

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 27, 2024

An Adaptive Robotic System for Doing Pick and Place Operations with Deformable
Objects

Jørgensen, Troels Bo; Jensen, Sebastian Hoppe Nesgaard; Aanæs, Henrik; Hansen, Niels Worsøe;
Krüger, Norbert

Published in:
Journal of Intelligent and Robotic Systems: Theory and Applications

Link to article, DOI:
10.1007/s10846-018-0958-6

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Jørgensen, T. B., Jensen, S. H. N., Aanæs, H., Hansen, N. W., & Krüger, N. (2019). An Adaptive Robotic
System for Doing Pick and Place Operations with Deformable Objects. Journal of Intelligent and Robotic
Systems: Theory and Applications, 94(1), 81-100. https://doi.org/10.1007/s10846-018-0958-6

https://doi.org/10.1007/s10846-018-0958-6
https://orbit.dtu.dk/en/publications/37f3a17b-cf07-4880-a594-8b27557d448f
https://doi.org/10.1007/s10846-018-0958-6

Journal of Intelligent & Robotic Systems (2019) 94:81–100
https://doi.org/10.1007/s10846-018-0958-6

An Adaptive Robotic System for Doing Pick and Place Operations
with Deformable Objects

Troels Bo Jørgensen1 · Sebastian Hoppe Nesgaard Jensen2 ·Henrik Aanæs2 ·Niels Worsøe Hansen3 ·
Norbert Krüger1

Received: 3 January 2018 / Accepted: 12 November 2018 / Published online: 3 December 2018
© Springer Nature B.V. 2018

Abstract
This paper presents a robot system for performing pick and place operations with deformable objects. The system uses a
structured light scanner to capture a point cloud of the object to be grasped. This point cloud is then analyzed to determine a
pick and place action. Finally, the determined action is executed by the robot to solve the task. The robotic placement strategy
contains several free parameters, which should be chosen in a context-specific manner. To determine these parameters we
rely on simulation-based optimization of the individual use cases. The entire system is tested extensively in real world trials.
First, the reliability of the grasp is evaluated for 7 different types of pork cuts. Then the validity of the simulation-based
optimization of the placement strategy is evaluated for 2 of the most different pork cuts, to show the generality of the overall
approach.

Keywords Robotic manipulation · Deformable objects · Structured light scanner · Vision-based meat analysis ·
Simulation-based optimization

1 Introduction

Minimizing setup times for industrial robotic systems is
an important task for incorporating robots in small batch
production, since designing and integrating the system is
a relatively large part of the total expense in this type of
production. In this paper, we focus on meat handling, where

� Troels Bo Jørgensen
trjoe@mmmi.sdu.dk

Sebastian Hoppe Nesgaard Jensen
snje@dtu.dk

Henrik Aanæs
aanes@dtu.dk

Niels Worsøe Hansen
nwh@dti.dk

1 Maersk McKinney Møller Institute, University of Southern
Denmark, 5230 Odense M, Denmark

2 DTU Compute, Technical University of Denmark,
2800 Kongens Lyngby, Denmark

3 Danish Meat Research Institute, Danish Technological
Institute, 2630 Taastrup, Denmark

we investigate the possibilities for using robots to execute
pick and place operations of meat pieces. The challenge is
that there are a lot of different cuts of meat, and special
solutions have to be designed for each case. Thus it is
important that a procedure is formulated, which can help to
design robotic solutions for as many cases as possible in a
reasonable amount of time.

We approach this problem from two directions. First, we
design a general and adaptable hardware setup for doing
pick and place operations with meat. Secondly, we present a
simulation-based optimization framework for designing and
fine tuning the solution in simulation.

The hardware setup is shown in Fig. 1 and it consists
of a 6 axis robot arm, a suction-based gripper tool and
a vision system. The gripper tool can be adapted to a
specific task and it is designed to cope with the high
variation when grasping deformable objects. The vision
system is also designed to be a generic solution for
detecting and segmenting meat surfaces. It uses stereoscopic
structured light for 3D surface reconstruction, which has
been shown to generate precise point clouds, even when
scanning materials with high levels of subsurface scattering
[16]. Furthermore, we apply a generic region growing
method to segment the individual meat surfaces, which we
have applied successfully to different cuts of pork. The

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-018-0958-6&domain=pdf
http://orcid.org/0000-0001-7538-2486
mailto: trjoe@mmmi.sdu.dk
mailto: snje@dtu.dk
mailto: aanes@dtu.dk
mailto: nwh@dti.dk

82 J Intell Robot Syst (2019) 94:81–100

Fig. 1 The physical prototype used to handle meat pieces

segmented point cloud is then used to generate a robotic
action for lifting and placing the meat. This action is also
designed such that it can be adapted to specific use cases.

To adapt the generic solutions to specific use cases, we
have designed a simulation tool for modeling the robotic
meat handling operations. Furthermore, the simulation
framework enables the user to analyze the robustness of the
solutions. This is achieved by doing hundreds of simulations
with different perturbations of system uncertainties, e.g. the
meat size, to ensure the system works even for products
with high variation, such as meat. We parameterized the
generic solutions, such that they can be tuned for the specific
problems using numeric optimization. The optimization is
done based on the simulation framework, such that ten
thousands of simulations are used to determine good system
parameters. After good parameters are found in simulation,
they are implemented and evaluated in the real world.

The main contribution of this work lies in combining
several technologies, in order to design a robot solution
for handling pork in a physical prototype at a Danish
slaughterhouse. The individual technologies have been
published in various conference proceedings. The gripper
and the grasping strategy used in this work was introduced
in [19]. This is extended by parameterizing the grasp
action and introducing a placement strategy. The simulation
framework used was introduced in [17]. In our work, this
framework is extended to model the use cases addressed
in this paper. Lastly, the optimization approach is based on
work presented in [18].

The paper is structured as follows: First we discuss
relevant litterature addressing the three main components
in Section 2. These components are vision solutions for
segmenting meat, robot systems for handling meat and
optimization techniques relevant for robotic systems. The
overall system is described in Section 3. The vision system
for generating and segmenting the point clouds is described
in Section 4. In Section 5, we introduce the gripper tool and
discuss the procedure for generating a robotic action based

on the point cloud. The case specific tuning of parameters is
split into two parts. First, we introduce the simulation tool in
Section 6 and then the optimization process is described in
Section 7. In Section 8, we test the solutions with different
cuts of pork. Lastly, we conclude on the results in Section 9.

2 RelatedWork

In this paper, 3 key topics are addressed. The first
topic is vision based segmentation of meat surfaces. The
second topic is robotic systems for manipulating deformable
objects such as meat. Lastly, optimization based parameter
tuning of robotic systems is addressed.

2.1 Vision Systems for AnalysingDeformable Objects

3D reconstruction and simulation of deformable objects and
has been studied intensively for years. A recent example
would be [23] where cloth is handled dynamically by a
humanoid robot. Here a control algorithm is fed input data
from a Kinect that supplies both color and depth. Similar
approaches can be found in [3, 34] and [24]. Common for
these is that the object of interest is distinct and easily
segmented from its environment. As such they are not
directly applicable to our problem domain. This is because
we have to handle boxes of meat with multiple pieces of
meat in a pile. For this reason, depth data supplied is too
inaccurate to properly segment each piece.

One needs to look no further than the DAVIS challenge [30]
to see the tremendous progress and challenge of object segmen-
tation. Some researchers have proposed to used convolutional
neural network [5, 37], others pursue other strategies
such as region augmentation via Gaussian mixture models
(GMM) [22]. However, while they focus and succeed at
segmenting a single primary object, they do not consider a
cluttered scenario as our system will have to deal with.

Our contribution will be applying high accuracy depth
from structured light and a simple, yet powerful segmenta-
tion algorithm to obtain depth data for each piece of meat.
The superior accuracy [9] of stereoscopic vision enables us
to distinguish individual pieces, something that would likely
be impossible with the Kinect.

2.2 Robotic Solutions for HandlingMeat

While a huge body of work has addressed pick and place
operations for rigid objects, only limited research has
addressed these operations for deformable objects, such as
meat. One example is [3] who developed a robotic system
for handling silicon elements which was used as a more test
friendly replacement for meat. They both addressed peg-in-
hole operations and laying down operations of deformable

J Intell Robot Syst (2019) 94:81–100 83

objects with their system. In this work, we focus on real
world cases and use substantially different equipment to
address the grasping challenges of real meat products.

For related tasks such as cutting and separation of meat
pieces research has been done in [25, 29] and [28]. Long
et al. [25] proposed a system using three robots, one for
moving the vision system, one for holding the meat and
one for cutting the meat. Furthermore, they developed
a simulator for modeling the deformable meat handling
operation. Nabil et al. [29] proposed a similar system,
but focused more on physically accurate simulation of
the use case. Our proposed approach similarly rely on
simulation-based analysis of the problem. However, we
focus on modeling the interactions between the meat and
its surroundings rather than just the interaction with a knife.
We also use numeric optimization to tune the solutions in
simulation, rather than just using it as a virtual test bed.

The researchers behind GRIBBOT [28] developed an
automation solution for separating chicken fillet from a
carcass. Their system consists of a vision solution, a 6-
axis robot and a gripper tool for grasping and separating
the chicken fillet. They also show how incorporating
compliance in the gripper tool can make the solution robust
to uncertainties from the vision system. Our system contains
the same components and we also use compliance in the
gripper to handle uncertainties and variation in the meat
products. However, we focus on more general solutions for
handling multiple tasks.

