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Abstract

Autonomous scene exposure and exploration, especially in localization or
communication-denied areas, useful for finding targets in unknown scenes,
remains a challenging problem in computer navigation. In this work, we present
a novel method for real-time environment exploration, whose only requirements
are a visually similar dataset for pre-training, enough lighting in the scene, and an
on-board forward-looking RGB camera for environmental sensing. As opposed
to existing methods, our method requires only one look (image) to make a good
tactical decision, and therefore works at a non-growing, constant time. Two direc-
tion predictions, characterized by pixels dubbed the Goto and Lookat pixels, com-
prise the core of our method. These pixels encode the recommended flight instruc-
tions in the following way: the Goto pixel defines the direction in which the agent
should move by one distance unit, and the Lookat pixel defines the direction in
which the camera should be pointing at in the next step. These flying-instruction
pixels are optimized to expose the largest amount of currently unexplored areas.
Our method presents a novel deep learning-based navigation approach that is
able to solve this problem and demonstrate its ability in an even more compli-
cated setup, i.e., when computational power is limited. In addition, we propose
a way to generate a navigation-oriented dataset, enabling efficient training of our
method using RGB and depth images. Tests conducted in a simulator evaluating
both the sparse pixels’ coordinations inferring process, and 2D and 3D test flights
aimed to unveil areas and decrease distances to targets achieve promising results.
Comparison against a state-of-the-art algorithm shows our method is able to
overperform it, that while measuring the new voxels per camera pose, minimum
distance to target, percentage of surface voxels seen, and compute time metrics.
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1 Introduction

Fig. 1: (Better viewed in color) Left: Data creation. RGB-D capture is made from a
3D pose. Using ray tracing, the currently visible areas are painted red. Then 3 x 3 3D
camera poses are calculated, representing 3 x 3 different movement directions. An
RGB image is captured for each pose. Pixels that represent unseen areas are colored
green, counted, and used to calculate both the Goto (red crosshairs), and Lookat
(green crosshairs) pixels. Right: Navigation model gets a RGB image as an input and
predicts both the Goto and Lookat pixels.

Modern monocular-based simultaneous localization and mapping (SLAM) meth-
ods (Padhy et al, 2021; Buyval et al, 2017; Celik et al, 2009; Chen and Liu, 2018), such
as Bundle Adjustment (BA) (Triggs et al, 2000; Chen et al, 2019b), allow navigation
in environments with limited localization tools (e.g., GPS-denied indoor environ-
ments), or previously unknown environments. These methods, however, have high
power and runtime requirements, making them unsuitable for devices with limited
computational power, such as Micro Aerial Vehicles (MAV) and smartphones, and
for real-time applications. As a result, many existing indoor navigation methods rely
on the assumption that the navigator can use sensors that already exist in that envi-
ronment (e.g., visual markers (Michel, 2017), Wi-Fi routers’ positions (Chang et al,
2010), Bluetooth beacons’ positions (Mazan and Kovarova, 2015), radio-frequency
identification (RFID) tags (Reza and Geok, 2009), magnetic positionings (Haverinen
and Kemppainen, 2009) or even have maps of that environment (Geva et al, 2019).
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Another option to improve this demanding process is to support the SLAM algorithm
by making the exploration process more efficient (Indelman et al, 2012).

One possible solution for exposing and exploring a scene is the use of a swarm
of MAVs, such that each individual agent may possess smaller amounts of sensors
or computational power, yet is considerably cheaper to operate. This allows for a
large amount of low-cost agents to work simultaneously and achieve a goal. This
allows to have a part of the agents lost without compromising the main objective of
the mission. This approach of a swarm of agents enables covering a large area, for
example for search-and-rescue missions, which would require the classic approach
longer time to complete, or even fail if given a time-critical mission (e.g., rescue an
injured individual).

In this work, we present a novel method for real-time environment exploration,
whose only requirements are a visually similar dataset for pre-training, enough lighting
in the scene, and an onboard forward-looking RGB camera for environmental sensing.
As opposed to existing methods, such as BA (Triggs et al, 2000; Chen et al, 2019b),
our method requires only one look (image) to make a good tactical decision, and
therefore works at a non-growing, constant time (visualized in Figure 1).

Two direction predictions, characterized by pixels dubbed the Goto and Lookat
pixels, comprise the core of our method. These pixels encode the recommended flight
instructions in the following way, (visualized in Figure 2): the Goto pixel defines the
direction in which the agent should move by one distance unit, and the Lookat pixel
defines the direction in which the camera should be pointing at in the next step (taking
into account movement dictated by the Goto pixel).

The Goto and Lookat pixels inference method tries to select those 2 pixels in a
way that optimizes exposure. What should be our flight’s next pose such that a picture
taken from that next step displays the maximum amount of pixels that represent areas
unseen from our current location ? We wish we could check all possible next poses,
and choose the pose that maximizes exposure. This is too computational expensive.
For now, we evaluate only a very sparse set of such poses, and weight-average them.

In order to research our approach, a supporting environment was built. This
includes: For the scene painting, a framework was built on top of the AirSim frame-
work (Shah et al, 2018), which adds polygons into the scene for rendering. For the
pixels’ coordinations inferring, which also evaluates it’s performances against a desner
case, a camera poses placer and a rendering framework was created. For the deep
neural networks’ training, we built a grid-search algorithm, which searches for the
closer-to-optimal hyper-parameters for our networks. For training, we also built a cus-
tom data augmentation method. For the test flights, we built a framework which places
the drone in the scene, takes our pretrained model, infers commands, and executes
them, according to the limitations described in the experiments section.

Our main contributions are:

* A new approach for scene exploration using RGB input by inferring movement

and camera directions. These directions are encoded in Goto and Lookat pixels.

* A novel Microsoft AirSim (Unreal Engine) based (Shah et al, 2018) dataset

generator, with samples consisting of a RGB image, corresponding depth image
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and Goto and Lookat pixel coordinates optimized for a high scene exposure
flight.

* An autopilot-like framework that predicts Goto and Lookat pixels from RGB
images.

* A deep neural network (DNN) trained to predict the pixels on our RGB-D dataset
in a supervised way, which does not require a depth sensor for inference (but can
utilize such sensor, if available).

In the following sections, we give some background (Section 2) for the exploration
and exposure problems that we try to solve in this work. In addition we describe
related works (Section 3) that do similar attempts to solve those problems. We than
describes our approach (Section 4), and how we implement it. Then we describe tests
done in order to evaluate and compare our approach (Section 5). Finally, we concludes
our work and propose several directions for possible future works (Section 6).

Fig. 2: An illustration of navigation using Goto and Lookat pixels. The left camera
pose represents the initial situation, and the blue vector is the principal axis. The Goto
(red) pixel and the Lookat (green) pixel are predicted, and back-projected into vectors.
In this case, they translate into the instructions “go right and look left”. Then, the
camera moves to the right camera pose, whose position is at a fixed distance along
the Goto pixel direction, and is rotated by an angle determined by the Lookat pixel
direction.

2 Background

Autonomous navigation is different from the traditional human-controlled approach
in many senses, since a human can understand the scene significantly quicker and
better, and, therefore, better control the vehicle. As in any other field, the constant
trend is to try and replace humans by computers so they can be doing the same jobs,
as good as or even better than humans in all metrics. Therefore, significantly decrease
the need for workers and both the quality and quantity of errors. In our case - be able
to navigate in the same or better quality without a real-time pilot.

The common approach used for unknown scene mapping using a monocular
camera is the Bundle Adjustment method (Triggs et al, 2000). This method receives
an amount of RGB images as it’s input, and builds a 3D map of the environment,
including the camera’s current and past 3D poses. It does it in the following way:
Using some detection algorithm, it detects 2D features laying upon all of the images.
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A feature is made of a pixel’s coordinations, and some sequence of bits that identify it.
Features matching is executed between couples of images. This is done in order to
know that a feature is seen in both given images. Using the list of matching features,
and some initialization algorithm, a 3D map of both the 3D features and the 3D camera
poses is created. Now the main BA algorithm takes place. This algorithm solves
a minimization problem. It minimizes the average Euclidean distance between 2D
features detected previously upon all images, and their correspond projected pixels,
which were projected using the 3D map. At each iteration of this algorithm, the 3D
map is updated, both by updating the 3D locations of the features, and the camera’s 3D
poses. This is done until convergence. The output is the 3D map estimating both the
features’ and the camera’ poses. A known issue with this approach, is that it doesn’t
provide a reliable scale estimation. This means we can have a good overall estimation
about the relations between the features’ and the camera’s locations, but an unreliable
estimation about the distances in between all of them. To try to reduce the scaling
issue, more approaches were developed, described in the related work section. These
approaches use extra inputs to their systems, such as the usage of more sensors (e.g. a
depth camera), or they relay on having previous knowledge about the structure of the
specific scene (e.g. a floor plan). Another issue with this approach is it’s computational
demands. For example, as more images stack up, more features are required to be
compared to all previous detected features. This prevents the usage on many real-time
systems. This algorithm doesn’t demand the usage of sequential data (video), or even
the usage of the same camera at any input image. For navigation, we will probably
have the simpler case of having the same camera capturing a sequence of images, and
therefore having many matching features in between every 2 sequential images. Our
method does not require a classical approach like this, which creates a map of the
scene.

