
https://doi.org/10.1007/s10846-021-01442-x

REGULAR PAPER

Comparative Analysis of Deep Neural Networks for the Detection
and Decoding of Data Matrix Landmarks in Cluttered Indoor
Environments

Tiago Almeida1,2 · Vitor Santos1 ·Oscar Martinez Mozos2 · Bernardo Lourenço1

Received: 20 August 2020 / Accepted: 17 June 2021
© The Author(s) 2021

Abstract
Data Matrix patterns imprinted as passive visual landmarks have shown to be a valid solution for the self-localization of
Automated Guided Vehicles (AGVs) in shop floors. However, existing Data Matrix decoding applications take a long time
to detect and segment the markers in the input image. Therefore, this paper proposes a pipeline where the detector is based
on a real-time Deep Learning network and the decoder is a conventional method, i.e. the implementation in libdmtx. To do
so, several types of Deep Neural Networks (DNNs) for object detection were studied, trained, compared, and assessed. The
architectures range from region proposals (Faster R-CNN) to single-shot methods (SSD and YOLO). This study focused
on performance and processing time to select the best Deep Learning (DL) model to carry out the detection of the visual
markers. Additionally, a specific data set was created to evaluate those networks. This test set includes demanding situations,
such as high illumination gradients in the same scene and Data Matrix markers positioned in skewed planes. The proposed
approach outperformed the best known and most used Data Matrix decoder available in libraries like libdmtx.

Keywords Deep learning · Data matrix · Detection · Decoding · Localization

1 Introduction

The industrial demand and competitiveness foster the increase
of new, more sophisticated, and effective techniques in daily
industrial tasks [1, 2]. One important and valuable task for
a manufacturing facility is the automatic transportation of
components and materials [3–5].

� Tiago Almeida
tiago.almeida@oru.se

Vitor Santos
vitor@ua.pt

Oscar Martinez Mozos
oscar.mozos@oru.se

Bernardo Lourenço
bernardo.lourenco@ua.pt

1 IEETA, DEM, University of Aveiro, 3810-193
Aveiro, Portugal

2 Center for Applied Autonomous Sensor Systems
(AASS), Örebro University, 702 81 Örebro, Sweden

Transportation tasks are being performed by AGVs,
which are industrial robots that travel from point to point,
usually by following a magnetic wire or stripe on the shop
floor [6, 7]. Although this is a widely used technique, these
methods present serious disadvantages in terms of perfor-
mance and logistics such as fixed path tracks and limited
flexibility, plus the fact that the performance may decline
over time [8].

Hence, solutions based on landmarks have been proposed
to solve or improve the major drawbacks presented by
those systems; in that line, visual passive landmarks appear
as a simple but very interesting solution [9–11], and one
promising approach has been tried and exploited in the work
of Bergamin [8], as shown in Fig. 1.

The landmarks (markers) are encoded with specific infor-
mation, such as the respective world coordinates, which, once
detected, are used to compute the robot localization through
trilateration techniques. The overall technique showed very
interesting results in the localization and navigation pro-
cedures, but had a limited performance in detecting the
markers (Data Matrix) in the images from the environment.
In this work, the Data Matrix landmarks were selected to
the detriment of the other existing 1D/2D markers (barcodes

/ Published online: 11 August 2021

Journal of Intelligent & Robotic Systems (2021) 103: 13

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-021-01442-x&domain=pdf
http://orcid.org/0000-0001-9059-6175
mailto: tiago.almeida@oru.se
mailto: vitor@ua.pt
mailto: oscar.mozos@oru.se
mailto: bernardo.lourenco@ua.pt

Fig. 1 Visual landmarks encoded with Data Matrix labels to perform robot localization using trilateration and related techniques [8]

and QR-codes, respectively) since they allow to have larger
unit cells. Furthermore, they are considered a quite cheap,
flexible, and robust solution according to the problem
addressed in this work [8].

In that context, the work developed in [12] took that
challenge of locating visual encoded landmarks (Data
Matrix) in the environment using a DNN. That work proved
that DL architectures to locate Data Matrix are capable
of overcoming the barriers imposed by the traditional
techniques, namely accuracy and processing time during
the detection task. Even though the architecture presented
in that work shows a good performance in most situations,
it still presents high processing time (144ms per image
in a single Nvidia RTX2080ti GPU just for the detection
task). Therefore, in this work we try to develop a solution
that balances effectiveness with low-latency. In this way,
several different Deep Learning approaches for the marker
detection task are studied, described, and assessed. They
all have their own advantages and disadvantages, and the
objective is to select the most suitable taking into account
both accuracy and latency.

The remaining part of the paper is organized as follows.
In Section 2, we exploit and discuss several previous works
related to the one presented in this paper. In Section 3, we
present our methodology and the different DNNs deployed,
as well as each variant that they may have in the following
sections. Section 4 enumerates and describes the baselines
for the training of each network. Then, we characterize each
experiment and the respective results throughout Section 5.
Finally, in Section 6, we conclude the paper and define
future research ideas based on the current work.

2 RelatedWork

The proposed self-localization approach stands out for a
constellation of markers in the environment (a workshop).
There are several works in the literature addressing robotics
problems that make use of other techniques and landmarks.
In [13, 14], the authors used ArUco markers and denoted
many limitations in terms of the fiducial markers detection,

which is crucial in the overall application. Recently, in [15],
the authors designed a real-time solution for limited size
landmarks detection. This technique would then be used
in [16], where the authors do not present any relevant result
regarding localization, but present and describe an overall
architecture that allows to compute it. Moreover, in [17], the
authors propose an algorithm based on classical techniques
to detect ARTag markers. This system was not designed to
localize the robot according to a world frame, but it yields
the distance between the camera and the agent. Finally,
in [18], the authors compute the robot pose through the
recognition of customized circular landmarks displaced in
the ceiling.

In the problem addressed in this paper, the detection
of Data Matrix labels in wide images is a challenging
task since the labels occur at multiple scales in cluttered
and unstructured environments. The process of detecting
and decoding these targets is very time-consuming and in
some cases inaccurate for classical algorithms [19, 20],
that is why DNNs started being devised to perform the
detection stage [21]. Therefore, in this work, an important
additional characteristic for the DL architecture is included:
low-latency. This could be quite cumbersome to obtain
because there is usually a trade-off between the performance
of multi-scale objects detection and the latency of the
network [22]. There are several studies related to the
detection of this type of markers in [21, 23–25]. However,
they all present results for structured environments and in
limited situations. In [12], a Faster R-CNN architecture was
proposed to detect Data Matrix landmarks in unstructured
scenarios. This architecture is quite accurate in detecting
objects at multiple scales and outperformed by far the
traditional algorithm provided by the libdmtx Python’s
library in processing time. However, those improvements
are not sufficient because for a system operating in real-
time, this architecture is not the most suited. That is the
main reason to extend the study to several other types of
DL-based models, and investigate the real implication in a
full pipeline, i.e. including the decoding stage.

