


complex tasks have to be performed by the aerial robot with-
out human supervision as more complex decision-making
algorithms are required. The aforementioned constraints are
present in most of the SAR scenarios, where the aerial
robot usually requires to perform high-level tasks such as
exploration of unknown scenarios, navigation with colli-
sion avoidance, target recognition and interaction, among
others. In this paper, we focus our efforts on the develop-
ment of an autonomous aerial robot capable of perform-
ing such high-level missions in an unsupervised manner
(i.e. without human intervention) with a special interest
in the versatility and ease of adaptation of the algorithms
developed for object recognition and interaction.

Regarding the object recognition problem, classical com-
puter vision algorithms are generally very dependent on
the conditions of the environment where they operate (e.g.
lighting conditions, variety of backgrounds, presence of
clutter, etc.) which implies the need to readjust the parame-
ters of the algorithm for each new environment in order to
obtain a precise detection of the object and remove possible
false positives in the image plane. Furthermore, this adjust-
ing procedure can become an onerous task as it is usually
carried out by trial and error tests. The use of machine learn-
ing techniques, when trained on meaningful datasets, allows
overcoming these limitations, providing more versatile solu-
tions which can be executed in a wide range of environments
[7]. However, some of the recent machine learning mod-
els for object recognition [22, 30, 40] consist of consid-
erably deep models with a large amount of parameters that
have not been designed for operating onboard a robotic
platform with hard computational constraints such as a UAV.

With respect to the task of interacting with the target for
rescue operations, in this paper we characterize these tasks
by means of IBVS methods which allow the interaction
with targets in a wide variety of SAR missions. Within
these missions, operation in SAR disaster scenarios has
a special interest as it usually involves the interaction
with the detected target by means of delivering some
required items such as medicines, food, etc. [14, 21], where
IBVS techniques can provide versatile and computationally
efficient solutions. In this direction, classical IBVS methods
usually require a tedious tuning stage of their parameters
when changing to different operating conditions. This fact
can eventually appear in SAR scenarios where different
aerial robotic platforms may be used depending on the
environment. Furthermore, classic IBVS methods can suffer
from convergence and stability problems [10, 12].

Inspired by the aforementioned limitations, in this
paper we propose a fully-autonomous UAV featured with
learning-based techniques which can provide flexible and
versatile solutions to indoor SAR missions. The main con-
tributions of the proposed system are summarized here:
i) A custom UAV has been built with a flexible system

architecture which allows the efficient coordination
between the planning, situation awareness, feature extrac-
tion and executive systems for solving complex SAR mis-
sions. ii) This flexibility has allowed the integration of
learning-based techniques for object recognition and object
interaction. Concretely, several supervised learning clas-
sifiers, including computationally-efficient CNN models,
have been trained and evaluated for target/background clas-
sification. In addition, a novel IBVS algorithm based on
Deep Deterministic Policy Gradients (DDPG) [29] has been
implemented and validated for solving IBVS tasks in rescue
operations, comparing its performance with classic IBVS
techniques. iii) An extensive evaluation of the previous
learning-based components and the whole system in clut-
tered indoor SAR scenarios has been conducted in both
simulated and real flights.

In order to obtain a reliable testbed for experimentation
in SAR scenarios, in this paper we have adopted as the main
use case the missions proposed for the 2016 International
Micro Air Vehicle Competition1 (IMAV), where several
SAR problems had to be addressed. In the IMAV 2016
indoors competition, challenging high-level missions were
designed, ranging from autonomous building entering and
exiting, indoor exploration of unknown scenarios, object
recognition, etc. In addition, UAVs were required to perform
object interaction tasks, such as grasping a cylindrical item
and releasing it into a cylindrical bucket, with the option of
pre-loading the items previous to the takeoff maneuver. The
latter scenario has been extensively studied in this work in
order to provide our previous system [43] with more high-
level functionalities through learning-based techniques.

The remainder of this paper is organized as follows:
Section 2 introduces the related work; Section 3 describes
the hardware configuration adopted in our aerial robotic
platform. The system description is presented in Section 4.
Section 5 presents the experiments performed in simulated
and real scenarios, with their respective results, before we
discuss them in Section 6 and finally, Section 7 concludes
the paper, and points out future research directions.

2 Related Work

In the following paragraphs, some of the most relevant
solutions for the autonomous operation of UAVs in SAR
missions are covered in chronological order [1, 5, 14, 16, 41,
46, 48, 49]. We also refer to articles in which the delivery of
specific items from UAVs in emergency situations has been
studied [19, 21, 50]. Right after, we cover other relevant
developments aimed towards the execution of autonomous

1IMAV 2016 official website: http://www.imavs.org/2016/



UAV missions outside the field of SAR applications [2,
3, 23, 53]. We conclude by referring to other works
applying vision-based deep reinforcement learning to UAV
navigation [38, 42] as well as other relevant uses of deep
reinforcement learning in visual control tasks [28, 51, 52].

There is an increasing number of recent studies aiming
at UAVs as a potentially useful complement to SAR
applications. Early developments in high-level artificial
intelligence applied to aerial robotics were introduced in
Doherty et al. [14]. In particular, UAV autonomous missions
were implemented for the SAR of injured civilians, with
robots being able to scan designated areas, trying to identify
injured civilians and attempting to deliver medical and other
supplies to identified victims in realistic urban scenarios.
The specific techniques from this work, used to detect
humans at a high frame rate onboard an autonomous UAV,
were described in detail in [41]. These techniques were
applied in a real-world outdoor environment using visible
and thermal infrared cameras. In their work, detected human
positions were geolocated and a map of points of interest
was built. The resulting map is proposed to plan medical
supply delivery during a disaster relief effort.

In the context of SAR technology developments, the
UAV Challenge-Outback Rescue has been established as
an important international competition, where participants
have been required to perform UAV SAR missions, which
typically have involved executing autonomous take-off,
navigation for an aerial search, and landing maneuvers.
These exercises had associated image processing and con-
trol tasks needed to identify and deliver an emergency medi-
cal package to a mannequin simulating a lost person, placed
in a 4 km × 6 km area. Among the solutions provided, one
of the most relevant presented in [16] proposed a fixed-wing
UAV featuring GPS-based navigation, ground image acqui-
sition, and payload delivery, all implemented in a low-cost
platform.

