Journal of Intelligent & Robotic Systems (2023) 109:31
https://doi.org/10.1007/s10846-023-01934-y

REGULAR PAPER

®

Check for
updates

A Bayesian Approach to Risk-Based Autonomy, with Applications

to Contact-Based Drone Inspections

Sverre Velten Rothmund'

- Christoph Alexander Thieme? . Ingrid Bouwer Utne? - Tor Arne Johansen'

Received: 29 September 2022 / Accepted: 17 July 2023 / Published online: 26 September 2023

© The Author(s) 2023

Abstract

Enabling higher levels of autonomy while ensuring safety requires an increased ability to identify and handle internal faults
and unforeseen changes in the environment. This article presents an approach to improve this ability for a robotic system
executing a series of independent tasks by using a dynamic decision network (DDN). A simulation case study of an industrial
inspection drone performing contact-based inspection is used to demonstrate the capabilities of the resulting system. The case
study demonstrates that the system is able to infer the presence of internal faults and the state of the environment by fusing
information over time. This information is used to make risk-informed decisions enabling the system to proactively avoid
failure and to minimize the consequence of faults. Lastly, the case study demonstrates that evaluating past states with new
information enables the system to identify and counteract previous sub-optimal actions.

Keywords Autonomy - Bayesian methods - Decision-making - Dynamic Decision Network - Risk analysis - Safety

1 Introduction

Highly automatic or autonomous mission executions have
advantages for reducing costs [1], improving performance
[2], increasing safety [3], and enabling new types of opera-
tions [3, 4]. Examples of such systems include autonomous
underwater vehicles, dynamic positioning systems for ships,
and autopilots. Today’s systems often rely on human opera-
tors to monitor them and to manually intervene if necessary
[2, 5, 6]. Developing autonomous robotic systems that can
operate without direct human supervision can enable a
wider range of missions. One example is missions where

B Sverre Velten Rothmund
sverre.v.rothmund @ntnu.no

Christoph Alexander Thieme
christoph.thieme @ntnu.no

Ingrid Bouwer Utne
ingrid.b.utne @ntnu.no

Tor Arne Johansen
tor.arne.johansen @ntnu.no

Department of Engineering Cybernetics,
Norwegian University of Science and Technology,
Trondheim, Norway

Department of Marine Technology, Norwegian University
of Science and Technology, Trondheim, Norway

communication is limited, such as underwater [4] and space
[7] operations. Another is long-term [8] and multi-agent
operations [2] that would otherwise be economically infea-
sible to continuously and directly monitor.

For a system to operate without direct human supervision,
it must be able to evaluate the situation and handle deviations
from normal operation [9]. These deviations are often con-
nected with uncertainty, making it necessary to consider the
risk of atask or operation. Risk can be defined as the “effect of
uncertainty on objectives” [10]. Hagen et al. [6] argued that a
system’s “ability to sense, interpret and act upon unforeseen
changes in the environment and the [system] itself” is vital for
achieving a high level of autonomy. Information on the state
of real-world systems and environments is often uncertain or
incomplete [11]. When acting with uncertain and incomplete
information, the system cannot avoid making suboptimal or
erroneous decisions that it should detect and act to minimize
the consequences of.

This article aims at developing a risk-based decision sys-
tem that improves the ability of an autonomous system
to interpret and act upon deviations from normal opera-
tion and to counteract the consequences of past erroneous
or sub-optimal choices. This article focuses on operational
decision-making for a robotic system executing a series of
independent tasks, such as inspection or intervention at mul-
tiple locations.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-023-01934-y&domain=pdf
http://orcid.org/0000-0002-7659-7881

31 Page2of16

Journal of Intelligent & Robotic Systems (2023) 109:31

Previous literature exists on making decisions based on
uncertainty or risk. In [12] a Bayesian belief network (BBN)
is used to evaluate the collision risk during an under-ice
operation with an autonomous underwater vehicle. Safety
critical parameters, such as distance to the ice sheet, are auto-
matically changed by considering how they affect the risk
evaluated with the BBN. In [13] an emergency landing loca-
tion for an unmanned aerial vehicle is chosen by evaluating
the risk of the different landing locations with a BBN. In [14]
a BBN is used to evaluate the effect of different recovery and
security strategies during a cyberattack against an industrial
control system. Even though these works make risk-based
decisions, they do not consider improving the system’s abil-
ity to interpret its state and the state of the environment.

An ability to infer the health state of the system based on
indirect observations is demonstrated in [15-17] by using a
Dynamic Bayesian Network (DBN). This previous research
only considers estimating the state of the system and does
not consider using the results for automatic decision-making.
Furthermore, they do not consider how the choice of actions
affects how the system develops over time.

