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Abstract Mapping in the GPS-denied environment is an important and chal-
lenging task in the field of robotics. In the large environment, mapping can
be significantly accelerated by multiple robots exploring different parts of the
environment. Accordingly, a key problem is how to integrate these local maps
built by different robots into a single global map. In this paper, we propose an
approach for simultaneous merging of multiple grid maps by the robust mo-
tion averaging. The main idea of this approach is to recover all global motions
for map merging from a set of relative motions. Therefore, it firstly adopts
the pair-wise map merging method to estimate relative motions for grid map
pairs. To obtain as many reliable relative motions as possible, a graph-based
sampling scheme is utilized to efficiently remove unreliable relative motions
obtained from the pair-wise map merging. Subsequently, the accurate global
motions can be recovered from the set of reliable relative motions by the motion
averaging. Experimental results carried on real robot data sets demonstrate
that proposed approach can achieve simultaneous merging of multiple grid
maps with good performances.
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1 Introduction

Mapping is one of the most fundamental and difficult issues in robotics, and
has attracted more and more attention since the seminal work presented in [1].
In the past few decades, many effective approaches [2] have been proposed to
build several kinds of environment maps, such as grid map [3], feature map [4],
topological map [5], and hybrid map [6], etc. As a kind of probabilistic map,
the occupancy grid map is not required to extract any special features from
environments, so it can easily model arbitrary types of environments. There-
fore, the grid map is one of the most popular map representations in robot
mapping. However, most of robot mapping approaches can only build single
map for medium scale environments. For the large scale environment, multi-
robots should cooperatively explore various parts of the same environment so
as to build grid map with good efficiency and accuracy. The key problem is
how to integrate these local grid maps built by multiple robots into a single
global map.

To merge a pair of grid maps, Carpin et al. viewed it as the optimization
problem [7], where the optimal transformation should be searched to align two
grid maps to be merged. Subsequently, two stochastic search approaches were
proposed to solve this optimization problem [7,8]. Similarly, Li et al. proposed
an grid map merging approach based on the genetic algorithm [9]. Although
these approaches may obtain the optimal rigid transformation, they are all
time-consuming due to the nature of exhaustive search. Different from these
passive merging approaches, some researchers proposed when two robots meet
randomly or search each other out during the mapping, they can perform the
map merging by determining their relative pose [10,11]. What’s more, Carpin
et al. then proposed map merging approach based on the Hough transform
[12], which can merge grid maps containing the line features. Although this
approach can efficiently merge grid map without any line feature extraction,
its accuracy should be further improved due to the nature of discretization
error in the Hough transform. Besides, it is required that the potentially be-
ing merged grid maps should contain a significant overlapping percentage. To
address the accuracy issue, Zhu et al.[13] viewed the grid map merging as the
point set registration problem and accomplished it by the trimmed iterative
closest point (TrICP) [14,15], where the initial parameters are provided by the
map merging approach based on the Hough transform. Meanwhile, Blanco et
al. proposed a multi-hypothesis method to provide the initial parameters for
point set registration algorithm so as to merge grid maps [16]. By the con-
firmation of merging hypotheses, it can obtain the robust merging result. To
address the robustness issue, Saeedi et al. proposed the improved grid map
merging approach based on the Hough transform, which can merge grid map
pair even with low overlapping percentage [17]. To merge grid maps with dif-
ferent resolutions, Ma et al. put forward an image registration based approach
[18], which can determine whether one of the two maps should be minified or
magnified in order to be merged with the other. It seems that many proposed
approaches can merge grid map pair with good accuracy and efficiency, but
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few merging approaches can really accomplish simultaneous merging multiple
grid maps.

Suppose there is a set of unordered grid maps, which are built by multi-
ple robots exploring different parts of the same large environment. These grid
maps are non-overlapping or partially overlapping with each other. Given the
reference map, the goal of multiple grid map merging is to integrate these lo-
cal grid maps into a global map by calculating the global motion for each grid
map to the reference map. To solve this problem, many authors declaimed that
their pair-wise merging approaches can be directly extended to merge multiple
grid maps sequentially. More specifically, the pair-wise merging algorithm can
repeatedly merge two grid maps and integrate them into one grid until all the
grid maps are integrated together. However, this kind of approach suffers from
the error accumulative problem. As mentioned in [13,18], the problem of pair-
wise grid map merging can be viewed as the pair-wise registration problem [19,
20]. Accordingly, the problem of multiple grid map merging can also be viewed
as multi-view registration problem [21,22,23,24,25,26,27]. However, most of
multi-view registration should be provided with the good initial motions in ad-
vance [24,25,26,27]. Otherwise, they are unable to accomplish the multi-view
registration. Besides, although some existing approaches can achieve multi-
view registration without initial motions, they are designed to deal with 3D
range scan and always time-consuming [21,22,23]. Therefore, it is required to
design an automatic multi-view registration approach, which can efficiently
deal with 2D grid maps. Recently, motion averaging algorithm has been intro-
duced as an effective means to solve the multi-view registration problem [28].
Although this approach can effectively accomplish the multi-view registration,
it should be provided with good initial global motions and reliable pair-wise
registration results [25,29].

