance or Admittance Control formulation can be added to the hybrid
system, depending on the application.
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Fig. 6: 2-dof system error response with hybrid control for the soft environment ke = 10 N/m.
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Fig. 7: 2-dof system error response with hybrid control for the intermediate environment
stiffness ke = 1400 N/m.
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Fig. 8: 2-dof system error response with hybrid control for the stiff environment ke =
3200 N/m.

3 Adaptive strategy

Once the impedance and admittance controllers are chosen, the stability and performance
characteristics of the hybrid system are determined by the values of the switching period δ

and the duty cycle n [16]. In particular, this latter parameter decides the contribution of each
control laws, embedded in the framework, to the overall response of the system, and thus it
represents the design parameter to be adapted.

If the environment stiffness is known, a proper value of n, minimizing the error with
respect to the ideal behavior (see Eq. 2), can be easily found. However, in many applica-
tions this information can not be obtained a priori and a system capable of adapting itself
depending on the external conditions is required.

Even though the effects of varying the duty cycle n in different environment is clear, an
explicit expression relating this parameter to the interaction force or the continuous states
of the system is particularly hard to be found, due to the high nonlinearity of the system.
Moreover, the main differences between Impedance and Admittance Control are related to
the presence of uncertainties, unmodelled friction and delays.
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These considerations, along with the already-stated difficulties in estimating the envi-
ronment properties online, led to the development of an adaptive system based on a Neural
Network.

3.1 Neural Network

A Neural Network is a powerful tool to deal with high nonlinear problems providing ap-
proximate relations among the involved quantities[2, 9]. The strengths of the Neural Net-
work are, first, the computation power thanks to the massively parallel distributed structure
and, second, the generalization property derived from its ability to learn[5]. This last feature
means that a Neural Network can produce reasonable outputs for inputs different from the
ones received during the training.

These characteristics are exploited to create a relation between the external force and
the states of the system and the design parameter, the duty cycle n. The network receives the
information from the dynamic system and the environment and, elaborating them, provides
a suitable n minimizing the error with respect to the desired behavior.

This solution can guarantee a prompt reaction to variations of the external conditions
making the hybrid system capable of working in unknown and even time-varying environ-
ment.

3.2 Neural Network structure

The structure adopted for the adaptive system is a fully connected multilayer feedforward
network with a single hidden layer. The number of layer and neurons per layer is the result of
a trade-off among simplicity, performance and training time. Since the input layer receives
the states of the end-effector and the interaction force as input, it is made up of a number of
nodes that depends on the dimension of the considered problem (e.g., six nodes for the 2-dof
system) . The hidden layer and the output layer are constituted of 4 neurons and 1 neuron,
respectively (see Fig. 9). It was observed that adding hidden neurons does not improve
significantly the performance.

Fig. 9: Neural Network adaptive system diagram

Each neuron features a weight which multiplies its inputs, a bias, summed to the prod-
uct, and an activation function, in this case a sigmoid function. In the proposed solution a
single bias common to all the neurons of the hidden layer is used in order to simplify the
optimization problem during the training.
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Therefore, the output of the k− th hidden neuron is expressed as follows:

hk = σ(wT
1kx+wT

2kẋ+wT
3kFext +bh) k ∈ [1,2,3,4] (15)

where σ is the sigmoid function, wik is the vector of the weights of the k− th neuron and bh
the layer bias.

The outputs of the hidden layer enter in the output neuron providing:

y = σ
(
wo

T h+bo
)

(16)

where wo is the vector of the output weights, h is the vector containing the outputs of the
hidden layer and bo is the output bias.

It should be noted that y would tend asymptotically to 1 or 0 when the argument of
the sigmoid function approaches +∞ or -∞, excluding possible solutions, i.e., n = 0 and
n = 1. Hence, an additional weight w f is added to the output of the Neural Network and
the constraint on the duty cycle n, which varies in a range between 0 and 1, is recovered
applying the square of the sine function to the weighted output:

n = sin2(w f y) (17)

It is worth observing that the Neural Network is not limited to select a constant fixed
duty cycle for each scenario. The only restriction is that n should be bounded between 0
and 1 and constant within the switching period δ , for a proper functioning of the switching
system. This results in improved performance in certain environment, especially for the 2-
dof robot, as it will be shown in the simulations later.

