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Abstract

A group of agents can form a flock using the augmented Cucker-Smale (C-S)

model. The model autonomously aligns them to a common velocity and main-

tains a relative distance among the agents in a distributed manner by sharing

the information among neighbors. This paper introduces the concept of inac-

tiveness to the augmented C-S model for improving the flocking performance. It

involves controlling the energy and convergence time required to form a stable

flock. Inspired by the natural world where a few lazy (or inactive) workers are

helpful to the group performance in social insect colonies. In this study, we

analyzed different levels of inactiveness as a degree of control input effectiveness

for multiple fixed-wing UAVs in the flocking algorithm. To find the appropriate

inactiveness level for each flock member, the particle swarm optimization-based

approach is used as the first step, based on the initial condition of the flock.

However, as the significant computational burden may cause difficulties in im-

plementing the optimization-based approach in real time, we also propose a

∗Corresponding author
Email address: h.oh@unist.ac.kr (Hyondong Oh)

Preprint submitted to Journal of Intelligent and Robotic Systems August 31, 2021

li2106
Text Box
Journal of Intelligent and Robotic Systems, Volume 103, 2021, Article number 53DOI:10.1007/s10846-021-01492-1

li2106
Text Box
Published by Springer. This is the Author Accepted Manuscript issued with: Creative Commons Attribution Non-Commercial License (CC:BY:NC 4.0).  The final published version (version of record) is available online at DOI:10.1007/s10846-021-01492-1.  Please refer to any applicable publisher terms of use.



heuristic adaptive inactiveness approach, which changes the inactivity level of

selected agents adaptively according to their position and heading relative to

the flock center. The performance of the proposed approaches using the concept

of lazy (or inactive) agents is verified with numerical simulations by comparing

them with the conventional flocking algorithm in various scenarios.

Keywords: multi-agent system, flocking algorithm, augmented Cucker-Smale

model, inactiveness, particle swarm optimization.

1. Introduction

Multi-agent systems have attracted considerable attention as they can im-

prove the mission success rate, efficiency, and system autonomy. Cooperative or

collective behavior of multi-agent systems can be achieved through interactions

and consensus among agents in a distributed manner [21, 16]. Along with the5

increasing interest in autonomy, several researchers have tried to find efficient

self-organization methods by observing the efficient system operation of natural

organisms [2, 17, 9]. In unmanned aerial vehicle (UAV) operations, consensus-

based cooperative behaviors represent a form of flocking, which is used in various

tasks [38, 13]. Flocking (or loose formation) means that the UAVs satisfy the10

Reynolds flocking rules [27] where they mimic bird clustering in nature without

a predetermined pattern in flight.

Using the Reynolds flocking rules, Vicsek showed that the random initial

heading angle of the agents could be aligned in the same direction using a

distributed method [31]; various studies have also been conducted on the Vic-15

sek model [7, 26, 1]. To further develop the Vicsek model, Cucker and Smale

designed a flocking model to reach the consensus of velocity [11], called the

Cucker-Smale (C-S) model. Perea et al. [23] reported that applying the C-S

model to spacecraft formation control has advantages such as decreased fuel

consumption and maximum distance between spacecraft over the conventional20

control method. Shen et al. [28] showed that a hierarchical leader with a freewill

acceleration has an advantage in terms of the convergence rate toward the flock-
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ing state in the C-S model. Studies on the stability of the C-S model have been

performed in an environment with disturbance [14, 12] or the constraints of

flying at a constant speed [10]. Furthermore, as the safe operation between25

multiple UAVs is an important issue, in order to achieve collision avoidance in

the flocking model, the singular interaction kernel was used in [5], and the aug-

mented C-S model was proposed by adding a bonding force term to maintain

the relative distance between neighbors in [22].

The original C-S type flocking model theoretically guarantees velocity con-30

sensus under specific conditions; however, forming a flock might require a large

amount of energy and time caused by dynamic constraints or control satura-

tion. This problem may occur rather frequently owing to the constraints of

fixed-wing UAVs such as the maximum acceleration and turn rate and the re-

strictive convergence condition of the constant-speed C-S model [10]. To address35

these problems, we utilize inactiveness, which discounts the control input (as

a degree of control effort effectiveness) generated by the existing flocking al-

gorithm, yielding to improve performance. This approach is inspired by the

habits of various species living together in nature. For instance, adopting a

partially inactive state instead of the fully active state has been reported in ant40

colonies to increase labor efficiency and sustainability [24, 6, 15]. Wang et al.

[32] applied this inactiveness concept to design a uniformly distributed circular

formation of multiple particles in which decreasing the control input of a few

particles improved the performance significantly.