Based on the original motion averaging algorithm, this paper proposes an
effective grid map merging approach, which can simultaneously merge multiple
grid maps without any prior information. As it is difficult to directly calculate
the global motions for these grid maps, the proposed approach accomplish the
merging of multiple grid maps by three steps. Firstly, the pair-wise merging
method is presented to estimate relative motions for the grid map pair, which
has a certain amount of overlapping percentage. As the pair-wise merging
algorithm may be applied to some grid map pairs, which have low overlapping
percentages or even non-overlapping, the estimated relative motion may be
unreliable. Therefore, all grid maps and the estimated relative motions are
utilized to construct a undirected graph so as to sample the maximal connected
subgraph (MCS). By confirming the sampled MCS with all relative motions,
it is easy to calculate the initial global motions and eliminate all unreliable
relative motions. Subsequently, the motion averaging algorithm can be adopted
to refine the initial global motions so as to obtain accurate global motions
for merging multiple grid maps. To illustrate its superiority, the proposed
approach is tested on some real robot data sets.

This paper is organized as follows. In the next section, the grid map merg-
ing problem is stated and the TrICP algorithm is briefly reviewed. Section
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Fig. 1: The diagram of multiple grid map merging, where one circle represents
a grid map and dashed curves indicate global motions required to be estimated.

3 proposes our approach for simultaneous merging of multiple grid maps. In
Section 4, the proposed approach is tested and evaluated on three real robot
data sets. Finally,some conclusions are drawn in Section 5.

2 Problem Statement and the TrICP algorithm

This section firstly states the problem of grid map merging. As pair-wise
map merging is the basis of multiple map merging, it then briefly reviews the
2D TrICP algorithm for the pair-wise map merging.

2.1 Problem Statement

To build large grid map, mapping can be cooperatively implemented by
multiple robots exploring different parts of the environment. Accordingly, a
set of local grid maps built by different robots should be integrated into one
global grid map.

Suppose there are two local grid maps built by robots exploring two parts
of the same environment. According to [12], the goal of pair-wise map merging
is to find a relative motion:

M =

[

R t
0 1

]

, (1)

with which these two local maps can be properly integrated into a global map.
More specifically, R ∈ R

2×2 denotes a rotation matrix determined by the angle
θ and t ∈ R

2 is a translation vector:

R =

[

cos θ − sin θ
sin θ cos θ

]

, t =

[

tx
ty

]

. (2)

Given a set of local grid maps, the goal of multiple grid map merging
is to integrate these local maps into a single global map. Without loss of
generality, the first grid map can be viewed as the reference map. As shown in
Fig 1, this merging problem is equivalent to calculating a set of global motions
Mglobal = {I,M2, ...,MN}, so that these local maps can be properly merged
into a global global map.
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2.2 The TrICP algorithm

Suppose there are two grid maps with non-overlapping areas, the model
map P and the subject map Q, where ξ represents their overlapping per-

centage. By applying the edge extraction algorithm, two edge point sets P
∆
=

{pi}
Np

i=1 and Q
∆
= {qj}

Nq

j=1 can be extracted from these two grid maps to be
merged. Denote Pξ as the point subset, which corresponds the overlapping part
of the subject map to the model map. For pair-wise map merging, the relative
motion M can be estimated by minimizing the following objective function:

argmin
ξ,R,t

∑

pi∈Pξ

‖Rpi+t−qc(i)‖
2

2

|Pξ|ξ1+λ

s.t. RTR=I2, det(R) = 1

(3)

where I2 denotes the 2D identity matrix, λ is a preset parameter and |·| indicate
the cardinality of a set.