The work by Tomic et al.[49] introduced a modular
and extensible software and hardware framework designed
for the autonomous execution of SAR missions using
aerial robots, which was successfully tested on a quadrotor
platform. However, while using multiple sensors (four
cameras and a laser scanner) the proposed system did not
feature any collision avoidance capabilities.

In 2015, a pilot study was conducted by Abrahamsen [1]
to assess the concept and feasibility of using a remotely
piloted aircraft (RPA) system to support remote sensing
in simulated major incident exercises. A custom-made,
remotely controlled UAV with vertical takeoff and landing
was equipped with visible and thermal infrared cameras,
a laser beam, a mechanical gripper arm and an avalanche
transceiver. Successful missions were executed for five
simulated exercises, demonstrating that UAVs are suitable
for carrying small payloads as well as useful tools to support

situation assessment and information exchange at major
incident scenarios.

In [46], Scherer et al. tested another interesting mod-
ular architecture of a UAV system for SAR missions in
an outdoor environment. The objective of the mission
was to detect a ground target by means of color, text or
shape, and to provide a live aerial video stream for remote
monitoring. Their proposal consisted of a swarm of multi-
copters coordinated to operate as a communications relay
using a distributed control system. The system was
implemented using the Robot Operating System (ROS) [39]
and was capable of providing a real-time video stream
from a UAV to one or more base stations using a wireless
communication infrastructure. The proposed system sup-
ported a heterogeneous set of UAVs and image sensors and
allowed the operator to select different levels of autonomy.

In the study published by Sun et al., a camera-based
target detection and positioning system was developed and
integrated into a fully autonomous fixed-wing UAV [48].
The system was capable of onboard and real-time target
identification, post-target identification and localization,
and aerial image collection for further mapping applica-
tions. Its performance was assessed using several simulated
SAR missions, demonstrating its reliability and efficiency.

Deep learning was applied for supporting UAV SAR
operations in [5]. In this work, a sequence of images of
avalanche debris captured by a UAV was processed with
a pretrained CNN model to extract discriminative fea-
tures. A trained linear Support Vector Machine (SVM) was
integrated at the output of the CNN to detect objects of
interest. Moreover, they introduced a preprocessing method
to increase the detection rate and a postprocessing method
based on a Hidden Markov Model to improve the pre-
diction performance of the classifier. Experimental results
conducted on two different datasets at different levels of
resolution showed that the detection performance increased
when incrementing the resolution, at the cost of raising the
computation time.

Developments for drone delivery of emergency items in
search and rescue missions have as well been analyzed in the
literature. Examples include: drug shipments [21], delivery
of defibrillators [19] and life rings [50].

Other recent developments focused on providing UAVs
with high levels of autonomy outside the field of appli-
cation of SAR missions are discussed next. In the work
of Bacharach et al. [3], a quadrotor helicopter equipped
with a laser rangefinder was designed and implemented to
autonomously explore and map unstructured and unknown
indoor environments. The paper highlighted the difficulties
of applying to UAVs algorithms that were originally devel-
oped for Unmanned Ground Vehicles (UGVs). Interesting
solutions were described in this work, such as a mul-
tilevel sensing and control hierarchy, a high-speed laser



scan-matching algorithm, an Extended Kalman Filter (EKF)
for data fusion, a high-level SLAM implementation, and
an exploration planner. The manuscript showed experi-
mental results demonstrating the helicopter’s ability to
navigate accurately and autonomously in unknown environ-
ments. Algorithms originally conceived for UGVs were also
exploited by Grzonka et al. [23] to increase UAV autonomy.
In this case, they proposed a general navigation system that
enabled a small-sized quadrotor platform to autonomously
operate in indoor environments. A similar work was pub-
lished by Achtelik et al. [2], which presented a software
architecture providing a quadrotor helicopter with the capa-
bilities to autonomously navigate, explore and locate objects
of interest in unknown, unstructured indoor environments.

Results specific to autonomous navigation in indoor cor-
ridors were presented by Zingg et al. [53]. In their approach
for wall collision avoidance, a depth map based on optical
flow from images captured by an onboard omnidirectional
fisheye camera was used. Inertial Measurement Unit (IMU)
data was also used for compensating rotational effects of the
optical flow.

Several implementations of visual control for UAVs can
be found in the literature, but very few presenting it as
one capability among several other ones in the context
of an autonomous mission. Some of the aforementioned
developments make use of computer vision geometry to
determine navigation waypoints, but only [49] used visual
information to provide control feedback in real time.

There are as well very few developments exploiting
vision-based deep reinforcement learning for UAV navi-
gation. In particular, Sadeghi et al. [42] introduced the
CAD2RL learning method, which allows collision-free
navigation in a real indoor environment using synthetic data
from 3D CAD models as the only training data. Another
example is the work by Polvara et al. [38], who made
use of Deep Q-Networks for the autonomous landing of a
quadrotor.

Other interesting applications of deep reinforcement
learning for solving visual control tasks outside the field of
aerial robotics are mentioned next. Lee et al. [28] proposed
to perform a visual servoing task by extracting deep features
instead of using pixels or keypoints. The best features to
solve the task were then selected using a Q-iteration algo-
rithm. Also Zhang et al. [51] proposed to use vision-based
deep reinforcement learning for controlling the motion of
a three-joint robot manipulator. Finally, Zhu et al. [52]
presented an efficient algorithm for visual navigation in
indoor scenes using deep reinforcement learning. The algo-
rithm was trained using high-quality 3D scenarios allowing
for physical interaction with the objects in the scene.

In contrast to all the aforementioned developments, our
work proposes a fully-autonomous UAV that is not only
capable of autonomously navigating in indoor cluttered

environments with situational awareness, but can also inter-
act with static and moving targets, which can be automat-
ically detected and followed to precisely deliver items for
rescue purposes. Furthermore, while much of the discussed
literature focuses on accomplishing specific tasks only,
and many developments are evaluated in computer simula-
tions only, the solution proposed here focuses on complex
missions involving multiple heterogeneous tasks and has
been evaluated in detail in both simulated and real flights.

3 Hardware Configuration

Search and Rescue missions in indoor scenarios usually
involve hard constraints relative to the clearance within
indoor passages and the necessity of carrying items for
rescue purposes. These constraints were also present in the
IMAV 2016 competition, where the minimum clearance of
the passages within the indoor environment was 1 m wide
and the aerial robot was required to preload several items of
100 g each. Considering these limitations, it was necessary
to build a custom UAV (see Fig. 1) relatively small in size
with the adequate capacities for carrying the sensors and
actuators required for localization, navigation, and object
recognition and interaction.