Methods for navigation in unknown scenes try to maximize knowledge about the
scenes’ structures or find targets in them. As an agent suffers from uncertainly, and
may be limited in many ways, such as relaying only on it’s on-board sensors, battery
time, mission expiration time, or holding not accurate/up-to-date knowledge about the
structure of the scene, it has to choose it’s next steps in a well-thought-of way. The
term Next-Best-View describes this. What should be the agent’s next step, out of all
possible next steps, such that hopefully it will get the agent closer to it’s goal, as much
as possible. In our work, the agent is limited by only having a forward looking RGB
camera, previous knowledge about how the scene may look like, and what should be
the actions accordingly.

Deep learning is a term that describes a vest amount of deep neural networks
(DNN). In this work, we focus on DNN5s that get images as their inputs. The archi-
tecture of these networks contains a large amount of 2D filters. These networks are
made of layers upon layers, such that each layer is the result of mathematical opera-
tions between it’s previous layer and the layer’s filters. Those filters detect specific
features, and as we look deeper into the network, the filters detect richer features. For
example, at the start of the DNN the filters may detect simple lines, and at the end
of the DNN the filters may detect a wheel of a car. Unlike the pre deep learning era,
in order to make a DNN work well, training using a dataset is required. That means,
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for example, that if we want to be able to detect whether a picture shows a cat or a
dog, we will need to have a dataset with many examples of how both cats and dogs
look like. Therefore, the result of a DNN’s prediction takes into account all the data
contained in the input. Like anything else in computers, both the inputs (e.g. images)
and the outputs (e.g. label) are made of binary numbers. This allows for the inputs and
outputs to be anything. A main contribution of our work is taking the VGG16 network
(Simonyan and Zisserman, 2014), and modify it such that as an input it receives a gra-
dients map, and it outputs 2 pixels’ coordinations. Another DNN used in our work is
the DenseDepth network (Alhashim and Wonka, 2018), which receives a RGB image
as an input, and outputs a depth image.

3 Related Work

Since our approach of predicting flight instructions via pixels predictions to expose
hidden areas is novel, we searched in a broad spectrum of similar methods. In this
section, we describe works from the scene mapping and reconstruction, navigation in
unknown scenes, collision avoidance and object edges detection, and deep learning
for feature extraction and depth prediction fields.

3.1 Scene mapping and reconstruction

Mapping or reconstructing a scene is often necessary for performing tasks in unknown
scene, e.g., finding an object in the scene. However mapping usually requires large
amount of resources and computation. One popular method for scene mapping is
Bundle Adjustment (Triggs et al, 2000). Bundle adjustment is the problem of refining
a visual reconstruction to produce jointly optimal 3D structure and viewing param-
eter. This problem is not new, but keeps getting better solutions, such as (Demmel
et al, 2021), which better suites for real-time application. Additional approaches to
scene mapping include predicting volumetric occupancy with corresponding semantic
labels from a single-view RGB-D images (Dourado et al, 2021), or like (Wang et al,
2020b) which uses 3D voxels maps, and predicts the maps’ unknown parts for maps
completion/reconstruction.

Kiihner and Kiimmerle (2020) presented a LIDAR-based large-scale volumetric
urban scene reconstruction method, taking loop-closures in consideration, which
creates a high-detailed 3D meshed representation of scenes. Testing show the method
works at the scales of at least single digit Kilometers.

Chen et al (2021) uses a DNN for loop closure detection, using data generated
using a LiDAR sensor. Their system’s input is made of data concluded from 2 LiDAR
scans. The data concluded includes 1-channel depth maps, 3-channel normal maps,
1-channel intensity/remission map, and 3D semantic classes probabilities tensor. They
estimate both how well the 2 scans overlap, and the Yaw angle differences between 2
LiDAR readings.

Tiwari et al (2020) combines both classical SLAM (Bundle Adjustment) and RGB
to depth predictions to mutual complement each method’s weaknesses and result
in more refined mapping. They do that using a self-improving strategy, which both
updates the depth prediction model, and the pose prediction from the SLAM algorithm.
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It first takes RGB data, predicts a depth map, incorporate it to refine the camera’s pose
prediction. Then, it uses the new pose estimation to update the depth prediction model
using the SLAM algorithm’s depth estimations.

Cui and Ma (2019) Tries to improve SLAM algorithms by tackling the used often
assumption the environment contains only static, non-moving objects, and therefore
3D features that lay upon those objects. To do that, they use a pixel-wise segmentation
DNN to detect dynamic objects. They don’t only find those feature every image as
a stand-alone, but also compare them to the next image of the sequence, in order to
increase accuracy, and the limitations of the segmentation DNN. Then, they ignore
features laying on those objects, so only static features remain for a more robust
SLAM result.

Many of the above methods do good jobs while using different sensors. In the long
term, we believe a RGB camera provides the largest amount of information, which
includes much more than just distances. Therefore, we believe Bundle Adjustment is
going to over-live most other approaches, as one of it’s biggest issues, computational
power, will decrease with futuristic more powerful computers.

3.2 Navigation in unknown scenes

Navigation is closely related to scene mapping, and each of those problems can be
used to better the solution of the other: better navigation allows faster scene mapping,
while navigation in a mapped scene is significantly simpler.

The most relevant paper to our work is Learn-to-Score (Hepp et al, 2018). Learn-
to-Score predicts future viewpoints’ quality, with an approach named next-best-view.
Next-best-view approach chooses the action (in case of navigation — movement or
rotation) which maximizes some metric, namely, scene exposure. This is done on
a known voxel-represented map, using a 3D convolutional neural network. Unfor-
tunately, the usage of voxels severely limits the possibility of usage in real-world
scenarios, where acquiring voxel data would be challenging, especially in real-time
settings. For movement, 1 out of 9 possible movements (up, down, left, right, forward,
backward, rotate by -25, +25, or 180 degrees) is chosen according to the score that
determines the uncertainty about the world. The discreteness of the action space limits
the drone’s movement. For example, it is hard to move in a direction that is not a
multiplication of 25 degrees or to get to an altitude that is not a multiplication of the
movement unit. Finally, this method calls for depth cameras, which are significantly
heavier and larger than RGB cameras. This requirement limits the choice of the drone,
its battery life, speed, maneuverability, etc.

Multiple similar methods use different kinds of depth sensors. Sax et al (2018) uses
multiple filters on a RGB image input, such as corners detector, 2D edge detector, etc.
to decide which filters maximize the reward for some unknown motor commanding
task. They test their approach on number of tasks, such as navigation to a target,
local planning, and visual exploration. In the visual exploration, they use range-
finding lasers to detect and unlock unexplored cells in the scene. Wang and Del Bue
(2020); Nguyen et al (2020) uses a depth camera. They use a historic 3D voxels-based
reconstruction of the scene, and the current depth capture, translated into a binary -
visited/unvisited areas, in order to predict a classification of the next-best-view (up,
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down, left, or right) the agent should preform, in order to maximize the coverage of
unknown areas. Mansouri et al (2020) uses both a LiDAR sensor, and RGB cameras
for navigation in underground mines. They use the range-finder to stay at the center
of the tunnel, by using vector geometry, such that the left and right looking vectors
have as much as possible equal lengths, and the forward looking vector is largest than
a minimal length. They also have a CNN, which takes an RGB image, and outputs
a left, forward, or right commands. They also relay on an IMU sensor for altitude,
attitude and velocities estimations.

Chen and Liu (2018) uses RGB-D camera for navigation planning for unknown
scene exploration. They start with the agent’s initial pose, and plan a vector of next
poses that will maximize the coverage of all areas of the scene. Although it looks
interesting, it seems this paper makes a false assumption. They plan to go to poses
that they assume are located in free areas, while their sensors don’t see those poses
before making the decision to go there.

Chaplot et al (2020) navigates to a goal image using topological representations for
space that effectively leverage semantics and afford approximate geometric reasoning.
The robot receives a panoramic image, and predicts possible movement directions and
the direction most likely leading to the target. They model the scene in a graph. If the
model thinking the agent and the goal are in the same node, it recommends a more
specific location to travel to. Otherwise, it recommends a wider range of possibilities
to travel to.