Actually, Eq. (3) can be solved by the TrICP algorithm [14,15], which
can obtain the optimal relative motion by iterations. Given the initial relative
motion M0, three steps are included in each iteration of this algorithm:

(1) Based on the previous motion, establish the point correspondence for
each edge point in the subject map:

ck(i) = argmin
j∈{1,2,··· ,Nq}

‖Rk−1pi + ti − qj‖2 i = 1, 2, · · ·Np. (4)

(2) Update the kth overlapping percentage and its corresponding subset:

(ξk, Pξk) = argmin
ξ

∑

pi∈Pξ

∥

∥Rk−1pi + tk−1 − qck(i)
∥

∥

2

2
/(|Pξ| (ξ)

1+λ) (5)

(3) Calculate the current relative motion:

Mk
∆
= (Rk, tk)= argmin

R,t

∑

pi∈Pξk

∥

∥Rpi + t− qc(i)
∥

∥

2

2
(6)

Finally, the optimal relative motion can be obtained by repeating these
three steps until some stop conditions are satisfied. It should be noted that
the TrICP algorithm can only obtain reliable relative motions for the grid map
pair, which contains a certain amount of overlapping percentage [20].

3 Merging multiple grid maps

This section proposes the effective approach for simultaneous merging of
multiple grid maps by the robust motion averaging.

Given a set of gird maps, the proposed approach can accomplish grid
map merging by three steps displayed in Fig. 2. Firstly, the pair-wise merg-
ing method is presented to estimate the relative motions for many grid map
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Fig. 2: The flowchart of the proposed approach, where each vertex of graph
denotes a grid map, each edge indicates the relative motion of its connected
vertexes. (a) Multiple grid maps to be merged, where the red one denotes the
reference map. (b) A set of relative motions are obtained from the pair-wise
merging. (c) The confirmed MCS is connected by thick lines, which represents
all reliable relative motions along with other solid lines. (d) The accurate global
motions denoted by thick lines.

pairs. Subsequently, all grid maps and the estimated relative motions can be
viewed as an undirected graph, where each vertex denotes a grid map and each
edge indicates an estimated relative motion between the two vertices. Then,
a randomized sampling scheme is utilized to find the maximal connected sub-
graph (MCS). As there may exist unreliable relative motions obtained from
the pair-wise merging step, the sampling MCS should be confirmed by all rela-
tive motions. The process of MCS sampling and confirming should be repeated
until the preset number of iterations so as to search for the optimal MCS and
eliminate unreliable relative motions. Finally, the accurate global motions can
be recovered by the application of the 2D motion averaging algorithm to all
reliable relative motions.

3.1 Pair-wise grid map merging

To estimate the relative motion Mij , the pair-wise grid map merging
method should be well designed. As mentioned before, the TrICP algorithm
can be utilized to estimate the relative motion of one map pair which includes a
certain amount of overlapping percentage. However, owing to the local conver-
gence property, good initial relative motion should be provided to the TrICP
algorithm. Otherwise, it is easy to be trapped into the local minimum and
obtain the unreliable relative motion.

For the pair-wise map merging, the scale-invariant feature transform (SIFT)
futures [30,31] can be extracted from two grid maps respectively. As the SIFT
features are invariant to rotation and translation changes, it is easy to estab-
lish feature matches between these two grid maps. Due to the sensor noise
and the accuracy of mapping algorithm, there might exist some false matches.
As shown in Fig. 3, there are two grid maps P and Q, which include overlap-
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Fig. 3: SIFT features extracted and matched from grid map pair, where solid
red lines denote the true matches and dashed blue lines indicate the false
matches.

ping areas. Suppose there are a set of SIFT feature matches {Fi,P , Fi,Q}
N
i=1,

which are extracted and matched from these two grid maps. Obviously, if the
match {Fi,P , Fi,Q} is true, the SIFT features Fi,P and Fi,Q must correspond
to the same location of the environment, and they should satisfy the following
equation:

‖Rfi,P + t− fi,Q‖
2
2 ≈ 0, (7)

where M
∆
= (R, t) denotes the relative motion of these two grid maps, fi,P

and fi,Q represent the locations of SIFT features Fi,P and Fi,Q, respectively.
However, the false feature match does not meet this requirement.

According to Eq. (6), two true feature matches are enough to estimate the
initial relative motion for the TrICP algorithm. Therefore, the random sample
consensus (RANSAC) algorithm can be used to find the true matches. More
specifically, two feature matches can be randomly selected from all feature
matches so as to calculate the guess of relative motion M̃, then Eq. (7) can
be used to test all established feature matches and count the number of true
feature matches. And the best guess M̃best corresponds to the one, which can
receive the support of all true matches. To obtain the best guess, the random
guess should be repeatedly generated and tested until the preset maximum
number of iteration reaches. Finally, the best guess M̃best can be viewed as
the initial relative motion of the TrICP algorithm so as to refine the relative
motion of two grid maps to be merged.