We extend the above inactiveness concept to the flocking task of fixed-wing45

UAVs. To find the best inactiveness level for each flock member, social learning

particle swarm optimization (SL-PSO) [8] is applied as the first step by using

the initial condition of the flock and building upon our previous work [29, 18].

Although this optimization-based approach shows good performance, perform-

ing it in real time is difficult owing to significant computational burden. Besides,50

relying on a constant optimized inactivity level throughout the flocking opera-

tion may not provide sufficient robustness against uncertainty and disturbance.

To overcome these limitations, we additionally propose a heuristic adaptive in-
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activeness approach, which changes the inactivity level of the selected agents

adaptively according to their position and heading relative to the flock center.55

Throughout this study, the effect of inactiveness was verified by the improve-

ment in the energy as well as convergence time for the flocking task. This result,

which is quite remarkable considering that the required convergence time and

consumed energy for performing a certain control task generally have a trade-

off relationship, promises great application potential in various research fields60

related to multiple agents.

This paper is structured as follows. In Sections II and III, we describe the

flocking problem which demonstrates the effectiveness of the inactivity in a

group. In Section IV, a technique for calculating the optimized inactivity level

for each agent is presented, followed by a description of the adaptive inactive-65

ness approach in Section V. In Section VI, we analyze the energy and conver-

gence time efficiencies of the flocking task using the inactive group (termed as

lazy group) and apply numerical simulations to compare the results with those

achieved with a fully active group. Finally, conclusions and future work are

presented in Section VII.70

2. Problem Formulation

2.1. Overview of the Proposed Approach

In this study, we attempted to determine the effect of inactiveness in multi-

agent systems while performing a flocking task in a 2-D space. The presence

of lazy agents can exert changes on group behavior when compared with a75

fully active group (i.e., the conventional method) by reducing the control input

proportional to the level of inactivity of an individual agent. The component

of the inactivity level vector (CLazy = [CLazy,1, · · · , CLazy,N ]T ) is calculated

between zero and one for each agent where CLazy is the N dimensional vector

and N is the number of agents. To evaluate the effectiveness of the flocking80

process, the cost function is defined according to the flocking performance in

terms of control efforts and time required for the stable flocking convergence with
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CLazy. Based on the cost function, we first find the optimized C∗
Lazy. Next,

to overcome the limitation of the optimized approach, we propose a heuristic

method in which CLazy changes adaptively. We will show that the group with85

lazy agents can achieve the flocking flight more efficiently compared with the

fully active group for any initial positions p0 and velocities v0.

2.2. Flocking Task

For the safe and stable operation of a large number of agents, the flock-

ing task is a fundamental element. To form a flock, agents should satisfy the90

Reynolds flocking rules [27], which comprise three elements: cohesion, align-

ment, and separation. Cohesion represents the group concentration. As de-

picted in Fig. 1(a), agents distant from the center of the group must move

inward to the center to maintain a loose formation (i.e., flocking). Alignment

depicted in Fig. 1(b) ensures that all agents maintain the same velocity. Even95

a few agents flying at a different velocity from others would cause a significant

delay or even failure in flock formation. To prevent this, all agents in the group

must align their velocity. Finally, separation depicted in Fig. 1(c) ensures colli-

sion avoidance among agents. If these three conditions are satisfied, a converged

flocking state can be achieved from any arbitrary initial state, as shown in Fig.100

2.

(a) Cohesion (b) Alignment (c) Separation

Figure 1: Reynolds flocking rules.
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Figure 2: Achieving the flocking state from a random initial state.

3. Flocking Control Algorithm with Inactiveness

In this study, by focusing on a high-level flocking control design, a simple

2-D kinematics of the i-th agent moving at a constant speed is implemented as:

ẋi = V cos θi,

ẏi = V sin θi,

θ̇i = ui, ∀i = {1, 2, · · · , N}.