Padhy et al (2021) tries to keep an UAV in the center of a corridor, using monocular
camera’s data. They do that while trying to fix the UAV’s poses along the central
bisector line. They use 2 DNNs. The first DNN is for positional estimations, and the
second is for angular estimations. They have also created a dataset for this task.

Celik et al (2009) uses a monocular camera for indoor navigation, by using
computer vision algorithm to determinate depths, detect vanishing points in corridors,
and other 3D features in a scene, and allow a aerial vehicle to fly in them.

(Zhou et al, 2021) presents a decentralize multi-UAV's collision-avoidance smooth
paths planning in unknown obstacle-rich scenes method, which uses both depth camera
and IMU sensors, and is able to work under unreliable communication conditions.
They use topological planning to have their paths planned from a wider perspective,
and therefore avoid local minima.

Chen et al (2019a) presents a method for exploring unknown environments using
a RGB-D camera and a bump sensor. The framework builds an estimation map of the
scene using the depth data. The actions prediction model is a DNN, which receives a
RGB image, and a 2D map of the estimated location of the robot, surrounded by the
environment. An internal policy is updated during training by the approximate map
and a collision penalty, where the reward depends on exposure and collision. Actions
for the agent are then predicted, in order to maximize the coverage of the scene.

Additional approaches that are worth mentioning, use reinforcement learning for
navigation (Devo et al, 2020; Zhu et al, 2017; Wahid et al, 2019; Ma et al, 2019).

In this section, we covered approaches that may look for targets, or expose the
scenes, using multiple types of sensors, and models. Some of those methods were
built for specific, narrow problems, and some for more general cases. We believe
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RGB cameras based methods have the advantage, as they can both contain semantic
information, and can be used for depth estimations, and therefore fit both the specific,
and the more general proposes.

3.3 Collision avoidance and object edges detection

For the safety of an agent moving inside the scene, it needs to know which areas to
avoid. Although the method we present in this work does not explicitly focus on this
task, it does work in a manner that tries to avoid obstacles implicitly.

Badki et al (2021) is a method which takes 2 consecutive RGB images, and
predicts a binary pixel-wise map. A pixel that has a value of True determinates the
object that pixel represents is about to collide with the camera’s projection plane under
a predefined amount of time. This method can work in real-time. The disadvantage
here is that we don’t know where on the projection plane the object will collide. This
means an object can be said to collide, but actually just by passes the camera without
colliding, because it’s simply too far away from the camera, yet does intersect it’s
projection plane.

Saleem et al (2020) uses RGB-D data and the agent’s orientation as the input of a
Convolutional Neural Network, which then outputs 1 out of 5 possible commands to
the agent’s controllers, in order to avoid collision with objects.

Wenzel et al (2021) uses a deep reinforcement learning approach on a simple 2D
maze to predict controller actions. They came to the conclusion simple discrete action
space provided them with the best results. The use a monocular camera. Data from
that camera is transfer into depth maps using DNN.

Yasin et al (2020b) presents a method for an UAV swarm formation-collision co-
awareness by adapting the thin-plate splines algorithm to minimize deformation of
the swarm’s formation while avoiding obstacles.

Wang et al (2020a) presents a decentralized multi-UAV collision avoidance under
imperfect sensing method, which uses a two-stage reinforcement learning training
approach, and tries to allow all the agents of an UAVs swarm to reach their targets
with minimal interferences.

Yasin et al (2020a) presents a recent survey discussing collision avoidance
strategies for UAVs, which use different types of sensors.

Alternatively, it is possible to extract the data about objects’ edges/salients from
RGB images and use it to prevent collisions, either explicitly or implicitly, during the
training of the agent’s controller (Poma et al, 2020; He et al, 2019; Zhang et al, 2020).

In this section methods that alert of an up-coming collision, give direct control
commands that prevent collisions, and collision safe multi-agent formation methods
are presented. We see those approaches as complementary/safety tools for approaches
like ours. These approaches mainly focus on where not to go, while approaches like
ours focus on where an agent should go, out of a larger number of options.
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3.4 Deep learning for feature extraction and depth prediction

Deep learning is a very active and developing area used for computer vision, useful for
various tasks. Here, we briefly mention the most relevant deep learning approaches,
directly utilized or relevant for this work.

DNNs allow high-quality feature extraction from natural images, and a sequence
of increasingly improving performance, including AlexNet (Krizhevsky et al, 2012),
VGG (Simonyan and Zisserman, 2014), ResNet (He et al, 2016), Inception-ResNet
(Szegedy et al, 2017), and DenseNet (Huang et al, 2017). Training of those networks
on a large-scale datasets can provide a meaningful features for any natural image input.

(Dhamo et al, 2019) takes a RGB image as an input, and predicts both depth data
and foreground separation masks. This allows them to predict how a scene will look
without the foreground objects, and therefore, for example, how only the walls of a
room will look, without the current objects which exist in it.

The extracted features can be further used for a variety of tasks, including classifi-
cation, regression, object detection, etc. In particular, when followed by upsampling
decoder, image-to-image translation tasks can be solved efficiently (Badrinarayanan
et al, 2015; Ronneberger et al, 2015). An example of such image-to-image task is
depth prediction from a RGB image input (Alhashim and Wonka, 2018), and (Bhat
et al, 2020) which follows and uses a transformer-based architecture block that divides
the depth range into bins whose center value is estimated adaptively per image. More
RGB image to depth map prediction methods can be seen at (Li et al, 2019) and (Laina
et al, 2016).

4 GoToNet Framework

To solve the problem of scene exposure and exploration using only an RGB camera,
we propose to use a novel dataset generator. A generated data sample consists of
RGB-D images, along with two (x,y) pixel coordinates for Goto and Lookat pixels.
These two pixels represent flying directions, and are optimized to expose the largest
amount of currently hidden areas.
Our model (visualized in Figure 3), described in Section 4.3, is trained to predict
these coordinates in three steps:
1. Predict a depth map from an RGB image.
2. Generate a gradient map from the depth map.
3. Predict the Goto and Lookat pixel coordinates from the gradient map.
The depth images are used to train the first part of the model, thus only RGB input
is required in inference time. In case depth images are available during inference,
ground truth depth can be used instead of the predicted depth map.

4.1 Dataset generation

To create a dataset, we use the Microsoft AirSim simulator (Shah et al, 2018), which
is built on the Unreal Engine (Epic Games, 2019), using a scene we built. To create
a data sample, we place the drone in a 3D pose, capture images using the RGB-D
camera, save both RGB and depth images, and follow the steps explained in Section
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Fig. 3: Navigation model overview. The input of the system (on the left) is an RGB
image. The RGB image is translated into a depth image by the DenseDepth model.
Then, using the Sobel-Feldman operator, the gradient map is extracted from the
predicted depth image. Finally, the gradient-to-pixel DNN predicts Goto and Lookat
pixels. The blue lines represent the gradient flow during training.

4.2 to generate the navigation pixels. Different parts of our model are trained on
different parts of the dataset but, as a whole, the dataset consists of pairs of RGB-D
captured images, and Goto and Lookat pixel coordinates.

4.1.1 RGB to depth dataset

Our system is trained using both RGB and depth images, and uses only RGB images
during inference. Therefore, we train one of our DNNs to predict depth images from
RGB input, using images captured by an AirSim drone’s RGB-D camera.

4.2 Goto and Lookat pixels’ inference dataset

This dataset is used to train the navigation model. The input in this case is a gradient
map, which is acquired during inference by applying the Sobel-Feldman operator
(Sobel and Feldman, 1968) to the depth map. The label is composed of the Goto and
Lookat pixel coordinates, a total of four values. To create the Goto and Lookat pixels,
the following steps take place.

4.2.1 Collisions detection

To calculate the 3D collisions points, we use the depth image. First, ignoring the depth
values, we take all the (x,y) coordinates of the image (224 x 224 = 50, 176), back-
project, and normalize them into 3D unit vectors, which all start at the camera’s center
of projection, and point according to the pixels’ locations at the camera’s projection
plane. Second, we multiply all of those unit vectors by their corresponding depth
values. After this, each depth image’s pixel, has a corresponding 3D vector, which start
at the camera’s center of projection, and ends at the estimated 3D point of it’s collision
with an object which is in the scene. We do this in order to have set of 3D points which
can be seen from this camera pose, as data for the up-coming scene painting phase.