Based on the above description, the proposed pair-wise map merging method
can be summarized as the Algorithm 1. Theoretically, two true feature matches
are enough to estimate the initial relative motion for the TrICP algorithm.
However, if the number of true matches is less than three, there is no way
to confirm and calculate the correct initial motion. To guarantee the robust-
ness, the TrICP algorithm is only applied to these map pairs, which satisfy
M̃best ≥ 4. Otherwise, there is no need to apply the TrICP algorithm. Suppose
SIFT features has been extracted for grid maps P and Q. To establish the fea-
ture matches, we can either search the nearest neighbor from the map Q for
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Algorithm 1 : Pair-wise grid map merging algorithm
Input: Grid maps P and Q

Output: Estimation of the relative motion M̂

Extract SIFT features for P and Q, respectively;
Establish all the feature matches {Fi,P , Fi,Q}Ni=1

and set k = 0;
Do

k = k + 1;
Randomly select two matches {Fi,P , Fi,Q}i=m,n;

Calculate the motion guess M̃k by Eq.(6);
Compute di =

∥

∥Rfi,P + t− fi,Q
∥

∥

2
for each feature match;

Count the number Nk of feature matches with di ≤ dthr ;
If Nk > Nbest

Nbest = Nk ;
M̃best = M̃k ;

End

While (k < 200)

Extract the edge point sets P
∆
= {pi}

Np

i=1
and Q

∆
= {qj}

Nq

j=1
;

Obtain M̂ by refining M̃best with the TrICP algorithm.

each SIFT feature in the map P or vice verse. In practice, these two strategies
can obtain different number of consistent matches for these two grid maps
to be merged. Therefore, during the establishment of feature matches, both
strategies should be implemented so as to obtain as many consistent matches
as possible.

After the application of pair-wise map merging, a set of relative motions
can be obtained for the construction of undirected graph so as to sample and
confirm the optimal MCS.

3.2 MCS sampling and confirming

Among these estimated relative motions, there may exist some unreliable
relative motions due to the unreasonable application of the pair-wise merg-
ing method to these grid map pairs, which contain low percentage or even
non-overlapping. Therefore, the optimal MCS should be confirmed so as to
calculate initial global motions and eliminate unreliable relative motions for
the motion averaging.

Given a set of relative motions {M̂
r

ij}
R

r=1, it is easy to construct an undi-
rected graph G, where one vertex denotes a grid map and each edge indicates
the estimated relative motion of its connected grid maps. Accordingly, global
motions can be estimated from the MCS, which is composed of (N − 1) edges
and N vertexes of the graph G. As displayed in Fig. 4, based on the MCS,
the global motion guess of the ith grid map can be directly set as M̃i = M̂1i,
where M̂1i has been estimated by the pair-wise map merging. Subsequently,
the global motion of the jth grid map can be calculated as:

M̃j = M̃iM̂ij . (8)
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Fig. 4: Diagram of the sampled MCS, which is connected by thick lines. Each
dashed line denotes one unreliable relative motion.

where M̂ij has been estimated and included in the relative motion set {M̂
r

ij}
R

r=1.
As the MCS exits a path between the 1st vertex to all other vertexes in the
G, Eq. (8) can be transitively used to calculate all other global motions. The
main questions arising here are how to sample the MCS from the graph G and
how to confirm the optimal MCS.

To sample a MCS, we can set a null matrix L of the size N × N . As one
MCS contains (N − 1) edges of the graph G, a subgraph G′ with all vertex of
G can be generated by the random selection of (N − 1) relative motions from

the motion set {M̂
r

ij}
R

r=1. Then we can set L(i, j) = 1, if the corresponding

relative motion M̂ij is included in the subgraph G′. Subsequently, a matrix g

can be calculated as follows:

g = (L+ L′ + IN )N (9)

where IN denotes the identity matrix of the size N ×N . If and only if all the
elements of the matrix g are non-zeros, the subgraph G′ can be viewed as a
MCS of the graph G.

As displayed in Fig. 4, only (N − 1) relative motions are contained in
the sampled MCS. Hence, all other relative motions can be used to confirm
the sampled MCS. Because each edge of the optimal MCS corresponds to
a reliable relative motion, Eq.(8) can be transitively used to calculated all

global motions M̃global =
{

I, M̃2, ..., M̃m, ..., M̃n, M̃N

}

with good accuracy.

Suppose the graph G includes an reliable relative motion M̂mn, which is not
contained in the optimal MCS. Since the relative motion M̂mn estimated by
the pair-wise merging algorithm, it inevitably contains error. Therefore,

M̂mn ≈ M̃−1
m M̃n. (10)

However, this relationship no longer holds for the unreliable relative mo-
tions. In practice, Eq. (10) can be replaced by the following constraint:

d(M̂ij , M̃
−1
i M̃j) =

∥

∥

∥
M̂ij − M̃−1

i M̃j

∥

∥

∥

F
≤ dthr (11)
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where dthr denotes the preset distance threshold. Based on this constraint,
all estimated relative motions can be used to confirm the optimal MCS, which
can receive the support of most relative motions in the graph.