In terms of placing the deformable meat pieces, a closely
related field is draping operations for cloth. To solve this
problem, Balaguer et al. [1] proposed to combine rein-
forcement learning and learning by demonstration to train a
robot system to fold a towel. Other researchers have shown
how visual servoing can be used to fold cloth [40]. In our
work, we also deal with fairly flat objects where drap-
ing operations to some level are necessary to achieve a
nice placement. The pork bellies handled in our work are
more rigid, which makes them easier to place and thus we
can utilize simpler placement strategies. However, the indi-
vidual products vary more and therefore it is necessary with
a placement operation that is robust to the product variation.
To achieve this, our work focusses more on determining
robust placement actions based on optimization.

In terms of robotic solutions, our main contributions are
a novel gripper tool and strategies for grasping and placing
the meat based on point clouds from the vision system.

2.3 Numeric Optimization of Robotic Systems

Numeric optimization has been applied to several robotic
problems to determine stable solutions based on real world
trials [2, 6, 15, 36]. However, limited work has addressed
simulation-based optimization of robotic solutions, where

the systems are tested in simulation rather than the real
world. The advantage of simulation-based optimization
is that the number of real world trials can be heavily
reduced. Besides speeding up the integration process, this
also reduces the chance that real products are damaged
during the test phase. When handling meat products, this is
especially useful since the meat products have to be changed
often to avoid contamination and health hazards. Thus
testing in simulation can make the test phase substantially
cheaper. Furthermore, it is often easier to set-up experiments
and adjust various hardware settings in simulation compared
to doing it in the real world, as we demonstrated in [18].

Buch et al. [4] proposed to use simulation-based
optimization to determine robotic action parameters for
executing a peg-in-hole operation. In their work, they
only optimize 2 parameters. Thus they are able to use
brute-force like methods to determine a good parameter
set. Bodenhagen et al. [3] also rely on simulation-based
optimization to tune their action for doing peg-in-hole and
laying down operations with deformable objects. Their
solutions again rely on only 2 and 3 parameters, and thus
they are able to use brute-force like techniques. In our work,
we rely on more parameters to define the solutions and thus
we focus on optimization techniques that can deal with this
in a computationally tractable manner.

Wolniakowski et al. [39] focus on optimizing gripper
design in simulation. To achieve this gradient descent based
methods are used to determine 11 parameters specifying the
gripper fingers. In our work, 12 parameters are optimized,
so the scope of the problems are similar. However, we focus on
using optimization based on function fitting, in particular
“RBFopt” [7], since earlier work [20] indicated this technique
is more suitable for this type of optimization problem.

One of the robotic problems that have been optimized
based on real world trials is maximizing the walking speed
of bipedal robots [6, 15]. In both approaches optimization
based on function fitting is used to determine the parameters
that result in the fastest robots. Similarly Tesch et al.
[36] optimize the speed of a snake-like robot. Again they
show optimization based on function fitting have the best
performance in terms of quickly optimizing their 7 free
parameters.

Our main contributions in the field of parameter tuning
is a new use case, where we show simulation-based
optimization is suitable for designing robot solutions for
handling deformable objects in an industrial setting.

3Method

Robotic handling of meat is a challenge as few prior
assumptions can be made in design. For example, we cannot
design towards a specific shape and size as is common in

84 J Intell Robot Syst (2019) 94:81–100

Fig. 2 Diagram of the system architecture. The upper three boxes
constitute the runtime system

contemporary robotics. Additional we do not have prior
knowledge on the object’s pose. As such the exact geometry
and the pose must be acquired during the runtime of the
system. One way to accomplish this is through 3D vision
technology.

Physically moving the object requires adaptable automa-
tion. The 6-axis robot arm is ideal for this purpose as it gives
us maximum freedom of movement. Furthermore, the robot
arm must be equipped with a gripper that is flexible enough
to handle the variation and deformation of the meat. The
gripper should also be adaptable to different types of meat
cuts. Either in runtime or after a short preparation stage.

Picking and placing are not trivial either, as the object
of interested should be placed in a specific pose. The
deformable nature of the meat pieces makes this need
even more pressing. As such our system is equipped with
a sophisticated path planning system for determining an
appropriate grasp and placement action based on the vision
input.

Our system can be roughly broken down into Vision,
Gripper and Planning components. However, this alone is
not enough as all components contain parameters that must
be tuned to a given problem. A large part of the setup time
goes to this tuning process. Therefore we have developed a
Simulation framework, which can handle a huge chunk of
the optimization in a virtual environment.

The entire system is illustrated in two flowcharts. The
first (Fig. 2) describes the physical system. The diagram

also indicates, which parameters are tuned using simulation-
based optimization. The second flowchart (Fig. 3) indicates
how the system parameters are optimized in simulation.
The optimization happens in an iterative procedure, where
different software and hardware parameters are tested to
determine which produce the best result.

4 Vision

For the robot system to properly locate and handle the meat
pieces, it must be supplied with 3D data. By far the most
flexible way to achieve this is through vision technology.
There has been a huge surge in 3D vision applications due to
the wide availability of user friendly real-time scanners such
as the Microsoft’s Kinect and Intel’s Real-Sense. While they
are great, they have made a lot of sacrifices to reach real-
time performance on a low-cost embedded platform. This
means that the accuracy and precision of their 3D data is
subpar. For example both versions of the Kinect has an
accuracy in the near 1cm range [12].

We instead choose to go another route, by using a
similar technology as employed in the above examples, but
customized to our needs.

4.1 Structured Light Scanning

Structured light is an active 3D scanning technology that
estimates depth via stereo triangulation [11]. The basic idea
is the same as with passive stereo vision. By finding the
same points projection in a stereo image pair and knowing
the relative camera geometry, it is possible to infer the
3D position of that point. The first part is known as the
correspondence problem and it can be quite challenging.
In passive stereo non-unique and weak texture creates
uncertainty which has to be resolved with e.g. statistical
priors like spatial smoothness [35].

Instead of relying solely on material appearance, we
can project light patterns onto the scene to create artificial
texture. By building a certain structure into the projected
pattern, the correspondence can be made a lot easier.

Fig. 3 Diagram of the
simulation-based parameter
optimization. This process
describes how the control
parameters and configuration
are determined in the parameter
tuning block of Fig. 2

Optimization

Point Cloud
Simulation

Simulation of
Meat Handling

Path
Planning

Meat
Geometry

Control
Parameters

Con guration

Trajectory

Solution QualityStart Simulation

J Intell Robot Syst (2019) 94:81–100 85

Hence the name; structured light. There exist many different
encoding strategies ranging from the one-shot, speckle
patterns of the Kinect and the Real-Sense to multi-pattern
approaches such as Gray Codes [31] and Micro Phase-
shifting [13]. First we will go over our hardware setup,
afterwards we will discuss the specific structured light
method used.

Our scanner consists of three components: two high-
definition cameras and a light projector. Depth is estimated
via stereo triangulation using the pixel disparities between
the camera image pair. This is illustrated in Fig. 4.

In theory, triangulation could also be done between the
projector and a camera. However, this requires a projector
that has a very well-defined linear gamma curve. Most
consumer projectors cannot be used here. By adding a
second camera, we ease on the hardware requirement of the
projector. This is due to that the projected pattern need no

Encode

Triangulate

... ...

Fig. 4 Illustration of the encoding and triangulation flow of a
structured light scan. The first row shows the scene, the second shows
the encoded phase as per Eq. 1 and the final shows the triangulated
point cloud

longer be accurately portraited, but that it simply has to be
horizontally unique.

As mentioned, we project a series of patterns onto the
scene and acquire a series of images from both cameras.
Then the idea is to use these patterns to, as the name
suggests, encode a continuous phase across the scene.
This value can then be used to efficiently solve the
correspondence problem. Formally we consider a situation
with N projected patterns. Each pixel in each projected
pattern should conform to the following spatio-temporal
model,

Ii(x, y) = sin

(
2π

[
i

N
+ ω · x

w

])
, (1)

where i is the sequence number, ω is the spatial pattern
frequency and w is the pattern width. The first term, i

N
,

defines the temporal component of the waveform and the
second term, ω·x

w
defines the spatial component. The latter

defines a constant, unique phase for each pixel. This is true
for both the projected pattern and any image taken of it. We
can use the acquired pattern series to estimate ω·x

w
for each

pixel. Figure 4 illustrates the overall process in the method.
We refer the interested to [11] for specific implementa-

tion details.

4.2 Segmentation

Of course, a point cloud generated by structured light is
not particularly useful in itself. It must be segmented into
meaningful parts before the information can be utilized
in path planning. Specifically, we want each meat piece
as separate segments. We accomplish this via a modified
version of the region growing segmentation algorithm
available in Point Cloud Lib [32, 33]. Our version is shown
in Algorithm 1. It grows a region from a point of low
curvature and terminates at high curvature and change in
normal angle. The outermost loop of Algorithm 1 repeats
until all points in the point cloud have been exhausted.
For each iteration the point with lowest curvature pmin

is removed from S. If it has not been assigned a region
(indicated by A) a new region growth is initialized from
pmin by creating a seed list Sc and a region list Rc. An inner
loop over Sc is then initialized. Here neighboring points are
cycled over for each point in Sc referred to as pi . Each point
in the neighborhood pj is then tested whether it has been
assigned to another region. If not, the algorithm continues
to test the angle between normals of pi and pj . If it is
above a certain threshold the point is discarded. Otherwise,
it is added to region Rc and registered as being assigned
in A. Finally, the curvature of pj is tested. If it is below a
certain threshold then pj is added to Sc so the growth can
be continued from pj .