There are many types of DNNs to perform object detec-
tion, but the most well-known and used ones are region

13 Page 2 of 14 J Intell Robot Syst (2021) 103: 13

proposal networks represented, currently, by Faster R-
CNN [26] and single-shot approaches, mainly composed
of [27] and [28] — Single Shot Multibox Detector (SSD)
and You Only Look Once (YOLO), respectively. The main
differences between original single-shot methods [27, 28]
and proposal networks [26] are the accuracy in locat-
ing objects (higher for proposal networks) and the overall
processing time (lower for single-shot methods). Despite
these characteristics, each model can be customized in
two forms to influence both processing time and detection
performance: the choice of backbones (or feature extrac-
tors) [29, 30] and the application of multi-scale detection
techniques [31–34].

The function of the backbone network is to extract fea-
tures from the input image [30]. This shows its importance
in the final result since features with no semantic meaning
imply networks’ receptive fields empty of information [35].
Regarding Faster R-CNN and SSD, there are several con-
ventional backbones that are used to perform the feature
extraction task: VGG [36], ResNet [37], DenseNet [38],
MobileNet [39], SqueezeNet [40], and ShuffleNet [41] are
some of the available options. VGG was conceived in a
work that proved that deeper networks could achieve better
results than shallower networks. It is difficult to train from
scratch as the straight layers connection, which may even
cause vanishing gradient problems. After VGG, ResNet
appeared with a novel layout for convolutional layers: resid-
ual blocks with skip connections, which allow an easier
training of deeper networks. DenseNet is characterized by
a novel transmission of semantic information between lay-
ers, in which every layer’s result is passed throughout
the following layers. Finally, the smallest architectures —
MobileNet [39], SqueezeNet [40] and ShuffleNet [41] —
provide faster predictions in preference to higher accuracy.

The multiple scales detection techniques are character-
ized by neural networks design choices and training details
such as different ways of concatenating strong seman-
tic information from multiple scales and the usage of a
particular loss function that values the detection of more
difficult classes. Regarding concatenation techniques, one
of the most well-known approaches is the usage of Feature
Pyramid Networks (FPNs) [31], which upsample semantic
stronger feature maps and merge them to semantic weaker
activation maps from the downsampling pathway. SSD also
uses multi-scale feature maps but lacks semantic informa-
tion, which is crucial for small object detection. Similarly,
Feature Fused SSD [32] also adds semantic information
from deeper layers to shallower feature maps through con-
catenation or element-sum modules. The former allows
reducing the interference of a noisy background and the
latter enhances the contextual information. YOLOv3 [42]
improves also the detection of small objects by concate-
nating global features of multi-scale convolutional layers.
One step further in the multi-scale object detection problem

is the application of a Spatial Pyramid Pooling (SPP) to
YOLO [33], which also fuses multi-scale local region fea-
tures from the same convolutional layer. Finally, one train-
ing detail that can produce better results is the usage of focal
loss [34], which penalizes more the miss-classifications of
the most challenging classes.

Table 1 shows an overview of the main types of archi-
tectures useful for this work, and summarizes the main
points of the networks implemented in this study, which are
discussed in detail next.

3Methodology and Deep Networks

The motivation behind the usage of a DNN to locate
the landmarks in a full frame is that the libdmtx method
performs much slower in full images than it does in small
patches of the input image; so, the DL-based model locates
the Data Matrix label bounding-box in the input image,
and then each image patch is decoded by the libdmtx.
Accordingly, the proposal in this paper consists of the
development of the initial phase of the full pipeline, which
can be divided into two stages: the first where the Data
Matrix marker is located, and the second where the label
is actually decoded. The pipeline’s workflow is shown in
Fig. 2 with a real example.

Indeed, the first stage of the pipeline is the focal point
of this paper. In this way, throughout the document we
discuss and describe the most suited DNN to perform the
detection of the landmarks taking into consideration the
balance between accuracy and latency. Hence, this study
focuses on a comparison of several DL architectures with
different backbones and training procedures for the Data
Matrix detection task. The study starts with Faster R-
CNN model, comparing the results of the ResNet50 FPN,
ResNet50, and MobileNetV2 training, performed with the
same data augmentation techniques. Then, faster predictions
are provided by studying the influence of the usage of
different feature extractors (ResNet50 and MobileNetV2)
on SSD512. Finally, different versions of YOLO (v3 and
v4) are trained, and the application of the Spatial Pyramid
Pooling technique to the third version (YOLOv3 SPP) is
also carried out.

This work was developed under the PyTorch framework
and the code is publicly available1.

3.1 Faster R-CNN

Region proposal architectures usually provide high-quality
results with high-latency. Faster R-CNN is one example
of these type of networks and is composed of two stages:
the proposals computation after features extraction, and
the final detection through Fast R-CNN detector [43]. The

1https://github.com/tmralmeida/data-matrix-detection-benchmark

Page 3 of 14 13J Intell Robot Syst (2021) 103: 13

https://github.com/tmralmeida/data-matrix-detection-benchmark

Table 1 Summary of object
detectors and implementations
in this work

Types of detectors Methods MS detection Implementations in this work

Region Faster FPN ResNet50 FPN
Proposal R-CNN — ResNet50, MobileNetV2

Single-Shot SSD
MS FM Resnet50, MobileNetV2
FF —

YOLO MS FM, SPP YOLOv3, v3 SPP
MS FM, SPP, PANet YOLOv4

MS multi-scale, FPN feature pyramid network, FM feature maps, FF feature fused, SPP spatial pyramid
pooling

extraction of feature maps is performed by the backbone
— a common classification DNN. Then, a small network
slides over the feature maps, predicting multiple possible
boxes for each of their cells through its output — a lower-
dimensional feature. This output is fed to two 1 × 1
convolutional layers, which yield the probability and the
encoded coordinates of each proposal. Finally, the most
semantic valuable features (with higher objectness, that is
a measurement that describes an object class) pass through
an ROI pooling layer, which crop and re-scale the feature
maps into fixed size feature maps. During inference, the
non-maximum-suppression (NMS) algorithm filters out the
best-located bounding boxes. This technique is transverse to

all object detection algorithms that are described and used
in this work.