Considering the action made by the system and using the
inferred state of hidden variables for automatic decision-
making has been done in educational systems [18-20] and
dialog systems [21, 22]. These systems use a dynamic deci-
sion network (DDN) to infer the state of the user based
on their observed response to different actions made by the
system. Even though these systems show some of the capa-
bilities needed, they are made for a distinctly different type of
problem, making them not directly applicable to automatic
decision-making for robotic systems.

In [23] a system is presented that infers the state of the
environment and the health state of a robot based on indi-
rect measurements in a DBN and uses this information for
automatic emergency fault handling. In contrast to [23], this
present article considers operational decision making which
makes it necessary to consider the risk and reward of exe-
cuting different actions, how the choice of action affects
how the system develops over time, and to re-evaluate past
actions when new information has become available, neither
of which is considered in [23].

This article combines the capabilities presented in the
earlier literature to make a risk-based decision system for
an autonomous robot executing a sequence of indepen-
dent tasks. The capability of making risk-based decisions
presented in [12—14] is combined with the capability of iden-
tifying hidden states based on indirect observations presented
in [15-17] and with the capability of considering the actions
taken by the system itself as presented in [18-22]. Further-
more, this work introduces a new capability of evaluating
past states with new information to identify past mistakes or
sub-optimal choices.

@ Springer

This article develops a DDN which combines measure-
ments available before a task is attempted with which action
that was chosen and what the outcomes of the action were.
As the model is dynamic the result of multiple task execu-
tion attempts are considered in light of each other to reveal
faults with the robotic system and adverse environmental
conditions that can not be measured directly. A heuristic is
proposed which used the DDN to evaluate if executing a
task should be attempted or skipped, which execution action
that should be used if more are available, and whether main-
tenance of the robot is needed. Additionally, the system
updates its belief regarding past states when new information
becomes available thereby identifying previously attempted
tasks that were wrongly skipped and should therefore be re-
attempted.

To demonstrate the proposed method a case study of an
industrial inspection multi-rotor drone is considered. The
drone is tasked with mapping the thickness of metal sur-
faces in an industrial facility to identify damages to the
structure. The measurements are conducted by contacting the
surface with an ultrasound probe [24-28]. The large number
of measurements needed to get sufficient coverage makes the
operation costly for a human operator to directly and contin-
uously monitor, thereby warranting the need for autonomous
execution.

The rest of the article is structured as follows: Section 2
states the problem formulation. Section 3 gives some back-
ground on Bayesian models. Section 4 presents the proposed
method for developing and using the DDN. This method is
applied to the case study in Section 5. Simulation results
from the case study are presented in Section 6. Section 7 dis-
cusses the proposed method in light of the results from the
case study. A conclusion is given in section 8.

2 Problem Statement

This article considers a robotic system that executes a
sequence of independent tasks. Tasks are considered inde-
pendent when “no task provides a necessary precondition
for the fulfillment of another task™ [29]. This article does
not consider in which order the tasks should be executed.
It is assumed that the tasks are given as an ordered list at
the start of the operation. The tasks are assumed to be time-
independent with no deadlines that have to be considered
when planning.

This article considers a part of the autonomy layer that
should decide if and how a task should be executed and
whether maintenance is needed. Task executions can fail
either due to problems related to the task making it harder
for the robotic system to solve that task in particular, prob-
lems with the robotic system making it harder for the robot

Journal of Intelligent & Robotic Systems (2023) 109:31

Page3of16 31

to solve tasks in general, or due to random failure. If the
task execution fails then the robotic system needs to decide
whether it should attempt the task again, skip the current task
as it seems impossible to complete, or request maintenance
of the robot which can repair faults that are hindering the
robot from successfully completing tasks.

Attempting to execute a task can cause a hazardous event.
A hazardous event is one which can in the worst case lead
to a loss. Crashing is an example of a hazardous event while
damage to the robotic system is an example of a loss. There
can be different ways of executing the task with different
direct costs associated with the execution and they can affect
the probability of achieving the goal of the task and causing
hazardous events.

There can be different ways of maintaining the system
that repairs or mitigates different types of faults with the
robotic system. Maintenance actions are associated with a
direct cost that the system must weigh against the advantage
of maintaining the system.

When changing task, the system can choose between
going to the next task in the sequence or returning to a
previous task. Leaving a task without fulfilling its goal is
associated with a cost.

To make decisions, measurements of relevant features of
the current task together with information on how past task
execution attempts went are available. Based on this informa-
tion, the robotic system must infer its own state and the state
of the environment to have a foundation for decision-making.