4.2.2 Scene painting

To mark seen areas, we paint the areas in the scene that are visible from the current
position. To this end, we triangulate these 3D surfaces such that the vertices are the
3D collision points inferred from each pixel’s depth value, and the triangles’ vertices
correspond to neighboring pixels in the depth image. To reduce False-Positive triangles
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— Triangles which are likely to fill empty space, and therefore are not parts of any of
the objects’ surfaces, we then use the gradient magnitude heuristic to drop suspicious
triangles. This is done if the gradient between two neighboring pixels, corresponding
to a triangle’s vertices, is large (top 4% of all gradients). These 3D points likely lie on
different objects, and thus should not be connected. The remaining triangles, which
we denoted as suspicious, and therefore are not considered as legitimate triangles in
3D space, are separated into their vertices, and are then added to scene and painted to
denote already seen areas in the scene using a simple 3D point in space.

4.2.3 Inferring the Goto and Lookat pixels

After the visible parts of the scene are painted by a covering layer of 3D triangles, we
calculate the Goto and Lookat pixels. To do this, we check how the scene looks from
a number of possible camera poses, and use the information regarding the amount and
distribution of unseen areas, in terms of pixels representing those areas, to determine
the navigation instructions. The camera poses are chosen by K = k, x k pixels p; ;
with coordinates (x;, yj) for1 <4 < kg, 1 < j < ky, which are uniformly spread
over the image (we use k, = k; = 3, meaning K = 9, but larger values should
improve performance at the expense of additional computing demands). For each of
these K pixels, we calculate a pose for the drone by back-projecting each pixel into a
normalized 3D directional vector, which is then multiplied by a constant 1 unit of the
simulator’s distance. The result is a vector which starts at the camera’s optical center,
and ending at the inferred camera pose. An illustration can be seen in Figure 1.

From each of these K camera poses, a new RGB image, denoted I; ;, is captured.
For each of these K new RGB images, we want to count the pixels that represent
unseen areas, N; ; = |U; ;|, where U; ; is the set of unseen pixels for image I; ;. For
each of K samples, we define a weight w equal to a squared portion of unseen pixels
in this pose out of all unseen pixels:

s = Ni;
2, T
Zi,j Ni,j
2 2
Pij Nij

w;j = = 2)
" le pz?,j Z” Nz%j

The Goto pixel coordinates (g) are then calculated as a weighted average of pixels
coordinates that can be transferred into possible future locations of the agent. The
Lookat pixel coordinates (1) are calculated as a weighted average of the centers of
masses of the unseen pixels; both averages use weight w ;:

(D

g = szy “Pij 3)
0,J

l:Zwi,j C 1My 5 “4)
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where m,; ; is the center of mass of unseen pixels, defined as

m;; = L Z u (5)

©J UEUVL',]'

Using instructions based on a weighted average, instead of choosing the direction with
the maximal number of unseen pixels, allows us to reduce the minimal value of K
required for a high-quality direction choice, and makes the agent’s physical behavior
smoother during flights.

To determine U;_;, we calculate the Euclidean distance in the CIELAB color space
(AF) between the pixels’ colors, and the color that marks a pixel as seen (red). If a
pixel’s distance is smaller than a chosen threshold, it is declared as seen:

Uj=1{p|p€lj a<D.p)} (6)

where D, is a color difference function that compares the color of the pixel p with the
color used for seen pixels (red in Figure 1); « is a threshold. We used o« = 65. Usage
of the threshold allows us to compensate for the simulator’s visual effects, such as fog,
which may cause a surface to appear with minor color changes.

In order to handle the non-exposing case, where there is no camera pose, out of
the K = k; x k; camera poses, that exposes a sufficient amount of unseen pixels,
The Goto and Lookat pixels are chosen using the following method:

To detect this case, we iterate over all of the K = k; x k, camera poses. For each
camera pose we sum the number of pixels which represent areas unseen from the
original camera pose. If not one of the camera poses’ unseen pixels count, divided by
the total number of the image’s pixels, is equal or higher than a chosen percentage
threshold, it is declared as a non-exposing case. (We set the threshold to 1.5%)

If the non-exposing case was detected, both the Goto and Lookat pixels are set to
be the pixel which holds the maximum depth value. This is done in order to both make
the flight continuous, and make the agent turn to look at hopefully the largest volume
of space possible from it’s position, in hope it will allow for a better futuristic unseen
areas exposure. We noticed this case happens mostly when the agent faces a wall
directly, and therefore the pixel which holds the deepest depth value also represents a
way out of looking only at that wall.

Notice: Our method paints the scene in order to mark areas visible from the
original camera pose. To mark those visible areas as seen, we also considered using
3D features detection methods, such as SIFT (Lowe, 1999), instead. This means
that features detected from the original camera pose, and are visible from any of the
K = k; x k, camera poses, will be considered as already seen areas. While features
not visible from the original camera pose, but are visible from any of the K = k; x k
camera poses, will be considered as unseen areas. But, we came to the conclusion
using 3D features, instead of painting the scene, is less reliable. This is because, for
example, the case where there are 2 surfaces, where 1 of them is hiding the other, and
both of them do not contain any features. If the camera moves to a location which does
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Fig. 4: The DenseDepth RGB-to-depth model architecture (figure by Alhashim and
Wonka (2018))

Ground Truth Ground Truth Predicted
RGB Depth RGB-to-Depth

Fig. 5: An example of an RGB-to-depth prediction, using our test set.

expose the hidden surface, but can not detect features laying on that hidden surface, it
will not be able to conclude that this location actually does expose hidden surfaces.

4.3 GoToNet — Flight instructions framework

The proposed framework comprises of three parts: depth prediction, gradient map
extraction, and navigation. The first and the last parts are DNNs, while the second part
is a classical computer vision algorithm.

4.3.1 Depth map prediction

We train the DenseDepth model (Alhashim and Wonka, 2018) using the RGB-D part
of our dataset to predict the depth from RGB input. DenseDepth is a UNet-like model,
where the encoder is a DenseNet (Huang et al, 2017) and the decoder is made of a
series of up-sampling layers. The model’s architecture is visualized in Figure 4 and
the output example is shown in Figure 5.

4.3.2 Gradient map extraction

To transform a depth image, either generated in a previous stage or provided by a
depth camera, into a gradient map, we utilize the Sobel-Feldman operator (Sobel and
Feldman, 1968). A gradient map of a depth image represents the change of depth
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Depth to
Gradients

E’

Fig. 6: An example of the creation of a gradients map. Left: The RGB image. Middle:
The input depth image. Right: The output gradients map. We create gradient maps
using the outputs of the RGB-to-depth model as inputs.

between neighboring pixels. For example, for the x direction, the gradient map is the
approximation of 94/az where d is the depth function. A gradient map is useful since
sharp gradients may indicate a large open space hidden by an object, while a raw depth
image does not directly provide information about depth changes between neighboring
pixels. Implicitly learning relevant depth information directly from the RGB input,
with only navigation instructions as supervision, is a significantly harder task and is
prone to overfitting. An example of the usage of this algorithm can be seen in Figure 6.

4.3.3 Navigation instruction generation

Gradients encoder

—>

2 (xy)
Pixels

Illr

Fig. 7: The architecture of the model which maps gradients to Goto and Lookat pixels
(the figure is based on a figure taken from (Hazirbas et al, 2017)).

As explained earlier, our framework uses Goto, and Lookat pixels as navigation
instructions for the agent. We use a custom modification of the VGG16 network
(Simonyan and Zisserman, 2014), implemented in a fully convolutional network man-
ner (Long et al, 2015). We take 5 of the pretrained VGG16 netowork’s convolutional
layers, end each of them with batch-normalization, and a ReLU activation layers,
making them the so called CBR layers (convolution — batch normalization — ReLU).
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Ground Truth Predicted
RGB-D-to-Pixel Gradients-to-Pixels

Fig. 8: Left: An example of a data sample, which was calculated using an RGB-D
camera’s output in the simulator, and which shows the navigation Goto (red) and
Lookat (green) pixels, determining movement and rotation directions, correspondingly.
Right: The navigation pixels predicted by our model using only an RGB image as an
input.

After those 5 pretrained CBR layers, we add our own 2 not-pretrained additional CBR
layers, making the network contain a total of 7 CBR layers. The final output contains
four values, which represent the Goto, and Lookat pixels. This network (visualized
in Figure 7) is trained on 2-channel images (where the channels are for the gradients
maps, with respect to x and y). The network outputs two pairs of coordinates, and is
trained to minimize the MSE loss between the output and the Goto, and Lookat pixels’
coordinates, calculated as described in Section 4.1.

During the inference stage (shown in Figures 8 and 9), the agent backprojects the
Goto and Lookat pixels into 3D vectors. Usage of these vectors is illustrated in Figure
2. The movement is determined by Goto vector: the agent moves in the direction of the
Goto vector by a single length unit. The Lookat vector is used for rotation. We restrict
the agent rotation to the horizontal plane, i.e. only yaw rotation is performed. Thus,
we project the Lookat vector onto the horizontal plane and determine the angular
difference between the current principal axis and the projected Lookat vector. The
agent is then rotated by the resulting angle, which is restricted to the camera’s FOV.
Rotation and movement are independent and can be performed simultaneously.