86 J Intell Robot Syst (2019) 94:81–100

Algorithm 1: Segmentation via image space region
growth.
Data:

P = organized point cloud,

N = organized point normals,

C = organized point curvature,

ct = curvature threshold,

θt = angle threshold.

Result:

R = list of segmented regions.

{w, h} ← size(P);
R ← ∅;
A ← zeros(w, h);
S ← set of all points inP ;
Sort S by ascending order of curvature;
while S �= ∅ do

pmin = (x, y) ← head ofS;
S ← S \ pmin;
if A(x, y) = 1 then

continue;
end
Sc ← {pmin};
Rc ← ∅;
while Sc �= ∅ do

pi ← head ofSc;
Sc ← Sc \ pi ;
Rc ← Rc ∪ pi ;
B ← 8-neighbors ofpi ;
for pj inB do

{xj , yj } ← pj ;
{xi, yi} ← pi ;
if A(xj , yj) = 1 then

continue;
end
a ← N(xj , yj) · N(xi, yi);
if a < cos θt then

continue;
end
Rc ← Rc ∪ pj ;
A(xj , yj) ← 1;
if c(xj , yj) < ct then

Sc ← Sc ∪ pj ;
end

end
end
R ← R ∪ Rc;

end

The main difference in our algorithm and the one
available in Point Cloud Lib [32] is that ours is tailored
specifically towards organized point clouds, meaning point
clouds that are given in a 2D grid. This is the typical output
format of e.g. the Kinect and our structured light scanner.
The main performance limiter for a generic point cloud is
the search for neighbors. This, along with various control
logic, can be greatly sped up by exploiting the grid location
of a given point. On an Intel Core i7-4610M it segments a
point cloud of size 675x540 in 100ms-150ms.

After segmenting the point cloud, we must determine
which is the next meat piece that should be handled. This
is achieved by locating the five largest point clouds and
selecting the top most point cloud of these. The process in
its entirety is shown in Fig. 5.

5 Pick and Place Operations

In this work, we focus on a fairly general pick and place
operation where multiple meat pieces are placed in a box
and have to be moved to a conveyor belt. Furthermore, the
meat should be placed stretched out such that it is ready
for post-processing. Automating this task is a challenge as
the meat is deformable and each cut varies significantly.
To solve the task, two components are required: First, a
hardware solution has to be designed to move the meat.
Secondly, a mechanical motion for lifting and placing the
meat has to be generated.

As discussed in Section 1, a 6-axis robot with a flexible
and adaptable suction based gripper tool is used to lift the
meat. The gripper attached to the robot is discussed in
Section 5.1.

Region Growth

Selection

Depth Map

Fig. 5 Flow of the segmentation and selection process of the observed
meat pieces

J Intell Robot Syst (2019) 94:81–100 87

Table 1 Control parameter
bounds used during
optimization of the placement
action

Gripper Rolling grasp Placement

d dideal w gl gr dx1, dy1, dz1 θ b dx2, dy2

Min 130mm 20mm 0 100mm 15◦ 0mm 0◦ 0 0mm

Max 170mm 50mm 1 200mm 25◦ 100mm 20◦ 2 100mm

Besides designing a hardware solution, a robotic motion
for lifting and placing the meat also has to be developed.
These motions are discussed in detail in Sections 5.2 and
5.3 respectively.

Both these motion strategies are determined based on the
vision input derived as discussed in Section 4. Furthermore
as one might expect, the parameterization of the robotic
hardware and motions contain several free parameters,
which have to be determined. In this work, these parameters
are determined using simulation-based optimization as
discussed in Sections 6 and 7. A full list of the parameters
are given in Table 1 and they are explained in detail in this
section.

5.1 The Gripper

When designing the gripper tool, one of the key challenges
is the high variation between each pick. Multiple aspects
contribute to this variation. First of all, the size, shape and
deformability of the meat pieces vary even within the same
type of meat cut. Furthermore, the placement and deformed
state also vary as each meat piece is placed differently in
the box. Besides simply being flexible enough to handle one
type of meat cut, the gripper should also be adaptable, such
that it can be adjusted to handle different cuts. The gripper
design used for addressing these challenges can be seen in
Fig. 6 and the real gripper is shown in Fig. 7.

To grasp the meat, the gripper relies on suction cups,
similar to [19]. The suction cups are flexible, so they can
adapt to the local surface variation of the meat pieces. This
is necessary to ensure that no air leaks into the vacuum
chamber which would result in the suction cup dropping the

Fig. 6 A cad model of the gripper tool

meat. However, the local surface adaptation is not enough
to deal with the larger variations that can occur across
an entire meat piece. To address this, the suction cups
are placed at the end of air pistons, which act as passive
components much like if they were replaced with one-
dimensional springs. These air pistons can be compressed a
lot more than the suction cups, and enable the tool to adapt
to larger deformation.

Besides being flexible, the gripper should also be
adaptable such that it can grasp meat cuts of different sizes.
To achieve this the distance between the suction cups, d,
can be changed to match a particular meat cut. In this work,
d is considered a control parameter which is optimized in
simulation. A deeper discussion of the gripper design is
given in [19].

5.2 The Rolling Grasp

The goal of the grasping strategy is to lift the meat robustly.
A key challenge here is that a vacuum can form between the
meat piece that is to be lifted and the piece below. If this
vacuum becomes too strong, it will result in the grasp failing
because the gripper lifts the two pieces sticking together.

To address this challenge a rolling lift was designed
where the suction cups are placed close to the edge of the
meat and lifted in a rolling motion, as illustrated in Fig. 9.
This allows air to flow under the meat which increases the

Fig. 7 The suction based gripper relies on ejectors for generating the
vacuum, and it contains 3 sensors for measuring the pressure levels at
each suction cup

88 J Intell Robot Syst (2019) 94:81–100

a b

c d

Fig. 8 Placement of the suction cups. a A PCA is applied to the
grey 3D point cloud. The red and transparent ellipsoid represents the
eigenvector and eigenvalues of the PCA. The frame is the PCA frame.
b The point cloud is projected onto the PCA frame to generate a 2D
point cloud. c The black dots show the concave hull of the 2D point
cloud that is used to represent the meat edge. The green dots represent
the initial suction cup placement aligned with the PCA frame. d The
final suction cup placement is determined by minimize a regret score

chance that the meat is separated from the piece below. The
benefit of using this fairly complex grasp strategy over a
simpler approach is demonstrated in [19].

The grasp is generated in two stages: First, an
acceptable suction cup placement is determined based on
the segmented point cloud of the meat piece, discussed
in Section 4. This process is illustrated in Fig. 8. Then a
robotic trajectory is defined to move the suction cups to
the determined positions and lift the meat piece in a rolling
motion. This motion is illustrated in Fig. 9.

In order to place the suction cups close to the edge, the
edge of the meat has to be determined. To achieve this, a
PCA of the segmented point cloud is conducted (Fig. 8a).
Then the point cloud is projected onto the x,y-plane of the
PCA frame (Fig. 8b). Finally, the edge can be determined as
a concave hull of the projected 2D points (Fig. 8c). This is
achieved using the concave hull algorithm from PCL [32].
After the edge is determined, it is re-sampled to a resolution
of 10mm to have a uniformly sampled edge model.

The next step is to determine the placement of the suction
cups based on the edge model. This placement has to
satisfy three conditions. First, the suction cups should be
placed within the meat. Secondly, the suction cups should
be placed close to the edge. Lastly, a large part of the meat
edge should be close to the suction cups. To determine
a placement that satisfies these conditions, we pose the
problem as a minimization problem where a regret score
is minimized. The regret score, R, captures how well the
placement satisfies the conditions and it consists of two
parts Rcups and Rmeat. Rcups ensures that the suction cups
are placed close to the edge while still being inside the meat.
Rmeat ensures that a large part of the meat edge is close to

the suction cups. For the particular case where three oval
suction cups are placed on a rectangular meat piece: Rcups

favors that the suction cups are placed close to the long edge
of the meat, while Rmeat favors that the suction cups are
placed close to the corners of the meat piece.

To control how close the suction cups and the meat
edge should be, the control parameter dideal is introduced.
dideal represents the ideal distance between the suction cups
and the meat edge and it should be determined through
simulation-based optimization. The regret score and the two
subcomponents are given in Eqs. 2, 3 and 4.

Rcups =

⎧⎪⎪⎨
⎪⎪⎩

1
N

∑N
i=1(min(‖si − P‖) − dideal)

2,

all si are inside the meat

1.0, otherwise

(2)

Rmeat =

⎧⎪⎪⎨
⎪⎪⎩

1
M

∑M
j=1

√|min(‖pj − S‖) − dideal|,
all pj are outside the suction cups

0, otherwise

(3)

R = w · Rcups + (1 − w) · R4
meat (4)

where si is a point on the suction cups. Each suction cup
contains 16 points placed on the periphery, as illustrated by
green dots in Fig. 8c and d. P is the meat edge. To determine
Rcups the smallest distances from the suction cup points to
the meat edge are squared, to favor that all the points on the
suction cups are close to the edge.

pj is a point on the meat edge. S is the suction cup edges.
To determine Rmeat, the square root of the smallest distances
from points on the meat edge to the suction cups are used.
This is done to ensure outliers do not dominate the score
since some edge points will be far away from the suction
cups. This can be seen in Fig. 8d, where there are many
points on the meat edge (black dots) that are far away from
the suction cups. This way the score favors many inliers,
over being close to every point.