Based on the aforementioned constraints, a custom UAV
with relatively small dimensions (62 cm × 62 cm × 40 cm,
including propellers of 28 cm) has been designed and built
with a total takeoff weight of 3.2 kg, a maximum payload
capacity of 1 kg and a maximum flight time of 12 min.
The onboard computer consists of an Intel NUC6i5SYK
featuring a 2.9 GHz Intel Core i5-6260U CPU. The avionics
of the UAV are managed by a Pixhawk [34] autopilot,
which integrates an Inertial Measurement Unit (IMU), a
barometer and a magnetometer. The exteroceptive sensors
mounted onboard consist of a Hokuyo laser rangefinder
UTM-30LX with a horizontal field of view of 270◦ and an
angular resolution of 0.25◦ with a maximum range of 30
m, an Intel Realsense R200 camera with an RGB image
size of 640 × 480 pixels, a standard RGB 180◦ fisheye-lens
bottom-looking camera with an image size of 640 × 480
pixels, and a Lightware SF10/A altimeter with a maximum
range of 25 m (see Fig. 1a). The communication between
the autopilot, proprioceptive, exteroceptive sensors and the
onboard computer is performed over USB connections. In
addition, appropriate electronic components and holding
devices have been designed and integrated for object
interaction tasks. For this purpose, two small curved hooks
have been integrated into the UAV framework (see Fig. 1b).
These hooks are controlled by two servo motors which
are actuated via an Arduino board when a signal of target
locked is commanded in order to release the items preloaded
onboard the UAV.





a human operator (e.g. find a target, explore, etc.).
Additional inputs in this mode comprise the dimensions
of the area to be explored as well as the number of
mission points. Using these inputs, the GMP is able
to automatically generate mission points by applying
a K-means clustering over points randomly distributed
over the area to be explored. For a detailed explanation
of this functionality we refer the reader to [44]. Once
the global mission is prepared, it is distributed through
the agent or agents in the swarm and received by the
AMP.

One important functionality implemented in the
GMP is its capability of concatenating several missions
[43]. Based on this, the GMP has an active list of
missions per agent. Once the last mission in the list is
accomplished, the GMP is able to recover the previous
mission in its corresponding state (i.e. current task).
This functionality acquires an utmost importance in
SAR missions, where the system has to react to the wide
range of events that may occur during the execution of
this type of missions.

2. Agent Mission Planner (AMP). This component is
located at the agent’s level and is responsible for
scheduling task by task the received mission. For this
purpose, the AMP acts as an interface between the GMP
and the rest of components in the architecture.

Since the area to be explored is unknown a priori,
the mission points generated by the GMP can fall
within an obstacle. In order to address this problem,
the AMP is capable of generating safety points when
the current mission point falls within an obstacle. In
order to generate a safety point, the AMP implements
an iterative method in which random points lying
on a safety circumference of predefined radius are
generated. After several iterations of the algorithm,
and if no safety point has been obtained in the
current circumference, its radius is incremented and the
iterative method continues. In this iterative procedure,
the AMP communicates with the Path Planner in each
iteration, until an obstacle-free point is obtained.

4.1.2 Path Planner

The path planner component relies both on the use
of a precise lidar sensor and a robust localization and
mapping algorithm. The path planning algorithm utilized
in the proposed architecture is based on an existent ROS
navigation package [33], which was originally designed
for differential-drive and holonomic-wheels robots, and has
been adapted in this work to the Aerostack architecture,
enabling its operation with multirotor UAVs. Furthermore,
the original 2D functionality of the mentioned ROS
planner package has been extended in order to provide

3D navigation capabilities by adding the remaining altitude
coordinate as a constant value (by default) to each
intermediate point in the path. However, the AMP can
dynamically modify its value within the execution of a
mission in order to fulfill specific requirements relative to
the current environment.

The Path Planner component requires a 2D occupancy
grid map (see Section 4.2.1) as well as a mission point
generated by the AMP (in world frame of reference)
for its normal operation. The 2D occupancy grid map is
subsequently translated into a 2D cost map in which cost
values are propagated out of occupied cells based on an
inflation radius parameter. A detailed explanation of the
algorithm and its components can be reviewed at [33].

4.1.3 Yaw Planner

The yaw planner is in charge of associating a yaw angle
to each waypoint within a 2D path based on the direction
towards the commanded mission point or considering the
AMP directives. Taking into consideration normal mission
conditions, a specific policy has been defined:

– Middle waypoints: Orientation is set to a constant value
according to the direction of navigation at each time
step towards the commanded mission point.

– Last waypoint: Orientation is derived from the AMP
directives extracted from the current task within the
mission. This can be utilized for exploration purposes,
in which different yaw angles can be specified at each
mission point.

Following this policy, a UAV is considered to maximize
the area covered by both the lidar and the image sensor’s
field of view, in order to plan throughout the optimum path
and to avoid blind zones which can lead to a collision.

4.2 Situation Awareness System

4.2.1 2D Localization and Mapping

In this work, localization and mapping capabilities have
been integrated by means of a state-of-the-art 2D SLAM
algorithm [25], which has been extensively tested for
ground robots in Urban Search and Rescue (USAR)
missions, and can be also utilized in platforms that exhibit
roll/pitch motion by transforming the laser scan into a
local stabilized coordinate frame. Using the information
coming from a 2D lidar sensor, in this algorithm a fast
approximation of map gradients, and a multi-resolution grid
map representation for mitigating local minima problems,
are utilized in order to obtain a stable mapping and a robust
scan matching. The latter can be further improved if a source
of 3D pose is available and projected into the xy-plane



in order to initialize the optimization process of the scan
matcher. The 2D pose obtained from the scan matching
includes the xy-position of the aerial robot and its yaw
angle referred in the world frame of reference. Finally, the
map representation is encoded into a 2D occupancy grid
map, including occupied, non-occupied and non-explored
cell types, which is used by the Path Planner component for
navigation purposes.

4.2.2 Multi-sensor Fusion State Estimation

The objective of this component is to provide a full 6 DOF
pose and the respective velocities of the UAV, enabling
navigation using the Path Planner component described in
Section 4.1.2. In this direction, our proposed architecture
integrates two separate state estimation components which
can be combined in order to provide a higher level
situational awareness functionality or be used separately
depending on the requirements of the mission.