5 Experiments

To evaluate the performance of the proposed algorithm, we both compare how well
is our sparse data creation process, described in Section 4.2.3, compared to a more
dense case, and also we run the model in our environment and measured how well it is
able to explore the scene at the basic case of 2D exploration, and the more advanced
3D exploration case.
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Fig. 9: An example of the gradients map to Goto Pixel Model’s prediction. The red
marker is the Goto pixel, and the Green marker is the Lookat pixel.

We compare our approach to Learn-to-Score (Hepp et al, 2018) — a voxel-based,
next-best-view, DNN-based method. Our method works in more challenging settings,
using RGB input instead of voxels, which allows simpler transferring into real-world
settings. In addition, having continuous action space and performing translation and
rotation in a single step to any point in the camera’s FOVs allows us to make better
micro-decisions, with more accurate pose changes.

In this section we explain the experiments’ settings, including some of the hyper-
parameters used (Section 5.1), the ways we evaluate both methods (Section 5.2), and
finally the comparisons between the two methods (Section 5.3).

5.1 Experimental settings

To test our approach, we use a Microsoft AirSim’s drone on a custom-made Unreal
Engine indoor scene, which includes many rooms, objects, and types of ways to move
between them.

To check how well is our sparse data creation process, Section 5.2.1 describes how
we compare it to a more dense case, where the inferred pixels are inferred using a
higher number of camera poses.

To check how well our framework works as a whole, we conduct 1000 test runs,
placing the drone in a random starting pose, laying a target in some random 2D
positions (Section 5.2.2), or 3D positions (Section 5.2.3), and letting the drone explore
the scene. The run terminates if (1) the maximum number (500) of steps is reached,
(2) the amount of novel voxels seen by drone is less than the threshold (30) for 20
consecutive steps, or (3) the drone collides with any object’s bounding box. Note
that during the dataset creation a collision is defined as actually coming into contact
with the object’s boundaries, but during testing it is defined as crossing the object’s
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Measurement ~ Distance between k = 9and k = 3

Goto pixel 0.208 +£0.104
Lookat pixel 0.021 £0.0194

Table 1: A comparison between proposed inference method using £, = &k, = 3 and
a case which selects from k£, = k, = 9 camera poses the one with the maximum
number of pixels that expose unseen areas, in units of screen diagonal length, in the
format of mean =+ std.

boundary box. This makes the conditions stricter than what the framework is trained
to do.

For our method we capture an RGB image and use the image as an input to our
navigation model to predict the Goto and Lookat pixels. We then use the Goto pixel to
fly along for 1.0 AirSim distance unit and use the Lookat pixel to rotate accordingly.

For Learn-to-Score we use a depth camera to check all possible next steps and
choose the step with the highest score, moving 1.0 AirSim distance unit, or rotating
around the yaw axis by 25 or 180 degrees.

5.2 Evaluations

We evaluate the performance of our approach by measuring various scene exposure
metrics in 2D and 3D environments. In addition we perform an ablation study to
justify the choice of the hyperparameter k.

5.2.1 Pixels Inferring Evaluation

Here we evaluate the performance of the proposed sparse data creation process,
described in Section 4.2.3, compared to a denser case. We first randomly pick 1183
camera poses, and for each of them, we use our method to determine the Goto and
Lookat pixels. For comparison with the k, = k, = 3 case used in the paper, we try
to increase the number of poses to k, = k, = 9, and instead of using our process
for sparse data, we simply choose the Goto and Lookat pixels corresponding to the
camera pose which possesses the maximum amount pixels that represent unseen
areas. The optimal calculation, utilizing all K = 224 x 224 possible camera poses,
is computationally infeasible. The difference between the methods is quantified in
distance between the Goto and Lookat pixels, in units of screen diagonal length. We
conclude that although given a ninefold computational advantage over the sparse
method, our averaging method indeed provides good results, that are close to an
optimal case’s results.
The results can be seen in Table 1.

5.2.2 2D Evaluation

We start from a simpler, limited scenario in which the drone is limited to move only on
a 2D horizontal plane. here we give only partial explanations compared to the 3D case.
As opposed to the full 3D dataset, in this case we limit ourselves to K = 1 x k, camera
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Fig. 10: The training results of the Gradients-to-pixel DNN model’s MSE loss vs.
epoch number, for the 2D case. The numbers here are higher compared to the 3D
case, since the ground-truth pixels labels lay on an 1D line (Go left-straight-right, not
up/down), while the model still can predict 2D pixels.

Measurement Ours
New voxels per camera pose 918.61 +368.04
Minimum distance to target 327.46 244 .47

Percentage of surface voxels seen ~ 4.92% £ 5.69%

Table 2: 2D evaluation of our approach in the format of mean =+ std.

poses (instead of K = k; X k). The training set consists of 37,172 data samples. For
training, the data was split into training (85%) and validation (15%) datasets. We used
learning rate of 0.0005, momentum: 0.9, and weight decay of 0.0005. Training results
can be seen in Fig. 10.

The GoToNet model 2D evaluations results can be seen in Table 2.

5.2.3 3D Evaluation

After evaluation the method on it’s own in the 2D case, here we evaluate it in the 3D
case, and also compare it to the baseline method. We train both methods by creating
a dataset for each method in the Unreal Engine simulator, while using the same
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Fig. 11: The training results of the Gradients-to-pixel DNN model’s MSELoss Vs.
epoch number, for the 3D case.

scene we designed for both. Both methods were trained under as close as possible
conditions to each other. All cameras have FOV angles of 90 degrees along both axes,
and resolutions of 224 x 224 pixels.

Learn-to-Score is trained on a dataset of 256,200 data samples, without using any
augmentations, as described in the original paper. Since for GoToNet data generation
we add additional objects during the painting phase, which slows down the rendering,
we use a smaller dataset for our model. The training set consist of 48,400 data samples.
For training, the data is split into training (85%), and validation (15%) datasets. We
use the following hyper-parameters: learning rate 0.0005, momentum 0.9, weight
decay 0.0005. Training results can be seen in Fig. 11.

The resolution of both RGB and depth images during train and test is 224 x
224 pixels. The choice of resolution is a critical one: while the lower resolution
enables faster inference, a larger one should improve the model’s decision making.
For example, with higher resolution input, the model will be able to detect sharp depth
changes in the gradient map. During training, results on the validation dataset indicate
that the root mean squared error for the Goto and Lookat pixel coordinates is 29.23
pixels on a 224 x 224 image, i.e., ~13% of the image’s horizontal/vertical size, or
~9% of the image’s diagonal size.

During the experiments, the starting poses of the test flights, which the flight paths
depend on, are randomly picked, and, therefore, are unlikely to appear in any dataset.
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Measurement Learn-to-Score (Hepp et al, 2018) Ours
New voxels per camera pose 113.15+£60.42 961.93 £ 208.65
Minimum distance to target 340.59 + 244.99 303.79 £+ 239.98
Percentage of surface voxels seen 0.89% %+ 0.80% 8.89% +7.60%

Table 3: Comparison between Learn-to-Score and our approach in the format of
mean =+ std.

For both neural networks, we use partially pretrained networks, as described
in Section 4.3. The RGB-to-depth model uses ImageNet-pretrained DenseNet-161
(Huang et al, 2017) as the encoder and the gradients-to-pixels is a modified VGG
(Simonyan and Zisserman, 2014). Then, as a complete model, we also pretrain the
gradients-to-pixels model using intermediate versions of the full dataset, built from
earlier versions of the scene and containing less samples. Later, the whole model is fine-
tuned on the final version of the dataset. During training we use data augmentations,
which included random horizontal flips and a random cropping of at least 90% of the
original image (a test flight is illustrated in Figure 12).

5.3 Comparison

We compare the methods using three metrics, described below.

To evaluate how much of the scene is exposed, we divide the scene into voxels.
For each voxel, we store a boolean variable .S,,, which determines whether it was
already seen or not. At each step, we perform ray tracing to determine which voxels
are seen and update the boolean variables accordingly. We also count the number of
voxels for which S, was updated, i.e., the number of voxels seen for the first time at
this time step.

We also evaluate the average minimum distance between randomly placed targets
and the agent’s position along the path. Each test has one target and, therefore, one
closest-to-target agent’s position along the path. In this scenario, in both methods,
we test a case where the drone, other than exploring, should also be able to find,
or get close to something, while only having a camera (RGB, or depth) as its data
source. The reason we chose to evaluate using this metric, is to check how well an
agent advances in the scene between different locations and increases its chances of
contacting a target without previous knowledge about its location.

