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Abstract The use of multiple Autonomous Industrial Robots
(AIRs) as opposed to a single AIR to perform fiber place-
ment brings about many challenges which have not been ad-
dressed by researchers. These challenges include optimal di-
vision and allocation of the work and performing path plan-
ning in a coordinated manner while considering the require-
ments and constraints that are unique to the fiber placement
task. To solve these challenges, a two-stage approach is pro-
posed in this paper. The first stage considers multiple ob-
jectives to optimally allocate each AIR with surface areas,
while the second stage aims to generate coordinated paths
for the AIRs. Within each stage, mathematical models are
developed with several unique objectives and constraints that
are specific to the multi-AIR collaborative fiber placement.
Several case studies are presented to validate the approach
and the proposed mathematical models. Comparison stud-
ies using a different number of AIRs and variations of the
developed mathematical models are also presented.
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1 Introduction

When compared to traditional materials such as aluminum
and steel, fiber reinforced composites have additional favor-
able properties such as versatility, strength-to-weight ratio,
and stiffness-to-weight ratio [1]. Thus, fiber reinforced com-
posites are suitable for structures in many industries, e.g.,
aeronautical and automotive industries [2].

Autonomous Industrial Robots (AIRs) can be used to
perform fiber placement. An AIR [3] is an industrial robot
with or without a mobile platform, that has self-awareness
and environmental awareness, and can effectively commu-
nicate with other AIRs to share information on aspects such
as robots’ state or operation status, the sensed environment,
etc. If the AIR is attached to a mobile platform, then its defi-
nition is the same as the Autonomous Industrial Mobile Ma-
nipulator (AIMM) [4]. The mathematical models developed
in this paper consider both mobile and immobile platforms.

When conducting robotic fiber placement [5, 2], at first,
the fiber strips are pre-impregnated with a proper amount of
thermoset resin. The fiber strips are then fed from a supply
spool and through several guiding rollers and tensioners to
the fiber placement head. The fiber placement head is at-
tached to the end-effector of a robotic manipulator, and its
task is to cool the fiber strips, cut them to the correct length
and collimate them. Using controlled heating and an elas-
tomeric roller the fiber is then attached to the surface. The
heating is used to provide the desired tackiness, and the elas-
tomeric roller is used to place the fiber on the surface with
the proper amount of compaction force. The compaction
will help prevent gaps and trapped air. Thus, the roller simul-
taneously lays a number of tows (or fiber strips) on the sur-
face. The number of tows can be adjusted to form a desired
tow pattern. A structure constructed using fiber-reinforced
composites can be made up of a number of layers, and each
layer consists of many tool-paths. The path that the roller
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Fig. 1: Two layers of fiber and the associated tool-paths for
each layer are shown for an example curved structure.

follows to lay the fiber is defined as a tool-path. Fig. 1 shows
two layers and the tool-paths for a curved structure. Finally,
the structure is placed in an oven where appropriate heating
and pressure is applied to cure the structure.

In this paper, the tool-paths and the way-points along
these tool-paths are assumed to be given or can be generated
using an existing method [6, 7, 8] as will be explained in
the next section. Since this paper focuses on the multi-AIR
collaboration aspect of the overall problem, then other well-
studied tasks such as generating the tool-paths based on the
geometry of the structure and AIRs’ base localization are
outside the scope of the paper.

Multi-AIR collaborative fiber placement has not received
much attention by researchers. Enabling multiple AIRs to
collaborate and simultaneously perform fiber placement re-
quires solving several challenges. The challenges addressed
in this paper are concerned with the following questions:
(1) how would the AIRs divide the work amongst them-
selves and collaboratively decide on the sequence of the
work, (2) how would the AIRs collaborate to achieve op-
timal outcomes, e.g. in terms of makespan and maneuver-
ability, and (3) how would the AIRs execute the allocated
tasks while coordinating their motion to avoid hindering the
motion of each other, avoid obstacles, and satisfy the rel-
evant requirements. These challenges have been addressed
for various applications; however, when addressing these
challenges specifically for the multi-AIR collaborative fiber
placement, then new mathematical models need to be de-
vised that consider specific objectives and constraints to sat-
isfy the unique requirements of the fiber placement task.

To solve the above challenges, a two-stage approach is
presented where for each stage, a mathematical model is de-
veloped that takes into account fiber placement related re-
quirements and constraints. The mathematical models for
both stages complement each other in that they both, in a
combined effort, aim to optimize the collaboration and pro-
ductivity of the AIRs for fiber placement.

Figure 2 shows the two stages of the collaborative fiber
placement work to be carried by the AIRs. The first stage

Fig. 2: The two stages considered for multi-AIR collabora-
tive fiber placement.

involves tool-path allocation. The input to the approach is
the tool-paths (given) of all layers. The tool-path allocation
problem consists of determining: (1) the number of tool-
paths for each AIR to execute, (2) the indexes of the tool-
paths that each AIR needs to execute where index of a tool-
path is a unique number given to the tool-path for the pur-
pose of identification, and (3) the executing sequence of the
selected tool-paths for each AIR. Relevant objectives (such
as minimal makespan) need to be optimized, and constraints
need to be satisfied.

The second stage of the approach is related to the multi-
AIR path planning. In this paper, the tool-paths are given
and thus, the path planning refers to finding the appropriate
joint angles of the AIRs (inverse kinematics) to reach each
point in a tool-path such that coordination between the AIRs
is achieved, relevant constraints (such as collision avoid-
ance) are satisfied, and relevant objectives (such as minimal
change in joints’ angles) are optimized. In addition to the
general constraints, fiber placement imposes a unique set of
constraints that the path planner needs to take into account,
e.g., meeting the required compaction force by the roller and
operating within the allowable orientation error of the roller
with respect to the surface normal. As shown in Fig. 2, the
tool-paths allocated to each AIR (output of Stage 1) are the
inputs to Stage 2. Some of the objectives and constraints in
Stage 1 are designed specifically to make the path planner in
Stage 2 more effective. The output of Stage 2 (joints’ angles)
is then used by a motion controller for task execution.

The rest of the paper is organized as follows. Section
2 discusses related works. Section 3 defines the problem
of collaborative fiber-placement by multiple AIRs, and out-
lines the assumptions considered. Sections 4 and 5 present
the mathematical modeling for Stage 1 (tool-path allocation)
and Stage 2 (multi-AIR path planning), respectively. Section
6 discusses the optimization process for the two stages. Sev-
eral case studies are then presented in Section 7 to demon-
strate the effectiveness of the approach using different struc-
tures. Discussion on computational efficiency and future work
are presented in Section 8. Concluding remarks are made in
Section 9.
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2 Related Works

A well-studied task in Robotic Fiber Placement (RFP) is
generating the tool-paths that the robot’s end-effector (or the
roller) follows to lay the fiber. When generating the tool-
paths, information such as the geometry of the object, tow
width, the number of layers and the acceptable overlap or
gap between tows need to be taken into account [6]. This
information can help in determining the laying direction of
the fiber in each layer, the offset between each tool-path, etc.
The problem of generating tool-paths has been widely stud-
ied. Thus, tool-paths are assumed to be given in this paper.
Li et al. [6] provide a survey of the recent algorithms for
RFP path planning. They group the existing algorithms into
two main categories: (1) fixed angle path planning where the
angle between the laying path and the reference line is con-
veniently kept the same, and (2) variable angle path planning
where the laying angle can change to help the fiber reach its
full performance potential.

The following are some literature related to the tool-path
planning problem. As part of the overall method in [5], the
authors aim to smooth the path, i.e. to determine and smooth
the orientation of the tool head along the path whilst meet-
ing the required quality and constraints. Shirinzadeh et al.
[1] applied their developed SCAR path planning algorithm
to open-contoured structures by formulating a set of surface
curves that represent the tool-paths. The algorithm aims to
create uniform layers of fiber with no gap or overlap be-
tween tows. Yan et al. [8] argue that many of the studies
assume a constant value when offsetting a reference tool-
path to generate a new tool-path. Thus, Yan et al. [8] con-
sider a varied offset and other improvements to provide a
more accurate approach to path generation and to satisfy
the required gaps and overlaps between consecutive tows. In
[9], a numeric solution to the initial-value problems of sys-
tems with first-order ordinary differential equations is used
to generate the initial reference path and the offset paths
which in turn reduces the computational complexity or time
and improves control error. Some new research works fo-
cus on utilizing a mesh directly instead of using geometric
equations to generate the tool-paths [10, 11].