Flight Altitude State Estimator: The 2D SLAM algorithm
explained in Section 4.2.1, provides a 2D map of the
environment, enabling obstacle detection and avoidance in
a 2D plane at the given flight altitude of the UAV. Sensors
such as laser altimeters or similar range sensors can lead
to errors in the flight altitude estimation when flying above
ground obstacles, as the measurements get referred to them
instead of the ground surface.

In order to accurately estimate the flight altitude of
the UAV in the presence of several ground obstacles, we
propose an EKF-based algorithm which is able to estimate
the flight altitude of the UAV as well as the elevation of the
ground obstacles (more details can be found in [4]). This
is achieved by fusing the measurements coming from the
IMU, the barometer, and the laser range altimeter sensors.

The proposed state estimator considers a state vector
x ∈ R

10 based on the combination of four main compo-
nents: xR , xG, xI , and xB , which represent the state of
the robot, ground object, IMU sensor and barometer sen-
sor respectively. The corresponding state of the aerial robot

is defined by xR =
(
�T

xy ωT
xy tzR

vzR
azR

)
, where

�T
xy = (φ, θ)T are the roll and pitch Euler angles, ωT

xy =(
ωx, ωy

)T represent the x and y angular velocities of the
aerial robot in the UAV frame, and tzR

, vzR
and azR

are
the vertical coordinates of the position, velocity and accel-
eration of the aerial robot in the world frame of reference.
Assuming that the robot changes its vertical acceleration
and angular velocity slowly, we adopt a constant vertical
acceleration and constant angular velocity as process model.
The ground object state is defined by xG = tzG

, where tzG
is

the altitude of the ground object in the world frame. Obsta-
cles are set so that they always have positive altitude with

respect to the ground plane. Finally, the IMU and the barom-
eter sensors contribute to the state with their corresponding
biases, thus xI = baz and xB = bbz , where baz and bbz

are the biases in the vertical acceleration and flight altitude
measurements respectively.

Robot State Estimator This component is able to combine
the measurements from the 2D SLAM (see Section 4.2.1)
with the flight altitude estimator (see Section 4.2.2) or the
IMU sensor in order to provide complete pose and velocity
estimates of the UAV in the world frame of reference.

The Robot State Estimator is a standard ROS package
[35] which implements an EKF-based estimator with state
vector xR ∈ R

12, being xR = (
�T pT vT

)
, where

�T = (φ, θ, ψ)T are the roll, pitch and yaw Euler angles,
pT = (

px, py, pz

)T represents the position of the robot,
and vT = (

vx, vy, vz, ωx, ωy, ωz

)
is the vector containing

the linear and angular velocities of the aerial robot.
It includes a non-linear measurement model able to fuse

any robot pose or velocity measurements, provided by any
number of sensors. In contrast to the Flight Altitude State
Estimator, this EKF model does not incorporate in its state
vector any biases present in the sensor measurements nor
the altitude of the ground obstacles.

Our system integrates the previously described compo-
nents for multi-sensor state estimation in a versatile manner,
so they can be employed in different configurations depend-
ing on the selected hardware and mission requirements at
hand.

4.2.3 Perception Manager

The Perception Manager component is in charge of
managing and centralizing the perception events that can
occur during the execution of a mission (e.g. object
recognized, picked and released).

In order to obtain a proper management of the perception
events, this component integrates the information regarding
the current situation of the states of the different objects
which the UAV can interact with, together with the own
internal state of the Perception Manager (e.g. Exploring,
Going For Picking Item, Going For Releasing Item). An
example of the initial configuration of such states for a
SAR mission applied to the use case of IMAV 2016 is
provided in Table 1. When a perception event is detected by
the Perception Manager, (e.g. target recognized) the current
state of the objects as well as its internal state are evaluated
and updated. Based on this evaluation, the Perception
Manager can request a mission adaptation event to the
GMP. As an example, and taking the initial configuration
presented in Table 1, if a bucket object is recognized in the
current time instant, and since both corresponding items are
already picked up, the Perception Manager will generate a





approaches, where the ROI can be slightly away from the
object contour.

4.3.2 Model-Based Object Recognizer

Object detectors based on predefined knowledge of the
object to be detected, such as color, shape, etc, can be very
specific and prone to false positives. In order to provide
a robust detection of the target, reducing its vulnerability
to the environment conditions (e.g. lighting conditions)
we implement this component, whose core is based
on a supervised learning classifier for target/background
segmentation.

The objective of this component is to recognize and
locate the object of interest (target) within the image plane,
by providing its corresponding ROI, and in addition it is
responsible for the recognition of the target in terms of its
3D location with respect to the frame of reference of the
camera. For achieving the aforementioned capabilities, the
Model-Based Object Recognizer is composed of four main
blocks:

– Object proposal: this block is in charge of generating
the candidates within the image to be introduced to the
classifier. In this work, we have utilized the candidates
generated by the Shape and Color-Based Object
Detector (see Section 4.3.1), which can implement an
independent object detector component itself or be a
part of a higher level recognizer, which is the case when
the Model-Based Object Recognizer is operating.

– Feature Extractor: This module is only used in the
case of the supervised learning classifiers considered
in this work which are not CNN-based models, as
CNNs perform an unsupervised feature extraction in
the convolution layers. In each candidate ROI generated
by the Object Proposal module, Histogram of Oriented
Gradients (HOG) [13] features are computed, obtaining
a descriptor vector of size 1728. The configuration of
the HOG feature extractor is summarized here:

– Window Size: 56 × 72 pixels.
– Cell Size: 8 × 8 pixels.
– Block Size: 16 × 16 pixels (2 × 2 cells).
– Block Stride: 8 pixels (50% of block overlap-

ping).
– Histogram configuration: 9 bins, 20◦ each

(unsigned gradient).

– Classifier: this block implements a supervised learning
classifier that has been trained for bucket/background
classification. In this work, three supervised learning
classifiers have been evaluated: L2 Regularized Logistic
Regression (L2R-LR), Support Vector Machines (SVMs)
with linear kernel (L-SVM), and CNNs models.

The formulation of the L2R-LR follows the imple-
mentation in [18], whose loss function is given by Eq. 2.

min
ω

1

2
ωT ω + C

l∑
i=1

log(1 + e−yiω
T xi ) (2)

where ω are the parameters to be learned by the
classifier. C is the regularization parameter, and (xi , yi)

is the instance-label pair of the ith training sample.
The SVM classifier formulation has been defined

using the implementation provided in [9] for the primal
form (see Eq. 3).

min
ω,b,ξ

1

2
ωT ω + C

l∑
i=1

ξi,

subject to : yi(ω
T φ(xi ) + b) ≥ 1 − ξi,

ξi ≥ 0 (3)

where ω (weights), b (intercept term) and ξi (slack
variables) are the parameters to be learned by the SVM
classifier. C is the regularization parameter, (xi , yi) is
the instance-label pair of the ith training sample, and
φ(xi ) is a feature mapping function.