Finally, we evaluate the average percentage of voxels each method exposes, out of
all the scene’s occupied surface voxels. For this, we determine which voxels intersect
with bounding poxes of any of the objects in scene. The voxel is considered a surface
voxel if it has at least one unoccupied neighboring voxel. Of these voxels, we count
the voxels that were seen by our agent during the episode, i.e., for which .S,, = 1 at the
end of the episode. The average results are presented in Table 3. These three metrics
represent how well a scene is exposed, in terms of both per-image exposure and total
exposure, and how easily a randomly placed target can be discovered, without previous
knowledge about where it may be.
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5.3.1 Metric design

In addition to voxel-based metrics, we attempt to implement pixel-based metrics,
using scene paining similar to dataset generation process. Unfortunately, painting the
scene during evaluation is prohibitively expensive in terms of required resources for
rendering and runtime, even though pixel-based metric would allow more accurate
and realistic evaluation of our method.

Fig. 12: A test flight at different timesteps (time progress: left to right, then top to
bottom). This is not one of the 1000 flight test described in Subsection 5.1.

5.3.2 Runtime comparison

Measurement Learn-to-Score (Hepp et al, 2018) Ours
Total runtime (GPU-minutes) 36,389 7,809
Total number of steps 70,554 82,492
Mean step time on RTX 2080 Max-Q (seconds) 31.58 5.67

Table 4: Comparison of runtime between Learn-to-Score and our approach.
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Our method is run entirely on a laptop computer with Nvidia RTX 2080 Max-Q
GPU. Due to large runtime of Learn-to-Score, we parallelize it on additional PC with
RTX 2080 Ti GPU. The runtime data is summarized in Table 4. In addition to better
performance, our method is almost an order of magnitude faster, which makes it more
feasible to be used in a real-life setup.

6 Conclusion

This work proposes a novel datasets generator and a DNN-based prediction model
framework for fast scene exposure and exploration that provides movement (Goto
pixel) and rotation (Lookat pixel) instructions for aerial vehicles, designed to maximize
the coverage of previously unseen areas of the scenes. The way the system works
allows the user to use a single RGB image, and make optimized decisions, as opposed
to many existing SLAM-based methods that try to map the current location, and only
then make movement decisions.

The data creation process in the simulator steps: 1. 3D Painting of the visible
areas. 2. Evaluating a number of possible next steps/camera poses for scene exposure
qualities. 3. Infer the navigation recommendation by weight averaging the pixels
counts from the camera poses. This allows for great flexibility which is not possible in
the real world.

After training, our model requires only RGB data. As a result, it obviates the need
for extra sensors, and their limitations. This allows the usage of smaller carriers, which
other methods do not allow.

During testing, we compared our sparse case of 3 X 3 camera posestoa 9 X 9
camera poses case, in which we inferred the instructions by choosing the pixels which
go to the camera pose which contains the maximal number of pixels representing
unseen areas. The results indicated our weighted average approach came close to the
much denser case.

We compared our method in 3D test flights to a voxel-based next-best-view scene
exposure method. In the new voxels per camera pose metric, our method exposes 850%
more voxels per camera pose. In the minimum distance to target metric, our method
brings the drone 10.5% closer to the target. In the percentage of the scene’s surface
voxels seen metric, our method exposes 998.8% more voxels. In the compute time
metric, our method calculates a command using 17.95% of the time it takes for the
baseline approach. These results indicate that our approach significantly outperforms
it.

Transferring models from simulations to the real-world settings is a separate
problem, which is extensively studied lately (Hofer et al, 2020; Kouw and Loog,
2021; Farahani et al, 2021) and is outside of the scope of this paper. However, given
the general advancement of the sim-to-real approaches to computer vision and high
realism of the simulator, we believe that transferring the approach to real-life settings
is indeed feasible. Yet, the main limitation for testing this hypothesis is not adapting
the trained network to the real life, but rather creating a polygon suitable for the testing
of the resulting agent in various settings, as well as choosing and measuring evaluation
metrics.
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7 Future work

The major possibility that we think will increase productivity the most is developing
our system to have cooperative multi-agent capabilities. The problem is: How can
agents share what they sense, and how do they divide their next action in such a way
that maximize the overall exposure per time-step ? Try to develop our system in a more
end-to-end approach, that may decrease the size of the overall model, and therefore
the runtime as well. Other possibilities mainly include optimizations: Increase the
number of camera poses used to decide the next-best-step from currently only 3 X 3
camera poses. Increase the accuracy of our seen-areas painting algorithm, so it better
minimizes the number of 3D edges that stretch inside empty spaces, instead of upon
the scene’s objects. Evaluating the system with future state-of-the-art deep neural
networks, to evaluate how well the quality of the system increases.

Declarations

Author Contributions

All authors contributed to the study conception and design. Material preparation,
data collection and analysis were performed by Tom Avrech. The first draft of
the manuscript was written by Tom Avrech, edited by Evgenii Zheltonozhskii,
Chaim Baskin and Ehud Rivlin. All authors commented on previous versions of the
manuscript. All authors read and approved the final manuscript.

References

Alhashim I, Wonka P (2018) High quality monocular depth estimation via transfer
learning. arXiv preprint arXiv:181211941 URL https://arxiv.org/abs/1812.11941

Badki A, Gallo O, Kautz J, et al (2021) Binary TTC: A temporal geofence
for autonomous navigation. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp 12,946-12,955,
URL https://openaccess.thecvf.com/content/CVPR2021/html/Badki_Binary_TTC_
A_Temporal_Geofence_for_Autonomous_Navigation_CVPR_2021_paper.html

Badrinarayanan V, Handa A, Cipolla R (2015) Segnet: A deep convolutional encoder-
decoder architecture for robust semantic pixel-wise labelling. arXiv preprint
arXiv:150507293 URL https://arxiv.org/abs/1505.07293

Bhat SF, Alhashim I, Wonka P (2020) Adabins: Depth estimation using
adaptive bins. CoRR abs/2011.14141. URL https://arxiv.org/abs/2011.14141,
https://arxiv.org/abs/2011.14141

Buyval A, Afanasyev I, Magid E (2017) Comparative analysis of ROS-based monocu-
lar SLAM methods for indoor navigation. In: Verikas A, Radeva P, Nikolaev DP,


https://arxiv.org/abs/1812.11941
https://openaccess.thecvf.com/content/CVPR2021/html/Badki_Binary_TTC_A_Temporal_Geofence_for_Autonomous_Navigation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Badki_Binary_TTC_A_Temporal_Geofence_for_Autonomous_Navigation_CVPR_2021_paper.html
https://arxiv.org/abs/1505.07293
https://arxiv.org/abs/2011.14141
https://arxiv.org/abs/2011.14141

Preprint.

GoToNet: Fast Monocular Scene Exposure and Exploration 25

et al (eds) Ninth International Conference on Machine Vision (ICMV 2016), Inter-
national Society for Optics and Photonics, vol 10341. SPIE, pp 305 — 310, URL
https://doi.org/10.1117/12.2268809

Celik K, Chung SJ, Clausman M, et al (2009) Monocular vision SLAM for indoor
aerial vehicles. In: 2009 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp 1566—1573, https://doi.org/10.1109/IROS.2009.5354050

Chang N, Rashidzadeh R, Ahmadi M (2010) Robust indoor positioning using differ-
ential wi-fi access points. Consumer Electronics, IEEE Transactions on 56:1860 —
1867. https://doi.org/10.1109/TCE.2010.5606338

Chaplot DS, Salakhutdinov R, Gupta A, et al (2020) Neural topological
SLAM for visual navigation. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), URL
https://openaccess.thecvf.com/content_ CVPR_2020/html/Chaplot_Neural_
Topological_SLLAM_for_Visual_Navigation_CVPR_2020_paper.html

Chen T, Gupta S, Gupta A (2019a) Learning exploration policies for navigation.
1903.01959

Chen W, Liu Y (2018) Active planning of robot navigation for 3d scene exploration. In:
2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(AIM), pp 516-520, https://doi.org/10.1109/AIM.2018.8452299

Chen X, Lidbe T, Milioto A, et al (2021) Overlapnet: Loop closing for lidar-
based SLAM. CoRR abs/2105.11344. URL https://arxiv.org/abs/2105.11344,
https://arxiv.org/abs/2105.11344

Chen Y, Chen Y, Wang G (2019b) Bundle adjustment revisited. arXiv preprint
arXiv:191203858 URL https://arxiv.org/abs/1912.03858

Cui L, Ma C (2019) Sof-slam: A semantic visual slam for dynamic environments.
IEEE Access 7:166,528-166,539. https://doi.org/10.1109/ACCESS.2019.2952161