(1)

Here, xi and yi are the east and north displacements, respectively; V is the

speed of the agent; θi is the heading angle; and ui is the control input, which

is constrained by the maximum turn rate (i.e., |ui| ≤ usat). Among the several

flocking models developed for multi-agent systems, we adopted the C-S model

[11]. The heading alignment of agents moving at a constant speed is calculated

in the C-S model as [10]:

uCS
i =

λ

N

N
∑

j=1

ψ(rij) sin(θj − θi), (2)

where rij is the relative distance between the i -th and j -th agents, ψ(r) =

1/(1 + r2)β , and λ > 0, β ≥ 0 are constants. When β < 1/2 and the maximum

difference in the initial heading angles of the agents is less than 90 degrees,

alignment of their heading angles can be achieved. As the C-S model satisfies

only the alignment condition among the Reynolds flocking rules, a term to

maintain the relative distance among agents was added to ensure cohesion and
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separation [22]. The additional term, referred to as the bonding force, acts

according to the relative displacement of the agents, and the heading command

can be derived as,

uBonding
i =

σ

NV

N
∑

j=1

( K1

2r2ij
⟨vi−vj ,pi−pj⟩+

K2

2rij
(rij−R)

)

⟨[− sin θi, cos θi]
T ,pj−pi⟩,

(3)

where pi = [xi, yi]
T and vi = [ẋi, ẏi]

T are the position and velocity of the

i-th agent, respectively; R is the parameter relating to the relative distance

maintained; ⟨·, ·⟩ is the inner product notation; and σ,K1, and K2 are positive

constants. By combining the alignment term (2) and relative distance control

term (3), the augmented C-S model with the saturation constraint can be given

as,

uFlock
i = uCS

i + uBonding
i , (4)

uFlock
i,sat =







usatsgn(u
Flock
i ), if

∣

∣uFlock
i

∣

∣ > usat,

uFlock
i , otherwise.

(5)

Here, sgn(·) is the sign function.

The problem with the alignment of the heading angle is that the convergence

conditions are difficult to fulfill under arbitrary initial conditions. Furthermore,

even if the alignment condition is satisfied, desired flocking configuration is not

guaranteed owing to the influence of saturation and the additional term for

controlling the relative distance. These problems cause the agents to spend

excessive energy and time in flocking. One way to address this problem is to

apply the concept of inactiveness to the control input. As discussed in the

Introduction, inactiveness is inspired by events observed in nature; that is, a

few lazy insects improved the efficiency and sustainability of the whole group.

By using the inactivity level, the i -th agent’s heading angle is updated as,

θ̇i = ui = CLazy,iu
Flock
i,sat , (6)

where CLazy,i ∈ [0, 1] is the i -th agent’s inactivity level, and decreases its control

input.105
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It is worthwhile noting that the collision avoidance among agents cannot be

explicitly guaranteed by using the above flocking model in the transient period

before converging to the final flock state depending on the initial configuration

or communication topology. Although there are some recent approaches on

collision avoidance for flocking using the potential field-based reactive control110

[18], distributed model predictive control [33] or reinforcement learning [35],

in order to strictly (or explicitly) ensure collision avoidance in a complex and

dynamic environments for flocking, more rigorous studies should be performed

by adopting recent approaches [36, 37, 39]; this is beyond the scope of this paper

since the main purpose of this study is to analyze the effect of the presence of115

lazy (i.e., inactive) agents on the flocking performance. Thus, this study assumes

that the agents are separated by slightly different heights.

Besides, provided that the UAV has a low-level autopilot system, this study

aims to design guidance command inputs for the flocking flight. With the time-

scale separation principle [25, 3], assuming that the bandwidth of the low-level120

flight autopilot system is much faster (e.g. five to ten times) than that of the

flocking guidance command, it is common to initially design and verify the

guidance law and control algorithm separately. Therefore, like other literature

[30, 20, 19] considering similar guidance problems, the simple dynamic model

as in Eq. (1) with proper control saturation values could be used to design the125

flocking algorithm for fixed-wing UAVs. However, the final validation needs to

be made with higher fidelity dynamic models and flight tests considering explicit

collision avoidance among agents; these remain as future work.

4. Inactivity Optimization Using SL-PSO

4.1. Optimization Method: SL-PSO130

As the cost function to optimize CLazy is highly non-convex and difficult

to solve analytically, we use the heuristic optimization algorithm which does

not require gradient information. Among various heuristic optimization ap-

proaches, the particle swarm optimization (PSO) algorithm is known to provide
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fast convergence close to the optimal solution. However, since the original PSO135

does not guarantee an optimal solution across the search domain, i.e., the solu-

tion obtained by the PSO is sub-optimal, we adopt the social learning particle

swarm optimization (SL-PSO) to obtain the better solution among variations

of the PSO [8]. The SL-PSO introduces sociological factors into the PSO where

each particle probabilistically learns from one of better particles in the current140

swarm. Here, the concepts of the optimization method is briefly described.

Figure 3(a) illustrates the concept of PSO. The PSO algorithm is a compu-

tational method using candidate solution particles to optimize a problem in the

search-space where the particles acquire the cost according to their position at

every iteration. Each particle’s movement is updated based on historical infor-145

mation, which is the direction of the weighted sum of the best solution of itself

(called Pbest), the global best solution by a whole swarm (Gbest), and its current

velocity.