3.2 SSD

Single-shot methods, like SSD and YOLO, can process the
input faster, since the location and classification tasks are
done in a single forward fashion. SSD, similarly to Faster
R-CNN, has a conventional classification network (here
we just used ResNet50 and MobileNetV2) that produces
feature maps. Then, it skips the region proposal stage and
yields final predictions at once. To do so, some extra layers

Fig. 2 Data Matrix decoding
workflow. From top to bottom:
an input image is processed by a
deep model (DNN), which
yields the Data Matrix locations
in the image. Finally, the image
patches are decoded by the
libdmtx library. The encoded
strings depicted in this image
are arbitrary and just for
illustration purposes

13 Page 4 of 14 J Intell Robot Syst (2021) 103: 13

are attached to the backbone yielding multi-scaled feature
maps. Moreover, each of these extra layers provides a
fixed set of detection predictions using convolutional filters.
Finally, the model outputs the score for each category and
the location of the boxes that bound the targets.

3.3 YOLOv3, YOLOv3 SPP, and YOLOv4

The YOLOv3 network [42], differently from the architec-
tures presented so far, has a custom feature extractor —
DarkNet53. This is also a convolutional neural network
and, similarly to SSD, predicts three multi-scaled feature
maps. It has 106 layers and has an interesting particularity
that improves the object detection results: it concatenates
feature maps of shallower layers (with low-level features)
to the result of upsampled and deeper feature maps (FPN
approach). This provides activation maps more representa-
tive of global features of different-sized objects. Moreover,
the application of SPP implies an additional block after the
input’s downsampling, which pools and concatenates multi-
scale local region features (through max pool layers). This
enables the usage of both global and local multi-scale fea-
tures for the object detection task. Finally, the detection is
performed by applying 1 × 1 convolutional detection filters
on the three different feature maps.

On the other hand, YOLOv4 [29] is composed of a Cross
Stage Partial (CSP [44]) Darknet53 with an SPP module,
a path-aggregation network (PANet [45]), and a YOLOv3
head. CSP networks have similar basis and purposes to
a DenseNet. Therefore, this architecture enhances the
features reuse by reducing the amount of repeated gradient
information observed in a DenseNet. To do so, it divides
the base feature map, then one part of the channels passes
through a partial dense block and the remaining part
undergoes to the final partial transition layer. After the
activation maps production, the only difference between
YOLOv3 and YOLOv4 in terms of architecture’s layout is
the global features concatenation. In YOLOv4, instead of
the FPN technique, a custom PANet approach is used [46].
PANet is simply an enhanced version of FPN; after the
FPN’s block composed of a top-down pathway with lateral
connections, PANet also propagates low-level features
through a bottom-up path augmentation block. This block
allows the addition (concatenation for YOLOv4) of the
FPN resulting features with the output of those feature
maps with 3 × 3 convolutions, which yields an even better
understanding of the low-level features.

3.4 Conventional Backbones

Backbones have a key role to play in the aforementioned
type of architectures, since they are the activation maps
producers, which contain the semantic value that allows to

identify an object in the input image. Here, we describe
and explain the backbones used in Faster R-CNN and SSD
networks.

Faster R-CNN and SSD were trained with the same
ResNet50 and MobileNetV2 backbones. They differ in
both feature maps quality (in terms of semantic impor-
tance) and, subsequently, inference time. ResNet50 is a
deep convolutional neural network that provides high accu-
racy by employing residual blocks with skip connections.
These blocks propose to fit a residual mapping from the
input’s layer to the output, instead of directly trying to fit
an underlying transformation. MobileNetV2 is a shallower,
variable-width neural network, which is based on depth-
wise separable convolutions. It is not a common convolution
in which the kernel and input depths are the same, but a
combination of a depthwise and a pointwise convolutions.
In a depthwise convolution, the input and the kernel are
divided into channels and each kernel is separately applied
to each input channel. A pointwise convolution implies
the application of an 1 × 1 filter throughout the input
channels. Hence, a depthwise separable convolution is com-
posed of two stages: the depthwise convolution and a final
1 × 1 convolutional operation. Furthermore, ResNet50 FPN
was also implemented in Faster-RCNN. The only differ-
ence comparing to the original ResNet50’s layout is the
strengthening of semantic weaker feature maps by con-
catenating them to semantic stronger ones. As mentioned
before, this technique can provide a better performance
by detecting multi-scaled objects.

4 Baselines

In order to compare and evaluate precisely the networks,
they were all trained from scratch. The training and vali-
dation sets are the same as those conceived in [12], but at
a quarter of the original size of the images (1500 × 2000)
because the previous input shape did not correspond to what
was going to be used in the final system and hampered
the training of low-latency networks like SSD and YOLO.
Moreover, data augmentation techniques were performed to
increase the training input variance. In this way, the mod-
els can generalize for more situations, which means a more
robust solution.

4.1 Faster R-CNN

The first baseline, Faster R-CNN, groups together ResNet50
FPN, ResNet50, and MobileNetV2 backbones. These mod-
els were trained with one of the geometric transformations:
random crops with a final size of 480 × 640 or 960 × 1280,
or just a resize of 750 × 1000 (half of the training input
size). In addition, random brightness, random contrast and

Page 5 of 14 13J Intell Robot Syst (2021) 103: 13

horizontal flip were also applied. Further, the training was
done for 200 epochs with an AdamW optimizer and a cosine
annealing scheduler with a warm up of 100 iterations (the
learning rate scheduler is common to all baselines). The
learning rate was set to 10−3, the weight decay to 10−4, and
the batch size to 4.

4.2 SSD512

The second baseline is composed of all SSD variants —
ResNet50 and MobileNetV2. The augmentation performed
here is the same as the one presented in [27], taking into
account an input size of 512 × 512. These architectures
were trained for 300 epochs with the AdamW optimizer.
Finally, the learning rate was set to 10−3, the weight decay
to 4 × 10−5, and the batch size to 16.

4.3 YOLO

The YOLO baseline is common to YOLOv3, YOLOv3
SPP, and YOLOv4. Here, two augmentation approaches
were performed and compared: with and without mosaic
augmentation (presented in YOLOv4 [29]), which can be
seen in Fig. 3.

These YOLO approaches have in common the appli-
cation of both random horizontal and vertical flip, an
HSV color space augmentation, and input size of 672 ×
896. The usage of mosaic augmentation (upper images
in Fig. 3) allows the model to be more generic since it
learns from 4 different contexts in one single image. One
of the augmentation approaches, instead of applying mosaic

Fig. 3 Two different data augmentation methods applied during
YOLO networks training: two examples of mosaic augmented images
(upper images) and random affine transformed frames at the bottom

augmentation, runs random affine transformations (bottom
images in Fig. 3) such as image rotation ([−1.98◦, 1.98◦]),
translation (not greater than 0.05 of both image dimensions),
re-scaling (increasing or decreasing 5% of the original
image size), and image shear ([−0.641◦, 0.641◦]). These
networks were trained for 400 epochs with the SGD opti-
mizer with a learning rate of 10−3, a weight decay of 10−4,
and batch size of 4.