Besides the problem of generating tool-paths, optimiz-
ing RFP process parameters and improvements in the de-
sign of RFP tools have also been studied. Aized and Shir-
inzadeh [12] conduct several experiments to arrive at opti-
mized parameters related to gas torch temperature used to
heat the fiber, fiber laying speed and fiber compaction force.
Jeffries [13] presents a robot technology and a modular fiber
placement head to improve the RFP process. The modular
fiber placement head has an automatic, quick-change, tool
changer that provides greater flexibility and productivity.

As discussed above, there is a wide range of research
works dedicated to tool-path planning and optimizing RFP

processes or tools. Therefore, the work in this paper assumes
that the tool-paths and the optimized parameters are the in-
put to the multi-AIR collaborative fiber placement problem.

In this paper, multiple independent AIRs are considered
and the AIRs can lay fibers simultaneously and coopera-
tively while being close to each other. Research on Fiber
placement has not focused on the use of multiple AIRs; in-
stead, the limited number of studies on collaborative fiber
placement machines focus on developing systems that are
coupled together and only consider one robot to lay the fiber.
The components of the coupled system mainly help with
carrying the mandrel, turning the mandrel, assisting with
reachability of the roller, etc. For example, in [14], a collab-
orative machine is presented which comprises a 6-DoF ma-
nipulator, a 6-RSS parallel platform, and a spindle to hold
the mandrel. They construct the kinematics of the overall
machine, analyze the workspace and prove that the over-
all machine can enlarge the workspace, simplify trajectory
planning, and in-turn improve productivity. Another exam-
ple of an RFP machine is presented in [5] where the authors
take advantage of the additional degree of redundancy to de-
crease the kinematic loads of the control joints.

Many research works related to task sequencing, schedul-
ing or allocation exist that can provide inspiration to solving
the problem under consideration. The work in [15] provides
a survey on robotic task sequencing and scheduling for in-
dustrial applications. The following are some example ap-
proaches and applications for task sequencing and schedul-
ing. In [16], path planning, job scheduling and collision avoid-
ance of multibridge machining system are solved using a
variation of the well-known traveling salesmen problem and
population-based incremental learning. Han et al. [17] de-
veloped algorithms for allocating asset packages to a set of
interdependent tasks that are associated with resource re-
quirements. Later, Han et al. [18] extended the work to han-
dle asset allocation and task planning for multiple agents
by devising a blackboard-based collaborative framework. A
generic framework for distributed multi-robot cooperation is
presented in [19]. The framework is constructed to address a
variety of missions that can be simple, complex, have inter-
related tasks, or have multi-resource requirements. The tool-
path allocation problem presented in this paper is solved
with a particular formulation of the mathematical model that
is mostly specific to the multi-AIR fiber placement.

Path and trajectory planning for industrial robots or ma-
nipulators have been widely studied [20, 21]. Examples in-
clude approaches that are based on: artificial force field [22];
optimization methods [23]; vision-based control (camera-
space manipulation) [24]; rapidly-exploring random trees
and probabilistic roadmaps [25]; screw theory [26]; and re-
current neural network [27]. Control of robotic manipula-
tors have also been widely studied [28, 29, 30]. However,
in this paper, the multi-AIR path planning problem (stage
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2) is solved with a particular focus on the fiber placement
task. That is, the focus has been to develop a mathemati-
cal model that considers fiber placement related objectives
and constraints while aiming to achieve coordinated execu-
tion of the task. The first stage (tool-path allocation) is for-
mulated such that it complements the multi-AIR path plan-
ner. The multi-AIR path planning problem is formulated as
an optimization problem and can be solved using standards
optimization algorithms. The output of the multi-AIR path
planner is coordinated AIR poses. This output is then passed
to a motion controller for execution.

3 Problem Definition

When multiple AIRs are deployed, they are expected to com-
plete the fiber placement task collaboratively and optimally.
Therefore, the AIRs are required to:

– equitably divide the tasks by appropriately allocating the
tool-paths in all layers amongst themselves,

– determine the execution sequence of the tool-paths such
that the potential for hindering the motion of each other
is minimized and maneuverability within the workspace
is maximized,

– aim to achieve minimal makespan and minimal move-
ment of the joints and the base,

– execute the allocated tool-paths in a coordinated manner,
– avoid self-collision, collision with the environment or

the object, and collision with other AIRs, and
– satisfy the requirements inherent to the fiber placement

task, such as compaction force and appropriate orienta-
tion of the roller to the surface.

To solve the above challenges, appropriate mathematical mod-
els need to be devised.

Let P = {PZI : Z = 1,2, . . . ,Ztot; I = 1,2, . . . ,ntot
Z } be a

set containing all the tool-paths in all layers where Z is the
layer index, I is the tool-path index, ntot

Z is the total number
of tool-paths in the Zth layer, and Ztot is the total number of
layers. Let NZ be the total number of tool-paths in all layers,
i.e. NZ = ∑

Ztot

Z=1 ntot
Z . In this work, the tool-paths are assumed

to be given. The goal is to deploy n AIRs and collabora-
tively execute all NZ tool-paths as efficiently as possible. To
achieve this goal, the AIRs are allowed to work on different
layers. For the example shown in Fig. 1, it is assumed that
an AIR can work on a tool-path of the second layer while
another AIR is still working on a tool-path of the first layer.
However, for an AIR to start on a tool-path, it needs to en-
sure that all the relevant tool-paths from the preceding lay-
ers are executed first. To denote this prerequisite condition
in the notation of a tool-path, the notation is modified as
follows: Pζ

ZI
where ζ represents the set of prerequisite tool-

paths, meaning that Pζ

ZI
can be executed only if all tool-paths

Fig. 3: The tool-paths highlighted in red (Pζ

110
to Pζ

123
) are

the prerequisite tool-paths of Pζ

218
.

in ζ (which are from preceding layers) are already executed.
As was shown in Fig. 1, Pζ

218
is the 18th tool-path of the

2nd layer. In Fig. 3, the tool-paths highlighted in red (Pζ

110

to Pζ

123
) are the prerequisite tool-paths of the tool-path Pζ

218
;

hence, ζ = {Pζ

110
,Pζ

111
, . . . ,Pζ

123
} for the tool-path Pζ

218
.

To maintain the strength of the fiber, it is expected that
the AIRs will lay the fiber for the entire tool-path in one
pass. This also eliminates the need for cutting the fiber and
starting the pass again with a different trajectory. Hence, one
tool-path is allocated to one AIR only.

The tool-path allocation problem is to select a subset of
tool-paths for each AIR, i.e. to select Pi⊂P(∀i, i= 1,2, . . . ,n)
where i is the AIR index. The tool-paths Pi need to be sorted
in the optimal sequence for execution. The tool-path alloca-
tion problem needs to be solved such that collaboration is
optimized, productivity is maximized, and multi-AIR path
planning is made easier to solve.

The multi-AIR path planning problem in this paper in-
volves finding feasible AIR poses (inverse kinematics) for
all way-points of the tool-path while considering the coordi-
nation of the AIRs when executing the allocated tool-paths.
The path planning must take into account constraints related
to the operation of the AIRs (e.g. avoiding collisions and
exceeding joints’ limits), but also constraints related to fiber
placement (e.g. compaction force and acceptable orientation
of the roller relative to the surface).

The methodology for carrying out the fiber placement
task using multiple AIRs depends on a number of factors
including the configuration of the workplace in which the
AIRs operate, the size and complexity of the object, and the
structure of the AIR itself. Thus, devising a single generic
methodology that can handle all variations of the collabora-
tive fiber placement problem may not be optimal for a spe-
cific class of problems. To this end, the below assumptions
are presented to better define the scope of the work and to
clarify the class of problems for which the developed ap-
proach applies:
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– The target object’s position is fixed, and there are no fa-
cilities (such as a spindle) to turn the object while fiber
placement is being carried out by the AIRs.

– The base of each AIR can be mobile; however, for stabil-
ity and accuracy, the base needs to be fixed (immobile)
when executing the fiber placement task for a tool-path.
After completing a tool-path, the base can be moved
autonomously or manually to the next optimized base
placement for executing the next tool-path.

– If the bases of the AIRs are designed to be permanently
fixed at specific locations, then the object needs to be
positioned appropriately relative to the AIRs.

– Fiber storage unit for each AIR is installed on the AIR
(e.g. at the base of the AIR), and the fiber placement
head is fed with fiber from the storage unit when needed.
Alternatively, the fiber can be fed from a central unit that
is away from the AIRs; however, AIRs’ path planning
will be more challenging since collision avoidance with
the fiber by the AIRs would then be needed.