The difference between PSO and SL-PSO is a learning process from other

particles. Specifically, whole particles in the swarm learn from the global best150

solution at every iteration in PSO. However, whole particles are arranged based

on their cost from the worst to the best, and each particle probabilistically

learns from one of the better particles. In other words, the I-th ranked particle

probabilistically learns from one of the (P − I) particles that have a better

cost as illustrated in Fig. 3(b). This can be interpreted as the addition of the155

sociological learning theory to the PSO method. Through this process, SL-PSO

converges towards the optimal cost better [8]. Compared to the PSO algorithm,

SL-PSO has a number of benefits. First, it has high computational efficiency

and superior performance. Second, memory usage is low as there is no need for

the past cost. Lastly, there is no burden of parameter setting which makes this160

algorithm can be easily used. The overall structure of SL-PSO is depicted in

Fig. 3(b).
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(a) PSO

(b) SL-PSO

Figure 3: Concept of the particle swarm optimization algorithm.

10



4.2. Cost Function

The cost function to evaluate the fitness is set to the measure of the flocking

performance as,

Jenergy(u) =
V

N

N
∑

i=1

∫ tc

0

|ui(τ)| dτ + ρtc, (7)

where u is the control input vector of all agents, tc is the convergence time,

and ρ is a positive weighting parameter. Convergence is confirmed when the165

velocity deviation of the group narrows to a certain value close to zero and the

position deviation of the agents is smaller than the predetermined threshold.

The physical interpretation of u is the control effort required to change the

heading angle, and ρtc is the energy consumption for maintaining a constant

speed that is assumed to be proportional to the time spent until convergence.170

Thus, Jenergy represents the total energy consumption to reach a stable flocking

state.

Accordingly, the optimization of the inactivity level can be expressed in the

following form:

C∗
Lazy = arg min

CLazy∈RN
Jenergy(u). (8)

Here, C∗
Lazy is the N dimensional vector of CLazy with the best performance.

To ensure that the performance of C∗
Lazy is better than that of the conventional

method, one of the initial particles of SL-PSO is set to C0
Lazy = 1, which indi-175

cates the fully active state. Algorithm 1 shows the use of inactiveness for the

optimization of flocking.
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Algorithm 1: Optimization using SL-PSO

1: Set parameters ε, P (number of particles), and ϑ = {1, 2, · · · , P}

2: Set initial values p0,v0, n = 0, and CI
Lazy(0), ∀I ∈ ϑ

3: while
∥

∥CI
Lazy(n)−CJ

Lazy(n)
∥

∥ > ε, ∀I, J ∈ ϑ do

4: JI
energy = Flocking

(

p0,v0,C
I
Lazy(n)

)

, ∀I ∈ ϑ by Eq. (7)

5: CI
Lazy(n+ 1) updates by the social learning process, ∀I ∈ ϑ

6: n = n+ 1

7: end while

8: return C∗
Lazy = CP

Lazy(n)

5. Heuristic Adaptive Inactiveness Approach180

Although the optimization-based approach described in the previous section

is expected to provide a promising performance, performing it in real time is

difficult owing to a significant computational burden. Besides, the use of a

constant optimized inactivity level C∗
Lazy based on the initial flock state during

the entire flocking operation may not provide the expected flocking performance185

improvement in a real dynamic environment with uncertainty and disturbances.

To overcome these limitations, in this section, we propose a heuristic method to

determine the inactivity level CLazy adaptively according to the current flock

configuration.

Notably, the previous optimization method determines the inactiveness for

all the agents in the flock at different levels. However, looking at the ant colony

in the natural world, only a certain portion of ants in the colony exhibit the so

called “laziness” [6]. Motivated by this observation, we identified suitable agents

to impose inactivity. Let us first visualize the general flocking task described

in Section 2.2. In the early stages of the flocking process from the randomly

distributed initial condition, all agents try to move towards the center of flock

for cohesion. Once this is achieved to a certain extent, the agents start to focus

on reaching velocity consensus (i.e., alignment). This can be observed in Fig. 4,

which shows the time history of the control input (uFlock
i ) decomposed in terms
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of cohesion (uBonding
i ) and alignment (uCS

i ) during a few flocking simulations.