The two augmentation approaches provide two different
training procedures for the YOLO baseline. However, just
one of those yields the models that are evaluated on the
test set. To do so, after the hyperparameters tuning, the two
approaches are compared on the validation set. The average
precision (AP) and the average recall (AR) results of the
YOLO variants are shown in Tables 2 and 3, respectively.
There, the numerical subscripts represent the IoU threshold,
i.e. 50 means an IoU threshold of 0.50, and the letter
subscripts correspond to the scale of the objects, i.e. “S”
represents small objects (pixel area < 322), “M” medium
(pixel area ∈ [322, 962]), and “L” large (pixel area > 962).
Finally, the metric without numerical subscript means an
average over multiple IoU thresholds within [0.50, 0.95] in
steps of 0.05.

In most cases, Tables 2 and 3 show better results from
mosaic augmentation training for every model, thus, from
now on, any YOLO result that is shown in this document
was obtained through this data augmentation procedure.

4.4 Summary

To sum up, three baselines are set up, which correspond to
each type of architecture (Faster R-CNN, SSD, and YOLO).
Thus, the models of the same baseline (i.e. same type of
architecture with different combinations of backbones) have
common training procedures. The main hyperparameters
discussed in the previous sections are summarized in Table 4.

5 Experiments

This work presents a collection of deep networks for Data
Matrix detection. Since all models were tuned by using
the validation set, this could not be considered as the set
to perform the numerical comparisons and assessments.
Therefore, a test set was created similarly to the sets
conceived in [12]. This set of frames was processed only
once by each model and that is why the networks results
presented throughout this Section are unbiased and valid.
Additionally, in this Section, we also report Data Matrix
decoding results for the model that presented the best
overall trade-off between detection and processing time in
the test set.

13 Page 6 of 14 J Intell Robot Syst (2021) 103: 13

Table 2 AP results of Data
Matrix landmarks detection on
the validation set for YOLO
models with two different
augmentation approaches

Augmentation Variants AP AP50 AP75 APS APM APL

Random v3 35.0 64.2 32.5 26.5 54.5 80.0

affine v3SPP 36.4 66.5 36.6 26.7 56.6 80.0

transformation v4 37.1 63.8 40.8 27.3 58.4 90.0

v3 37.5 64.6 38.0 27.6 58.8 90.0

Mosaic v3SPP 38.3 64.0 40.0 28.0 61.7 80.0

v4 39.2 62.7 42.8 28.9 62.6 90.0

5.1 A data set of Data Matrix images

The full dataset was manually labeled in an online toolbox2

and it is composed of three different subsets: the training
set, the validation set, and the test set. The first two were
designed in [12], where the training set has 156 frames
equally distributed by two different scenarios (a lab and
a workshop), and the validation set is also divided into
two environments — a hallway (158 frames) and a
different workshop (66 frames). Therefore, both training
and validation sets were collected in different scenarios to
avoid biased results during neural networks training.

Additionally, the full test set was conceived during this
work and it has 145 frames with 895 annotations. It com-
prises three scenarios, which are different from those used
for the training and validation sets. One of them is a neat
hall with overshadowed and over-lightened landmarks in
different planes as can be seen in Fig 4. The second envi-
ronment is a classroom laboratory with various electronic
equipment arranged in an orderly manner (Fig. 5). Since
the final robotic system is expected to operate in cluttered
workshops, a third scenario was made very challenging with
multiple machinery spread out all over the place and also
with a more diversified range of materials (Fig. 6).

5.2 Detection results

The detection algorithms were evaluated in the set test
described in Section 5.1. To do so, and analogously to [12]
and Section 4.3, AP and AR were calculated. The results
obtained for AP are presented in Table 5.

A broad view of the AP results shows that among
all Faster R-CNN variants, the one with best results
is ResNet50 FPN, as expected. Regarding SSD neural
networks, the ResNet50 backbone is the most accurate one.
As far as YOLO models are concerned, although all results
were quite similar, YOLOv4 was the one that stood out most
among the others.

2http://labelbox.com

In addition to AP, Table 6 shows the AR and the averaged
processing time results throughout the test set.

The results presented in Table 6 are in line with the AP
results. The most relevant result is the 75.3% provided by
Faster R-CNN with ResNet50 FPN, but all YOLO models,
especially YOLOv4, performed well above average with the
strengthening factor of a lower processing time, yielding
results at 47.6fps.

An overview of both Tables 5 and 6 shows that shallower
backbones like MobileNetV2 struggle to achieve results
comparable to the deeper networks, but in return they are
much faster. Moreover, FPN/PANet techniques enable to
improve the detection of small objects (directly comparing
SSD and Faster R-CNN with YOLO results).

All YOLO variants provide quite interesting results,
namely in terms of recall, which is the most appealing
metric since the characteristics of the system are such that
false positives can easily be ruled out (false negatives are
easily discarded by the downstream decoding stage, but add
computational overhead). Also, it seems that the SPP and
the PANet modules (YOLOv3 SPP and YOLOv4) help to
increase both AP and AR results. Overall, YOLOv4 shows
the best trade-off between qualitative and latency results
and, therefore, it should be the solution deployed in the final
robotic system.

5.3 Qualitative detection results on the test set

Theoretical insights have shown that DL-based models
generalization is one of the most critical and important
points to consider. This is because biased models for
training/validation sets do not have the expected outcome
in real world applications. Therefore, we show some
interesting visual results/comparisons between some of the
models whose results were presented and discussed in the
previous Section.

The first visual example (Fig. 7) represents three frames
from the test set processed by the models, which obtained
the best numerical results for each baseline, i.e. ResNet50
FPN from Faster R-CNN, ResNet50 from SSD, and
YOLOv4 from YOLO. It is worth mentioning that the
confidence threshold used for the YOLO variants in this

Page 7 of 14 13J Intell Robot Syst (2021) 103: 13

http://labelbox.com

Table 3 AR results of Data
Matrix landmarks detection on
the validation set for YOLO
models with two different
augmentation approaches

Augmentation Variants AR ARS ARM ARL

Random v3 45.1 36.1 64.3 80.0

affine v3SPP 46.7 37.8 65.8 80.0

transformation v4 47.3 37.2 68.9 90.0

v3 46.3 36.7 66.8 90.0

Mosaic v3SPP 46.7 35.9 69.7 80.0

v4 47.7 36.7 71.1 90.0

Table 4 Summary of the main
training hyperparameters for
the 3 baseline DNNs

Baselines Epochs Optimizer Learning rate Weight decay Batch size

Faster R-CNN 200 AdamW 10−3 4 × 10−5 4

SSD512 300 AdamW 10−3 4 × 10−5 16

YOLO 400 SGD 10−3 10−4 4

Fig. 4 Examples of two labeled
test set images of the hall
environment: one containing
different types of lighting (left)
and the other with several
landmarks spread over different
planes in the scene (right)