4 Stage 1: Mathematical Modeling for Tool-path
Allocation

This section presents the mathematical modeling for tool-
path allocation (i.e. Stage 1 shown in Fig. 2). The aim is to
optimize collaboration and productivity of the AIRs and to
make the multi-AIR path planning problem (Stage 2) easier
to solve. Note that the tool-paths are discretized into way-
points with equal distance between any two adjacent way-
points along a tool-path, as was shown in Fig. 1. At a time
step τ j( j = 1,2, . . . ,n j), where n j is the number of steps to
complete the task, n way-points from different tool-paths
may need to be simultaneously executed by n AIRs.

4.1 Design Variables

The design variables are:

XZI ∈ {1,2, . . . ,n}, (1)

∀Z, I : Z = 1,2, . . . ,Ztot; I = 1,2, . . . ,ntot
Z where Z is the layer

index and I is the tool-path index. As an example, X310 = 2
means that the tool-path Pζ

310
is allocated to the 2nd AIR.

Ultimately, the aim is to arrive at values for the design vari-
ables that will optimize the following design objectives and
constraints.

4.2 Design Objectives

4.2.1 Minimal Makespan

One of the key objectives in deploying multiple AIRs is
to minimize the overall completion time of the task (i.e.

makespan). By minimizing the makespan, the idle time of
each AIR can be minimized as well. Idle time is associated
with a poor allocation of the tool-paths where AIRs have to
wait for an excessive amount of time while the prerequisite
tool-paths are being executed. Let X be a set containing all
the design variables, i.e. X = {XZI : ∀Z, I}. This objective is:

min
X

ft(X) = max
(

t1(X), t2(X), . . . , tn(X)
)

(2)

where completion time ti(X) of the ith AIR can be calculated
as:

ti(X) =
Ztot

∑
Z=1

ntot
Z

∑
I=1

((
lZI

vi
+ tt

i + tw
i ωi

)
α(XZI ∈ X)

)
, (3)

Ztot is the total number of layers, ntot
Z is the total number of

tool-paths in the Zth layer, lZI is the length of the tool-path
Pζ

ZI
, vi is the constant end-effector speed of the ith AIR, tt

i is
a time constant associated with the ith AIR cutting the fiber
at the end of a tool-path and then moving its end-effector
(and maybe its base) to start on the next allocated tool-path,
tw
i is the idle time, and ωi is a weighting factor for increas-

ing/decreasing the significance of tw
i in the objective. The

idle time is the time that the ith AIR has to wait prior to
starting on a tool-path while all prerequisite tool-paths in ζ

are being executed. Minimizing the makespan will also min-
imize the idle time for all AIRs. If the idle time is critical for
an AIR (e.g. for a slow AIR), then the weighting ωi can be
increased, and vice versa. The term α(XZI ∈ X) is to ensure
that the execution time corresponding to the tool-path Pζ

ZI
is

only added if Pζ

ZI
belongs to the ith AIR, i.e.

α(XZI ∈ X) =

{
1 if XZI = i

0 if XZI 6= i
. (4)

4.2.2 Maximal Distance Between AIRs’ End-effectors

If at any stage of AIRs’ operation, the end-effectors of any
two AIRs are close to each other, then either of the two AIRs
may have to stop to avoid collisions. To prevent this situa-
tion, the distance between the end-effectors of the AIRs at
each time step τ j can be maximized. Therefore, this objec-
tive is:

max
X

fd(X) = min
j
(d(τ j,X)) (5)

where d(τ j,X) returns the smallest distance of all distances
between the n way-points that are to be executed by the n
AIRs at time step τ j( j = 1,2, . . . ,n j). That is,

d(τ j,X) = min
i,í

(
‖oi(τ j,X)−oí(τ j,X)‖

)
(6)
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∀i, í : i= 1,2, . . . ,n; í= 1,2, . . . ,n; i 6= í, where oi(τ j,X)∈R3

and oí(τ j,X) ∈R3 return the position of the way-points that
the ith and the íth AIRs execute, respectively, at time step
τ j. This objective will also help the multi-AIR path planner
(Stage 2) to be more effective in finding feasible solutions.

4.2.3 Minimal Distance Between Any Two Consecutive
Tool-paths

It is preferred for an AIR to execute as many tool-paths as
possible at a base position before moving to a new base po-
sition. This will minimize energy consumption and reduce
complications associated with the base path planning (fur-
ther explained in Stage 2). To help an AIR execute as many
tool-paths as possible at a base position, the distance be-
tween any two consecutive tool-paths that the AIR executes
is minimized. Note that minimizing the distance between
any two consecutive tool-paths will also minimize the dis-
tance between the end of one tool-path and the start point of
the next. Thus, the objective is:

min
X

fp(X) =
n

∑
i=1

np
i (X)−1

∑
k=1

R(Pi,k, Pi,k+1, X) (7)

where the function R(Pi,k, Pi,k+1, X) calculates the maximal
distance between the kth and (k + 1)th tool-paths (i.e. the
tool-paths Pi,k and Pi,k+1) that the ith AIR executes, and the
function np

i (X) returns the number of tool-paths allocated to
the ith AIR based on the design variables X , i.e.

np
i (X) =

Ztot

∑
Z=1

ntot
Z

∑
I=1

α(XZI ∈ X) (8)

where α(XZI ∈ X) ∈ {0,1} as defined in Eq. (4).

4.2.4 Maximal Reachability

If the AIRs’ bases are permanently fixed at a particular loca-
tion during the entire fiber placement task, then it is assumed
that the object is placed at an appropriate position and ori-
entation relative to the AIRs such that each AIR can cover
all tool-paths. However, even if this condition is satisfied,
there is still no guarantee that an AIR can reach its allocated
tool-paths. This is because the AIRs may hinder the motion
of each other if the tool-paths are not allocated appropri-
ately. Thus, the tool-paths need to be allocated to each AIR
in a manner that will minimize the distance between each
AIR and its allocated tool-paths. This condition will pro-
vide greater flexibility for any AIR to maneuver within its
workspace without hindering the motion of other AIRs. This
objective will help the multi-AIR path planner (Stage 2) to
be more effective in finding feasible solutions. If the AIRs’

bases are mobile, then this objective can be discarded. The
objective is:

min
X

fr(X) =
n

∑
i=1

n j

∑
j=1

∥∥∥oi(τ j,X)−βββ
AIR
i

∥∥∥ (9)

where n j is the total number of steps to complete the fiber
placement task, oi(τ j,X) ∈ R3 returns the position of the
way-point that the ith AIR executes at time step τ j, and
βββ

AIR
i ∈ R3 is the fixed base position of the ith AIR.

4.3 Design Constraints

4.3.1 One Tool-path Must be Executed by One AIR only

P was defined as the set that contains the tool-paths for all
layers; i.e. P = {PZI : ∀Z, I} where Z is the layer index and
I is the tool-path index. A subset Pi ⊂ P is allocated to each
AIR based on the values of the design variables where i is
the AIR index. Two subsets of tool-paths associated with
any two AIRs must not contain the same tool-path since one
tool-path must be executed by one AIR only and partial allo-
cation of a tool-path is not allowed to maintain the strength
of the fiber. Thus, the constraint is

Pi−P j = Pi (10)

∀i, j : i = 1,2, . . . ,n; j = 1,2, . . . ,n; i 6= j.

4.3.2 All Tool-paths Must be Executed

The sum of tool-paths allocated to all AIRs must equal to
NZ which is the total number of tool-paths in all layers; i.e.

n

∑
i=1
|Pi|= NZ (11)

where | · | denotes cardinality.

4.3.3 Prerequisite Tool-paths Must be Executed First

For each of the tool-paths in the set {Pζ

ZI
: Z = 2,3, . . . ,Ztot; I =

1,2, . . . ,ntot
Z } there exists a set ζ that contains the prerequi-

site tool-paths. Hence, the use of the superscript ζ which is
added to the notation to denote that the execution of a tool-
path Pζ

ZI
is subject to the constraint of prerequisite tool-paths

which must be executed first.
This constraint was partially accounted for using Objec-

tive 1 (minimal makespan). Objective 1 was designed such
that by minimizing the makespan, the idle times of the AIRs
are also minimized. Recall that the idle time of an AIR is the
time the AIR has to wait while other AIRs execute the pre-
requisite tool-paths. However, since a tool-path and its pre-
requisite tool-paths can be allocated to the same AIR, then
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the poor allocation of the tool-paths may cause an infeasible
solution where an AIR is expected to execute a tool-path be-
fore executing all prerequisite tool-paths (by the same AIR).