Finally, the regret score is determined based on a tradeoff,
w, between the two subcomponents. This tradeoff is a
control parameter which should be optimized in simulation.

To determine a good suction cup placement based on the
regret score, the minimization algorithm coordinate descent
[26] is used. This algorithm moves the suction cups around
in the 2D-plane, to find the placement with the lowest regret.

After the suction cup placement is determined, the next
step is to determine the actual robot motion. The purpose
of this motion is to lift the meat while avoiding a vacuum
forming below it. This is achieved by lifting the meat in a
rolling motion, such that air can flow in and separate the
meat from the surface below. The motion is produced by

J Intell Robot Syst (2019) 94:81–100 89

the robot moving through three frames, which is illustrated
in Fig. 9. The first frame is the grasp frame, GF , and it
describes where the suction cups should be placed to grasp
the meat. After the robot reaches the grasp frame the suction
cups are activated to initiate the lift. Then the robot moves
to the via frame, V F , which ensures the meat is lifted in
a rolling motion. Lastly, the robot moves to the lift frame,
LF , which ensures the meat is lifted well above the box.

The three frames are determined based on two control
parameters named gr and gl, which should be optimized
in simulation. Both gr and gl are illustrated in Fig. 9.
The grasp frame is determined by reprojecting the optimal
suction cup placement back into the 3D-world. The via
frame is determined by rotating the grasp frame around the
y-axis of the frame, by an angle specified by gr . Lastly, the
lift frame is determined by translating the grasp frame in the
z-direction by a distance specified by gl.

5.3 The Placement Operation

The goal of the placement strategy is to place the meat, such
that it can be wrapped in folio by a wrapping station. To
achieve this, the meat should be placed stretched out on the
conveyor belt with a flat front facing the wrapping station,
as illustrated in Fig. 10. This operation is fairly specific, but
the placement criteria itself is common in the meat sector.
E.g. it is a requirement if the meat is to be placed in boxes
and for various cutting operations.

To enable the robot to place the meat in this manner,
the placement strategy is designed to stretch the meat as it

a b

c d

e f

Fig. 9 Rolling lift - planning and simulation. a, b show how the tool
is aligned with the grasp frame after the grasp frame is mapped to the
3D world. c, d, e, f illustrate the rolling motion that is used to lift the
meat. The via frame, V F , and the lift frame, LF , are used to define
the motion as indicated

Fig. 10 Human meat placement. The meat is placed on the conveyor
belt with a flat front facing the wrapping station

collides with the conveyor belt. This stretching is achieved
by moving the gripper through two frames as it moves
towards the final position over the conveyor belt. As the tool
reaches these frames, the meat collides with the conveyor
belt which stretches it. If the frames are picked reasonably,
the meat is more likely to be placed in the desired fashion.
When the gripper reaches the final position, the suction
cups release the meat and the robot moves away. The entire
placement strategy is illustrated in Fig. 11, and especially
11c shows how the collision with the conveyor belt can
stretch the meat.

The three frames that define the robotic motion are
named placement frame, PF , first approach frame, AF1,
and second approach frame AF2. The placement frame
specifies where the suction cups should be placed when the
meat is released.

At the end of the rolling grasp (Fig. 9f) it can be seen that
a large part of the meat hangs down to the left and at the back
of the suction cups. To ensure this is stretched out the first
approach frame was introduced. The height of the frame
is chosen, such that the corner of the meat to the left and
at the back roughly touch the conveyor belt. Furthermore,
the frame is moved slightly to the left and further back to
ensure the meat is stretched as the robot moves towards the
placement frame.

Initial trials using only the first approach frame and the
placement frame resulted in the meat being twisted during
the placement. The result was similar to the placement
shown in Fig. 11c. This twist was corrected by introducing
the second approach frame. This frame ensures the meat is
dragged a bit too far, such that when it moves back to the
placement frame the twist will be reduced as illustrated in
Fig. 11d.

Both of the approach frames are dependent on several
control parameters, which should be optimized in simula-
tion to ensure a robust placement operation. These param-
eters are dx1, dy1, dz1, dx2, dz2, θ and b. All parameters

90 J Intell Robot Syst (2019) 94:81–100

a

b c

d e

Fig. 11 Placement Action. a illustrates the 2D placement of the
suction cups used during the grasp. The distances xmin, ymin and ymax

is used to determine the placement action. b shows the tool moving to
the first approach frame, AF1, and c shows it moving to the second
approach frame, AF2. d shows the tool as it reaches the placement
frame, PF , and finally in e the vacuum is turned off and the robot is
moved away

except b represent different offsets to the translation and
rotations of the approach frames. b specify how much the
meat hanging down at the edges of the suction cups should
be considered in the translation of the first approach frame.

Mathematically the first approach frame is defined as
the placement frame translated by (xAF1, yAF1, zAF1) and
rotated around the z-axis by θAF1, these values are given in
Eqs. 5, 6, 7 and 8.

xAF1 = −(xmin · b + dx1) (5)

zAF1 = xmin · b + dz1 (6)

yAF1 =
{ −(ymin · b + dy1), ymin > ymax

ymax · b + dy1, otherwise
(7)

θAF1 =
{ −θ, ymin > ymax

θ, otherwise
(8)

where xmin, ymin and ymax are distances between the
suction cups and the edge of the meat. These distances are

illustrated in Fig. 11a, and they are used to ensure that the
stretching of the meat is dependent on how much meat is
hanging down at the edges of the suction cups.

The zAF1 translation ensures that the meat roughly
touches the conveyor belt. The xAF1 translation ensures that
the meat hanging down to the left of the suction cups is
stretched. The yAF1 translation ensures the meat is stretched
in the y direction as well. Whether the meat should be
stretched in the positive or negative y direction depends
on where the suction cups are placed on the meat. Finally,
initial trials indicated that the meat is slightly rotated when
the y translation is introduced. Therefore the rotation θAF1

was added to reduce the other rotation.
The second approach frame, AF2, is defined as the

placement frame translated (dx2, 0, dz2). The x translation is
introduced to ensure the meat moves too far, such that it can
move back to reduce the twist of the meat (Fig. 11c). The
z translation is introduced to ensure the meat is not pushed
too hard into the conveyor belt.

6 Simulation

To optimize the robot system in simulation, the first step is
to construct a simulation framework for modeling robotic
handling of the meat pieces. A central part of this framework
is the deformation model for the meat pieces. In this work,
a mass-spring model is used.

This model consists of several particles, which motion
is constrained by various springs placed between them.
Throughout this paper the particles in the mass-spring
model is refered to as meat particles. The model is described
in detail in [17]. As discussed in [17], a spring-model
was chosen over more complex finite element models,
similarly to [27, 29]. The main reason for this is that spring-
models tend to to be less computationally expensive. This
is favorable since many simulations have to be conducted
both to evaluate the robustness of potential solutions and to
optimize the overall solution.

In the real scenario, several steps are taken. First, the
meat is dropped in a box. Secondly, a scanner generates a
segmented point cloud of the top meat piece, as discussed
in Section 4. This point cloud is used to determine a robotic
pick and place action for moving the meat, as discussed in
Section 5. Then the robot pushes the unactivated suction
cups into the meat. Next, the suction cups are activated, such
that the robot can lift the meat. Finally, the meat is placed on
the conveyor belt. All these steps require modeling several
interactions, these models are described in Sections 6.1 to
6.5.

To simulate the full process, the meat piece is first placed
above the box. It is then translated by (Mx, My, 0) and
rotated by MR around the z-axis to randomize the initial

J Intell Robot Syst (2019) 94:81–100 91

position. Then it is dropped such that it falls into the box, as
described in Section 6.1. After the meat settles, a point cloud
of the meat piece is rendered as discussed in Section 6.5.
This point cloud is used to generate the robotic pick and
place action for moving the meat to the conveyor belt.

After the action is generated, the robotic motion is
simulated. First, the suction cups are moved down to the
meat, as discussed in Section 6.2. Then the suction cups
are activated and lifted according to the grasp strategy, as
discussed in Section 6.3. Then the suction cups move the
meat to the conveyor belt where it is placed, again based
on the model described in Section 6.2. After it is placed
the suction cups are lifted, and then the simulation ends.
Images from the simulation can be seen in Figs. 9 and 11.
Throughout the simulation, the motion of the suction cups
is determined based on a model described in Section 6.4.

6.1 Initial Box Constraint

The purpose of this constraint is to model the interaction
between the meat piece and the box that the meat arrives
in. This constraint should also capture that there might be
several meat pieces below the top piece.

To model the uneven surface of a box full of meat a
thin plate spline (TPS) [8] is used. This spline guarantees
a smooth surface, and yet it can be highly randomized to
capture many different initial conditions. The initial box
surface, with a meat piece laying on it, is illustrated in
Fig. 12.

The spline is defined based on 4 × 7 knot points, which
determine the shape of the surface. The knot points are
placed on a regular grid, which matches the shape of the
box with the meat pieces. The height of the knot points is
randomized, to roughly model that the meat pieces below
are placed randomly.