In the analogous dual form of the formulation
presented in Eq. 3, a kernel function can be defined as:

K(xi , xj ) = φ(xi )
T φ(xj ) (4)

where (xi , xj ) are points in the input feature space, and
φ is a feature mapping function.

The kernel function can lead to different type of
SVM classifiers. In this paper, we consider the SVM
classifier with a linear kernel computed using Eq. 5.

K(xi , xj ) = xT
i xj (5)

Regarding the CNN classifier, its architecture con-
sists of 7 layers: 2 convolutional layers, 2 max pooling
layers and 3 fully-connected with one hidden layer of
256 units, using ReLU activation function [36] in each
layer except the final one, in which a softmax activation
function is utilized, being the input to the CNN model
an image of 56 × 72 pixels. After the evaluation con-
ducted in Section 5.2.2, the selected supervised learn-
ing classifier is based on the architecture presented in
Fig. 4.

– Pose estimator: In order to compute the relative pose
of the target with respect to the frame of reference
of the camera, the Pose Estimator block uses a PnP
algorithm taking as input the corners of the previous
computed ROI of the detected target (image plane), a
set of object points (object frame of reference), and
the intrinsic camera parameters. The final computed
pose is selected so that it minimizes the reprojection
error between the detected points in the image and







the roll and pitch information in the aerial robot frame of
reference expressed in the camera frame.

Additionally, in order to provide invariance to the UAV’s
yaw angle during the mission, a 2D rotation based on
the actual yaw angle is applied to the state before being
introduced to the actor network (see Eq. 9).

s′ =
[

cos(ψ) sin(ψ)

− sin(ψ) cos(ψ)

]
s (9)

where s′ is the transformed state introduced to the actor
network, and ψ represents the UAV’s yaw angle.

The implementation details for training and evaluating
the RL-IBVS are provided in Section 5.3, where in all the
experiments the frequency of the RL-IBVS has been set to
20 Hz.

5 Experiments and Results

The aim of this section is to present the experiments that
have been conducted in order to evaluate the different
components that integrate the proposed system. To this aim,
five main experiments have been designed. Two of these
experiments are conducted in order to train and evaluate
the proposed learning-based algorithms for performing
object recognition and IBVS tasks. The remaining three
experiments are focused on the evaluation of the proposed
system in SAR scenarios. For this purpose, the first of
these experiments is aimed towards the evaluation of the
whole system in a SAR simulated scenario. Subsequently, a
second real flight experiment is designed in order to evaluate
separately the rescue strategy on a moving target, and
finally, the last experiment is conducted in order to validate
the whole proposed system in a real flight SAR mission
inside a cluttered indoor scenario. A video demonstration of
the reported experiments and results is provided with this
manuscript in: https://vimeo.com/235929544.

5.1 Experimental Setup

All the developed algorithms have been integrated into
the Aerostack architecture and implemented in C++ and
Python, using ROS as the communication middleware.
Deep learning models for object classification have been
trained using Keras2 library on a 2.6 GHz CPU Intel Core
i7-6700HQ, whereas models utilized for reinforcement
learning purposes have been trained using TensorFlow3 on
a GPU Nvidia GeForce GTX 970. Regarding the simulated
flight experiments, the proposed setup uses RotorS Gazebo
for evaluating the IBVS algorithms, and on the other hand,

2https://faroit.github.io/keras-docs/1.2.2/
3https://www.tensorflow.org/

the PX4 Software-In-The-Loop is integrated with Gazebo in
order to provide a realistic evaluation of the whole system
for SAR missions. Regarding the real flight experiments,
two indoor scenarios have been designed. The scenario for
the first real flight experiment consists of a 3 m × 4 m
area conceived for evaluating the rescue strategy, in which
an OptiTrack motion capture system has been utilized for
recording the ground truth data relative to the UAV and
the moving target. The second scenario covers a 11 m ×
7 m area used for evaluating the whole system in a SAR
mission. In all the presented experiments, no tethers or
external power supplies were utilized. In addition, in all real
flight experiments, the UAV was carrying preloaded items
of 100 g each, which substantially increased the complexity
of the missions.

5.2 Training and Evaluation of the Supervised
Learning Classifiers for Object Recognition

5.2.1 Image Dataset

In the SAR missions proposed for evaluating our system,
the targets consist of cylindrical buckets of different colors
positioned at random locations in the scenario. Currently,
there are no publicly available datasets containing images
of cylindrical buckets that could be used for training a
deep learning classifier. For this purpose, a custom dataset
has been created containing images from background (non
bucket) class and bucket class. After a large process of data
acquisition, a total of 875 images for the bucket class and
2250 images for the background class were collected.

From this original dataset, several data augmentation
techniques have been applied in order to increase the
number of images used for training and evaluating the
classifier and to prevent overfitting problems. The data
augmentation process consisted in the application of three
main techniques: random cropping, horizontal flipping,
and noise addition. The random cropping strategy was
similar to the one presented in [26], obtaining four cropped
images per original image, by selecting a random offset
starting from each of the four corners in the original image.
The horizontal flipping strategy consisted in mirroring the
original image from left to right direction, which allowed
doubling the number of images. Finally, the last data
augmentation technique was based on adding a Gaussian
noise to the original image with zero mean and a standard
deviation of 10 pixels. From the 875 images of bucket
class, we performed data augmentation over 375 of these
images obtaining a total of 4500 images. The remaining 500
images were added to the augmented dataset, providing a
total amount of 5000 images for bucket class. From the 2250
images belonging to background class, data augmentation
was conducted over 550 of these images, obtaining a total







Table 4 Average test results
obtained for the 6 evaluation
tests of Fig. 7b

Classifier Precision Recall F1score Test

C1 C2 C1 C2 C1 C2 time

(ms/image)