As shown in this figure, in the early stage, most of the control efforts are ded-

icated toward controlling the relative distance (i.e., high uBonding
i ). Thus, we

selected agents initially expected to consume large amounts of energy for cohe-

sion as the inactive agents. To this end, the fitness index fi(t) for the selection

of inactive agents is calculated based on two indicators: the (normalized) rela-

tive distance αi(t) of the current agent position to the center of the flock (pc(t))

and γi(t), which corresponds to the angle ϕi(t) between the current heading di-

rection and the line connecting the current agent position and the flock center.

This is shown in Fig. 5(a) and given by:

αi(t) =







∥r̄i(0)∥ , if t = 0,

∥r̄i(t)∥
maxτ∈[0, t]∥r̄i(τ)∥

, if t > 0,
(9)

γi(t) =
1

2

(

1− cosϕi(t)
)

, (10)

fi(t) = αi(t)γi(t), (11)

where r̄i(t) = pc(t) − pi(t). Notably, a high initial fitness index for an agent190

means that it is far away from the flock center, and its heading direction is quite

different from that towards the flock center; therefore, it is expected to require

high control efforts at the initial stage of the flocking process. Accordingly,

an agent with a large fi(0) should be assigned a higher priority to impose the

inactiveness, as illustrated in Fig. 5(b).195

We now introduce a heuristic rule to change the inactivity level adaptively

according to the flocking phase. As shown in Fig. 4, allowing a high inactivity

level (i.e., low CLazy value) in the early flocking phase is effective for cohesion.

However, in the alignment phase, which involves a fine tuning of the heading

direction among the agents, a high inactivity level can degrade the velocity

consensus performance. Hence, the inactivity level is adaptively determined

using the fitness index as,

CLazy,i (t) = 1−Gfi(t), t > 0, (12)

where G ∈ (0, 1] is the gain that prevents CLazy,i (t) from reducing to zero. It

13



Figure 4: Time history of the control input magnitude during flocking simulation.

(a) Initial state of agents (b) Fitness index

Figure 5: Computation of fitness index.
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should be noted that the adaptive inactivity level generally starts from a small

value and increases as the flocking process progresses.

6. Numerical Simulation Results

In this section, simulation results for the augmented C-S model with in-200

activity are discussed. The initial conditions such as the heading angle and

position of each agent were randomly set for 60 trials of Monte-Carlo simula-

tion. The initial agent position is bounded within a square area whose edge

length is Lbound. The parameter settings for the simulation are listed in Table

1. The movie clip for the simulations can be found at https://www.youtube.205

com/watch?v=aOtsVTU_i0U.

Table 1: Simulation parameters

Parameter Value Unit

Speed, V 15 m/s

Number of agents, N 20

Predefined distance, R 60 m

Communication decay rate, β 1/3

Energy coefficient to maintain a constant speed, ρ 1

Inter agent strength, λ 5

Bonding force strength, σ 1

Constant gain, (K1,K2) (1, 3)

Inactiveness gain, G 0.8

Maximum turn rate, usat 8/15 rad/s

Initial location bound, Lbound 250 m

Number of SL-PSO particle, P 100

6.1. Flocking with Optimized Inactiveness

We consider two different scenarios based on the communication structures.

In Fig. 6(a), the first scenario demonstrates the effect of inactiveness on each
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agent, with a fully connected and undirected network topology, in which the210

information of all agents in the group is shared. On the other hand, the second

scenario considers a central communication network topology, as shown in Fig.

6(b). In this case, each agent communicates through the central agent. This

scenario exhibits the highest degree of centrality in the network, whereas other

factors are similar to the first scenario. This centrality communication structure215

could play an important role in a hierarchical or leader-following multi-agent

system.

(a) Fully connected network (b) Centrality network

Figure 6: Communication structures of the two scenarios.

6.1.1. Fully Connected Network Case

In this subsection, the simulation results of the first scenario are discussed.

We analyzed the components of C∗
Lazy sorted in ascending order to focus on220

the distribution tendency of inactivity levels for achieving efficient flocking as

shown in Fig. 7. Except for a few outliers, the average value of C∗
Lazy tends to

lie between 0.4 and 1, which indicates that each agent in the group should have

a proper inactivity level to improve the group performance instead of random

inactiveness.225

Table 2 demonstrates the performance improvement in the optimized lazy

group compared with that in the fully active group (with CLazy = 1). Contrary

to the expectation that the agent inactivity caused by CLazy would reduce the
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Figure 7: Inactivity levels (sorted in the ascending order) in the fully connected network.