If a meat particle moves through the thin plate spline, it is
considered in contact with the initial box constraint. When

Fig. 12 The meat piece laying on the initial contact surface. The grey
point cloud represents the thin plate spline, and the big grey points
represent the knot points determining the shape. Furthermore, the meat
piece is transparent and the box with the meat is represented as lines,
to make the knot points of the thin plate spline fully visible

this happens, the particles motion is fixed to the point of
contact.

This constraint should capture two phenomena. The first
is that the meat can not move through the surface of the box.
The second is that a vacuum can form between two meat
pieces placed in the box.

To model both these aspects, the meat particle is fixed
to the point where it comes in contact with the surface.
To move it two conditions have to be satisfied. The first
condition is that air can flow below the meat particle. This
is modeled by requiring that at least one of the neighboring
meat particles is free of the initial box constraint. The
second condition is that the meat can not move further into
the surface. This is modeled by requiring that the meat
particle is lifted.

6.2 Planar Constraint

The purpose of this constraint is to model the interactions
between the meat piece and a planar surface. In this work,
the un-activated suction cups and the conveyor belt is
modeled with planar constraints.

The constraint has a planar surface and a 2D boundary
shape, for the suction cups the shape is an ellipse, and for
the conveyor belt it is a rectangle. In case a meat particle
comes in contact with the constraint, a contact point is added
where the particle collides with the surface. In case the
particle moves further into the surface, it is moved back to
the contact point. In case it moves away from the surface the
constraint is removed. When using the constraint to model a
suction cup, the contact point moves along the surface of the
suction cup. The constraint in action is illustrated in Fig. 13,
where it keeps the meat from falling through the conveyor
belt.

6.3 Vacuum Constraint

The purpose of this constraint is to model the interactions
between the meat and the activated suction cups.

When the suction cups are activated in the real world, the
meat is quickly attached to the suction cups. To model this

Fig. 13 A planar constraint is used to ensure the meat does not fall
through the conveyor belt

92 J Intell Robot Syst (2019) 94:81–100

in simulation, a contact volume is used to determine which
meat particles are in contact with the suction cups. This
volume is an elliptic cylinder that is formed by the surface
of the suction cup ±5mm. When a suction cup is activated,
all the meat particles within the contact volume is projected
onto the surface of the suction cup. The meat particles are
then fixed to these projected points until the suction cups are
deactivated. The constraint in action can be seen in Fig. 14,
where it constrains meat particles to the blue suction cup
surface.

6.4 Suction Cups

Besides modeling the interaction between the meat and the
suction cups, the motion of the suction cups themselves also
has to be modeled. The model should capture the linear
motion of the air pistons placed above the suction cups, and
the local adaptation of the suction cups themselves.

This is achieved by modeling a suction cup as a planar
elliptical mass placed at the end of a linear and angular
spring, as illustrated in Fig. 14. The other side of the linear
spring is attached to the gripper tool, which position is
kinematically determined based on the robotic motion. The
forces and torques affecting a suction cup are determined
based on the meat particles in contact with the suction cup.

6.5 Point Cloud Rendering

Besides modeling the mechanical interactions between the
meat piece and its surroundings, a point cloud renderer
was also introduced. This step is needed to generate input
data for the pick and place strategy, which determine the
robot motion based on a segmented point cloud of the meat.
To ensure the meat piece is segmented, a new scene only
containing the meat piece is generated and then the point
cloud is captured in this scene. The RobWork [10] point

Fig. 14 The spring based suction cup model ensures the blue surface
of the suction cup aligns with the meat during grasping. The middle
suction cup and the meat are transparent to better visualize the blue
surface of the middle suction cup

cloud renderer was used to generate the point cloud, and the
final result is illustrated in Fig. 15.

7 Optimization in Simulation

To determine an action that places the meat pieces stretched
out on a table, we propose to use simulation-based
optimization. The simulation used is discussed in Section 6.
The strategy used to place the meat is based on various
control parameters, and it is these parameters that should
be optimized. Furthermore, the use case contains many
uncertain parameters, that should be analyzed to ensure
the performance of the solution is stable. Both the control
parameters and the uncertain parameters are discussed in
Section 7.1.

In order to optimize the control parameters, it is
necessary to quantify the quality of a placement based on
the simulations. This score should favor actions that place
the meat stretched out on a table. The score for achieving
this is discussed in Section 7.2.

Finally, the process for determining a robust solution
based on numeric optimization is discussed in Section 7.3.
This process is applied to two different cases. In the first the
robot has to pick pork bellies and in the second it has to pick
pork loins.

7.1 Free Parameters and Uncertainties

Several control parameters that are crucial for generating
a stable placement action were selected for optimization.
All the parameters are listed in Table 1, the first parameter
specifies the gripper design, the next 4 specify the grasp
action and the last 7 specify the placement action. Besides
just listing the parameters the table also shows the parameter
bounds used during optimization of the entire pick and
place action. These bounds are selected based on hardware

Fig. 15 The simulation of the grey point cloud is done using RobWork
[10]. The meat piece is transparent such that the entire point cloud can
be seen. Furthermore, the point cloud is slightly translated and rotated
to model the effect of uncertainties in the vision system

J Intell Robot Syst (2019) 94:81–100 93

Table 2 Parameter bounds for
the uncertain values of the pork
belly, which is used to analyze
the robustness of the solutions

Meat cutout Vision Contact surface

M Sdef Ssize Mx, y MR Vx, y, z VR, P, Y Soffset dtpsx28

Min 3.5kg 0.9 0.95 −50mm −10◦ −10mm −3◦ 0mm 0.0

Max 5.5kg 1.1 1.05 50mm 10◦ 10mm 3◦ 200mm 1.0

limitations and to ensure that the meat pieces are placed
on the conveyor belt. All the control parameters have been
described in detail in Section 5.

Besides the control parameters, the system also contains
a lot of uncertain parameters, such as meat size and
deformability. To ensure the solution can cope with
variation in these parameters, the tested actions should
be simulated with different perturbations of the uncertain
parameters. To achieve this the first step was to determine
the most crucial uncertainties. These are listed in Table 2.
Furthermore, the bounds the parameters can occur within
should be estimated. These bounds are based on data from
the production lines at Danish Crown and the values are
given in Table 2.

The first 6 uncertain parameters are introduced to capture
the variation between the meat pieces and how they are
placed in the boxes. M is the weight of the meat piece. Sdef is
a deformability parameter (Table 3). This parameter model
the variation in the deformability of the meat pieces. In
reality, this variation occurs due to multiple factors, such as
variation in the thickness, fat content and temperature of the
meat. In the simulation, the variation is modeled by a scalar
multiplied to all the spring constants in the meat model. The
base spring constants are chosen to make the simulated meat
deform similarly to the real meat pieces, the spring model
and the constants are discussed in more detail in [17]. Ssize

is a scaling factor multiplied to the base size of the meat
piece, for the pork belly this size is 525 × 250 × 20mm
and for the pork loin it is 550 × 120 × 75mm. Mx and My

are perturbations of the meat piece in the x and y-direction
before it is dropped into the box in the simulations. MR

specify how much the meat is rotated around the z-axis
before it is dropped.

The following 6 parameters are included to model
imperfections in the camera-robot calibration and other
uncertainties introduced by the vision system. Vx , Vy and
Vz specify perturbations in the x, y and z directions of the

point cloud of the meat after it is dropped into the box. VR ,
VP and VY specify a roll, pitch and yaw perturbation to the
rotation of the point cloud.

The last uncertain parameters are included to model the
variation of the box the meat is dropped into. This variation
occurs because there can be between 0 and 8 meat pieces
below the top piece that is to be grasped. This surface
is uneven and in the simulation, it is modeled by a thin
plate spline. This spline is specified based on 29 uncertain
parameters. First Soffset specify the maximum height of
any knot point in the thin plate spline. The other 28 dtps

parameters are used to specify the height of the individual
28 knot points, while ensuring the points are never placed
below the box.

7.2 The Objective Score

To use numeric optimization, an objective score has to be
defined. This score should capture the quality of any given
set of control parameters, such that the optimal pick and
place action can be distinguished from poor actions. In
this work, the objective score is determined based on an
automated analysis of the simulations. In particular, it is
determined by analyzing each meat particle throughout the
simulation, which is discussed in Section 6.

To capture the quality of a solution the score should
address three different issues. First, it should favor actions
resulting in the meat being stretched out on the table.
Secondly, it should favor actions where the orientation of the
meat matches the desired orientation. Lastly, it should favor
actions where the internal forces in the meat are limited,
to ensure the meat is not damaged in the operation. These
issues are addressed by constructing the final objective score
from three different scores.

The first two scores ensure that the rotation and
deformation of the meat piece match the desired rotation
and deformation after it is placed on the conveyor belt. To

Table 3 Parameter bounds for
the uncertain values of the pork
loin, which is used to analyze
the robustness of the solutions

Meat cutout Vision Contact surface

M Sdef Ssize Mx, y MR Vx, y, z VR, P, Y Soffset dtpsx28

Min 2.0kg 0.9 0.9 −50mm −10◦ −10mm −3◦ 0mm 0.0

Max 3.5kg 1.1 1.1 50mm 10◦ 10mm 3◦ 200mm 1.0

94 J Intell Robot Syst (2019) 94:81–100

determine these scores, the first step is to determine the pose
of the meat piece after it is moved to the conveyor belt.
This is done by using the Kabsch algorithm [21] between
the point set representing the desired meat placement and
the point set representing the meat piece in the simulation.
This returns a pose transformation from the desired point set
to the actual point set in the simulation. The rotation from
the pose transformation is then used as the rotational error,
Erotation. This error is converted to the rotation objective
through Eq. 9.