Demmel N, Schubert D, Sommer C, et al (2021) Square root marginalization for
sliding-window bundle adjustment. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pp 13,260-13,268

Devo A, Mezzetti G, Costante G, et al (2020) Towards generalization in target-driven
visual navigation by using deep reinforcement learning. IEEE Transactions on
Robotics 36(5):1546-1561. https://doi.org/10.1109/TR0O.2020.2994002

Dhamo H, Tateno K, Laina I, et al (2019) Peeking behind objects: Layered depth
prediction from a single image. Pattern Recognition Letters 125:333-340. https://
doi.org/10.1016/j.patrec.2019.05.007, URL http://dx.doi.org/10.1016/j.patrec.2019.
05.007


https://doi.org/10.1117/12.2268809
https://doi.org/10.1109/IROS.2009.5354050
https://doi.org/10.1109/TCE.2010.5606338
https://openaccess.thecvf.com/content_CVPR_2020/html/Chaplot_Neural_Topological_SLAM_for_Visual_Navigation_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Chaplot_Neural_Topological_SLAM_for_Visual_Navigation_CVPR_2020_paper.html
1903.01959
https://doi.org/10.1109/AIM.2018.8452299
https://arxiv.org/abs/2105.11344
https://arxiv.org/abs/2105.11344
https://arxiv.org/abs/1912.03858
https://doi.org/10.1109/ACCESS.2019.2952161
https://doi.org/10.1109/TRO.2020.2994002
https://doi.org/10.1016/j.patrec.2019.05.007
https://doi.org/10.1016/j.patrec.2019.05.007
http://dx.doi.org/10.1016/j.patrec.2019.05.007
http://dx.doi.org/10.1016/j.patrec.2019.05.007

Preprint.

26 GoToNet: Fast Monocular Scene Exposure and Exploration

Dourado A, De Campos TE, Kim H, et al (2021) Edgenet: Semantic scene com-
pletion from a single RGB-D image. In: 2020 25th International Conference on
Pattern Recognition (ICPR), pp 503-510, https://doi.org/10.1109/ICPR48806.2021.
9413252

Epic Games (2019) Unreal engine. URL https://www.unrealengine.com

Farahani A, Voghoei S, Rasheed K, et al (2021) A brief review of domain adaptation.
In: Stahlbock R, Weiss GM, Abou-Nasr M, et al (eds) Advances in Data Science
and Information Engineering. Springer International Publishing, Cham, pp 877-894

Geva A, Rotstein H, Rivlin E (2019) Sensory routines for indoor autonomous quad-
copter. PhD thesis, Computer Science Department, Technion

Haverinen J, Kemppainen A (2009) Global indoor self-localization based on
the ambient magnetic field. Robotics and Autonomous Systems 57(10):1028—
1035. https://doi.org/https://doi.org/10.1016/j.robot.2009.07.018, URL https://www.
sciencedirect.com/science/article/pii/S0921889009001092, 5th International Con-
ference on Computational Intelligence, Robotics and Autonomous Systems (5th
CIRAS)

Hazirbas C, Ma L, Domokos C, et al (2017) Fusenet: Incorporating depth into semantic
segmentation via fusion-based cnn architecture. In: Lai SH, Lepetit V, Nishino
K, et al (eds) Computer Vision — ACCV 2016. Springer International Publishing,
Cham, pp 213-228

He J, Zhang S, Yang M, et al (2019) Bi-directional cascade network
for perceptual edge detection. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), URL
https://openaccess.thecvf.com/content_ CVPR_2019/html/He_Bi-Directional _
Cascade_Network_for_Perceptual_Edge_Detection_CVPR_2019_paper.html

He K, Zhang X, Ren S, et al (2016) Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), URL https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_
Residual_Learning_ CVPR_2016_paper.html

Hepp B, Dey D, Sinha SN, et al (2018) Learn-to-score: Efficient 3D scene exploration
by predicting view utility. In: Proceedings of the European Conference on Computer
Vision (ECCV), URL https://openaccess.thecvf.com/content_ ECCV_2018/html/
Benjamin_Hepp_Learn-to-Score_Efficient_3D_ECCV_2018_paper.html

Hofer S, Bekris K, Handa A, et al (2020) Perspectives on sim2real transfer for robotics:
A summary of the r:ss 2020 workshop. 2012.03806

Huang G, Liu Z, van der Maaten L, et al (2017) Densely connected convolutional
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern


https://doi.org/10.1109/ICPR48806.2021.9413252
https://doi.org/10.1109/ICPR48806.2021.9413252
https://www.unrealengine.com
https://doi.org/https://doi.org/10.1016/j.robot.2009.07.018
https://www.sciencedirect.com/science/article/pii/S0921889009001092
https://www.sciencedirect.com/science/article/pii/S0921889009001092
https://openaccess.thecvf.com/content_CVPR_2019/html/He_Bi-Directional_Cascade_Network_for_Perceptual_Edge_Detection_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/He_Bi-Directional_Cascade_Network_for_Perceptual_Edge_Detection_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Benjamin_Hepp_Learn-to-Score_Efficient_3D_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Benjamin_Hepp_Learn-to-Score_Efficient_3D_ECCV_2018_paper.html
2012.03806

Preprint.

GoToNet: Fast Monocular Scene Exposure and Exploration 27

Recognition (CVPR), URL https://openaccess.thecvf.com/content_cvpr_2017/html/
Huang_Densely_Connected_Convolutional CVPR_2017_paper.html

Indelman V, Roberts R, Beall C, et al (2012) Incremental light bundle adjustment. In:
Proceedings of the British Machine Vision Conference. BMVA Press, pp 134.1—
134.11, https://doi.org/http://dx.doi.org/10.5244/C.26.134

Kouw WM, Loog M (2021) A review of domain adaptation without target labels.
IEEE Transactions on Pattern Analysis and Machine Intelligence 43(3):766—785.
https://doi.org/10.1109/TPAMI.2019.2945942

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with
deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L,
et al (eds) Advances in Neural Information Processing Systems, vol 25.
Curran Associates, Inc., URL https://proceedings.neurips.cc/paper/2012/hash/
¢399862d3b9d6b76c8436924a68c45b- Abstract.html

Kiihner T, Kiimmerle J (2020) Large-scale volumetric scene reconstruction using lidar.
In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp
6261-6267, https://doi.org/10.1109/ICRA40945.2020.9197388

Laina I, Rupprecht C, Belagiannis V, et al (2016) Deeper depth prediction with fully
convolutional residual networks. In: 2016 Fourth International Conference on 3D
Vision (3DV), pp 239-248, https://doi.org/10.1109/3DV.2016.32

Li R, Xian K, Shen C, et al (2019) Deep attention-based classification network for
robust depth prediction. In: Jawahar C, Li H, Mori G, et al (eds) Computer Vision —
ACCYV 2018. Springer International Publishing, Cham, pp 663-678

Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic seg-
mentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), URL https://www.cv-foundation.org/openaccess/content_
cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html

Lowe D (1999) Object recognition from local scale-invariant features. In: Proceedings
of the Seventh IEEE International Conference on Computer Vision, pp 1150-1157
vol.2, https://doi.org/10.1109/ICCV.1999.790410

Ma L, Liu Y, Chen J (2019) Using RGB image as visual input for mapless robot
navigation. arXiv preprint arXiv:190309927 URL https://arxiv.org/abs/1903.09927

Mansouri SS, Kanellakis C, Kominiak D, et al (2020) Deploying mavs for autonomous
navigation in dark underground mine environments. Robotics and Autonomous
Systems 126:103,472. https://doi.org/https://doi.org/10.1016/j.robot.2020.103472,
URL https://www.sciencedirect.com/science/article/pii/S0921889019306256


https://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.html
https://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.html
https://doi.org/http://dx.doi.org/10.5244/C.26.134
https://doi.org/10.1109/TPAMI.2019.2945942
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1109/ICRA40945.2020.9197388
https://doi.org/10.1109/3DV.2016.32
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html
https://doi.org/10.1109/ICCV.1999.790410
https://arxiv.org/abs/1903.09927
https://doi.org/https://doi.org/10.1016/j.robot.2020.103472
https://www.sciencedirect.com/science/article/pii/S0921889019306256

Preprint.