5 Stage 2: Mathematical Modeling for Multi-AIR Path
Planning

This section presents the mathematical modeling for multi-
AIR collaborative path planning (i.e. Stage 2 shown in Fig.
2). The output from tool-path allocation, which is the tool-
paths assigned to each AIR and the corresponding way-points,
are used as the input to the following mathematical model
for multi-AIR path planning. At each time step τ j (hence-
forth the notation will be reduced to step j) the following
mathematical model is used to find coordinated AIR poses
(joint angles of all AIRs) that execute the corresponding
way-points. The coordination between the AIRs is achieved
by finding collision-free and feasible AIR poses for all AIRs
at each step, as per the below mathematical model. The co-
ordinated AIR poses at all time steps are then passed to a
motion controller which is tasked with finding a smooth ma-
nipulator motion through the computed AIR poses. Colli-
sion avoidance may need to be considered during both multi-
AIR path planning and path execution (motion control). The
following mathematical model for the multi-AIR path plan-
ner considers collision avoidance based on the current en-
vironmental information and AIRs states. Without consid-
ering collision avoidance during the multi-AIR path plan-
ning, the path of the AIRs may not be optimized or feasible
during the path execution. During the path execution, the
motion controller may need to consider collision detection
and avoidance as well based on the updated information of
the environment or AIRs’ state. This paper assumes that an
appropriate motion controller from the existing controllers
can be implemented. Note that the AIR’s base doesn’t move
while executing a tool-path; however, at the completion of
a tool-path, an appropriate point-to-point path planner may
be needed for an AIR to go from a base position to the next
within an allocated time (tt

i in Eq. (3)). Point-to-point path
planning is a well-studied problem and is not considered in
the below mathematical model.

5.1 Design Variables: AIR Joints’ Angles

At each step j, each AIR has to find a feasible pose corre-
sponding to the way-point that it needs to execute. A feasible
AIR pose can be obtained by calculating appropriate joints’
angles for the AIR. Hence, the design variables are:

θ j iq, ∀i,q : i = 1,2, . . . ,n; q = 1,2, . . . ,nq
i (12)

where θ j iq is the joint angle corresponding to joint q of the
ith AIR at step j, n is the number of AIRs, and nq

i is the num-

ber of joints of the ith AIR. The aim is to arrive at values
for the design variables that will optimize the design objec-
tive whilst satisfying the relevant constraints. Note that the
mathematical model is presented for one step only, hence to
obtain a complete path for the AIRs it needs to be repeated
n j number of times to solve for j = 1,2, . . . ,n j.

5.2 Design Objectives

Two design objectives are considered; however, only one is
needed at each step. The first objective is related to minimiz-
ing the change in joints’ angles of the AIRs while executing
a tool-path. The second objective is only relevant for exe-
cuting the first way-point of a tool-path, and the aim is to
determine a new base position and orientation for the first
way-point of a tool-path such that the movement of AIR’s
base is minimized. The design constraints are the same when
using either of the objective function.

5.2.1 Minimal Change in Joints’ Angles

To help the controller execute a smooth motion, this objec-
tive is designed to minimize the change in joints’ angles, i.e.:

min
θ

fa(θ) = max
i,q

(
|θ j−1 iq−θ j iq|

θ
cap
iq

)
(13)

where θ is a set containing all the design variables, i.e. θ =

{θ j iq : ∀i,q}, θ j−1 iq is the value (angle) of joint q of the ith
AIR at step j−1, and θ

cap
iq is the maximum rotation capac-

ity of the qth joint of the ith AIR. An option for calculating
θ

cap
iq is to consider the worst case scenario where the joint is

initially still and then calculating the maximum rotation that
the joint can make within a time step given its maximum ac-
celeration and velocity. Thus, θ

cap
iq acts as a normalization.

The optimizer should not necessarily minimize the rotation
of the joint that needs to turn more, but rather should min-
imize the rotation of the joint that is slower or requires a
greater acceleration in meeting the desired rotation.

5.2.2 Minimal Movement of AIRs’ Bases

If an AIR is equipped with a mobile platform at its base,
then at the start of each tool-path, in addition to determin-
ing appropriate values for the joints’ angles of the AIR, the
position and orientation of the mobile base need to be de-
termined. Note that not all 6 degrees of freedom (position
along the x,y,z axes, and orientation about the x,y,z axes of
the base) need to be considered for the base since for most
industrial robots the base may not be able to move vertically
or make a rotation about the x and y axes.
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Two options for determining appropriate base position
and orientation are: (1) incorporating additional design vari-
ables that represent the base position and orientation of the
AIRs into the aforementioned design variables (Eq. (12))
and then solving the optimization problem for the first way-
point of a path; and (2) using the base placement optimiza-
tion method presented in [31, 32] which can determine a
base placement by considering reachability to all way-points
in a tool-path. Note that the base is assumed to be fixed
(immobile) when executing the fiber placement task for a
tool-path, hence an AIR’s base is assumed mobile only af-
ter completing a tool-path and moving to the next, as dis-
cussed in Section 3. The first option can be faster than the
second; however, unlike the second option, it does not guar-
antee reachability to all way-points. This is because the base
position is optimized for the first way-point only, and the
same optimized base is assumed to be feasible for execut-
ing the rest of the tool-path. If all way-points of a tool-path
couldn’t be reached at a base position, then the planning pro-
cess needs to be repeated from the start of the tool-path with
a different base position.

Thus, optimization is performed twice for the first point
of each tool-path: first to find a feasible base pose (posi-
tion and orientation) that will result in minimal base move-
ment (using the objective function below), then to find joints
angles that will result in minimal joints motion (using Eq.
(13)). This objective is:

min
ϑ

fb(ϑ) = max
i

(
max

(∥∥βββ
AIR
i, j−1−βββ

AIR
i, j (ϑ)

∥∥
β step ,

|ψr
i, j−1−ψr

i, j(ϑ)|
ψr,step ,

|ψ p
i, j−1−ψ

p
i, j(ϑ)|

ψ p,step ,
|ψy

i, j−1−ψ
y
i, j(ϑ)|

ψy,step

))
(14)

where ϑ is a set of design variables that define the position
and orientation (the pose) of the AIRs’ base, βββ

AIR
i, j−1 ∈ R3 is

the preceding base position of the ith AIR, βββ
AIR
i, j (ϑ) ∈ R3

is the new base position, β step is the maximum translational
motion that the base can handle at one time step, ψ rep-
resents the rotation of the base, and ψstep is the maximum
rotation that the base can handle at one time step where the
superscripts r, p, and y denote roll, pitch and yaw angles,
respectively. This objective is for i = 1,2, . . . ,nm; nm ≤ n,
where nm is the number of AIRs that need to move to a new
base position at step j. Although the design variables related
to the AIRs’ joint angles (expressed in Eq. (12)) are not in-
cluded in the above objective function (Eq. (14)), they are
included in the following constraints functions to ensure that
feasible AIR poses can be achieved. Hence, the complete set
of design variables are θ = {θ ,ϑ}; however, when using the
first objective function (Eq. (13)) the design variables in ϑ

are discarded. Prior to performing the base optimization for

the start way-point of a tool-path, an additional option is to
check whether the tool-path can be executed using the same
AIR base pose used for the preceding tool-path.

5.3 Design Constraints

5.3.1 Collision Avoidance Between AIRs

Let ns
i spheres represent the ith AIR. Using spheres can be

an efficient way of checking collision between AIRs. The
number of spheres can be increased to obtain a more accu-
rate representation of the AIR; however, at a cost to com-
putation efficiency since collision checking would need to
be performed for a larger number of spheres. An example
sphere representation of the arm (manipulator) of an AIR is
shown in Fig. 4. The spheres representing an AIR must not
collide (overlap) with the spheres representing another AIR.
Thus, the constraints are:∥∥∥SSSip(θ j i)−SSSí ṕ(θ j í)

∥∥∥−(SR
ip +SR

íṕ

)
≥ 0 (15)

∀i, í, p, ṕ : i= 1,2, . . . ,n; í= 1,2, . . . ,n; i 6= í; p= 1,2, . . . ,ns
i ;

ṕ = 1,2, . . . ,ns
í
, where θ j i are a subset of design variable as-

sociated with the ith AIR, SSSip(θ j i)∈R3 returns the centroid
position of the pth sphere of the ith AIR based on the design
variables θ j i using forward kinematics [33], and SR

ip is the
corresponding sphere radius.

5.3.2 Collision Avoidance Between the Links of Each AIR

Similar to the first constraint, to prevent self-collision the
spheres representing an AIR’s link must not collide with the
spheres representing another link. Thus, the constraints are:∥∥SSSir(θ j i)−SSSiŕ(θ j i)

∥∥− (SR
ir +SR

iŕ
)
≥ 0 (16)

∀i,r, ŕ : i = 1,2, . . . ,n;r = 1,2, . . . ,ns
i ; ŕ = 1,2, . . . ,ns

i ;r 6= ŕ,
where SSSir(θ j i) ∈ R3 returns the centroid position of the rth
sphere of the ith AIR, and SR

ir is the corresponding sphere
radius.