Qrotation =
{

0 if Erotation > 30◦
1 − Erotation

30◦ otherwise
(9)

To determine the deformation objective, the desired
point set is moved onto the final point set using the
pose transformation, and then the RMS error between the
two point sets are determined. This score is used as the
deformation error, Edeformation, which is converted into an
objective score through Eq. 10.

Qdeformation =
{

0 if Edeformation > 50mm
1 − Edeformation

50mm otherwise

(10)

The last objective score is the force objective. This score
favors solutions that produce small internal forces inside
the meat pieces. This score is based on the maximal force
exerted on any meat particle throughout the simulation. The
maximal force, Fmax, is converted into an objective score
through Eq. 11.

Qforce = 6.0N

Fmax
(11)

Finally, all the objective scores are combined into one
score, Q, using the geometric mean as shown in Eq. 12. The
geometric mean was chosen since it favors solutions where
all the objective scores are high. Furthermore, the partial
objective scores are all designed to be between 0 and 1, and
thus the combined score will also be in this interval. For
more detail, on the objective scores, we refer to [17].

Q = 3
√

Qrotation · Qdeformation · Qforce (12)

7.3 Numeric Optimization

In bounded global numeric optimization, the idea is to
determine the parameter set resulting in the highest function
evaluation for a multi-dimensional function. This can be
expressed by Eq. 13.

xopt = argmax
x∈Rn|xmin�x�xmax

f (x) (13)

In this work, x is the control parameters that define
the pick and place action and xopt define the best action.
xmin and xmax are the bounds which the control parameters

should be optimized within. f is based on the objective
score, Q, which is calculated in the simulations. To ensure f

favors solutions that are robust to the uncertain parameters,
it is determined based on multiple simulations with different
uncertain parameter perturbations according to Eq. 14.

f (x) = Q̄ − 2 · SD(Q) (14)

where Q̄ is the average objective score based on multiple
simulations. SD(Q) is the standard deviation of the
objective scores.

When computing the score, the variation in Q is achieved
by varying the uncertain parameters of the simulation
uniformly within the uncertainty bounds. Equation 14 is
based on work presented in [18]. In [18], the equation is
demonstrated to be effective at determining solutions that
work well, even when tested for different perturbations of
the uncertain parameters in simulation.

Several tools exist for solving the maximization or
optimization problem. In previous work, [20], we showed
that RBFopt is a powerful optimization algorithm for
robotic meat handling and other robotic use-cases where the
solutions should be robust to various uncertainties in the
system. Thus in this work, we use RBFopt to optimize the
parameters.

During the optimization, it is infeasible to run a
substantial amount of simulations for each parameter set.
Therefore, as verified in [20], we propose to do multiple
optimization runs where each parameter set is evaluated
based on a few simulations. Then for each optimization run,
the best parameter set are thoroughly evaluated to determine
the very best set. During the optimization, we evaluate
the parameter set in simulation based on 10 different
perturbations of the uncertain parameters. Furthermore, we
do 10 optimization runs with 100 iterations each. After
the 10 best parameter sets are determined we evaluate
them based on 1000 different perturbations of the uncertain
parameters to determine the best parameter set, which is
then used as the final solution. This optimization process is
done for both use cases, to determine case-specific solutions
for both cases.

For the pork belly case, the optimization process is
illustrated in Fig. 16. In Fig. 16a, f is plotted throughout
the iterations of the optimization runs. Here it can be seen
that the objective score increases substantially throughout
the optimization. This shows that the pick and place action
improve substantially as better and better control parameters
are tested. In Fig. 16b, the final solutions of the individual
optimization runs are compared, in order to select the very
best solution. This solution is at index 6, where f evaluated
based on 1000 simulations result in 0.892. The two graphs in
Fig. 16b represents solution qualities based on 10 and 1000
evaluations. Due to the similarity between the two graphs,
it can be seen that the objective scores based on 10 and

J Intell Robot Syst (2019) 94:81–100 95

Fig. 16 Optimization of the pork belly pick and place action. a Each
graph shows the best score achieved as the optimization algorithm
progress over the 100 iterations. The 10 different graphs represent
the 10 optimization runs. b The 10 resulting optimal solutions are
evaluated 1000 times to determine the very best with a more extensive
evaluation. The dashed orange line shows the scores of the optimized
parameters based on 10 evaluations and the blue line shows the scores
of the same parameters based on 1000 evaluations

1000 evaluations are correlated. However, picking a solution
based on 1000 evaluations changes the best pick from
solution 5 to solution 6, so the final evaluation improves the
choice slightly.

The optimization process for the pork loin case is
illustrated in Fig. 17. This case appears easier since the
objective scores during optimization converge more quickly.
The best solution is at index 9, where the objective
score evaluated based on 1000 simulations result in 0.864.
Furthermore, the performance of the optimized parameter
sets is more similar compared to the pork belly case. Again
the best solution changes from solution 7 to 9 when 1000
simulations are used, so again the final evaluation improves
the choice slightly.

The optimal parameter sets for the two cases are shown
in Table 4.

Fig. 17 Optimization of the pork loin pick and place action. The
graphs are similar to Fig. 16

8 Real World Evaluation

In this section, the real world evaluation of the robot
solutions proposed in this paper is discussed. First, we
discuss how the grasp strategy was fine-tuned and evaluated
on a physical prototype at a Danish slaughterhouse. Then
we discuss the evaluation of the placement strategy, which
was optimized in simulation. The optimized solutions are
evaluated for pork bellies and pork loins.

During the evaluation, we also measured the timing of
the different steps. Generating the image pairs with different
projected phases took 4 seconds. The algorithm converting
the images into a point cloud, segmenting the meat surface
and generating a robot trajectory took 4.5 seconds. The
robot motion itself varied from 10-11 seconds.

8.1 Grasping Different Pork Cuts

The first part of the experiments was done to determine
a reliable grasp strategy for the physical prototype. This
was difficult to optimize in simulation due to many subtle
effects playing a role in the success of each grasp. To capture

96 J Intell Robot Syst (2019) 94:81–100

Table 4 Control parameters used during real world trials. Pork belly and Pork loin refer to the optimal parameter sets for the two cases

Gripper Rolling grasp Placement

d dideal w gl gr dx1 dy1 dz1 θ b dx2 dy2

Pork belly 170mm 22.7mm 0.78 199mm 16.5◦ 9.6mm 0.3mm 65.9mm 0.2◦ 1.33 14.4mm 0.3mm

Pork loin 170mm 42.7mm 0.99 102mm 15.3◦ .5mm 0.7mm 100.0mm 0.0◦ 1.28 15.6mm 1.8mm

Default 130mm 0mm 0.5 150mm 20◦ 0mm 0mm 0mm 0◦ 0 0mm 0mm

all these effects in simulation would be computationally
intractable.

During the real world trials of the grasp strategy, seven
different cuts of pork were grasped. These are all shown
in Fig. 18, the backs and loins are thicker than the bellies
and therefore more rigid. The bellies are wider and thinner
and therefore tend to be quite flexible. The heavy bellies are
overall larger than the narrow bellies. The undercut bellies
tend to be the least rigid since some of the meat structure on
the meat side is removed.

During the grasps, several types of failures occurred, to
better analyze the solutions we have split the grasp results
into 4 categories. These categories are 3 different failure
types and success, S. All the categories are illustrated in
Fig. 19. The first failure type is failure before the lift, FBL.
This refers to failures where the gripper tool is unable to
establish vacuum before lifting the meat. The second failure
type is failure after the lift, FAL. This refers to the suction
cups losing vacuum after the meat is lifted and separated

from the piece below. The last failure type is failure due to
multiple lifts, FML. This refers to failures where two meat
pieces or a meat piece and the box stick together. This can
cause the gripper to lift both objects, which is undesirable.

After some initial trials and fine tuning of the rolling
grasp strategy, we evaluated it on all 7 cuts of pork. The
success rate and the failure causes of the grasps are shown in
Fig. 20. For most cuts between 40 and 50 trials were done,
but for pork bellies with skin (Fig. 18g) we only did 15 since
this was clearly easier than all other cases.

The results show that the undercut pork bellies are
significantly more difficult to lift than the single ribbed
bellies. This is because they contain less structure and thus
are more flexible. During the lift, this extra flexibility makes
it more likely that the meat deforms at the suction cups and
allow air to flow in.