3 Background Theory

BBNs are directed acyclic graphs (DAG) used for probabilis-
tic inference. The arcs in a BBN point from a parent node
to a child node and represent dependencies. Nodes are often
modeled as being able to be in a discrete set of states. Condi-
tional probability tables (CPT) can then be used to define the
probability that a child node is in a particular state for each
possible combination of parent node states.

BBNs can be made dynamic, a DBN, by repeating the
network for each time step and connecting the nodes based
on how they depend on each other across time. Decisions
can be included in the network, making it a DDN, by letting
some of the nodes represent decision variables and including
the decision in the list of evidence. An example of a DDN is
shown in Fig. 1.

BBNS are typically used to evaluate the probability that a
particular node is in a particular state, given some evidence.
Each piece of evidence specifies which state a particular
node is in. The probabilities of interest are evaluated using
Bayesian probability laws while considering the dependen-
cies and CPTs defined by the BBN [30, 31]. Multiple general
solvers exist for evaluating Bayesian models [32]. As these

L P AP AL

Fig.1 View of a very simple DDN developed with the proposed method
where the focus is placed on the time dynamics. Objective nodes are
shown in orange, failure cause nodes in light blue, condition nodes in
dark blue, measurement nodes in green, and action nodes in gray. The
current time step (¢) is shown together with one earlier time step (r — 1)
and one future time step (r + 1)

solvers do all of the necessary computations the rest of the
article will focus on the development of the model and how
the results evaluated with the model can be used for decision
making.

4 Method

This section presents the proposed method for developing the
DDN that will be used to infer the state of the robotic system
and the environment, together with a strategy for using the
DDN to choose what action the robotic system should take.

Figure 1 shows a simplified version of the network
developed with the proposed method focusing on the time
dynamics of the DDN. Figure 2 gives another example where
more focus is placed on the nodes making up the network at
a particular time step.

The basic procedure for using the DDN is as follows:

1. If available, insert evidence based on measurements
available before a task is attempted.

2. Evaluate the risk and gain of executing different actions.

3. Execute the optimal action.

4. If available, insert evidence based on the observed out-
come of the action.

5. Make a new time-step in the DDN. Each time step rep-
resents a decision that is made.

4.1 Developing the DDN

This article proposes developing the DDN through a top-
down approach. This approach ensures that only states that
can be distinguished from each other are included. The fol-

lowing steps are used to develop the DDN:

1. Describe the operation and system.

@ Springer

31 Page4of16

Journal of Intelligent & Robotic Systems (2023) 109:31

{kD

(=

| 8 Measurement
&

[—

(o "

| o Achieving
[}

| & goal

N

14

| o :

i Failure :
| e Failure Failure
| & cause cause
|
|] :
| Failure Failure
| cause
\

(<
Q.
| ©
o)
‘ (%]
)
| o
o)
| &
(o
I Q
9
| &

Fig.2 Example network structure made using the proposed methods.
Compared to Fig. 1 this figure considers a more complicated model. In
this figure, the focus is placed on the nodes present at each time-step
in the network in which of the steps presented in Section 4.1 they are
introduced. The circular arrows represent connections across time steps

Model relevant objectives.

Model failure causes.

Model the condition of the failure causes.
Model dynamics.

Model measurements.

Quantification.

Nk WD

Step 1 - Describe the Operation and System

The operational description defines the tasks the system
should execute and which actions the robotic system can
choose between.

In the description of the robotic system, the available sen-
sors, and information from different subsystems, such as a
navigation system, are given.

Step 2 - Model Relevant Objectives

As risk is the “effect of uncertainty on objectives” [10], the
relevant objectives must be identified to make risk-based
decisions. Two types of objectives are considered: achieving
the task goal and avoiding hazardous events. Not achieving
the objectives is considered a failure, while the underlying
cause of the failure is called the failure cause. Relevant haz-
ards can be identified through different risk analysis methods,
such as preliminary hazard analysis (PHA) [33] or system
theoretic process analysis (STPA) [34]. A node is introduced
in the DDN for every goal and hazard, as shown in Fig. 2.

@ Springer

These nodes take on a binary state indicating whether the
objective will be met or not on this execution attempt.

Step 3 - Model Failure Causes

Different failure causes, such as faults in the robotic system
and adverse environmental states, can prevent the objectives
from being fulfilled. Not achieving an objective is considered
a failure. The failure causes can be identified with a risk
analysis; see [33, 34]. Nodes are introduced that represent
groups of failure causes that cannot be distinguished from
each other, shown as light blue in Fig. 2. All failure causes that
affect different measurements or that are affected differently
by the choice of action can potentially be distinguished from
each other. The failure cause nodes take on a binary state
indicating whether any failure cause in this group will cause
a failure on this execution attempt.