The randomly sampled MCS is not necessary optimal due to the existence
of unreliable relative motions, so the sampling and confirming of MCS should
be repeatedly until the preset maximum number of iterations are reached.
Accordingly, the proposed MCS sampling and confirming method can be sum-
marized as the Algorithm 2.

Algorithm 2 : MCS sampling and confirming

Input: All the relative motions {M̂r
ij}

R
r

Output: Global motions M̂global and reliable relative motions {M̂r
ij}

R′

r

Ebest = 0 and k = 0;
Construct the graph G based on {M̂r

ij}
R
r ;

If (k ≤ 10N2)
k = k + 1;
do

Sample the subgraph G′ from the graph G;
Compute the matrix g denoted by Eq. (9);

Until (All elements of g are non-zeros)
Estimate M̃r

global
from the MCS by Eq. (8);

Count the number Er of edges that satisfy d(M̂ij ,M̃
−1

i
M̃j) ≤ dthr ;

If (Er ≥ Ebest)
M̂global = M̃r

global

Eliminate edges from {M̂r
ij}

R
r , which satisfy d(M̂ij ,M̃

−1

i
M̃j) > dthr ;

end

end

After the application of MCS sampling and confirming, the initial global
motions and a set of reliable relative motions can be obtained for the motion
averaging.

3.3 Motion Averaging

Although global motions have been estimated from the optimal MCS by
transitively using Eq. (8), they are coarse due to the accumulative error. Since
a set of reliable relative motions have been confirmed by the optimal MCS, they
can be incorporated to optimize the coarse global motions. The key question
arising here is how to use these 2D relative motions so as to refine the coarse
global motions. In [28], Govindu et al. proposed the 3D motion averaging
algorithm, which can refine the coarse global motions by a set of relative
motions. For the 2D motion, the original motion averaging algorithm should
be extended.

In fact, the 2D motion M ∈ SE(2) belongs to the Lie group and its log-
arithm M belongs to the Lie algebra m ∈ SE(2), which can be denoted as
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follows:

m = logm(M) =

[

Ω u
0 0

]

, (12)

where u = [u1, u2]
T is a vector and Ω is a skew-symmetric matrix:

Ω=

[

1 Ω12

−Ω12 1

]

. (13)

Accordingly, the Lie algebra m ∈ SE(2) can be transformed into other form
v = vec(m), where vec(.) indicates the function which can arrange all parame-
ters ofm into a compated 3D column vector. Vice verse, rvec(.) can be utilized
to denote the inverse function of vec(.). By applying the first-order approxi-
mation to the Riemannian distance [28], there exists the following relationship
for two approximate motions Mi and Mj :

logm(Mi
−1

Mj) ≈ logm(Mi)− logm(Mj)
⇒ mij ≃ mi−mj,

(14)

where the more these two motions are approximate, the more mij approxi-
mates to the term (mi−mj).

Suppose Mi(Mj) denotes the global motion of the ith (jth) grid map to
the reference map, Mij indicates the relative motion between the ith grid
map and the jth grid map. They obey the constraint Mij = Mi

−1Mj . For
the problem of multiple map merging, the motions Mi and Mj are variables

required to be estimated. While, Mij can be approximated by the one M̂ij

estimated from the pair-wise map merging. In other words, Mij and M̂ij is
very approximate. Therefore:

∆mij = logm(MiM̂ijMj
−1) = ∆mj −∆mi. (15)

As the column vector v represents another form of m, the same relation-
ship also holds for the column vector, i.e. ∆vij = ∆vj − ∆vi. Obviously,
all the column vectors {∆vi}

N
i=1 can be concatenated into one large vector

ℑ= [v1; v2; · · · ; vN ]. Subsequently, the equation ∆vij = ∆vj − ∆vi can be
transformed into the following form:

∆vij = Dijℑ = [· · · , I3, · · · ,−I3]ℑ (16)

where I3 is the 3D identity matrix, Dij can be viewed as an indicator matrices
of size 3× (3N − 3) with matrices I3 and −I3 at position j and i, respectively.
As there are a set of reliable relative motions confirmed by the optimal MCS, it
is convenient to concatenate all increment vectors of relative motions into one
large vector V =

[

∆vij1 ; ∆vij2; ...
]

, Similarly, all the indicator matrices can

also be concatenated into one large matrix D =
[

Dij1 ; Dij2; ...
]

. According
to Eq. (16), there exists the following relationships:

V = Dℑ (17)
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and
ℑ = D†V, (18)

where D† denotes the pseudo inverse matrix of D. Given the initial global
motion {M̂i}

N
i=1, the increment vectors {∆vi}

N
i=1 can be incorporated to refine

the global motion as follows:

Mi = expm(rvec(∆vi))M̂i (i = 2, 3, ..., N) (19)

where the function expm(.) denotes the exponential operation of matrix. As
displayed in Eq. (14), the motion averaging algorithm cannot obtain the closed-
form solution for global motions, so it is required to repeat the refinement until
some stop conditions are satisfied. The sketch of the global motion refining
algorithm is shown in Algorithm 3.