Fig. 5 Two labeled test set
frames of the classroom
scenario: one with electronic
devices and landmarks in the
desks (left) and the other with
targets on shelves and walls
(right)

Fig. 6 Examples of two labeled
test set images of an
“workshop” scene with several
different objects and machinery

13 Page 8 of 14 J Intell Robot Syst (2021) 103: 13

Table 5 AP results of Data
Matrix landmarks detection on
the test set

Variants AP AP50 AP75 APS APM APL

Faster ResNet50 FPN 72.2 90.6 85.4 22.2 69.8 81.5
R-CNN ResNet50 61.8 85.5 73.0 < 1 54.8 79.4

MobileNetV2 52.2 78.3 58.3 < 1 43.2 74.3

SSD ResNet50 45.5 68.3 54.6 < 1 37.7 64.9
512 MobileNetV2 25.5 44.1 27.0 < 1 12.8 52.9

v3 59.4 85.7 70.7 43.5 70.4 77.0
YOLO v3 SPP 59.4 86.3 69.8 43.7 70.6 76.9

v4 60.6 84.6 70.4 42.7 72.9 78.7

Highest scores for each metric are highlighted

Table 6 AR and fps results of
Data Matrix landmarks
detection on the test set

Variants AR ARS ARM ARL fps

Faster ResNet50 FPN 75.3 39.6 73.0 85.1 5.4
R-CNN ResNet50 66.1 11.2 61.4 82.4 3.9

MobileNetV2 56.6 < 1 49.4 78.0 7.7

SSD ResNet50 49.0 < 1 41.9 69.1 48.3
512 MobileNetV2 27.7 < 1 15.1 56.9 67.1

v3 66.3 54.4 75.5 80.4 39.8
YOLO v3 SPP 66.8 55.0 76.0 80.8 37.1

v4 68.0 55.2 78.0 81.6 47.6

Highest scores for each metric are highlighted

Fig. 7 Visual results from the
test set, where each zoom color
has a different meaning: red is a
true positive, green corresponds
to a false negative, blue pertains
to the false positives, and yellow
highlights ineffective NMS
outcomes. Each row contains a
frame that was processed by the
best variant of each architecture.
In the first row there is an
example from the “workshop”
scenario with machinery; the
second row is an image from the
hall environment, in which the
landmarks are on different
illumination conditions; finally,
the images of the third row are
from the classroom where there
is one partial label correctly
classified

Page 9 of 14 13J Intell Robot Syst (2021) 103: 13

subsection is not the same as the one used on the test
set evaluation. In this way, the false positives are greatly
reduced, thus presenting better overall results. Therefore,
the YOLO minimum object confidence was changed from
0.001 to 0.05.

From these images, it is possible to infer that Faster R-
CNN with the ResNet50 FPN as the backbone and YOLOv4
are the most accurate models with very similar predictions.
SSD512, in the “workshop” image, faced problems inferring
labels in skewed planes and also failed a label on the hall
scenario with very poor illumination conditions.

The second example joins the results provided by the
faster variants of each architecture, i.e. MobileNetV2 from
Faster R-CNN and SSD512, and YOLOv4 from YOLO.
The results can be seen in Fig. 8, which shows a clear
example of why YOLOv4 is the best model to perform the
Data Matrix detection in this context because, besides being
qualitatively more performing than the other two models
of each baseline, it is also a fast algorithm. Furthermore,
we can also note that throughout the YOLOv4 results, the
NMS threshold might not be optimally defined since there
are several failures in the suppression of similar bounding
boxes. Therefore, in the next Section we discuss the most
suited value for this parameter, because it could be a
bottleneck of the pipeline, since the decoder spends time
trying to decode twice the same Data Matrix.

Table 7 Comparison between the proposed approach (YOLOv4 and
libdmtx) and the existing libdmtx method

Methodology YOLOv4 + libdmtx libdmtx

Number of decoded Data Matrix 458 (1970) 458

time(s) 1984.6 22252.2

The proposed methodology yields the same number of decoded
landmarks 11x faster than the existing standalone methodology, within
1970 detections

5.4 Decoding Results

Indeed, the best model to deploy is the YOLOv4 according
to the trade-off between processing time and accuracy
required by the application. In this section, we show a
comparison between the standalone methodology of libdmtx
and our hybrid proposal — YOLOv4 (detection) plus
libdmtx (decoding). In Table 7, we show the decoding
results throughout the test set of the two approaches
producing the same amount of decoded markers —
458, which represents the maximum decoded landmarks
provided by the libdmtx standalone approach.

Fig. 8 Another set of visual
results from different test set
images, where the colors have
the same meaning as before, i.e.
red is a true positive, green
corresponds to a false negative,
blue pertains to the false
negatives, and yellow zooms
ineffective NMS results. In the
first row there is an example
from the “workshop” scenario
where long distance detection is
tested; the second row is an
image from the hall
environment, with several
landmarks in different planes;
finally, the third row of images
are from the classroom where
the targets are in shelves and
walls

13 Page 10 of 14 J Intell Robot Syst (2021) 103: 13

The confidence and NMS thresholds of the deep model
also influence the effectiveness/speed trade-off of the full
pipeline. In other words, if we set a higher threshold for
the confidence of the model, the model would return much
less possible markers, and consecutively, the decoding stage
would be less requested, which turns the overall pipeline
faster; similarly, in case of a lower NMS threshold, the
number of inputs of the decoding stage would be less. It is
worth mentioning that the impact of the NMS threshold is
less than the one provided by the confidence limit since the
unique NMS’s objective is to suppress overlapped bounding
boxes. Therefore, we also studied the influence of these
factors by applying a grid search algorithm. For instance,
the results obtained for the same number of decoding
Data Matrix, presented in the Table above, correspond to
a confidence threshold of 0.003 and a NMS limit of 0.6.
This represents another advantage of DNNs on the detection
stage of the pipeline as the user may set different thresholds
according to the accuracy/processing time expectation: in
case of having more decoded markers than necessary (e.g. in
our localization problem, two decoded Data Matrix in each
time step ensure a fully operational system), the user can
increase the detections confidence and decrease the NMS
limit in order to take advantage of a faster pipeline. In fact,
the settings that allow more decoded targets, 479 decoded
markers within 13065 detections in 13105.4s, correspond to
the minimum confidence and the maximum NMS threshold
used in the grid search experiment, i.e. 0.001 and 0.95 for
the confidence and NMS thresholds, respectively.