CNN1 0.973 0.996 0.996 0.973 0.985 0.984 3.830

CNN2 0.978 0.993 0.993 0.977 0.985 0.985 3.956

CNN3 0.985 0.993 0.993 0.985 0.989 0.989 5.136

CNN4 0.973 0.998 0.998 0.972 0.985 0.985 3.027

CNN5 0.978 0.996 0.996 0.978 0.987 0.987 2.075

CNN6 0.963 0.989 0.989 0.962 0.976 0.975 1.921

CNN7 0.974 0.998 0.998 0.973 0.986 0.985 4.123

CNN8 0.980 0.996 0.996 0.980 0.988 0.988 5.830

L2R-LR 0.958 0.965 0.965 0.957 0.961 0.961 0.984

L-SVM 0.966 0.964 0.964 0.966 0.965 0.965 4.187

classifier and the processing time. Thus, we take into con-
sideration the average F1 score and the test time presented
in Table 4, which are plotted in Fig. 8 for a better visualiza-
tion. Taking into account the results presented in Fig. 8 and
considering that the best possible classifier is the one lying
on point [0, 1] (i.e. minimizing the processing time while
maximizing the F1 score), we have selected CNN5 as the
most appropriate classifier for our purposes. This configu-
ration provides the lower Euclidean distance (in normalized
coordinates) to the desired point.

5.3 Training and Evaluation of the Reinforcement
Learning agent for Image-Based Visual Servoing

5.3.1 RL-IBVS Training Methodology

For training the agent in order to perform IBVS tasks, we
use the RL-IBVS component (see Section 4.4.2) in training
mode to command an AscTec Hummingbird quadrotor in
the Gazebo environment presented in Fig. 9.

In the RL-IBVS training mode, the environment is
designed in an episodic RL setting, where the agent’s
experience is divided into a series of episodes, each one
composed of several training steps. In each training step,
the agent takes an action with added noise according to an
Ornstein-Uhlenbeck distribution, and receives an observa-
tion and a reward from the environment (see Fig. 5). The
current 4-dimensional observation is fed into the actor net-
work, which generates a continuous 2-dimensional action
in the range [−0.5, 0.5] m/s.

For stabilizing and accelerating the training process,
the ex, ey variables from the state are measured taking
into account the difference between the center of the ROI
obtained by the projection into the image plane of the known
3D points of the target (see the cyan rectangle in Fig. 9)
with respect to the reference defined in the image plane
(see the blue rectangle in Fig. 9). During experimentation,
we have found that this procedure is critical for allowing
the convergence of the training process, as it removes
large displacements of the detection of the target in the

Fig. 8 Average F1 score and
processing time of the different
supervised learning classifiers
from the results presented in
Table 4. The processing time has
been measured on the Intel
NUC6i5SYK onboard computer



















model. This fact is even more relevant in the field of aerial
robotics, where directly training a reinforcement learning
algorithm in a real scenario is very complicated and to
the authors’ knowledge has not been yet addressed in
the literature. Another important feature of the proposed
RL-IBVS algorithm is its simplicity and versatility as
the functionality of the RL-IBVS is independent of the
object to be recognized, being the only required input the
center of the ROI corresponding to the detected object in
the image. The comparison results of the proposed RL-
IBVS with respect to a classic IBVS approach shown in
Figs. 11 and 12 and Table 5 demonstrate that the RL-IBVS
can be utilized as an alternative to state-of-the-art IBVS
approaches, which usually require a long tuning process of
their parameters. The results presented in Table 5 reveal
the outstanding precision of the RL-IBVS with steady-state
errors lower than 0.5 pixels in both x and y directions.
This precision is critical in the presented SAR missions
where a high precision rescue operation for delivering
preloaded items is required. Moreover, as shown in Fig. 10,
the convergence in the training process of the RL-IBVS is
achieved relatively fast (7.5 hours on a GPU Nvidia GeForce
GTX 970) where the Q-value starts to settle around episode
1250.

This fast convergence was mainly obtained owing to
the training strategy presented in this work, consisting in
using as the detected ROI the known 3D points of the
target projected into the image plane, which provides a more
stable state of the target, removing the effects of sudden
roll and pitch movements of the UAV. The main limitation
of the proposed RL-based algorithm is its dependency on
the stability of the detected object in the image, which is
efficiently solved in this work at test time by an image
stabilization technique. The inclusion of this stabilization
technique in the training process of the agent will be further
studied in future works.

Using the aforementioned learning-based capabilities,
the proposed system has been evaluated in complex SAR
real flight experiments involving the rescue operation on
static and moving targets. The latter scenario was presented
in Section 5.4.2, where the proposed system was able to
efficiently deliver a preloaded 100 g item on a remotely
controlled moving target. The efficient behavior of the RL-
IBVS during the experiment is evidenced by the temporal
evolution of the error signal shown in Fig. 15a, where
the error decreases from more than 100 pixels in the first
instants of the mission (e.g. time instant 14 s) to less than 7
pixels when the release operation is commanded (e.g. time
instant 41.6 s). Furthermore, the stable behavior of the RL-
IBVS can be derived from the low control actions (0.04
m/s) that the RL-IBVS is able to maintain when the UAV is
exactly above the target, what permitted the precise release
operation of the item.

A similar behavior of the RL-IBVS allowed the
correct rescue operation on the static targets presented in
the experiment of Section 5.4.3, which shows a fully-
autonomous SAR mission in a cluttered indoor scenario.
In this mission, the accurate detection of the object in the
image plane represents a critical step for pose estimation
purposes and the subsequent rescue operation on both
targets. The pose estimation of the targets has been
addressed in this paper by means of a PnP algorithm, which
provides an acceptable pose estimation using monocular
information. During the execution of the real flight SAR
mission of Fig. 16, the average errors in the position
estimation of both targets were [x : 0.19 m, y : 0.08 m,
z : 0.062 m], highlighting the low errors obtained in the
estimation of the y and z coordinates, both under 8 cm.
The error in the x coordinate is slightly higher, which can
be caused by sudden roll movements of the UAV while
detecting the target. These errors are adequate for SAR
missions and have low effect on our system as a fisheye-
lens bottom-looking camera with a considerable field of
view is utilized. This field of view allows the detection
of the target within an area of 4 m × 4 m at the flight
altitude of 1.2 m. Furthermore, the proposed RL-IBVS
can handle quite big errors in the detection as shown in
Fig. 12a.

Finally, it should be remarked that the success in the
SAR missions presented in this work is mainly achieved due
to the flexible mission planning system which allows the
mission adaptation in real-time, switching from exploration
to rescue mode and vice-versa when required. In addition,
the learning-based techniques presented in this work can be
easily adapted to other types of SAR missions as they are
based on training models which can be retrained based on
other requirements.