Fig. 4: An example where the manipulator of a 6 DoF indus-
trial robot is represented as 7 spheres.
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5.3.3 Collision Avoidance with the Environment

An AIR must not collide with any object in an environment.
The environment can be represented as a point cloud; hence
any point that represents part of the environment must not
collide with, or penetrate into, any sphere that represents
part of an AIR. Therefore, the constraints are:∥∥oenv

k −SSSir(θ j i)
∥∥− (SR

ir
)
≥ 0 (17)

∀k, i,r : k = 1,2, . . . ,nk; i = 1,2, . . . ,n;r = 1,2, . . . ,ns
i , where

oenv
k is the kth point representing part of an environment,

and nk is the total number of points representing the envi-
ronment.

5.3.4 Compaction Force

To ensure proper attachment of the fiber onto a surface, an
appropriate amount of compaction force must be exerted on
the fiber which results in the deformation of the roller, as
shown in Fig. 5. Let TTT i be a 4 by 4 homogeneous transfor-
mation matrix that represents the position and orientation of
the point PPPCOM

i ∈ R3 shown in Fig. 5 which is located at
the Center Of Mass (COM) of the ith AIR’s roller. Note that
the density of the undeformed roller should be uniform so
that its COM is at its centroid. In Fig. 5, ϕi is the angle be-
tween the surface normal vector and the approach vector in
the matrix TTT i (the vector parallel to the long axis of roller’s
bracket); and ri is the radius of the roller attached to the ith
AIR. Note that the parameters TTT i, PPPCOM

i and ϕi are a func-
tion of the design variables θ j i (for brevity the notation θ j i
is not included), hence these parameters can be calculated
using forward kinematics [33]. Let PPPc

i ∈ R3 be a point on
the surface of the roller, as shown in Fig. 5. The point PPPc

i
can be calculated as:

PPPc
i = TTT i×Rot(y,ϕi)×Trans(0,0,ri) (18)

Fig. 5: Cross-section view of the roller, and the parameters
related to the compaction force.

where Rot(y,ϕi) is a 4 by 4 homogeneous transformation
matrix that represents a rotation of ϕi degrees about the y-
axis of the roller (the axis joining the two ends of the roller),
and Trans(0,0,ri) is a 4 by 1 matrix representing transla-
tion of magnitude ri along the z-axis (i.e. along the approach
vector of transformation matrix TTT i). When the roller is in
contact with the target surface with the appropriate position
and orientation relative to the way-point oi( j) at step j, then
the line Ls

i that connects PPPc
i to PPPCOM

i is collinear with the
line that connects oi( j) to PPPCOM

i . As shown in Fig. 5, let
PPPee

i ∈ R3 be another point on Ls
i at a distance Di away from

PPPc
i and towards PPPCOM

i . The point PPPee
i is defined as the end-

effector point of the ith AIR. Di defines the amount of defor-
mation on the roller as shown in Fig. 5 and is calculated as
Di = ‖oi( j)−PPPc

i ‖. Hence, PPPc
i is always a distance ri away

from PPPCOM
i irrespective of the deformation, whereas PPPee

i ac-
counts for the deformation that is defined using Di and is
in contact with oi( j) (when other constraints are met). The
amount of compaction force Fc

i is relative to the deformation
distance Di, hence Fc

i = f (Di) where f (Di) is a linear or a
non-linear function that calculates compaction force based
on the distance Di. An example of how Fc

i can be related
to Di is presented in [2]. Let Dmin

i and Dmax
i be the values of

Di that correspond to the minimum and maximum allowable
compaction force, respectively, as shown in Fig. 5. Thus, the
acceptable range of values for Fc

i and in turn for Di need to
be determined based on factors such as the type of compos-
ite materials used, the shape of the target structure, etc.

To ensure appropriate compaction force, the following
constraints must be satisfied:

Dmin
i ≤ Di ≤ Dmax

i (19)

∀i : i = 1,2, . . . ,n.

5.3.5 End-Effector Position Error

The previous constraint (compaction force) can’t alone en-
sure that the end-effector point PPPee

i (θ j i) ∈ R3 is at the de-
sired way-point oi( j) ∈ R3 at step j. Hence, the following
constraints must be satisfied:∥∥PPPee

i (θ j i)−oi( j)
∥∥≤ δ (20)

∀i : i = 1,2, . . . ,n, where δ is a small acceptable deviation.

5.3.6 End-Effector Orientation Error

The orientation of the roller attached to the tip of an AIR
must meet the desired orientation within a predefined error.
Let φ r

i (θ j i), φ
p
i (θ j i) and φ

y
i (θ j i) be the roll, pitch and yaw

angles that define the orientation of the roller attached to the
ith AIR. These angles can be calculated for an AIR pose
(defined by AIR joints’ angles and base pose) using forward
kinematics [33]. The difference between these angles and
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the angles that define the desired orientation must be within
predefined values. Thus, the following constraints must be
satisfied:∣∣∣φ r

i (θ j i)−φ
r,d
i ( j)

∣∣∣≤ φ
r,max
i (21a)∣∣∣φ p

i (θ j i)−φ
p,d
i ( j)

∣∣∣≤ φ
p,max
i (21b)∣∣∣φ y

i (θ j i)−φ
y,d
i ( j)

∣∣∣≤ φ
y,max
i (21c)

∀i : i= 1,2, . . . ,n, where the superscripts r, p,y represent the
roll, pitch, and yaw angles, respectively, φ min

i is the maxi-
mum allowable angle error, and the superscript d represents
the desired rotation angle. Note that these errors should be
very small (less than or equal to 1◦ in [5]). However, the fiber
placement head can be designed such that it accommodates
for larger error in the pitch angle. This is because the roller
can be made to rotate along a tool-path even if the heading
of the fiber placement head is not completely perpendicular
to the surface.

5.3.7 Joint Limits

The angle of joint q of the ith AIR, θ j iq should be within its
limits, θ min

iq and θ max
iq . Hence, the constraints are:

θ
min
iq ≤ θ j iq ≤ θ

max
iq (22)

∀i,q : i = 1,2, . . . ,n;q = 1,2, . . . ,nq
i .

6 Optimization for the Two Stages

Using the developed mathematical models, the two stages
can be solved using many optimization algorithms. In this
work standard optimization algorithms such as multi-objective
Genetic Algorithm (GA) and gradient optimization are used;
hence, not to be considered as a contribution. Thus, the main
aim of this section is to demonstrate how the two stages can
be solved using existing optimization algorithms.

6.1 Optimization for Stage 1 (Tool-path Allocation)

For the tool-path allocation problem (Stage 1), it is vital to
obtain a solution as close to the optimal as possible since
the objectives used in the mathematical model are critical
(e.g. achieving minimal makespan is important) and the per-
formance of the second stage (multi-AIR path planning) is
dependent on the output of the first stage. Thus, a global op-
timization algorithm such as a GA-based optimizer is an ap-
propriate choice as it carries out a wider search than a local
optimizer (which depends mostly on a good initial guess).

As an option for optimizing the tool-path allocation (Stage
1), the Multiple Traveling Salesman Problem (MTSP) can

be looked at. In MTSP, a number of salesmen are assigned
the task of visiting a number of cities. The task usually in-
volves visiting the cities as quickly as possible and without
repeating a visit, however, there are different variations of
this problem. In the tool-path allocation problem, the AIRs
can represent the salesmen, and the tool-paths can represent
the cities that the AIRs need to visit/execute. However, the
objectives and constraints used in the mathematical model
for tool-path allocation are explicitly designed for the fiber
placement problem.

MTSP is considered to be NP-hard [34]. Thus, many re-
searches have resorted to using metaheuristic optimization
techniques such as GA. In order to use GA-based optimiza-
tion algorithms, an appropriate chromosome representation
must be devised for the particular problem under considera-
tion. The work in [35] implements a two-part chromosome
representation for solving the MTSP problem. They prove
that the two-part chromosome representation reduces redun-
dant solutions and the size of the search space.

In this work, two-part chromosome representation [35]
is used; however, some modifications are made to account
for the layers and prerequisite tool-paths. Fig. 6 shows an
example two-part chromosome representation designed for
the specific problem under consideration. The first part of
the chromosome shows the permutation of the tool-path in-
dices for all layers. The length of the first part is NZ (i.e.
the number of tool-paths in all layers). The second part of
the chromosome shows the number of tool-paths assigned to
each AIR per layer. The length of the second part is n×Ztot

(i.e. the number of AIRs multiplied by the number of lay-
ers). Based on the example, the first AIR is assigned tool-
paths 1 and 2 from layer 1; tool-paths 4, 1, and 2 from layer
2; and tool-paths 2 and 4 from the last layer. The executing
sequence of the tool-paths by each AIR is from left to right.