In a nutshell, the inclusion of YOLOv4 in the detection
stage of the overall pipeline provides faster and, in most
of the settings (relying on the thresholds discussed above),
better results. Finally, both number of decoded Data Matrix
and time results presented so far are merely comparative,
since a fraction of the Data Matrix labels placed in each
scenario are arranged in such a way that it is impossible to
decode them, as can be seen from the examples depicted
in Fig. 9. In this way, both time and number of decoded
markers were equally affected as there was time spent
attempting to decode Data Matrix proposed by YOLOv4

that were undecodable. This means that the results presented
here can be considered almost a lower bound when
comparing to the real system because in this case (real
application) the markers would be placed in such a way that
are more likely to be decoded, so there would not be much
time spent in undecodable landmarks.

Finally, as the developed system needs at least two
decoded Data Matrix labels to compute the robot position-
ing [8] (more than two would allow an enhanced localiza-
tion), this number can be used as an example to exploit a
fairer (and faster) comparison between the two decoding
methods (the classical and the proposed in this document).
The average processing speed results of the proposed solu-
tion are presented in Fig. 10, taking into account that the
classical algorithm produces the same results at 0.34fps.

This result shows that, in average, the proposed method
provides decoded labels at 13.8fps when the two best scorer
predictions were decoded. This has occurred in 43% of
the test set frames. Moreover, when just one prediction of
the top-confidence outputs is non-decodable, the pipeline
yields results at 3.9fps (18% of the test set images). Finally,
when there are two undecoded targets, it outputs the two
decoded Data Matrix targets at 3.5fps (6% of the evaluated
test set). The remaining situations are unrepresentative (i.e.
scant) in the test set, considering that 27% of the test
set frames did not produce 2 decoded Data Matrix labels.
Hence, the most representative situations occur when the
two labels are decoded through the first four predictions (0
to 2 undecoded predictions) — 67% of the test set. In the
worst case scenario, the DL-based solution yields results
10x faster than the classical algorithm in average, but can
reach up to 40x speed improvement.

5.5 Summary

In this section, we started by presenting the full dataset
comprising heterogeneous subsets for the respective train-
ing, validation and test procedures. This allows us to ensure
fair results and comparisons throughout the remaining parts
of this work. Afterwards, we reported both qualitative and

Fig. 9 Two examples where the
markers are correctly detected,
but their position in the
environment will hardly allow
them to be decoded with libdmtx

Page 11 of 14 13J Intell Robot Syst (2021) 103: 13

Fig. 10 Number of undecoded
detected Data Matrix markers
until two of them are
successfully decoded, and the
respective average processing
rate for each case

numerical results for the detection of the landmarks in the
test set. In doing so, one can infer that the most promis-
ing Data Matrix detector is the YOLOv4 according to the
accuracy-latency trade-off (prime priority for this prob-
lem). Finally, considering YOLOv4 as the DNN in the
pipeline described above, we propose a final comparison
with the standalone libdmtx approach. Therewith, we found
that our proposed method, YOLOv4 combined with libdmtx,
is faster (and possibly better) than the standalone libdmtx
when selecting the appropriate hyperparameters as shown in
Section 5.4.

6 Conclusion

This work describes, assesses and compares several DNNs
when performing Data Matrix detection task. The model
that had the best performance in this work is the one whose
average precision, recall and processing speed form the best
combination. Therefore, YOLOv4 was considered the best
network to detect this type of landmarks. However, this DL-
based model only represents the detection part of the entire
decoding pipeline. Thus, the paper evaluates/compares
the decoding system (with YOLOv4 followed by the
classical decoder) with the original full-frame decoder from
libdmtx. This comparison proved that the proposed method
outperforms by far the classical algorithm in terms of
processing time.

Nevertheless, during the decoding system evaluation,
bottlenecks were found in the system, such as: trying
to decode false positives and non-decodable Data Matrix
markers. In order to deploy a very robust robotic self-
localization system, in the future, four situations should be
studied to suppress the bottlenecks mentioned, or to improve
the overall self-localization system:

– During YOLOv4 training, the objectness confidence
yielded by the model become the probability of the
prediction being decodable. This custom YOLOv4
would be more confident if the object is decodable, and

as the decoder acts from the most confident to the least
confident locations, it would decode the two best scorer
predictions more times than it does right now.

– Alternatively, the conception of a decoding DL-based
network. The bottleneck of our approach is the decoder
stage, thus a DL network that locates and decodes Data
Matrix in a single fashion, would decrease the latency of
the overall system by discarding non-decodable markers
and returning only the results of decodable labels.

– The detection model can be modified to output a warped
bounding box, instead of a regular one. This output
would be used downstream to perform a homographic
transformation of the marker image, producing a better
input to the decoding stage. There are several meth-
ods that can provide such an output, such as the
ExtremeNet [47].

– The usage of a tracking system. This solution allows to
only run the pipeline studied in this document if one
of the labels stops being tracked. Therefore, the overall
latency of the system would decrease.

Finally, as the overall contribution, this document pro-
poses a pipeline for Data Matrix decoding based on the
YOLOv4 detector, after the study of several different DL
models to perform the detection task. This method is faster
and potentially better (according to the confidence and
NMS thresholds), but still has bottlenecks resulting from the
decoder that can be improved/suppressed with the replace-
ment of the entire pipeline by a single DL-network that
locates and decodes Data Matrix, or more simply, with the
usage of a tracking system allied to a new loss function
that would value more the decodable objects, or even with
the deployment of a detection network that yields also the
homographic transformation of each bounding box.

Author Contributions

– Tiago Almeida: Coding and writing
– Vitor Santos: Writing and review
– Oscar Martinez Mozos: Review
– Bernardo Lourenço: Test set acquisition and review

13 Page 12 of 14 J Intell Robot Syst (2021) 103: 13

Funding Open access funding provided by Örebro University. This
work was partially supported by Project SeaAI-FA 02 2017 011,
Project PRODUTECH II SIF- POCI-01-0247-FEDER-024541, by the
Wallenberg AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation, and by the
Spanish Ministerio de Ciencia, Innovación y Universidades under
project RobWell (RTI2018-095599-A-C22).

Declarations

Consent to Participate The authors consent to participate in this work.

Competing Interests The authors declare that they have no conflict of
interest.