7 Conclusions and Future Work

In this paper, a fully-autonomous aerial robotic system for
executing Search and Rescue (SAR) missions in cluttered
indoor environments has been presented. The aerial robotic
system developed in this work is based on the combination
of a complete hardware configuration and a flexible system
architecture which provide the appropriate capabilities for
performing very high-level missions in a fully unsupervised
manner. These capabilities include a dynamic mission
planning system that allows mission re-planning in real-
time, a reactive collision avoidance navigation system
based on laser information, a complete multi-sensor fusion
system for accurate pose estimation and altitude filtering,
an accurate object recognizer component based on a
Convolutional Neural Network (CNN) model, and a novel
Image-Based Visual Servoing (IBVS) algorithm using deep



Reinforcement Learning (RL) for object interaction in
rescue operations, among others.

Regarding the SAR problem, in this paper we have
focused on object recognition and object interaction tasks,
which we consider still as an open field of research in SAR
missions and have been addressed in this work by means of
learning-based techniques. For object recognition purposes,
several supervised learning classifiers have been extensively
evaluated for target/background segmentation. The final
selected model consists of a 7-layer CNN which exhibits
a good compromise between accuracy and computational
cost, tackling the hard computational constraints of a real-
time aerial robot. With respect to object interaction and
following for rescue operations, a recent deep reinforcement
learning algorithm, named Deep Deterministic Policy
Gradients (DDPG), has been adapted in order to perform
IBVS tasks. For training and evaluating the RL-IBVS
algorithm, our own reinforcement learning framework has
been developed. The proposed RL framework integrates a
deep RL agent (e.g. DDPG) with a simulation environment
for aerial robotic platforms (e.g. RotorS Gazebo simulator).
After a thorough evaluation of the proposed RL-IBVS
taking as baseline a classic IBVS controller, it has been
demonstrated that reinforcement learning techniques can be
efficiently trained and used for solving several tasks in SAR
scenarios such as the object delivering maneuvers studied in
this work.

The proposed system has been thoroughly evaluated by
means of several simulated and real flight experiments.
The RL-IBVS algorithm has been validated both on
simulated and real scenarios with static and dynamic targets.
Additionally, another set of experiments has been designed
for validating the whole system on a complete SAR mission
conducted in a cluttered indoor scenario, revealing its
appropriate capabilities for the accomplishment of such
high-level missions without the necessity of having a prior
map of the scenario. One of the key capabilities of our
system for the accomplishment of such missions is the
versatile coordination between the mission planner and
the perception components, providing high-level decision-
making capabilities to the system, which is able to
efficiently respond to different events that can occur during
SAR missions (e.g. target recognized).

The development of the proposed system has motivated
several future research directions that are summarized
here. One of these directions is aimed towards the
accomplishment of SAR missions using a swarm of aerial
robots. We believe that an appropriate coordination of a
team of UAVs can lead towards the execution of SAR
missions in a more optimized manner. As it has been
stated throughout this document, object interaction is one
of our major concerns. For this reason, another future
line of research will be focused on the exploration of

additional deep reinforcement learning techniques applied
to object interaction tasks such as object release, object
grasping, etc., which will increase the functionalities
of the proposed system in SAR scenarios. Taking into
account the outstanding results obtained in this document
by using learning-based techniques, the extension of the
capabilities of other components in the architecture (e.g.
reactive navigation) using learning-based approaches will
be considered.
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32. Marchand, É., Spindler, F., Chaumette, F.: Visp for visual
servoing: a generic software platform with a wide class of robot
control skills. IEEE Robot. Autom. Mag. 12(4), 40–52 (2005)

33. Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., Konolige,
K.: The Office Marathon: Robust Navigation in an Indoor
Office Environment. In: International Conference on Robotics and
Automation (2010)

34. Meier, L., Tanskanen, P., Fraundorfer, F., Pollefeys, M.: Pixhawk:
a System for Autonomous Flight Using Onboard Computer
Vision. In: 2011 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2992–2997 (2011)

35. Moore, T., Stouch, D.: A generalized extended kalman filter
implementation for the robot operating system. In: Proceedings
of the 13th International Conference on Intelligent Autonomous
Systems (IAS-13). Springer (2014)

36. Nair, V., Hinton, G.E.: Rectified linear units improve restricted
boltzmann machines. In: Proceedings of the 27th international
conference on machine learning (ICML-10), pp. 807–814 (2010)

37. Pestana, J., Mellado-Bataller, I., Sanchez-Lopez, J.L., Fu, C.,
Mondragón, I.F., Campoy, P.: A general purpose configurable
controller for indoors and outdoors gps-denied navigation for
multirotor unmanned aerial vehicles. J. Intell. Robot. Syst. 73(1-
4), 387–400 (2014)

38. Polvara, R., Patacchiola, M., Sharma, S., Wan, J., Manning, A.,
Sutton, R., Cangelosi, A.: Autonomous quadrotor landing using
deep reinforcement learning arXiv:1709.03339 (2017)

39. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs,
J., Wheeler, R., Ng, A.Y.: Ros: an Open-Source Robot Operating
System. In: ICRA Workshop on Open Source Software, vol. 3, pp.
5. Kobe, Japan (2009)

40. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-Cnn: Towards
Real-Time Object Detection with Region Proposal Networks. In:
Advances in Neural Information Processing Systems, pp. 91–99
(2015)

41. Rudol, P., Doherty, P.: Human Body Detection and Geolocal-
ization for Uav Search and Rescue Missions Using Color and
Thermal Imagery. In: 2008 IEEE Aerospace Conference, pp. 1–8.
IEEE (2008)

42. Sadeghi, F., Levine, S.: (cad)2rl: Real single-image flight without
a single real image arXiv:1611.04201 (2016)

43. Sampedro, C., Bavle, H., Rodrı́guez-Ramos, A., Carrio, A.,
Fernández, R.A.S., Sanchez-Lopez, J.L., Campoy, P.: A Fully-
Autonomous Aerial Robotic Solution for the 2016 International
Micro Air Vehicle Competition. In: 2017 International Conference
on Unmanned Aircraft Systems (ICUAS), pp. 989–998. IEEE
(2017)

44. Sampedro, C., Bavle, H., Sanchez-Lopez, J.L., Fernandez, R.A.S.,
Rodriguez-Ramos, A., Molina, M., Campoy, P.: A Flexible
and Dynamic Mission Planning Architecture for Uav Swarm
Coordination. In: 2016 International Conference on Unmanned
Aircraft Systems (ICUAS), pp. 355–363. IEEE (2016)