The advantage of this chromosome representation, be-
sides the fact that it reduces redundant solutions, is that it
will satisfy the constraints mentioned in Section 4.3. It will
ensure feasibility of the solution by enforcing each AIR to
execute tool-paths from the first layer to the last (left to right
in the chromosome). If a tool-path assigned to an AIR is a
prerequisite of another AIR’s tool-path, then the prerequisite
tool-path must be executed first, which may cause some in-
stances of idle times for a number of AIRs. However, since
one of the objective functions is to reduce the makespan
which includes idle time, then minimizing makespan will
also minimize idle times. The ultimate goal is to arrive at a
chromosome that results in the optimal solution for the tool-
path allocation problem.

Note that since multiple conflicting objectives are used
in the model, then multi-objective GA is used. More specifi-
cally, the function gamultiobj from the MATLAB optimiza-
tion toolbox which is based on Non-dominated Sorting Ge-
netic Algorithm II (NSGA-II) [36] is used.
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Fig. 6: An example of the implemented two-part chromosome representation.

Let Ω be the space in which the design variables coexist.
Similarly, let Ψ be the objective space in which objective
functions coexist. Therefore, a point in Ω maps to a point
in Ψ . The aim is to obtain Pareto optimal set, P*∈ Ω . The
solution vectors in P* are non-dominated, i.e.

P* := {x ∈Ω | @ y ∈Ω such that y� x} (23)

where � represents dominance. A solution x dominates a
solution y (i.e., x � y) if an only if for all of the objective
functions, x doesn’t yield a value worse than y in Ψ space
and it strictly yields a better value for at least one of the ob-
jectives [37]. The corresponding Pareto optimal front (PF*)
in Ψ space is:

PF* := {F(x) ∈Ψ , ∀ x ∈ P*} (24)

where F(x) returns the values of the objective functions for
a solution x.

GA-based algorithms require crossover and mutation op-
erators. The crossover operator implemented in this work is
based on two-part chromosome crossover (TCX) introduced
by Yuan et al. [34]. TCX is made specifically for the two-
part chromosome representation, and it is proven to improve
solution quality and increase diversity in the second part of
the chromosome. As for the mutation operator, it is based on
swap mutation which takes a random set of pairs of genes
and exchanges the location of genes in each pair. However,
each pair is selected from one layer only so as to keep the
feasibility of the solution.

6.2 Optimization for Stage 2 (Multi-AIR Path Planning)

For the multi-AIR path planning problem, the aim is to find
AIR poses at each step such that the constraints outlined in
Section 5.3 are satisfied. Using a local optimizer to find so-
lutions that satisfy all constraints is favorable as it provides a

fast computation performance which is helpful since the op-
timization needs to be repeated for a large number of way-
points (i.e., all way-points for all tool-paths). However, a lo-
cal optimizer may not find a globally optimum solution in
terms of the objective of minimal change of manipulators’
joints angles (Eq. (13)). If this objective is critical for an ap-
plication, then a global optimizer such as GA might be used
at a significant cost to computational efficiency as will be
discussed in Section 8.

The fmincon function from the MATLAB optimization
toolbox is used. Since fmincon is a local optimizer it may not
find a globally optimum solution. This issue can be moder-
ately addressed by selecting a good initial guess for the first
way-point of each tool-path. Hence, for the first way-point
of each tool-path, GA is used for the following reasons: (1)
no initial guess is needed for GA, (2) GA can search more
broadly through the space and is a better method for an-
alyzing whether or not a feasible solution exists, and (3)
when the model includes determining base positions (Sec-
tion 5.2.2), GA performs better in finding a feasible solu-
tion. For the remaining way-points of a tool-path, the solu-
tion from the previous way-point is used as the initial guess
for the next. It is important to note that from a practical point
of view, at each step, finding a quick solution that reasonably
minimizes the change in joints angles and produces a feasi-
ble solution (satisfies all the constraints) is more critical than
finding a solution that may be globally optimum but takes a
relatively long time to obtain.

7 Case Studies

Case studies are presented in this section to demonstrate
the effectiveness of the approach for different scenarios and
conditions. In brief, the following aspects are investigated:

– Case Study 1:
– Fiber placement on a curved surface
– Comparison of three solutions from the Pareto front
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– A video to show the results
– Achieving optimal makespan
– Checking consistent convergence of the results

– Case Study 2:
– Fiber placement on a dome-shaped surface
– Comparisons in terms of makespan
– A video to show the results
– Checking consistent convergence of the results

– Case Study 3:
– Repeating Case Study 2 with fixed AIR bases to in-

vestigate the effect of Objective 4 in Eq. (9)
– Investigating the effect of Objective 3 (minimal dis-

tance between consecutive tool-paths - Eq. (7))
– Investigating the effect of Objective 2 (maximal dis-

tance between AIRs’ end-effectors - Eq. (5))
– Investigating the effect of Objective 1 (minimal

makespan - Eq. (2))
– Investigating the performance of the approach with

respect to the number of AIRs (2))

Optimization for Stage 1 (tool-path allocation) was per-
formed using the function gamultiobj from the MATLAB
optimization toolbox. The function gamultiobj is based on
NSGA-II. Optimization for Stage 2 was mainly done through
the fmincon function from the MATLAB optimization tool-
box. However, as explained in Section 6.2, genetic algorithm
(the function ga from the MATLAB optimization toolbox)
was used for the first way-point of each tool-path. Default
optimization parameters were found to be appropriate for
the problem under consideration. Optimization was carried
out using a PC with Intel Core i5-2400 CPU @ 3.10 GHz.
Parallel processing was enabled to run the code using all
four cores of the CPU.

Fig. 7: The AIR used and its dimensions.

Table 1: Parameters and their values.

Parameter Value Reference
vi 0.1 m/s Eq. (3)
ωi 1 Eq. (3)
θ

cap
iq 1 ∀q Eq. (13)

Dmin
i 0 m Eq. (19)

Dmax
i 0.02 m Eq. (19)

δ 0.0001 m Eq. (20)
φ

r,max
i 0 Eq. (21)

φ
p,max
i 45◦ Eq. (21)

φ
y,max
i 0 Eq. (21)

The AIR used in the case studies (shown in Fig. 7) con-
sists of a 6 DoF manipulator mounted on a base platform,
and a roller attached to the fiber placement head. The ma-
nipulator is modeled upon a real 6 DoF Schunk manipula-
tor. The base is considered to be mobile and omnidirectional,
and it is simulated as a 0.4 m × 0.4 m × 0.3 m cuboid. The
radius and the height of the roller are 0.05 m and 0.1 m, re-
spectively. A total of 6 tows are laid down simultaneously,
each tow being 12.7 mm in width which gives a total of
76 mm for all 6 tows. The height from the top surface of
the base to the centroid of the roller is 1.74 m. The base of
the AIR can’t move vertically, neither can it rotate about the
x or y axes. The first joint of the AIR, which is closest to the
base and rotates about the z-axis, can do a full 360◦ rotation.
The joint limits used in Eq. (22) are ±180◦, ±110◦, ±105◦,
±175◦, ±102◦, and ±175◦ for joints 1 to 6, respectively.

Table 1 lists the value of the parameters used with refer-
ence to the corresponding equation. The values are the same
for all AIRs (i.e. for all i).

7.1 Case Study 1: Fiber Placement of a Curved Surface
Using Two Mobile AIRs

In this case study, the effectiveness of the overall approach
is tested on a curved surface as shown in Fig. 8. Two mo-
bile AIRs are deployed for the fiber placement task (shown
in Fig. 9) and they were able to execute all tool-path in all
layers while satisfying all constraints. Note that the number
of way-points for each tool-path is shown in Fig. 8. A video1

is provided to show the allocation of tool-paths amongst the
AIRs and the output of the collaborative path planner.

For the tool-path allocation (Stage 1), a solution is cho-
sen from the Pareto front. Table 2 shows the values of Ob-
jective 1 (makespan based on Eq. (2)), Objective 2 (distance
between AIRs’ end-effector based on Eq. (5)), and Objective
3 (sum of distances between consecutive tool-paths based
on Eq. (7)) for the chosen solution. The table also shows the
three best solutions from the Pareto front in terms of Objec-

1 The video can be viewed at https://youtu.be/
f9SkzJ0z_O4

https://youtu.be/f9SkzJ0z_O4
https://youtu.be/f9SkzJ0z_O4
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Fig. 8: A curved surface, its dimensions, the tool-paths for
each layer, and the number of way-points for each tool-path.

tives 1 to 3. Objective 4 is discarded since AIRs’ bases are
considered to be mobile (or can be moved manually).