Algorithm 3 : Global motion refining

Input: Initial global motions M̂global = {I, M̂2, · · · ,M̂N}

reliable relative motions {M̂r
ij}

R′

r=1

Output: Fine global motions Mglobal = {I,M2, · · · ,MN}
Do

∆Mij = M̂iM̂ijM̂
−1

j ;

∆mij = log(∆Mij);
∆vij = vec(∆mij);
ℑ=D†Vij ;
for

∆mi = rvec(∆vi);
Mi = exp(∆mi)Mi;
M̂i = Mi;

end

Until |∆ℑ|| <ε

After the application of motion averaging, accurate global motions can be
obtained for the merging of multiple grid maps.

3.4 Implementation

Given a set of unordered grid maps, the relative motions of grid maps can
be estimated by the pair-wise map merging. As there may be exist unreliable
relative motions, an undirected-graph can be constructed by all grid maps
and their estimated relative motions. Accordingly, the MCS can be randomly
sampled and then confirmed by all estimated relative motions. By repeating
the process of MCS sampling, the optimal MCS can be confirmed to calculate
the initial global motions and select all reliable relative motions. Consequently,
the initial global motions can be refined by applying the motion averaging
algorithm to all reliable relative motions. Based on the refined global motions,
the set of grid maps can be integrated into a single global map. Therefore, the
proposed approach can be outlined in Algorithm 4.
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Algorithm 4 : Simultaneous merging multiple grid maps
Input: A set of unordered grid maps
Output: Merged map

Extract the SIFT features and edge point sets from all grid maps;
Estimate the relative motions for many map pairs by Algorithm 1;
Obtain the initial global motions and reliable relative motions by the Algorithm 2;
Acquire the fine global motions by the Algorithm 3;
Merge all grid maps based on the fine global motions.

 

   

 

Fig. 5: Grid maps built from Tim.log data set, which is divided into four parts.

4 Experimental Results

To verify the performance of the proposed approach, a set of experiments
were tested on three public datasets: Tim.log [33], Intel.log [32] and Fr079.log
[32], which were recorded by mobile robots equipped with a laser range finder
and odometer. All these datasets were recorded in door environment. To sim-
ulate multi-robot systems, these three data sets can be separated into four,
eight and eleven parts, respectively. By applying the simultaneous localization
and mapping(SLAM) algorithm [3,34], they can be used to build grid map
sets for testing the proposed approach. These grid map sets are displayed in
Figs. 5, 6 and 7 Experiments were implemented in MATLAB on a four-core
3.6GHz computer with 8GB of memory.

4.1 Validation

To validate the proposed approach, it was firstly tested on the grid map
set built from Fr079.log. As shown in Fig. 7, there are eleven unordered grid
maps, which require to be merged.

At the beginning, the pair-wise merging method should be utilized to cal-
culate the relative motions of grid map pairs. During pair-wise merging, true
feature matches can be detected between each grid map pairs. Fig. 8(a) dis-
plays the detected number of true feature matches for all grid map pairs.
As shown in Fig. 8(a), there are a portion of map pairs, which are lack of
enough true feature matches due to the low overlapping percentages or even
non-overlapping. For these map pairs, it is difficult to estimate their rela-
tive motions. For efficiency, the proposed approach only applies the pair-wise
merging method to these map pairs, which at least contains four detected true
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Fig. 6: Grid maps built from Intel.log data set, which is divided into eight
parts.

 

 

 
 

 

 

 

 

 

 
 

 

 

Fig. 7: Grid maps built from Fr079.log data set, which is divided into eleven
parts.

feature matches. Given the true feature matches, initial relative motions can
be provided to the TrICP algorithm so as to refine the relative motions for
grid map pairs. Fig. 8(b) indicates these map pairs, which can obtain their es-
timated relative motions. Due to some reasons, the pair-wise merging method
may obtain some unreliable relative motions.
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Fig. 8: Intermediate results of the proposed approach. (1) The number of
detected true feature matches of each map pairs. (2) Map pairs containing
estimated relative motions are denoted in gray. (3) The relative motions of
the optimal MCS are denoted in the red, other reliable relative motions are
denoted in the white and unreliable relative motions are denoted in the gray.