45. Sanchez-Lopez, J.L., Molina, M., Bavle, H., Sampedro, C.,
Fernández, R.A.S., Campoy, P.: A multi-layered component-based
approach for the development of aerial robotic systems: The aero-
stack framework. J. Intell. Robot. Syst 88(2–4), 683–709 (2017)

46. Scherer, J., Yahyanejad, S., Hayat, S., Yanmaz, E., Andre, T.,
Khan, A., Vukadinovic, V., Bettstetter, C., Hellwagner, H., Rinner,
B.: An autonomous multi-uav system for search and rescue.
In: Proceedings of the First Workshop on Micro Aerial Vehicle
Networks, Systems, and Applications for Civilian Use, pp. 33–38.
ACM (2015)

47. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
Salakhutdinov, R.: Dropout: a simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958
(2014)



48. Sun, J., Li, B., Jiang, Y., Wen, C.Y.: A camera-based target
detection and positioning uav system for search and rescue (sar)
purposes. Sensors 16(11), 1778 (2016)

49. Tomic, T., Schmid, K., Lutz, P., Domel, A., Kassecker, M., Mair,
E., Grixa, I.L., Ruess, F., Suppa, M., Burschka, D.: Toward a fully
autonomous uav: Research platform for indoor and outdoor urban
search and rescue. IEEE Robot. Autom. Mag. 19(3), 46–56 (2012)

50. Xiang, G., Hardy, A., Rajeh, M., Venuthurupalli, L.: Design of
the Life-Ring Drone Delivery System for Rip Current Rescue.
In: 2016 IEEE Systems and Information Engineering Design
Symposium (SIEDS), pp. 181–186. IEEE (2016)

51. Zhang, F., Leitner, J., Milford, M., Upcroft, B., Corke, P.: Towards
vision-based deep reinforcement learning for robotic motion
control arXiv:1511.03791 (2015)

52. Zhu, Y., Mottaghi, R., Kolve, E., Lim, J.J., Gupta, A., Fei-Fei,
L., Farhadi, A.: Target-Driven Visual Navigation in Indoor Scenes
Using Deep Reinforcement Learning. In: 2017 IEEE International
Conference on Robotics and Automation (ICRA), pp. 3357–3364
(2017)

53. Zingg, S., Scaramuzza, D., Weiss, S., Siegwart, R.: Mav
Navigation through Indoor Corridors Using Optical Flow. In:
2010 IEEE International Conference on Robotics and Automation
(ICRA), pp. 3361–3368 (2010)

Carlos Sampedro received the BSc in Industrial Engineer (major
in Industrial Electronics) in July 2011 obtaining the best marks
degree award, and the Master’s degree in Automation and Robotics
in July 2014, both from the Universidad Politecnica de Madrid
(UPM), Madrid, Spain. He is currently working as a researcher
and Ph.D. candidate in the Computer Vision and Aerial Robotics
(CVAR) research group belonging to the Centre for Automation
and Robotics and Universidad Politecnica de Madrid (UPM-CSIC).
To this aim, he received a pre-doctoral grant from the Universidad
Politecnica de Madrid in January 2017. In addition, he was a visiting
researcher during three months (Sep. to Dec. 2015) at the Arizona State
University (AZ, USA).

His research is focused on the application of learning-based
techniques applied to aerial robotics, with special interest on
object detection and recognition using machine learning and deep
learning techniques, the development of Deep Reinforcement Learning
algorithms to UAV control, and UAV autonomous navigation.

Alejandro Rodriguez-Ramos is a Telecommunication Engineer
(major in Electronics and Micro-Electronics) graduated from Univer-
sidad Politecnica de Madrid (UPM). Currently, he is working as a
researcher and Ph.D. candidate at the Computer Vision and Aerial
Robotics (CVAR) group of the Centre for Automation and Robotics
(UPM-CSIC). Previously, he worked for more than a year in the
Aerospace sector, contributing to projects of the European Space
Agency. His research interests include Deep Reinforcement Learning
techniques applied to aerial robotics, Deep Learning, aerial robotics
and image processing.

Hriday Bavle is a Ph.D. candidate at the Computer Vision and
Aerial Robotics Group (CVAR), Universidad Politecnica de Madrid
(UPM), Spain. He received his Bachelors in Aerospace and Masters in
Avionics from Amity University, India. Aerial robotics being his core
research field, his specialization includes localization and mapping
techniques applied to UAVs in unknown indoor environments using
several computer vision and sensor fusion techniques. He is one of
the lead developers and testers of the Aerostack software framework
developed in the CVAR group.

Adrian Carrio is a Ph.D. candidate in Automation and Robotics at
Universidad Politecnica de Madrid (UPM) and a former researcher at
ASU and MIT, where he has worked in the development of vision-
based collision avoidance systems for UAVs. His research interests
include machine learning for object recognition and autonomous UAV
navigation.

Paloma de la Puente obtained her engineering degree in Automatic
Control and Electronics in November 2007 and her Ph.D. in Robotics
and Automation in December 2012, both from Universidad Politecnica
de Madrid (UPM). She was a postdoctoral researcher at DISAMUPM
and at ACIN Institute of Automation and Control-Vienna University
of Technology. Her main research interests are related to navigation,
mapping, spatial cognition and sensor data processing.

Pascual Campoy is a Full Professor on Automatics at the Universidad
Politecnica de Madrid UPM (Spain) and visiting professor in TUDelft
(The Netherlands), he has also been visiting professor at Tong Ji
University (Shanghai-China) and Q.U.T. (Australia). He currently
lectures on Control, Machine Learning and Computer Vision.

He is leading the Research Group on “Computer Vision and Aerial
Robotics” at UPM within the Centre for Automation and Robotics
(CAR), whose activities are aimed at increasing the autonomy of the
Unmanned Aerial Vehicles (UAVs) by exploiting the powerful sensor
of vision, using cutting-edge technologies in image processing, control
and artificial intelligence.

He has been head director of over 40 R&D projects, including R&D
European projects, national R&D projects and over 25 technological
transfer projects directly contracted with the industry. He is author of
over 200 international scientific publications and nine patents, three
of them registered internationally. He is awarded several international
prices in UAV competitions: IMAV12, IMAV13, IARC14, IMAV16
and IMAV17.