Availability of Data and Material Code at github.com/tmralmeida/
data-matrix-detection-benchmark

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Li, D., Ouyang, B., Wu, D., Wang, Y.: Artificial intelligence
empowered multi-AGVs in manufacturing systems. arXiv:1909.
03373 (2019)

2. Shi, Q., Zhang, Y.-L., Li, L., Yang, X., Li, M., Zhou, J.: Safe:
Scalable automatic feature engineering framework for industrial
tasks (2020)

3. Oyekanlu, E.A., Smith, A.C., Thomas, W.P., Mulroy, G., Hitesh,
D., Ramsey, M., Kuhn, D.J., Mcghinnis, J.D., Buonavita, S.C.,
Looper, N.A., Ng, M., Ng’oma, A., Liu, W., Mcbride, P.G.,
Shultz, M.G., Cerasi, C., Sun, D.: A review of recent advances
in automated guided vehicle technologies: Integration challenges
and research areas for 5g-based smart manufacturing applications.
IEEE Access 8, 202312–202353 (2020)

4. Bhosekar, A., Isik, T., Eksioglu, S., Gilstrap, K., Allen, R.:
Simulation-optimization of automated material handling systems
in a healthcare facility. arXiv: Optimization and Control (2020)

5. Cui, W., Wu, C., Zhang, Y., Li, B., Fu, W.: Indoor robot
localization based on multidimensional scaling. Int. J. Distrib.
Sens. Netw. 11(8), 719658 (2015)

6. Sabattini, L., Digani, V., Secchi, C., Cotena, G., Ronzoni, D.,
Foppoli, M., Oleari, F.: Technological roadmap to boost the
introduction of agvs in industrial applications. In: 2013 IEEE 9th
International Conference on Intelligent Computer Communication
and Processing (ICCP), pp. 203–208 (2013)

7. Fellan, A., Schellenberger, C., Zimmermann, M., Schotten, H.D.:
Enabling communication technologies for automated unmanned
vehicles in industry 4.0. In: 2018 International Conference

on Information and Communication Technology Convergence
(ICTC), pp. 171–176 (2018)

8. Bergamin, M.: Indoor localization using visual information
and passive landmarks. Master Thesis, Universities of Padova
and Aveiro. http://tesi.cab.unipd.it/50395/1/bergamin marco.pdf
(2015)

9. Betke, M., Gurvits, L.: Mobile robot localization using landmarks.
IEEE Trans. Robot. Autom. 13(2), 251–263 (1997)

10. Okuyama, K., Kawasaki, T., Kroumov, V.: Localization and
position correction for mobile robot using artificial visual
landmarks. In: The 2011 International Conference on Advanced
Mechatronic Systems, pp. 414–418 (2011)

11. Zhang, X., Zhu, S., Wang, Z., Li, Y.: Hybrid visual natural
landmark-based localization for indoor mobile robots. Int. J. Adv.
Robot. Syst. 15(6) (2018)

12. Almeida, T., Santos, V., Lourenço, B., Fonseca, P.: Detection
of data matrix encoded landmarks in unstructured environments
using deep learning. In: 2020 IEEE International Conference
on Autonomous Robot Systems and Competitions (ICARSC),
pp. 74–80 (2020)

13. Babinec, A., Jurišica, L., Hubinský, P., Duchoň, F.: Visual
localization of mobile robot using artificial markers. Procedia
Eng. 96, 1–9 (2014). Modelling of Mechanical and Mechatronic
Systems

14. Mutka, A., Miklic, D., Draganjac, I., Bogdan, S.: A low cost vision
based localization system using fiducial markers. IFAC Proc. Vol.
41(2), 9528–9533 (2008). 17th IFAC World Congress

15. Romero-Ramirez, F.J., Muñoz-Salinas, R., Medina-Carnicer, R.:
Speeded up detection of squared fiducial markers. Image Vis.
Comput. 76, 38–47 (2018)

16. Mantha, B., Garcia de Soto, B.: Designing a reliable fiducial
marker network for autonomous indoor robot navigation. In:
Al-Hussein, M. (ed.) Proceedings of the 36th International
Symposium on Automation and Robotics in Construction
(ISARC), pp. 74–81. International Association for Automation
and Robotics in Construction (IAARC), Banff (2019)

17. Annusewicz, A., Zwierzchowski, J.: Marker detection algorithm
for the navigation of a mobile robot. In: 2020 27th International
Conference on Mixed Design of Integrated Circuits and System
(MIXDES), pp. 223–226 (2020)

18. Zhong, X., Zhou, Y., Liu, H.: Design and recognition of artificial
landmarks for reliable indoor self-localization of mobile robots.
Int. J. Adv. Robot. Syst. 14(1), 1729881417693489 (2017)

19. Karrach, L., Pivarčiová, E.: The analyse of the various methods
for location of data matrix codes in images. In: 2018 ELEKTRO,
pp. 1–6 (2018)

20. Dai, Y., Liu, L., Song, W., Du, C., Zhao, X.: The realization of
identification method for datamatrix code. In: 2017 International
Conference on Progress in Informatics and Computing (PIC),
pp. 410–414 (2017)

21. Hansen, D.K., Nasrollahi, K., Rasmusen, C.B., Moeslund,
T.B.: Real-time barcode detection and classification using deep
learning. In: Proceedings of the 9th International Joint Conference
on Computational Intelligence - Volume 1: IJCCI, pp. 321–327.
SciTePress (2017)

22. Jiao, L., Zhang, F., Liu, F., Yang, S., Li, L., Feng, Z., Qu, R.: A
survey of deep learning-based object detection. IEEE Access 7,
128837–128868 (2019)

23. Zhang, H., Shi, G., Liu, L., Zhao, M., Liang, Z.: Detection and
identification method of medical label barcode based on deep
learning. In: 2018 Eighth International Conference on Image
Processing Theory, Tools and Applications (IPTA), pp. 1–6 (2018)

24. Yang, Q., Golwala, G., Sundaram, S., Lee, P., Allebach, J.:
Barcode detection and decoding in on-line fashion images.
Electron. Imaging 2019(8), 413–1–413–7 (2019)

Page 13 of 14 13J Intell Robot Syst (2021) 103: 13

github.com/tmralmeida/data-matrix-detection-benchmark
github.com/tmralmeida/data-matrix-detection-benchmark
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1909.03373
http://arxiv.org/abs/1909.03373
http://tesi.cab.unipd.it/50395/1/bergamin_marco.pdf

25. Zharkov, A., Zagaynov, I.: Universal barcode detector via
semantic segmentation. CoRR arXiv:1906.06281 (2019)

26. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards
real-time object detection with region proposal networks. CoRR
arXiv:1506.01497 (2015)

27. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu,
C.-Y., Berg, A.C.: SSD: single shot multibox detector. CoRR
arXiv:1512.02325 (2015)

28. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You
only look once: Unified, real-time object detection. CoRR
arXiv:1506.02640 (2015)

29. Bochkovskiy, A., Wang, C.-Y., Liao, H.: Yolov4: Optimal speed
and accuracy of object detection. arXiv:2004.10934 (2020)

30. Benali Amjoud, A., Amrouch, M.: Convolutional neural networks
backbones for object detection. In: El Moataz, A., Mammass, D.,
Mansouri, A., Nouboud, F. (eds.) Image and Signal Processing,
pp. 282–289. Springer International Publishing, Cham (2020)