flocking efficiency, the result in Table 2 shows that both energy consumption and

convergence time reduces remarkably when the optimized inactivity is applied.230

Table 2: Performance in the fully connected network

Mean Jenergy Mean

convergence time

Fully active group 234.5 56.7

Optimized lazy

group

88.2 22.3

Improvement

ratio

62.4% 60.7%

In Fig. 8, the flocking performance is analyzed in terms of consumed energy

and flocking convergence. In the figures, the blue line indicates the average per-

formance of the fully active groups whereas the red dotted line is for optimized

lazy groups. The result shows the benefit of CLazy for any type of initial en-235
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vironment. To compare the performance of the optimized C∗
Lazy (different for

each agent) with the average of C∗
Lazy (fixed for all agents), the average C∗

Lazy

is set to CAvg
Lazy as 0.8 and applied to all agents in the flocking simulation. This

result is denoted as a green line and shows that the performance is much worse

than that of the fully active group, which implies that a group of agents with240

the same level of inactivity does not produce any benefit. This result contrasts

with the characteristics of inactivity observed in the natural world; the effect is

similar to just adjusting (lowering) the control gain.

(a) Energy (b) Convergence time

Figure 8: Comparison of flocking performance in the fully connected networks.

Moreover, the effect induced by the inactive agents can also be observed

from the sample heading angle changes, as shown in Fig. 9. In the case of the245

fully active group in Fig. 9(a), each agent actively changes its state according

to that of its neighbor. However, if the control input exceeds the saturation

limit, the agents will not reach the desired state quickly, causing unnecessary

energy consumption. Besides, agents reacting too sensitively to their neighbors

frequently disturb the flocking, increasing the required time for convergence.250

On the other hand, agents respond less sensitively owing to their inactivity, as

shown in Fig. 9(b). As these agents are less sensitive to the state information of

their neighboring agents, they tend to follow already formed clusters with little

fluctuation.

Figure 10 shows the average standard deviations of the velocity and position,255

18



(a) Fully active group (b) Optimized lazy group

Figure 9: Time history of the heading angles in the fully connected network.

which indicate the quality of the flock formation. The velocity and position

deviations correspond to the alignment and the cohesion and separation of the

Reynolds flocking rules, respectively. In Fig. 10(a), the red dotted line of the

optimized lazy group decreases with time much faster than the blue line of the

fully active group. The reason for the high standard deviation of the velocity at260

the initial stage is that the agents move toward the center of the group to get the

desired distance among themselves. For the position deviation, the optimized

lazy group shows better results without the fluctuation observed in the fully

active group.

(a) Standard deviation of the velocity (b) Standard deviation of the position

Figure 10: Comparison of standard deviations in the fully connected network.
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Figure 11: Trajectory of the fully active group in the fully connected network.
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Figure 12: Trajectory of the optimized lazy group in the fully connected network.
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Figures 11 and 12 show the sample trajectories of the agents over time.265

Through a trajectory of 10 s, the agents tend to move to the center of the group

with a certain turn radius limit. The flocking of the fully active group takes

approximately 30 s, while the optimized lazy group takes approximately 20 s.

In the convergence state, both groups show a loose flocking pattern and exhibit

a lattice formation. Notably, this formation pattern is affected by the bonding270

force that maintains the distance between the agents.

6.1.2. Centrality Network Case

In this scenario, only the agent with the highest degree of centrality com-

municates and exchanges the state information with the other members in the

group, as shown in Fig. 6(b). In the simulation, the inactivity levels in the275

simulation result were sorted in ascending order to check the distribution ten-

dency. As shown in Fig. 13, the central agent, marked as agent number 1, has

a significantly lower average inactivity level than all others. This phenomenon

implies that the central agent tends to have a low inactivity level regardless of

the initial state to achieve a better flocking performance.280

In Table 3, the performance comparison results of the second scenario sim-

ulation are summarized. Similar to the previous scenario, the optimized lazy

group significantly reduces the consumed energy and convergence time for the

flocking convergence. Figure 14 shows the numerical results for each set. The

blue and red lines indicate the average performance of the fully active and op-285

timized lazy groups, respectively. The green dots represent the performance

when the central and the other agents are assigned constant inactivity levels

of 0.14 and 0.66 as the average C∗
Lazy values for the central agent and all the

other agents, respectively. In contrast with the previous result where all the

agents had the same constant inactivity level, (Fig. 8), this result shows that290

the group with constant inactivity levels has advantages in a central network in

terms of the energy consumption and convergence time when compared with the

fully active groups even without any optimization. Because the inactive central

agent is less affected by the neighbors, it performs the role of a convergence
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Figure 13: Inactivity level
(

sorted in ascending order except for the central (1st) agent
)

in

the centrality network.