3.3 Neural Network training

The training of the network, i.e., the definition of all the weights and biases, is carried out
exploiting a genetic algorithm as optimization method to minimize a fitness function based
on the error with respect to the ideal behavior (see Eq. (2)). The choice of exploiting a
genetic algorithm is dictated by the need to deal with a non-smooth optimization problem
with many local minima.

First of all, the training conditions and a proper fitness function must be defined. The
Neural Network must be trained with the command position and in the stiffness range re-
quired by the application. In this case, two separated command positions are considered, i.e.
a step x0 = 0.5 m and a step x0 = −0.5 m in the direction of the controlled impedance; in
this way the network can learn how to deal with both forward and backward commands, and
with circumstances where the interaction force is positive or negative. The selected stiffness
range varies between 10 N/m and 3200 N/m and it is discretized with a step of 200 N/m as
a trade-off between the necessities of training the network on a sufficiently wide number of
stiffnesses, requiring different n value, and avoiding overtraining. The choice of the range
is motivated by the will of comparing the results with the ones reported in [16]. The Neural
Network should provide the duty cycle n in such a way to realize the desired impedance
relation, and thus the training set is made up of the system ideal responses derived from the
integration of Eq. (2) for each condition of stiffness and command position.

The genetic algorithm generates randomly a population composed of individuals repre-
senting different sets of Neural Network weights. The training is carried out performing two
simulations of the robot operation (two step command positions) for each individual and for
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each stiffness of the discretized range. Then, the fitness function, which has to be minimized
by the genetic algorithm, is computed. The fitness function is based on the cost function

J =
1
2

∫ Tsim

0
(x−xre f )

T (x−xre f )dτ (18)

where x is the actual position and xre f is the ideal one, taken from the training set. Tsim is set
to 1 s: in this time all the main characteristics of the response can be recognized. For each
simulation this cost function is computed leading to the definition of two reward functions:

R f orward =
N

∑
i=1

J f i (19)

Rbackward =
N

∑
i=1

Jbi (20)

where N is the number of stiffnesses, J f i and Jbi are the cost functions evaluated for the
response to a step forward and backward, respectively, in the environment characterized by
the i− th stiffness.

Finally, the fitness function is defined as follows:

F = max(R f orward ,Rbackward) (21)

The optimization algorithm looks for a solution minimizing the worst reward function
keeping the other one bounded.

Therefore, to be clear, the training process can be summarized in the following steps:

1. Discretization of the expected environment stiffness range.
2. Computation of the ideal closed-loop system response from integration of Eq. (2) for

each stiffness of the selected range and desired command position (in this case 17 stiff-
nesses and 2 different command positions are considered, and thus 34 ideal responses
are computed).

3. Genetic algorithm starts
i. Random generation of an initial population of individuals, representing different sets

of Neural Network weights.
ii. Considering a single individual, computation of the closed-loop system response

giving a step forward command position for each environment stiffness and compu-
tation of the reward function R f orward .

iii. Considering a single individual, computation of the closed-loop system response
giving a step backward command position for each environment stiffness and com-
putation of the reward function Rbackward .

iv. Considering a single individual, computation of the fitness function F .
v. Considering all the individuals, comparison between the best fitness function and

the mean fitness function: if their difference is less then a specified tolerance the
genetic algorithm stops, otherwise

vi. Generation of a new population and repetition of steps from ii to v.
4. Genetic algorithm stops and the set of Neural Network weights, providing the best fit-

ness function, is selected.
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When a genetic algorithm is used, it is important to set the population size and weights and
biases boundaries properly. The followed procedure is reported in the flowchart of Fig. 10.
In defining the boundaries, the fact that the inputs of the Neural Network have different
order of magnitude and nature is taken into account.

Finally, note that uncertainties, unmodelled friction and delay must be added in the simu-
lation since they reveal the differences in the performance of the Impedance and Admittance
Control and are necessary to represent the conditions in which the manipulator operates.

Fig. 10: Flowchart of the procedure for the weights boundaries and population size setting.

4 Results

This section provides the main results of the adaptive hybrid system. It is shown that the
proposed solution can achieve the goal of working in an unknown environment, even time-
varying. In addition to the 2-dof case, the results of the 1-dof system are shown to compare
them with the ones in [16], where its trivial dynamics is described too and thus it is not
reported here. The data used in the simulations are reported in table 1.