31. Lin, T.-Y., Dollár, P., Girshick, R.B., He, K., Hariharan, B.,
Belongie, S.J.: Feature pyramid networks for object detection.
CoRR arXiv:1612.03144 (2016)

32. Cao, G., Xie, X., Yang, W., Liao, Q., Shi, G., Wu, J.: Feature-fused
SSD: fast detection for small objects. CoRR arXiv:1709.05054
(2017)

33. Huang, Z., Wang, J.: DC-SPP-YOLO: dense connection and
spatial pyramid pooling based YOLO for object detection. CoRR
arXiv:1903.08589 (2019)

34. Lin, T.-Y., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss
for dense object detection. CoRR arXiv:1708.02002 (2017)

35. Chen, Y., Yang, T., Zhang, X., Meng, G., Xiao, X., Sun, J.: Detnas:
Backbone search for object detection. In: Wallach, H., Larochelle,
H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.)
Advances in Neural Information Processing Systems, vol. 32,
pp. 6642–6652. Curran Associates, Inc. (2019)

36. Simonyan, K., Zisserman, A.: Very deep convolutional networks
for large-scale image recognition. arXiv:1409.1556 (2014)

37. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for
image recognition. CoRR arXiv:1512.03385 (2015)

38. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected
convolutional networks. CoRR arXiv:1608.06993 (2016)

39. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: Efficient
convolutional neural networks for mobile vision applications.
CoRR arXiv:1704.04861 (2017)

40. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally,
W.J., Keutzer, K.: Squeezenet: Alexnet-level accuracy with 50x
fewer parameters and <1mb model size. CoRR arXiv:1602.07360
(2016)

41. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely
efficient convolutional neural network for mobile devices. CoRR
arXiv:1707.01083 (2017)

42. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement.
arXiv:1804.02767 (2018)

43. Girshick, R.B.: Fast R-CNN. CoRR arXiv:1504.08083 (2015)
44. Wang, C.-Y., Liao, H.-Y.M., Yeh, I.-H., Wu, Y.-H., Chen, P.-Y.,

Hsieh, J.-W.: Cspnet: A new backbone that can enhance learning
capability of cnn. arXiv:1911.11929 (2019)

45. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network
for instance segmentation. CoRR arXiv:1803.01534 (2018)

46. Tan, M., Pang, R., Le, Q.: Efficientdet: Scalable and efficient
object detection. arXiv:1911.09070 (2019)

47. Zhou, X., Zhuo, J., Krähenbühl, P.: Bottom-up object detection
by grouping extreme and center points. CoRR arXiv:1901.08043
(2019)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Tiago Almeida is a PhD student in Computer Science at Örebro
University in the Wallenberg AI, Autonomous Systems and Software
Program in Sweden. Tiago’s research interests are real-world problems
involving Artificial Intelligence (mainly Machine Learning) and
Human-Robot Interaction (HRI). Therefore, his work has included
Deep Learning methods for Computer Vision problems (road space
segmentation and object detection) and Inverse Reinforcement
Learning for behavioral patterns recognition. Tiago received his
Master’s degree in Mechanical Engineering at the University of
Aveiro, Portugal, with a thesis addressing the problem of detecting
the road free space onboard an autonomous car. This work resulted
in one Conference paper (ROBOT 2019) and one Journal paper (RAS
2020). Thereafter, Tiago was a research fellow in the Produtech II SIF
24541 project, whose main goal was to develop a mobile platform
capable of computing its localization through the detection of artificial
landmarks. The outcomes of this project were one Conference paper
(ICARSC 2020) and one Journal paper (JINT 2021).

Vitor Santos obtained a 5-year degree in Electronics Engineering and
Telecommunications in 1989, at the University of Aveiro, Portugal,
where he later obtained a PhD in Electrical Engineering in 1995, and
the Habilitation in Mechanical Engineering in 2018. He was awarded
fellowships for research in mobile robotics during 1990-1994 at the
Joint Research Center, Italy. He is currently Associate Professor at the
University of Aveiro and has carried out research activity on mobile
robotics, autonomous driving, advanced perception and humanoid
robotics. He founded the ATLAS project for mobile robot competition
that achieved 6 first prizes in the annual Autonomous Driving
competition and has coordinated the development of ATLASCAR, the
first real car with autonomous navigation capabilities in Portugal. He
is one of the founders of the Portuguese Robotics Open in 2001 and
co-founder of the Portuguese Society of Robotics in 2006.

Oscar Martinez Mozos is currently Associate Professor at Örebro
University and faculty member in the Wallenberg AI, Autonomous
Systems and Software Program in Sweden. From 2016 to 2019 he
was a senior researcher at the Technical University of Cartagena,
Spain. From 2013 to 2015 he was a senior lecturer at the University
of Lincoln, UK. From 2010 to 2012 he was a postdoctoral fellow
of the Japan Society for the Promotion of Science (JSPS) at Kyushu
University, Japan, where he keeps a position as a collaborative
researcher. From 2009 to 2010 he was a postdoctoral fellow at the
University of Zaragoza, Spain. He got his MSc (2005) and PhD
(2008) from the University of Freiburg, Germany. He applies solutions
based on artificial intelligence to problems in different areas including
robotics, autonomous systems, health, and quality of life technologies.

Bernardo Lourenço graduated with an MSc. in Mechanical Engineer-
ing in 2018 at the University of Aveiro. After graduation, and during
the development of this research work, he was a research fellow in the
fields of Computer Vision and Robotic Systems at the Department of
Mechanical Engineering at the University of Aveiro. He has partici-
pated in multiple conferences, such as the 2019 and 2020 ICARSC
Conference and the ROBOT2019 Conference. Currently, he works at
everis, an NTTData company, in the field of data engineering. His
research interests are deep learning, computer vision, programming,
and robotic systems.

13 Page 14 of 14 J Intell Robot Syst (2021) 103: 13

http://arxiv.org/abs/1906.06281
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/1612.03144
http://arxiv.org/abs/1709.05054
http://arxiv.org/abs/1903.08589
http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1911.11929
http://arxiv.org/abs/1803.01534
http://arxiv.org/abs/1911.09070
http://arxiv.org/abs/1901.08043

	Comparative Analysis of Deep Neural Networks for the Detection and Decoding of Data Matrix Landmarks in Cluttered Indoor Environments
	Abstract
	Introduction
	Related Work
	Methodology and Deep Networks
	Faster R-CNN
	SSD
	YOLOv3, YOLOv3 SPP, and YOLOv4
	Conventional Backbones

	Baselines
	Faster R-CNN
	SSD512
	YOLO
	Summary

	Experiments
	A data set of Data Matrix images
	Detection results
	Qualitative detection results on the test set
	Decoding Results
	Summary

	Conclusion
	Declarations
	References