Subsequently, the undirected graph should be constructed based on all grid
maps and estimated relative motions. On the constructed graph, it is easy to
randomly sample the MCS, which contains (N−1) estimated relative motions.
As the number of estimated relative motions are more than (N −1), the resid-
ual relative motions can be utilized to confirm whether the randomly sampled
MCS is the optimal one or not. The process of sampling and confirming MCS
should be repeated until the preset iteration number is reached. As a result,
the optimal MCS can be searched out with all the reliable relative motions.
Fig. 8(c) displays all reliable relative motions and (N − 1) relative motions
involved in the optimal MCS. As shown in 8(c), there are some of map pairs,
whose estimated relative motions are unreliable. These unreliable relative mo-
tions may be caused by two reasons: (1) False true feature matches can only
provide invalid initial relative motions to the TrICP algorithm. (2) Even given
moderate initial relative motions, the TrICP algorithm may be trapped into
local minimum due to the property of local convergence. To view them in a
more intuitive way, Fig. 9 displays the merging results of one map pair, which
is denoted in the gray in 8(c). As shown in Fig. 9, the relative motion of this
map pair is really unexpected, so it should be eliminated by the optimal MCS.

As the optimal MCS contains the minimum set of good relative motions,
they can be employed to estimate initial global motions. Fig. 12(a) shows the
multiple map merging results based on the initial global motions. As shown in
Fig. 12(a), the initial global motions are not so satisfactory due to the accu-
mulative errors. Hence, they should further be refined by the motion averaging
algorithm. With all reliable relative motions, the motion averaging algorithm
can calculate accurate global motions for the merging of multiple grid maps.
Fig. 12(b) illustrates the final merging result of multiple grid maps. As shown
in Fig. 11, it is really necessary to apply the motion averaging algorithm, which
can result in good merging results.
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Fig. 9: The demonstration of one unreliable relative motion, which is estimated
by the pair-wise merging method. (a) Model map. (b) Subject map. (c) Merg-
ing result based on the initial relative motions. (c) Merging result based on
the estimated relative motions
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Fig. 10: The merging of multiple grid maps based different global motions. (a)
Global motions estimated from the relative motions involved in the optimal
MCS. (b) Global motions estimated from all reliable motions.

In one word, the proposed approach can accomplish the simultaneous merg-
ing of multiple grid maps with good accuracy.

4.2 Comparison

To illustrate its superiority, the proposed approach requires to be compared
with other related grid map merging approaches. However, to the best of our
knowledge, few approaches can really accomplish the simultaneous merging of
multiple grid maps. Therefore, the proposed approach is only compared with
the sequential merging approach based on the pair-wise merging algorithm
presented in [16]. Experiments were tested on three grid map sets, which are
displayed in Figs. 5, 7 and 6, respectively. As there is no ground truth of global
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Table 1: Performance comparison for map merging of grid maps

Sequential merging [16] Our method

Dataset Obj. T(s) Suc Obj. T(s) Suc

Tim 1.4242 8.7890 Y 0.5546 5.0969 Y

Ineel 16.2770 28.1093 Y 0.4509 20.4698 Y

Fr079 4.7405 27.3639 N 0.2940 19.6659 Y

 

 

 

 (a)

 

 

 

 (b)

Fig. 11: Multiple grid map merging results of three data sets for two competed
approaches. (a) Results of sequential merging approach. (b) Results of the
proposed approach.

motions, the error criterion presented in [23] can be utilized to quantitatively
analyze the accuracy of competed merging approaches. During experiments,
the runtime, merging error and merging status were recorded in Table 1. To
view the results in a more intuitive way, Fig. 11 shows the merging results of
three data sets for two competed approaches. As shown in Tabel 1 and Fig. 11,
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the proposed approach can obtain more efficient and accurate merging results
than that of the sequential merging approach.

To merge multiple grid maps, the sequential merging approach estimate
the relative motion of two grid maps and integrate them into one grid map,
which will further be merged with another new grid map. The process of
estimation and merging is repeated until all the grid maps are integrated into
one global grid map. Although this approach is straight-forward, it suffers from
the well-known problem that merging errors accumulate at each step. As the
grid map grows, the accumulate errors may lead to the failure of map merging.
Therefore, the sequential merging approach can not always accomplish the
merging of multiple grid maps. Besides, this approach requires to repeatedly
extract SIFT features from the new merged grid map, so it is less efficient.