It can also be seen that it is only undercut bellies that
fail due to the gripper lifting multiple objects. This is again
due to the lack of meat structure which makes it more likely

a b c d

e f g

Fig. 18 The pork cuts tested during grasp evaluation. a pork loin, b pork back, c single ribbed narrow belly, d undercut narrow belly, e single
ribbed heavy belly, f undercut heavy belly, g single ribbed narrow belly with skin

J Intell Robot Syst (2019) 94:81–100 97

Fig. 19 Failure and success categories. FBL) the green circle
highlights the vacuum gauges which show vacuum is never
established. The reason for this is the large bulges highlighted by the
red circle. FAL) the lift starts well, but vacuum is lost at the vacuum
gauge highlighted by the red circle. FML) the box is lifted with the
meat. S) a successful lift of the pork loin

that a vacuum is formed between two meat pieces such that
they stick together. Besides the single ribbed pork bellies
the system also handles pork backs well, and as seen from
the failure types pork backs are never dropped during the
lift. This is because this cut is thicker and more rigid, thus
the meat is less prone to deform and allow air to flow into
the suction cups. However, pork backs are also more narrow
and thus it is more likely that the suction cups are slightly
misplaced before the grasp. The system also handles pork
loins well and since they deform even less than the pork
backs, the suction cups almost always create and maintain a
stable vacuum.

After the grasp strategy was tested, the next step was
to optimize the entire pick and place action in simulation.
Since pork bellies are the most common cut at the “Danish
Crown” slaughterhouse we decided one of the test cases
should be a single ribbed heavy belly (Fig. 18e). The
reason for picking this particular belly cut is that the

Fig. 20 Success and failure rates of the grasp strategy. a, b, c, d, e, f
and g refers to the cuts listed in Fig. 18. S is successful grasp, FBL is
failure before lift, FAL is failure after lift and FML is failure due to
lifting multiple pieces

vacuum gripper is more likely to work on single ribbed cuts.
Furthermore, since it is wider it is more difficult to control
during the placement which makes it more interesting from
a scientific perspective.

Besides the pork belly we also picked the pork loins as a
test case, the reason for this is that the loins are the cut that
differs most from the bellies. Thus this is the best cut for
illustrating the versatility of the system.

8.2 Placement Quality

After the rolling grasp strategy was fine-tuned and tested
in real world trials (see Section 8.1) the next step was
to optimize the parameters relevant for the placement in
simulation. This was done as discussed in Section 7. After
the optimal parameter set was found, the next step was to
evaluate it in the real world and determine whether it leads
to better performance. We evaluated the default parameter
set and the optimized pork belly parameter set from Table 4
for picking and placing pork bellies in the real world.

We evaluate the quality of each strategy via running a
series of trail grasps. We allow the robot to pick the meat and
place it as intended on a table. Then we acquire an image of
the meat which we can use to quantify the results. The idea
is that the ideal pose should be the meat lying completely
flat without any folds on the delivery table. This means that
the meat’s visible surface will be maximised. So by taking
an image of the meat in it’s delivered pose and quantifying
it’s surface area, we can quantity the quality of delivery.

After the robot has transported the meat, we take a photo.
We also ensure that a calibration artificat (checkerboard) is
present near the meat. By using the artifact we can deduce
the meat’s physical size from its image space size as well
as its physical location. Figure 21 shows an example of one
such photography.

We have this experiment for pork belly cutouts and
Fig. 22 shows the resulting distribution of the meat’s visible
surface area after delivery for two strategies: unoptimized
and optimized via the previosly described simulation
framework. The optimized strategy shows a consistenly
higher mean of surface area compared to the unoptimized
strategy. The mean being 151cm2 higher. We can conclude

Fig. 21 Example of the image data collected for our analysis

98 J Intell Robot Syst (2019) 94:81–100

Fig. 22 Distribution of meat area after delivery for the two strategies

that optimized strategy is better at maximising the visible
area and thus at placing the meat in an optimal flat
pose. Qualitative inspection supports this conclusion as the
one side of the pork belly is consistently folded for the
unoptimized strategy. Figure 23 shows an example of this

Fig. 23 Examples of pork belly pose after delivery. Unoptimized
grasping consistently folds the meat, whereas the optimized strategy
delivers a consistently flat pose

Fig. 24 Top shows a bad placement. Bottom shows a satisfactory pose

along with a succesful example from the optimized strategy.
As such we can see a clear improvement in quality by
employing parameters obtained from the simulation-based
optimization.

As shown by the results in Fig. 20, the system is fairly
generic and capable of grasping many variations in cutout
shape and size. To illustrate that the placement strategy
is also generic, we tested it for the pork loins as well.
This was again done by optimizing the placement strategy
in simulation and then testing the solution in real world
trials. The optimized parameter set is listed as Pork loin in
Table 4. Using this parameter set, we achieved a satisfactory
placement for approximately 98% of the pick and place
operations. A failure and success case is shown in Fig. 24.

9 Conclusion and FutureWork

In this work, we have presented a generic solution for doing
pick and place operations with meat pieces. Furthermore,
we have presented a simulation-based optimization proce-
dure for tuning the generic solution to specific use cases.
Finally, the resulting solutions have been evaluated in the
real world to validate the approach.

To enable the robot action, the first step was to
design a vision system for detecting the meat. The vision
system developed for this work is able to generate precise
point clouds of the 7 pork cuts tested. Furthermore, a
segmentation algorithm was designed, which is able to
segment the top surface of all 7 pork cuts.

To move the meat a robot and a suction based gripper
tool was used. The robot motion for moving the meat is
based on the segmented point cloud from the vision system.
Furthermore, it is based on a rolling lift which allows air
to flow below the meat piece to avoid it sticking to the
surface below. The placement strategy is designed as a
simple draping like motion to place the meat piece stretched
out on a table.

J Intell Robot Syst (2019) 94:81–100 99

The entire pick and place action was optimized in
simulation to determine the most robust action for placing
the meat flat on a table. The resulting solution was tested
in the real world. This solution was compared to a non-
optimized solution and it is shown that the optimized
solution improves the performance by stretching the meat
more in the real world as well.

To show the generality of the entire approach, we also
optimized it for moving pork loins. For this case, we
achieved a success rate of 98% for placing the pork loins
nicely on a table.

In future work, we intend to extend the optimization
framework to model more grippers and manipulation tools.
This would enable the framework to optimize solutions
for a much broader range of problems within the food
sector. Furthermore, if new gripper tools are able to handle
sacks or cloth, it would be possible to evaluate the system
in substantially different domains and show the broad
applicability of the overall approach.

The vision solution used in this work is already fairly
generic. However, for it to work optimally it requires static
background lighting, which cannot always be garuanteed.
A possible solution to this problem would be the light
concentration technique of [14], which vastly increases
the SNR of the projected pattern thus making the noise
from the background illumination irrelevant. Another
feasible solution would be to increase acquisition speed
via better hardware synchronization. It should be possible
to each speeds of 10-20 point clouds pr. second [38].
Such speed would make most background lighting appear
approximately constant.

Even though there are some limitations to the presented
system, the system and the individual technologies can still
help speed up the design and integration of automation
systems for handling meat pieces. This is especially
beneficial when automating small batch production, where
the design and integration cost is a relatively large part of
the overall production cost.

Acknowledgments The financial support from the The Danish
Innovation Foundation through the strategic platform “MADE-
Platform for Future Production” and from the EU project ReconCell
(FP7-ICT-680431) is gratefully acknowledged.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

1. Balaguer, B., Carpin, S.: Combining imitation and reinforcement
learning to fold deformable planar objects. In: IROS, pp. 1405–
1412. IEEE. http://dblp.uni-trier.de/db/conf/iros/iros2011.html#
BalaguerC11 (2011)

2. Berkenkamp, F., Krause, A., Schoellig, A.P.: Bayesian optimiza-
tion with safety constraints: safe and automatic parameter tuning
in robotics. arXiv:1602.04450 (2016)

3. Bodenhagen, L., Fugl, A.R., Jordt, A., Willatzen, M., Andersen,
K.A., Olsen, M.M., Koch, R., Petersen, H.G., Krüger, N.: An
adaptable robot vision system performing manipulation actions
with flexible objects. IEEE Trans. Autom. Sci. Eng. 11(3), 749–
765 (2014)

4. Buch, J.P., Laursen, J.S., Sørensen, L.C., Ellekilde, L.P., Kraft, D.,
Schultz, U.P., Petersen, H.G.: Applying simulation and a domain-
specific language for an adaptive action library. In: International
Conference on Simulation, Modeling, and Programming for
Autonomous Robots, pp. 86–97. Springer (2014)

5. Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-Taixé, L., Cremers,
D., Van Gool, L.: One-shot video object segmentation. In:
Computer Vision and Pattern Recognition (CVPR) (2017)

6. Calandra, R., Seyfarth, A., Peters, J., Deisenroth, M.P.: Bayesian
optimization for learning gaits under uncertainty. Ann. Math.
Artif. Intell. 76(1-2), 5–23 (2016)

7. Costa, A., Nannicini, G.: Rbfopt: an open-source library for black-
box optimization with costly function evaluations. Optimization
Online (4538) (2014)

8. Eberly, D.: Thin plate splines. Geometric Tools Inc 2002, 116 (2002)
9. Eirı́ksson, E.R., Wilm, J., Pedersen, D.B., Aanæs, H.: Precision

and accuracy parameters in structured light 3-d scanning.
International Archives of the Photogrammetry, Remote Sensing &
Spatial Information Sciences 40 (2015)

10. Ellekilde, L.P., Jorgensen, J.A.: Robwork: A flexible toolbox
for robotics research and education. In: 2010 41st International
Symposium on and 2010 6th German Conference on Robotics of
Robotics (ISR), (ROBOTIK), pp. 1–7. VDE (2010)