point which helps to achieve a more efficient consensus.295

Table 3: Performance in the centrality network

Mean Jenergy Mean

convergence time

Fully active group 349.1 89.4

Optimized lazy

group

100.3 35.2

Improvement

ratio

71.3% 60.6%

Figure 15 shows the changes in the sample heading angle with time. The

thick blue line in Fig. 15(a) indicates the heading angle of the central agent,

which changes significantly owing to the influence of neighboring agents. This

change leads to a successive change in the heading angle of the other agents as

well and requires substantial energy to perform a flocking task. In the case of the300
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(a) Energy (b) Convergence time

Figure 14: Comparison of flocking performance in the centrality network.

lazy group, however, the central agent tends to be less sensitive to the states of

the neighboring agents, and as it maintains the low control input without rapid

changes; eventually the other agents can easily follow the central agent.

(a) Fully active group (b) Optimized lazy group

Figure 15: Time history of heading angles in the centrality network.

Figure 16 shows the velocity and the position deviations with time. Al-

though the deviations show a continuously decreasing trend, the blue lines for305

the fully active group show a certain degree of fluctuation in both cases. On the

other hand, the red dotted lines for the lazy group show a tendency to decrease

smoothly and quickly without fluctuation. Figures 17 and 18 show the sample

trajectories of the fully active and lazy cases, respectively, with a green line
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depicting the central agent. The positions of the converged agents indicate that310

the central agent plays a critical role in both the fully active and lazy groups.

(a) Standard deviation of the velocity (b) Standard deviation of the position

Figure 16: Comparison of standard deviations in the the centrality network.

In the flocking task under the centrality network topology, it is efficient for

the central agent to be inactive. This result suggests that an inactive central

agent can benefit the overall performance when the information is concentrated

in one node on a platform with a distributed control system.315

6.2. Flocking with Adaptive Inactiveness

This subsection presents numerical simulation results by applying the heuris-

tic adaptive inactiveness approach. Notably, we only considered the fully con-

nected network case because the proposed approach was developed without

considering the existence of a central agent (present in the centrality network).320

First, to determine the appropriate number of inactive agents in the flock, the

performance improvement ratio is analyzed depending on the ratio of inactive

agents to the entire group (20, 30, or 40 agents), as shown in Fig. 19. For this

analysis, inactive agents are selected based on their fitness index fi(0), calcu-

lated with Eq. (11) because the agent with a high initial fitness index is expected325

to reduce the control efforts significantly by becoming inactive. For instance,

the simulation result for 20 percent inactive agents among 20 agents in Fig. 19

is obtained by selecting 4 agents with the highest fitness index values. Once
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Figure 17: Trajectory of the fully active group in the centrality network.
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Figure 18: Trajectory of the optimized lazy group in the centrality network.
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selected as inactive agents, they follow the adaptive inactiveness rule given in

Eq. (12). Figure 19 shows that the use of a single highly inactive agent for the330

group of 20 agents results in the best performance, and the performance grad-

ually decreases with an increasing number of inactive agents. This result may

seem surprising at first; however, we should realize that more than one highly

inactive agents distant from the flock center will delay the cohesion process by

initially not joining the group common behavior; this delay starts and produces335

adverse effects that cannot be overcome by saving the initial control efforts for

cohesion with inactiveness. Following the above analysis, we conducted sim-

ulations by selecting one agent out of 20 agents with the highest fi(0) as the

inactive agent and applying the corresponding CLazy,i value in Eq. (12).

Figure 19: Performance improvement ratio with varying number of inactive agents.

Table 4 and Fig. 20 demonstrate the superior performance of the adaptive340

lazy group (with one inactive agent) compared with that of the fully active

group. In the figures, the blue and red dotted lines indicate the averaged per-

formance of the fully active and adaptive lazy groups, respectively. To verify

the validity of the proposed approach that involves selecting the inactive agent
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with the highest fi(0), the simulation was performed with one randomly se-345

lected inactive agent as well. The result is indicated with a green dotted line in

the figure and is almost similar to that of the fully active group. This has two

important implications: (i) selecting the inactive agent according to the initial

fitness index (expected to consume excessive energy for cohesion) is validated;

and (ii) the risk of divergence (i.e., failure in the flocking state) is low in the350

proposed inactivity approach because we obtain results similar to those in the

fully active group even with a randomly-selected inactive agent.

Table 4: Performance in the adaptive method

Mean Jenergy Mean

convergence time

Fully active group 234.5 56.7

Adaptive lazy group 145.6 42.8

Improvement

ratio

37.9% 24.5%

(a) Energy (b) Convergence time

Figure 20: Comparison of flocking performance in the adaptive inactiveness approach.

Figure 21 shows the averaged standard deviations in velocity and position.