However, the proposed approach only utilizes the pair-wise merging ap-
proach to estimate relative motions of several map pairs. Among these es-
timated relative motions, there may exist unreliable ones. Subsequently, it
randomly samples a minimum set of relative motions to estimate the initial
global motions, which can be further confirmed by all relative motions. By re-
peating the process of sampling and confirming, it can find the optimal MCS
for the estimation of initial global motions and confirm all reliable relative
motions. Given the initial global motions, the motion averaging algorithm can
be applied to all reliable relative motions so as to calculate the accurate global
motions for simultaneous merging of multiple grid maps. Hence, the proposed
approach can always accomplish merging multiple grid maps with good effi-
ciency and accuracy.

4.3 Robustness to grid map orders

To verify its robustness, the proposed approach was tested on three data
sets with different group of orders, which can be randomly changed. During
the experiment, grid maps with different orders were viewed as inputs and four
groups of map merging results for each data set were recorded in Table 2. To
view the results in a more intuitive way, Fig. 12 displays the merged maps for
both Tim.log and Intel.log under one group of grid map order. As shown in
Table 2, the running time of the proposed approach is varied due to the size
of grid map set. Besides, for each data set, the proposed approach can obtain
almost the same merging results for different map orders.

Before performing multiple gird merging, an exhaustive search strategy is
utilized to independently estimate the relative motions of map pairs, and the
results can be utilized to construct a undirected graph with all grid maps. On
this constructed graph, a set of MCS are randomly sampled and then confirmed
by all other relative motions. Subsequently, no matter what the order of grid
maps is, the proposed approach can always search for the optimal MCS and
obtain all the reliable relative motions. Based on the optimal MCS, it is easy
to estimate good initial global motions. As shown in Fig 12, initial global
motions are not very satisfactory, so they can further be refined by the motion
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Table 2: Map merging results for the grid maps with different orders.

Dataset ID Error T(s) Suc.

(Coarse) (Fine) (Coarse) (Fine)

Tim Order1 0.5713 0.5546 4.7392 0.3577 Y

Order2 0.5715 0.5560 4.3052 0.3587 Y

Order3 0.5713 0.5576 4.5370 0.3575 Y

Order4 0.5874 0.5497 4.0893 0.3582 Y

Intel Order1 0.4877 0.4509 19.1101 1.3597 Y

Order2 0.4906 0.4470 18.8025 1.3739 Y

Order3 0.4882 0.4390 19.663 1.3715 Y

Order4 0.4944 0.4560 18.6518 1.3672 Y

Fr079 Order1 0.3083 0.2940 18.1678 1.4981 Y

Order2 0.3110 0.2938 18.4086 1.5012 Y

Order3 0.3084 0.2933 19.4578 1.5157 Y

Order4 0.3042 0.2936 17.6649 1.4938 Y

 

 

 (a)

 

 

 

 (b)

Fig. 12: Merged maps of Tim.log and Intel.log. (a) Merged maps based on
initial global motions recovered from the optimal MCS. (b) Merged maps
based on the refined global motions.
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averaging algorithm with all the reliable relative motions. As shown in Table
2, the motion averaging only costs a small portion of merging time but can
seriously reduce the merging error. Accordingly, the proposed approach can
always obtain the grid map merging results, which are independent with the
order of grid maps to be merged. Therefore, the proposed approach is robust
to the order of grid maps to be merged.

5 Conclusion

This paper is, to the best of our knowledge, the first that proposes an ef-
fective approach for simultaneous merging grid maps built by multiple robots.
Given a set of grid maps to be merged, it can accomplish grid map merging
by several steps. It first utilizes the pair-wise map merging method to esti-
mate the relative motion of grid map pairs. For the reason of low overlapping
percentage, it may get unreliable estimation of relative motions for some grid
map pairs. Therefore, the minimum set of reliable relative motions should be
sampled and confirmed by other relative motions so as to eliminate unreliable
relative motions. Then, the initial global motions can be estimated from the
minimum set of reliable relative motions. Since the unreliable relative mo-
tions have been discarded, the motion averaging algorithm can be applied to
the reserved relative motions so as to get accurate global motions for grid
map merging. The proposed approach has been implemented and tested on
the real robot data sets. Experimental results illustrate that the proposed ap-
proach can accomplish simultaneous merging multiple grid maps merging with
good accuracy, efficiency and robustness.

The proposed approach includes some limitations. If one grid map has low
overlap percentages with all other grid maps, it is difficult to obtain good
pair-wise merging results for this grid map. In this case, there is no way to
integrate it into the global grid maps. However, we note that most merging
approaches proposed so far share this limitations as well. Besides, if these grid
maps to be merged are in different resolutions, the proposed approach can not
accomplish the merging of multiple grid maps. Our future work will focus on
addressing the second limitation.
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