28 GoToNet: Fast Monocular Scene Exposure and Exploration

Mazan F, Kovarova A (2015) A study of devising neural network based indoor local-
ization using beacons: First results. Computing & Information Systems 19(1):15 —
20

Michel R (2017) Information management: Wearables come in for a refit. Modern
Materials Handling URL https://www.mmh.com/article/information_management_
wearables_come_in_for_a_refit

Nguyen A, Nguyen N, Tran K, et al (2020) Autonomous navigation in complex
environments with deep multimodal fusion network. In: 2020 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp 5824-5830,
https://doi.org/10.1109/IROS45743.2020.9341494

Padhy RP, Ahmad S, Verma S, et al (2021) Localization of unmanned aerial vehicles in
corridor environments using deep learning. In: 2020 25th International Conference
on Pattern Recognition (ICPR), IEEE, pp 9423-9428

Poma XS, Riba E, Sappa A (2020) Dense extreme inception network: Towards a robust
cnn model for edge detection. In: Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), URL https://openaccess.thecvf.
com/content_WACV_2020/html/Poma_Dense_Extreme_Inception_Network_
Towards_a_Robust_ CNN_Model_for_ WACV_2020_paper.html

Reza AW, Geok T (2009) Investigation of indoor location sensing via rfid reader
network utilizing grid covering algorithm. Wireless Personal Communications
49:67-80. https://doi.org/10.1007/s11277-008-9556-4

Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedi-
cal image segmentation. In: Navab N, Hornegger J, Wells WM, et al (eds) Medical
Image Computing and Computer-Assisted Intervention — MICCAI 2015. Springer
International Publishing, Cham, pp 234-241

Saleem A, Jabri KA, Maashri AA, et al (2020) Obstacle-avoidance algorithm using
deep learning based on rgbd images and robot orientation. In: 2020 7th International
Conference on Electrical and Electronics Engineering (ICEEE), pp 268-272, https:
//doi.org/10.1109/ICEEE49618.2020.9102526

Sax A, Emi B, Zamir AR, et al (2018) Mid-level visual representations improve
generalization and sample efficiency for learning visuomotor policies. arXiv preprint
arXiv:181211971 URL https://arxiv.org/abs/1812.11971

Shah S, Dey D, Lovett C, et al (2018) Airsim: High-fidelity visual and physical
simulation for autonomous vehicles. In: Hutter M, Siegwart R (eds) Field and
Service Robotics. Springer International Publishing, Cham, pp 621-635

Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:14091556 URL https://arxiv.org/abs/1409.


https://www.mmh.com/article/information_management_wearables_come_in_for_a_refit
https://www.mmh.com/article/information_management_wearables_come_in_for_a_refit
https://doi.org/10.1109/IROS45743.2020.9341494
https://openaccess.thecvf.com/content_WACV_2020/html/Poma_Dense_Extreme_Inception_Network_Towards_a_Robust_CNN_Model_for_WACV_2020_paper.html
https://openaccess.thecvf.com/content_WACV_2020/html/Poma_Dense_Extreme_Inception_Network_Towards_a_Robust_CNN_Model_for_WACV_2020_paper.html
https://openaccess.thecvf.com/content_WACV_2020/html/Poma_Dense_Extreme_Inception_Network_Towards_a_Robust_CNN_Model_for_WACV_2020_paper.html
https://doi.org/10.1007/s11277-008-9556-4
https://doi.org/10.1109/ICEEE49618.2020.9102526
https://doi.org/10.1109/ICEEE49618.2020.9102526
https://arxiv.org/abs/1812.11971
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556

Preprint.

GoToNet: Fast Monocular Scene Exposure and Exploration 29

1556

Sobel I, Feldman G (1968) A 3 x 3 isotropic gradient operator for image processing.
presented at the Stanford Artificial Intelligence Project (SAIL)

Szegedy C, Ioffe S, Vanhoucke V, et al (2017) Inception-v4, inception-resnet and the
impact of residual connections on learning. URL https://www.aaai.org/ocs/index.
php/AAAI/AAAIL7/paper/view/14806

Tiwari L, Ji P, Tran QH, et al (2020) Pseudo rgb-d for self-improving monocular slam
and depth prediction. In: Vedaldi A, Bischof H, Brox T, et al (eds) Computer Vision
—ECCYV 2020. Springer International Publishing, Cham, pp 437-455

Triggs B, McLauchlan PF, Hartley RI, et al (2000) Bundle adjustment — a modern
synthesis. In: Triggs B, Zisserman A, Szeliski R (eds) Vision Algorithms: Theory
and Practice. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 298-372

Wahid A, Toshev A, Fiser M, et al (2019) Long range neural navigation policies for
the real world. In: 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp 82—89, https://doi.org/10.1109/IROS40897.2019.8968004

Wang D, Fan T, Han T, et al (2020a) A two-stage reinforcement learning approach
for multi-uav collision avoidance under imperfect sensing. IEEE Robotics and
Automation Letters 5(2):3098-3105. https://doi.org/10.1109/LRA.2020.2974648

Wang L, Ye H, Wang Q, et al (2020b) Learning-based 3d occupancy prediction for
autonomous navigation in occluded environments. CoRR abs/2011.03981. URL
https://arxiv.org/abs/2011.03981, https://arxiv.org/abs/2011.03981

Wang Y, Del Bue A (2020) Where to explore next? ExHistCNN for history-aware
autonomous 3D exploration. In: Vedaldi A, Bischof H, Brox T, et al (eds) Com-
puter Vision — ECCV 2020. Springer International Publishing, Cham, pp 125-140,
URL https://www.ecva.net/papers/eccv_2020/papers_ ECCV/html/6579_ECCV_
2020_paper.php

Wenzel P, Schon T, Leal-Taixé L, et al (2021) Vision-based mobile robotics obstacle
avoidance with deep reinforcement learning. arXiv preprint arXiv:210304727 URL
https://arxiv.org/abs/2103.04727

Yasin JN, Mohamed SAS, Haghbayan MH, et al (2020a) Unmanned aerial vehicles
(uavs): Collision avoidance systems and approaches. IEEE Access 8:105,139-
105,155. https://doi.org/10.1109/ACCESS.2020.3000064

Yasin JN, Mohamed SAS, Haghbayan MH, et al (2020b) Energy-efficient formation
morphing for collision avoidance in a swarm of drones. IEEE Access 8:170,681—
170,695. https://doi.org/10.1109/ACCESS.2020.3024953


https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14806
https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14806
https://doi.org/10.1109/IROS40897.2019.8968004
https://doi.org/10.1109/LRA.2020.2974648
https://arxiv.org/abs/2011.03981
https://arxiv.org/abs/2011.03981
https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/6579_ECCV_2020_paper.php
https://www.ecva.net/papers/eccv_2020/papers_ECCV/html/6579_ECCV_2020_paper.php
https://arxiv.org/abs/2103.04727
https://doi.org/10.1109/ACCESS.2020.3000064
https://doi.org/10.1109/ACCESS.2020.3024953

Preprint.

30 GoToNet: Fast Monocular Scene Exposure and Exploration

Zhang J, Yu X, Li A, et al (2020) Weakly-supervised salient object detection via
scribble annotations. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR)

Zhou X, Zhu J, Zhou H, et al (2021) Ego-swarm: A fully autonomous and decentralized
quadrotor swarm system in cluttered environments. In: 2021 IEEE International
Conference on Robotics and Automation (ICRA), pp 4101-4107, https://doi.org/10.
1109/ICRA48506.2021.9561902

Zhu Y, Mottaghi R, Kolve E, et al (2017) Target-driven visual navigation in indoor
scenes using deep reinforcement learning. In: 2017 IEEE international conference
on robotics and automation (ICRA), IEEE, pp 3357-3364, https://doi.org/10.1109/
ICRA.2017.7989381


https://doi.org/10.1109/ICRA48506.2021.9561902
https://doi.org/10.1109/ICRA48506.2021.9561902
https://doi.org/10.1109/ICRA.2017.7989381
https://doi.org/10.1109/ICRA.2017.7989381

	1 Introduction
	2 Background
	3 Related Work
	3.1 Scene mapping and reconstruction
	3.2 Navigation in unknown scenes
	3.3 Collision avoidance and object edges detection
	3.4 Deep learning for feature extraction and depth prediction

	4 GoToNet Framework
	4.1 Dataset generation
	4.1.1 RGB to depth dataset

	4.2 Goto and Lookat pixels' inference dataset
	4.2.1 Collisions detection
	4.2.2 Scene painting
	4.2.3 Inferring the Goto and Lookat pixels

	4.3 GoToNet – Flight instructions framework
	4.3.1 Depth map prediction
	4.3.2 Gradient map extraction
	4.3.3 Navigation instruction generation


	5 Experiments
	5.1 Experimental settings
	5.2 Evaluations
	5.2.1 Pixels Inferring Evaluation
	5.2.2 2D Evaluation
	5.2.3 3D Evaluation

	5.3 Comparison
	5.3.1 Metric design
	5.3.2 Runtime comparison


	6 Conclusion
	7 Future work