In industrial applications, achieving minimal makespan
is vital for productivity. One AIR can execute all tool-paths
in all layers with a makespan of 1562 s considering no idle
time; thus the optimal solution in terms of makespan for two
AIRs is 781 s (1562 / 2). Hence, as shown in Table 2, an op-
timal solution in terms of makespan could be achieved us-
ing the proposed mathematical model. However, a solution
is chosen that is acceptable in terms of all three objectives
with a makespan being worse than the optimal by 6 % (44 s).

The following parameters are chosen specifically for this
case study: (1) the value of tt

i in Eq. (3) is 19.66 s, (2) the
bottom surface of the base platform of the AIRs is 0.06 m
lower than the bottom of the target structure, (3) layers 1 and
2 include 26 and 27 tool-paths, respectively, and (4) distance
between two way-points along a tool-path is 0.09 m.

Fig. 9: Two AIRs operating on the curved surface.

Table 2: Solutions from the Pareto front for Case Study 1.

Obj. 1 Obj. 2 Obj. 3
Chosen solution 825 s 0.85 m 6.41 m
Best in terms of Objective 1 781 s 0.55 m 11.92 m
Best in terms of Objective 2 1312 s 1.66 m 22.10 m
Best in terms of Objective 3 918 s 0.53 m 5.98 m

Figure 10 is generated to show the convergence of the
Pareto front over the generations and that the final Pareto
front is close to the Pareto optimal front, PF* (explained
in Eq. (24)). To show an accurate plot of the convergence,
Fig. 10 is constructed using 30 independent optimization
runs. More specifically, Fig. 10 is constructed as follows.
At first, since the PF* is not known, a reference set is used
to approximate the PF* [38] by running the optimization 30
times with a large population (10,000) and a large generation
number (10,000). The non-dominated solutions (explained
in Section 6.1) from the Pareto fronts of all 30 optimiza-
tion runs are then used to approximate PF*. Once PF* is ob-
tained, the optimization is repeated 30 times with the default
parameters of MATLAB optimization toolbox. Then the In-
verted Generational Distance (IGD) [38], which is becoming
increasingly popular in recent years, is used to measure how
far the Pareto front is from PF* and how it evolves over the
generations. The IGD value is calculated as:

IGD(PF,PF*) =
1
|PF*|

√
∑

a∈PF*

(
min
b∈PF
‖a−b‖2

)
(25)

where ‖a− b‖ is the Euclidean distance between a ∈ PF*
and b ∈ PF (PF is the Pareto front). Note that PF* and PF
are normalized using the maximum and minimum values in
PF*. A smaller value of IGD indicates a closer distance of
PF to PF*.

Figure 10 shows that the IGD value does converge and
that it is improved by 95 % from the first generation to the
last. The IGD value of the 30 optimization runs is calcu-
lated at each generation using the current Pareto front at that
particular generation, and then the average of the IGD val-
ues is taken at each generation to construct the figure. The
low IGD value indicates that the Pareto front is close to the
PF*. However, increasing the population size can improve
the IGD value at the expense of computational efficiency.
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Fig. 10: Convergence of the Pareto front with respect to the
Pareto optimal front (PF*) using the average of 30 indepen-
dent optimization runs. The Inverted Generational Distance
(IGD) is used to measure how far the Pareto front is from
the PF* at each generation. The IGD value is improved by
95 % from the first generation to the last.
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Fig. 11: A dome-shaped surface, its dimensions, and the
tool-paths for each layer.

7.2 Case Study 2: Fiber Placement of a Dome-Shaped
Surface Using Two Mobile AIRs

The purpose of this case study is to test the overall approach
again using a different surface, i.e. the dome-shaped surface
shown in Fig. 11. Two mobile AIRs are deployed to perform
the fiber placement task as shown in Fig. 12. A video2 is
provided to show the results of the tool-path allocation and
the multi-AIR collaborative path planning. The chosen solu-
tion from the Pareto front has values of 1009 s for Objective
1, 0.41 m for Objective 2, and 9.75 m for Objective 3. In
terms of makespan, the chosen solution is 3 % (27 s) worse
than the optimal makespan (982 s). Solutions with optimal
makespan exist in the Pareto front, however with worse val-
ues for Objectives 2 and 3 when compared to the chosen so-
lution. For example, a solution with optimal makespan has
values of 0.17 m and 13.8 m for Objectives 2 and 3, respec-
tively. Thus, if the makespan is allowed to be slightly worse

2 The video can be viewed at https://youtu.be/
jBGhowDlFew

Fig. 12: Two AIRs operating on the dome-shaped surface.
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Fig. 13: Convergence of the Pareto front with respect to the
Pareto optimal front (PF*) using the average of 30 indepen-
dent optimization runs. The Inverted Generational Distance
(IGD) is used to measure how far the Pareto front is from
the PF* at each generation. The IGD value is improved by
42 % from the first generation to the last.

than the optimal makespan, then solutions that are better in
terms of Objectives 2 and 3 can be obtained from the Pareto
front which will then help with flexibility and maneuverabil-
ity during multi-AIR path planning (Stage 2).

The following parameters are chosen specifically for this
case study: (1) the value of the parameter tt

i in Eq. (3) is
19.72 s; (2) the bottom surface of the base platform of the
AIRs is 0.8 m lower than the bottom of the target structure;
(3) layers 1, 2 and 3 include 29, 25 and 26 tool-paths, re-
spectively; (4) the number of way-points for all tool-paths in
layers 1, 2 and 3 are 5, 6 and 6, respectively; and (5) the dis-
tance between two way-points along a tool-path is 0.08 m.

Similar to Case Study 1, Fig. 13 is constructed using 30
independent optimization runs to show that the Pareto front
consistently converges over the generations. The IGD value
is improved by 42 % from the first generation to the last.
The low IGD value indicates that the Pareto front is close to
the PF*. Case Study 1 (Section 7.1) and Eq. 25 explain the
details of how the IGD value is calculated and how the plot
in the figure is generated.

7.3 Case Study 3: Comparative Studies

This case study provides comparative studies through: (1)
AIRs with and without mobile bases, (2) different combina-
tions of the objective functions in the model, and (3) consid-
ering up to 6 AIRs.

Comparison 1 - considering fixed AIR base: First, the sce-
nario in Case Study 2 (Section 7.2) is repeated, however
now considering immobile (fixed) base for the AIRs. Thus,
the fourth objective expressed in Eq. (9), which is maxi-
mal reachability through minimizing the distance of the al-
located tool-paths to an AIR, is included. For comparison
sake, the third objective is discarded. The fixed base posi-
tion of the AIRs relative to the surface is shown in Fig. 14.
A solution from the Pareto front is chosen that has values of

https://youtu.be/jBGhowDlFew
https://youtu.be/jBGhowDlFew


A Two-Stage Approach to Collaborative Fiber Placement through Coordination of Multiple Autonomous Industrial Robots 15

Fig. 14: Location of the two AIRs relative to the dome-
shaped surface.

1057 s for Objective 1, 0.32 m for Objective 2, and 2328 m
for Objective 4. To compare this solution to a solution from
the mathematical model that doesn’t include Objective 4,
optimization is repeated without including Objective 4 and
a solution is chosen from the Pareto front. The selected so-
lution has values of 983 s for Objective 1 and 0.25 m for
Objective 2. The benefit of including Objective 4 is that the
allocation of the tool-paths is more appropriate for the con-
dition where the AIRs’ bases are fixed. That is, as shown in
Fig. 15, the way-points for all tool-paths in all layers allo-
cated to each AIR are closer to the corresponding AIR when
compared to the solution that doesn’t consider Objective 4.

Comparison 2 - the effect of Objective 3: Objective 1 is crit-
ical since in manufacturing applications it is vital to mini-
mize the makespan for increased productivity. Objective 2 is
also critical since it will help the AIRs avoid collisions or the
situation where one AIR hinders the motion of another AIR
due to the close proximity of the end-effectors. However,
Objective 3 is not as critical since it is mainly concerned
with reducing the base motion of the AIRs and saving en-
ergy. Nonetheless, including this objective is important and
beneficial. As a comparison, Case Study 2 is repeated by
discarding Objective 3. A solution with values of 983 s for

Fig. 15: Top view of the way-points in all tool-path of all
layers associated with each AIR, based on the presented so-
lutions in Case Studies 2 and 3.