4.1 Fixed environment stiffness

Figs. 11-13 show the error response of the 1-dof and 2-dof system, with the adaptive hybrid
system, the hybrid system with an optimal fixed n, the Impedance and Admittance Control in
a soft, intermediate and stiff environment. For the 2-dof system, the error is considered along
the direction orthogonal to the wall. The optimal fixed n is found as the n minimizing Eq.
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(18) for each environment stiffness. It should be noted that this procedure can be followed
only if the stiffness is a priori known.

It can be observed that the adaptive solution provides performance comparable to the
one with the best fixed n and in any case improves the performance with respect to the
Impedance and Admittance Control. As example, Fig. 14 reports the related n trend for the
1-dof case.
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Fig. 11: Error responses of the 1-dof (above) and 2-dof (below) systems to a step command
position from 0 m to 0.5 m for ke = 10 N/m.
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Fig. 12: Error responses of the 1-dof (above) and 2-dof (below) systems to a step command
position from 0 m to 0.5 m for ke = 700 N/m.

4.2 Time-varying environment stiffness

Thank to the capability of the Neural Network of selecting a value of n depending on
the states and the measured interaction force with the environment, the system can react
promptly to changes in the external conditions, even if they vary suddenly. Examples of
these situations could be a legged robot or a robot wiping a large thin plate, fixed at its sides.
In the former case, the leg moves repeatedly from a free-motion condition to a contact with
environment with different stiffness, depending on the terrain. In the latter case, the stiffness
of the plate will be lower in the middle with respect to the boundaries.

Figs. 15-16 show two situations of time-varying environment reported in [15, 16] and
exploited here to assess the performance of the adaptive hybrid system with respect to
Impedance and Admittance Control. The first case is applied to the 1-dof system as in [16]
and the error response is reported in Fig. 17. On the other hand, the second situation is
applied to the 2-dof system and the error response is shown in Fig. 18.

These results highlight the limitations of the Impedance and Admittance Control and
show clearly the improved performance of the adaptive hybrid system. In both Figs. 17-
18 it can be noticed that the Impedance Control shows a large steady state error when the
environment becomes softer. On the contrary, the Admittance Control loses stability as the
stiffness increases, but the steady state error is always negligible. Instead, the adaptive hybrid
system follows the variation of the environment guaranteeing the properties of an almost
zero steady state error and low overshoot for low contact stiffness, and an high stability in
stiffer situation. Especially, this fact can be observed in Fig. 18, where about 1.7 s there is a
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Fig. 13: Error responses of the 1-dof (above) and 2-dof (below) systems to a step command
position from 0 m to 0.5 m for ke = 3200 N/m.
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Fig. 14: n trend for the 1-dof system with ke = 10 N/m, ke = 700 N/m and ke = 3200 N/m.

sharp transition between two opposite environments and only the adaptive control manages
to face the situation properly.

5 Conclusions

In this paper the hybrid system framework has been introduced as a new solution to the
impedance control problem, unifying the impedance and admittance formulation. Espe-
cially, this novel concept has been developed extending it to a 2-dof manipulator and propos-
ing an adaptive strategy based on a feedforward Neural Network.
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Fig. 15: First case: time-varying contact stiffness ke and command position x0 for the 1-dof
system.
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Fig. 16: Second case: time-varying contact stiffness ke with exponential trend and related
command position xe0 for the simulation in the 2-dof system cases.

It has been shown that the presented adaptive hybrid system overcomes the fixed-causality
limitations of Impedance and Admittance Control leading to a controller which provides
consistently good performance, independent of the environment stiffness. Indeed, acting on
the duty cycle, the Neural Network modifies the behavior of the controller automatically
moving from impedance-based to admittance-based, and viceversa, depending on the inter-
acting environment. Through simulations, the effectiveness of the novel strategy has been
proved considering unknown and time-varying conditions.
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Fig. 17: First case: comparison of errors for the time-varying contact stiffness ke for the
1-dof system.
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Fig. 18: Second case: comparison of errors for the time-varying contact stiffness ke, with
exponential trend, in the 2-dof system case.

Moreover, the results on the 2-dof manipulator can be considered as a first evidence of
the scalability of the presented framework to a more complex system.

A further step in the development of this approach should be an experimental valida-
tion of the simulated results. Afterwards, an extension of the strategy, including analysis,
simulations and experiments, to more complex situations is an important goal for future
research.
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Finally, in this work a physical system remaining in contact with the environment has
been considered. However, contact transition from free to constraint motion may occur and
they are characterized by impulsive forces. Future studies should analyze the behavior of the
system including this phenomenon.
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