The red dotted line of the optimized lazy group reaches zero most quickly,

followed by that of the adaptive lazy group and the fully active group. Notably,355
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the result of the optimized lazy group is also included here for comparison

purpose. Besides, Fig. 22 shows the sample trajectories of the adaptive lazy

group with time. The green line for the selected inactive agent with the highest

fi(0) shows distinctive behavior compared with the other fully active agents.

Based on the adaptive inactiveness strategy, the inactive agent does not actively360

align its heading direction with the others during the early stages of the flocking

process with a low CLazy value. Once cohesion is achieved to a certain degree,

the inactive agent joins the group behavior with a high CLazy value, implying

that it becomes almost fully active.

(a) Standard deviation of the velocity (b) Standard deviation of the position

Figure 21: Comparison of standard deviations in the adaptive inactiveness approach.

Note that the preceding simulations assumed the ideal communication situa-365

tion, however, various communication problems may occur in real applications.

To verify the effectiveness of the proposed algorithm in poor communication en-

vironments, the flocking performance of the fully active group and the adaptive

lazy group are compared considering packet loss. Here, packet loss is defined as

probabilistic communication failure and when a communication failure occurs,370

the agent is assumed to maintain the previous heading direction. Figure 23

shows that both groups have performance degradation as the percentage of the

packet loss increases. However, the lazy group’s performance is much better

than that of the fully active group; since the lazy agents responds less sensi-
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Figure 22: Trajectory of the adaptive lazy group with the inactivity level.
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tively to their neighbors, intermittent communication failure has less impact on375

the lazy group. From this result, the proposed algorithm could be considered

as more robust in a real environment where the communication condition is not

ideal.

Figure 23: Performance comparison for packet loss.

7. Conclusions and Future Work

In this study, we demonstrated that the inactiveness of a few agents in a380

group can improve the efficiency of the flocking tasks of fixed-wing unmanned

aerial vehicles by using the constant speed version of the augmented Cucker-

Smale model. By applying social learning particle swarm optimization, opti-

mized inactivity level tendency for ensuring the best flocking performance with

respect to energy consumption and convergence time was confirmed. Then, we385

proposed a heuristic adaptive inactiveness method that selects appropriate inac-

tive agents and changes the inactiveness level adaptively according to the flock

configuration.

As future work, we will perform more rigorous theoretical analysis of the
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flocking performance and convergence using the inactiveness concept proposed390

in this paper by adopting the advantages of the hierarchical leader [28] and

pinning control [34] in which a few agents (e.g., informed agents) use different

control inputs compared with the rest of the agents in the group; this concept

is similar to the proposed inactiveness. Besides, we will study how to determine

the level of inactivity more systematically by taking into account not only the395

initial/current position and velocity but also the network centrality (e.g., degree,

closeness, and betweenness centrality [4]), which measures the importance of the

node for propagating information in the network.
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[23] Perea, L., Elosegui, P., and Gómez, G. Extension of the cucker-smale

control law to space flight formations. Journal of Guidance, Control, and

Dynamics 32, 2 (2009), 527–537.495

[24] Pinter-Wollman, N., Hubler, J., Holley, J.-A., Franks, N. R.,

and Dornhaus, A. How is activity distributed among and within tasks

in temnothorax ants? Behavioral Ecology and Sociobiology 66, 10 (2012),

1407–1420.

[25] Reiner, J., Balas, G. J., and Garrard, W. L. Flight control design500

using robust dynamic inversion and time-scale separation. Automatica 32,

11 (1996), 1493–1504.

[26] Ren, W., and Beard, R. W. Consensus seeking in multiagent systems

under dynamically changing interaction topologies. IEEE Transactions on

Automatic Control 50, 5 (2005), 655–661.505

[27] Reynolds, C. W. Flocks, herds and schools: A distributed behavioral

model. Computer Graphics (ACM SIGGRAPH ’87 Conf. Proc.) 21, 4

(1987), 25–34.

[28] Shen, J. Cucker–smale flocking under hierarchical leadership. SIAM Jour-

nal on Applied Mathematics 68, 3 (2007), 694–719.510

[29] Song, Y., Choi, J., Oh, H., Lee, M., Lim, S., and Lee, J. Improve-

ment of decentralized flocking flight efficiency of fixed-wing uavs using in-

active agents. In AIAA Scitech Forum (2019).

[30] Sun, D., Kwon, C., and Hwang, I. Hybrid flocking control algorithm

for fixed-wing aircraft. Journal of Guidance, Control, and Dynamics 42,515

11 (2019), 2443–2455.

37
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