11. Geng, J.: Structured-light 3d surface imaging: a tutorial. Adv. Opt.
Photon. 3(2), 128–160 (2011)

12. Gonzalez-Jorge, H., Rodrı́guez-Gonzálvez, P., Martı́nez-Sánchez,
J., González-Aguilera, D., Arias, P., Gesto, M., Dı́az-Vilariño, L.:
Metrological comparison between kinect i and kinect ii sensors.
Measurement 70, 21–26 (2015)

13. Gupta, M., Nayar, S.K.: Micro phase shifting. Proc. IEEE CVPR,
pp. 813–820 (2012)

14. Gupta, M., Yin, Q., Nayar, S.K.: Structured light in sunlight. In:
The IEEE International Conference on Computer Vision (ICCV)
(2013)

15. Hemker, T., Stelzer, M., von Stryk, O., Sakamoto, H.: Efficient
walking speed optimization of a humanoid robot. Int. J. Robot.
Res. 28(2), 303–314 (2009)

16. Jensen, S., Wilm, J., Aanæs, c.H.: An error analysis of structured
light scanning of biological tissue, pp. 135–145 Springer (2017)

17. Jørgensen, T.B., Holm, P.H.S., Petersen, H.G., Krüger, N.: Intel-
ligent Robotics and Applications: 8th International Conference,
ICIRA 2015, Portsmouth, UK, August 24-27, 2015. Springer
International Publishing, Cham (2015)

18. Jørgensen, T.B., Debrabant, K., Krüger, N.: Robust optimization
of robotic pick and place operations for deformable objects
through simulation. In: 2016 IEEE International Conference on
Robotics and Automation (ICRA), pp. 3863–3870 (2016)

19. Jørgensen, T.B., Pedersen, M.M., Hansen, N.W., Hansen, B.R.,
Kruger, N.: A flexible suction based grasp tool and associated
grasp strategies for handling meat. International Conference on
Mechatronics and Robotics Engineering accepted (2017)

20. Jørgensen, T.B., Wolniakowski, A., Petersen, H.G., Debrabant,
K., Kruger, N.: Robust optimization with applications to design
of context specific robot solutions. Robotics and Computer
Integrated Manufacturing Submitted (2017)

21. Kabsch, W.: A solution for the best rotation to relate two sets
of vectors. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor.
Gen. Crystallogr. 32(5), 922–923 (1976)

http://dblp.uni-trier.de/db/conf/iros/iros2011.html#BalaguerC11
http://dblp.uni-trier.de/db/conf/iros/iros2011.html#BalaguerC11
http://arxiv.org/abs/1602.04450

100 J Intell Robot Syst (2019) 94:81–100

22. Koh, Y.J., Kim, C.S.: Primary object segmentation in videos based
on region augmentation and reduction. http://openaccess.thecvf.
com/content cvpr 2017/papers/Koh Primary Object Segmentation
CVPR 2017 paper.pdf (2017)

23. Kruse, D., Radke, R.J., Wen, J.T.: Human-robot collaborative
handling of highly deformable materials. In: American Control
Conference (ACC), 2017, pp. 1511–1516. IEEE (2017)

24. Li, Y., Wang, Y., Case, M., Chang, S.F., Allen, P.K.: Real-
time pose estimation of deformable objects using a volumetric
approach. In: 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2014), pp. 1046–1052.
IEEE (2014)

25. Long, P., Khalil, W., Martinet, P.: Robotic deformable object
cutting: from simulation to experimental validation (2014)

26. Loshchilov, I., Schoenauer, M., Sebag, M.: Adaptive coordinate
descent (2011)

27. Mesit, J., Guha, R., Chaudhry, S.: 3d soft body simulation using
mass-spring system with internal pressure force and simplified
implicit integration. J. Comput. 2(8), 34–43 (2007)

28. Misimi, E., Øye, E.R., Eilertsen, A., Mathiassen, J.R., AAsebø,
O.B., Gjerstad, T., Buljo, J., Skotheim, Ø.: Gribbot–robotic 3d
vision-guided harvesting of chicken fillets. Comput. Electron.
Agric. 121, 84–100 (2016)

29. Nabil, E., Belhassen-Chedli, B., Grigore, G.: Soft material mode-
ling for robotic task formulation and control in the muscle separa-
tion process. Robot. Comput. Integr. Manuf. 32, 37–53 (2015)

30. Pont-Tuset, J., Perazzi, F., Caelles, S., Arbeláez, P., Sorkine-
Hornung, A., Van Gool, L.: The 2017 davis challenge on video
object segmentation. arXiv:1704.00675 (2017)

31. Posdamer, J., Altschuler, M.: Surface measurement by space-
encoded projected beam systems. Comput. Graphics Image
Process. 18, 1–17 (1982). https://doi.org/10.1016/0146-664X(82)
90096-X

32. Rusu, R.B., Cousins, S.: 3D is here: Point Cloud Library (PCL).
In: IEEE International Conference on Robotics and Automation
(ICRA). Shanghai, China (2011)

33. Rusu, R.B., Cousins, S.: Region growing segmentation. http://poin
tclouds.org/documentation/tutorials/region growing segmentation.
php (2017)

34. Schulman, J., Lee, A., Ho, J., Abbeel, P.: Tracking deformable
objects with point clouds. In: 2013 IEEE International Conference
on Robotics and Automation (ICRA), pp. 1130–1137. IEEE
(2013)

35. Tappen, M.F., Freeman, W.T.: Comparison of graph cuts with
belief propagation for stereo, using identical mrf parameters. In:
Null, p. 900. IEEE (2003)

36. Tesch, M., Schneider, J., Choset, H.: Using response surfaces and
expected improvement to optimize snake robot gait parameters.
In: 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 1069–1074. IEEE (2011)

37. Voigtlaender, P., Leibe, B.: Online adaptation of convolutional
neural networks for video object segmentation. In: BMVC (2017)

38. Wilm, J., Olesen, O.V., Larsen, R.: Slstudio: open-source frame-
work for real-time structured light. Proceedings of the 4th Interna-
tional Conference on Image Processing Theory, Tools and Appli-
cation (ipta 2014) p. 7002001. https://doi.org/10.1109/IPTA.2014.
7002001 (2014)

39. Wolniakowski, A., Jorgensen, J.A., Miatliuk, K., Petersen,
H.G., Kruger, N.: Task and context sensitive optimization of
gripper design using dynamic grasp simulation. In: 2015 20th
International Conference on Methods and Models in Automation
and Robotics (MMAR), pp. 29–34. IEEE (2015)

40. Zoumponos, G.T., Aspragathos, N.A.: A fuzzy strategy for the
robotic folding of fabrics with machine vision feedback. Industrial
Robot: An International Journal 37(3), 302–308 (2010)

Troels Bo Jørgensen is a PhD student at the Mærsk McKinney Møller
Institute, University of Southern Denmark. His research interest
include applied robotics, mainly in the fields of dynamic simulation,
optimization and workcell design.

Sebastian Hoppe Nesgaard Jensen is a PhD student at the
Department of Applied Mathematics and Computer Science, Technical
University of Denmark. His main field of research is applied 3D vision
which specifically includes structured light scanning, structure from
motion and segmentation.

Henrik Aanæs is associate professor in computer vision at the
Technical University of Denmark, where he, among others, heads an
effort concerned with the industrial application of 3D computer vision,
e.g. for robotics and metrology.

Niels Worsøe Hansen Senior Project Manager, Slaughterhouse Tech-
nologies, Danish Technological Institute. BSc Mechanical Engineering
from Copenhagen University College of Engineering. Main activ-
ities and responsibilities is project management, development, and
implementation of new technologies.

Norbert Krüger is a professor at the Mærsk McKinney Møller
Institute, University of Southern Denmark. He holds a M.Sc. degree
from the Ruhr-Universität Bochum, Germany and his Ph.D. degree
from the University of Bielefeld, Germany. His research covers
computer vision, cognitive systems and applied robotics.

http://openaccess.thecvf.com/content_cvpr_2017/papers/Koh_Primary_Object_Segmentation_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Koh_Primary_Object_Segmentation_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Koh_Primary_Object_Segmentation_CVPR_2017_paper.pdf
http://arxiv.org/abs/1704.00675
https://doi.org/10.1016/0146-664X(82)90096-X
https://doi.org/10.1016/0146-664X(82)90096-X
http://pointclouds.org/documentation/tutorials/region_growing_segmentation.php
http://pointclouds.org/documentation/tutorials/region_growing_segmentation.php
http://pointclouds.org/documentation/tutorials/region_growing_segmentation.php
https://doi.org/10.1109/IPTA.2014.7002001
https://doi.org/10.1109/IPTA.2014.7002001

	An Adaptive Robotic System for Doing Pick and Place Operations with Deformable Objects
	Abstract
	Introduction
	Related Work
	Vision Systems for Analysing Deformable Objects
	Robotic Solutions for Handling Meat
	Numeric Optimization of Robotic Systems

	Method
	Vision
	Structured Light Scanning
	Segmentation

	Pick and Place Operations
	The Gripper
	The Rolling Grasp
	The Placement Operation

	Simulation
	Initial Box Constraint
	Planar Constraint
	Vacuum Constraint
	Suction Cups
	Point Cloud Rendering

	Optimization in Simulation
	Free Parameters and Uncertainties
	The Objective Score
	Numeric Optimization

	Real World Evaluation
	Grasping Different Pork Cuts
	Placement Quality

	Conclusion and Future Work
	Acknowledgments
	Publisher's Note
	References