Objective 1 and 0.25 m for Objective 2 is used. Objective 3
is calculated for this solution, and it was found that the value
of Objective 3 is 24.26 m, which is 14.51 m (150 %) larger
than the value of the solution obtained in Case Study 2. This
significant increase in Objective 3 causes greater base mo-
tion of the AIRs since there are fewer instances where con-
secutive tool-paths can be executed at the same base position
(due to the larger distance between consecutive tool-paths),
hence the AIRs may have to move more often when execut-
ing the tool-paths.

Comparison 3 - the effect of Objective 2: Next, Case Study
2 is repeated by only considering Objective 1 (makespan).
A solution with the optimal makespan of 982 s is obtained.
This solution is then recalculated for Objective 2 to investi-
gate how it compares to the chosen solution in Case Study
2 (where Objective 2 was considered). It was found that
the value of Objective 2 for the obtained solution is 0.05 m
(which is 0.2 m worse than the chosen solution in Case Study
2), meaning that the end-effectors of the AIRs will be very
close to each other at some stage during their operation. This
could cause path-planning to halt since the two AIRs may
not be able to find collision-free poses.

Comparison 4 - the effect of Objective 1: Case Study 2 is
repeated by only considering Objective 2 (maximal distance
between AIRs’ end-effectors). A solution with a value of
0.42 m for Objective 2 was obtained. This solution is then
recalculated while accounting for Objective 1 (makespan). It
was found that the makespan is 1367 s which is 384 s (28 %)
worse than the optimal makespan (982 s).

Comparison 5 - performance with respect to the number of
AIRs: The aim here is to compare and discuss the perfor-
mance of the approach with respect to the number of AIRs,
particularly by investigating the effect on the makespan ob-
jective (E.q. (2)) which is of high importance for produc-
tivity. Case studies 1 and 2 are repeated by considering up
to 6 AIRs. The solution with the best makespan is selected
from the Pareto front for each scenario. Figure 16 shows the
actual makespan and the ideal makespan for each scenario.
Since it is difficult to calculate the true optimal makespan,
a lower bound on the optimal makespan (ideal makespan)
is calculated as the time it takes for a single AIR to cover
all tool-paths (assuming no idle time) divided by the num-
ber of AIRs. The time it takes for a single AIR to cover all
tool-path of the surfaces presented in Case Studies 1 and 2
is 1562 s and 1964 s, respectively. From Fig. 16 it is evident
that the makespan decreases as more number of AIRs are
used; however, the difference to the ideal makespan gradu-
ally increases as well. The small gradual increase with re-
spect to the ideal makespan is possibly due to constraints
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Fig. 16: Actual makespan and ideal makespan considering
up to 6 AIRs.

associated with the problem, such as the constraint of sat-
isfying the prerequisite tool-paths which can become harder
to satisfy as the number of AIRs increase. Note that the ideal
makespan was calculated naively by simply dividing the op-
timal makespan of a single AIR by the number of AIRs,
which may cause an over-optimistic value than the true op-
timal makespan since it doesn’t take into account the con-
straints of the problem.

Note that if the object under consideration is small, which
is the case in the presented case studies, then using more
than two AIRs may not be a reasonable option. Although
Fig. 16 shows that having more than two AIRs can reduce
the makespan, Objective 2 (E.q. (5)) and Objective 3 (E.q.
7) are significantly affected. For example, for the scenario
where Case Study 1 is repeated with 3 AIRs, although the
makespan is optimal (as shown in the figure), the result of
Objective 2 indicates that the end-effectors of the AIRs get
to 0.083 m proximity to each other which is 10 times worse
than the value of the solution chosen for the case where 2
AIRs were deployed (refer to Table 2).

Relatively large objects may require the deployment of
more than three AIRs. However, the tool-paths in large ob-
jects are likely to be longer and the assumption that “the base
needs to be fixed (immobile) when executing the fiber place-
ment task for a tool-path” is no longer reasonable. Thus, the
aim of this particular study was to check the performance
of the overall approach when more than two AIRs are de-
ployed; however, the extension of current work for larger
objects and considering a mobile base during task execution
will be investigated as future work.

8 Discussion and Future Work

A two-stage approach to multi-AIR collaborative fiber place-
ment was presented and then tested using several case stud-
ies. It is evident from the case studies that the approach can
perform well within the scope of the work considered. The
assumptions made and the scope of the work was set-out in
the problem definition (Section 3) to clarify the advantages
and limitations of the approach.

8.1 Computation Time

A brief discussion on the computation efficiency of the ap-
proach is presented here. On average, the computation time
of Stage 1 (tool-path allocation) for Case Studies 1 and 2
is 6 minutes and 8 minutes, respectively. These computa-
tion times are acceptable since tool-path allocation is per-
formed off-line. However, there is room for significant im-
provements since the primary focus of the work in the pa-
per has been on aiming to achieve optimal collaboration and
productivity of the AIRs rather than the off-line computa-
tional efficiency. Improving the computation time will par-
ticularly be of interest when the presented approach is inves-
tigated for on-line applications. The period associated with
repositioning of AIRs’ bases and getting the fiber ready for a
new tool-path can be used to perform various computations.
Hence, reducing the off-line computation time to fit within
this period may enable on-line applications.

In regards to the multi-AIR path planning, on average,
it took less than 0.1 s to find a feasible solution at each step
using the fmincon function of MATLAB optimization tool-
box. Since path planning is performed off-line, then this ef-
ficiency is acceptable; however, there is room for improve-
ment. For example by further tuning of the optimization pa-
rameters, comparing different data structures [39] such as
Quadtrees and Octrees for distance queries related to Eq.
(16), etc. As mentioned in Section 6.2, GA is used for the
first way-point of each tool-path. On average, GA takes less
than 5 s to find a feasible solution.

8.2 Future Work

As the first work in multi-AIR collaborative fiber placement,
the focus has been in developing mathematical models that
specifically solve the problem defined in Section 3. The de-
veloped models can be of great contribution for scenarios
such as those shown in the case studies; however, it will be
interesting to study whether there are potentials to apply the
models to wider variations of the fiber placement problem.
For example, below are some potential improvements, stud-
ies, and comparisons that can be carried out as future work:

– Comparing the proposed two-stage approach with a single-
stage approach where the models for tool-path allocation
and multi-AIR path planning are combined. The single-
stage approach may improve optimality, however, may
be at a significant cost to computational efficiency.

– Modifying the models such that the AIRs base are al-
lowed to move while operating on a tool-path. For larger
and more complex objects, it may not be possible to ex-
ecute an entire tool-path with a fixed AIR base.

– Investigating the practicality of placing the structure on
a spindle to improve AIRs’ flexibility and reachability.
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– Carrying out a detailed study on computation complex-
ity and time efficiency of the approach, e.g. by tuning
the parameters in the optimization algorithms. As dis-
cussed previously, reducing the computational time may
help with enabling the approach for on-line application.

– Incorporating other objectives such as energy minimiza-
tion, torque minimization, and manipulability maximiza-
tion and analyzing their effect on the performance.

– Estimating the time it takes for an AIR to move from one
base position to the next while performing the optimiza-
tion for the first stage of the approach so as to improve
optimality. That is, estimating the value of tt

i in Eq. (3)
rather than using a constant value that is conservative.

9 Conclusion

Two challenges related to multi-AIR collaborative fiber place-
ment were addressed in this paper. The first challenge is
concerned with tool-path allocation which is defined as the
problem of allocating a subset of tool-paths to each AIR and
simultaneously determining the visiting sequence of the al-
located tool-paths for each AIR. A tool-path is a path that the
roller attached to the end-effector of an AIR needs to follow
so as to lay the fiber. The second challenge, which is multi-
AIR path planning, involves finding feasible AIR poses (in-
verse kinematics) for all way-points of a tool-path while
considering the coordination of the AIRs when executing the
fiber placement task. To solve these challenges, a two-stage
approach was presented where Stage 1 is concerned with
tool-path allocation and Stage 2 is concerned with multi-
AIR path planning. Stage 1 of the approach (tool-path al-
location) consists of a mathematical model which considers
objectives related to productivity (e.g. minimal makespan)
and those related to multi-AIR collaboration (e.g. maximal
distance between the end-effectors’ of the AIRs). The output
from Stage 1, which is the tool-paths allocated to each AIR,
is then used in the multi-AIR path planner (Stage 2). The
multi-AIR path planner consists of a mathematical model
that considers fiber placement related constraints such as
compaction force and end-effector roller’s orientation, but
also general constraints such as collision avoidance and AIR
joints’ limits. The objective of the multi-AIR path planner is
to achieve a smooth motion (by minimizing the change in
joints’ angles at each step) whilst satisfying all constraints.
Several case studies were presented to prove the effective-
ness of the approach for multi-AIR fiber placement.
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