Step 4 - Model the Condition of the Failure Causes

The failure cause nodes introduced in the last step consider
the expected outcome of a single execution attempt. New
nodes, called condition nodes, are introduced to model the
general condition of the failure causes. These nodes could, for
example, be defined as the amount of wear or the failure rate
of a component. One condition node is introduced for each
failure cause node as shown in dark blue in Fig. 2. These
nodes can have multiple states to model varying ability to
achieve the goal.

Step 5 - Model Dynamics

A new time step is introduced in the DDN for each decision
that is made. The condition nodes introduced in step 4 are
connected to themselves between time-step as shown with the
dotted arrows in Fig. 2. This enables the DDN to combine
information over time.

Some conditions can be independent for each task. These
conditions can be modeled by having an instance of the node
for each task in the operation. The nodes representing the cur-
rent task are connected to the current time step. An example
of this is given in Fig. 3.

Step 6 - Model Measurements

Separate measurement nodes are introduced to enable the
modeling of measurement uncertainty. Measurements avail-
able before a task execution depend on the condition nodes,
while measurements of how the execution went depend on
the objective or failure cause nodes as shown in Fig. 2.

Journal of Intelligent & Robotic Systems (2023) 109:31

Page50f16 31

Fig.3 Example of how
different task-specific nodes can
be connected to the rest of the
network at different time steps.
Task 0 is connected to the rest of
the network at time steps 0, 1,
and 3, while task 1 is connected
at time step 2

Step 7 - Quantification

Bayesian models can be quantified based on expert judgment
and operational data. This enables the models to be used on
novel systems where operational data is missing. Quantifica-
tion of CPTs based on expert judgment is not a trivial task,
and many different methods exist to simplify the process
[30, 35]. This article simplifies the process by using Boolean
operators to define which combination of failure causes that
affect the different objective nodes. The CPT of the failure
cause nodes that are children of condition nodes translates
the condition into a probability of failure on this execution
attempt. The CPTs of the condition nodes specify how the
state can degrade or improve based on the choice of action.
The CPTs of the measurement nodes quantify the measure-
ment uncertainty.

4.2 Decision Policy

Finding the optimal decision policy requires solving a par-
tially observable Markov decision problem (POMDP), which
in the general case is intractable except for small problems
[36]. To circumvent this problem, a heuristic policy is pro-
posed. The policy considers the following three strategies
consisting of one or multiple actions: 1) move on to another
task, 2) attempt to execute the task once and then move on
to another task, or 3) execute a maintenance action, attempt
to execute the task execution, and then moving to another
task. The expected cost of each strategy is evaluated, and the
first action of the cheapest strategy is executed. After exe-
cuting the first action of the strategy, the optimal strategy is
re-evaluated. If strategy 2 is chosen multiple times in a row,
then the system executes the current task multiple times with-
out moving to another task. This ensures that the resulting
closed-loop behavior can be closer to optimal behavior than
any of the proposed strategies.

The cost of strategy 1, Cq, has only a cost if the goal of
the current task is not achieved. This cost, Cg, is based on
the consequence of not achieving the goal. This is shown
in Eq. 1. More cases can be added if there can be a partial
fulfillment of the goal.

The cost of strategy 2, C»(e), depends on the choice of exe-
cution action, e. There is a direct cost for executing action
e, Cg(e), and an indirect cost if a hazardous event occurs.

Task independent
condition nodes

Task 0 condition nodes

Task 1 condition nodes

There can be multiple different hazards, each associated with
its own cost, which are given as elements in the vector Cy (e).
This cost can depend on the choice of execution action. If the
execution does not achieve the goal of this task, then there
will be the additional cost of moving to another task, C. The
probability of achieving the task’s goal, Pg, and the prob-
ability of different hazardous events occurring, Py, when
executing an action are evaluated using the DDN. These val-
ues are found by evaluating the probability that the objective
nodes are in a failure state at the current time step. The result-
ing cost function is shown in equation Eq. 2. This cost is
evaluated for all possible execution actions, e, applicable to
the current task.

The cost of strategy 3, C3(m, e), depends on the choice of
maintenance action, m, and execution action, ¢. The main-
tenance action can increase the probability of achieving the
goal and reduce the probability of hazardous events occur-
ring. The effect of the maintenance action is evaluated by
inserting it as evidence in the action node at the current time
step of the DDN and then simulating one step forward in
time by temporarily adding a new time step to the DDN. The
cost of execution (strategy 2) can then be evaluated at this
time step, C2 ,, (e). The cost of the maintenance action must
be included as well. This cost is often quite high but can
improve the success rate of multiple future task execution
attempts. The maintenance cost, Cys(m), is divided by the
expected number of executions until maintenance is needed
again, N (m). The resulting cost is shown in Eq. 3 and should
be evaluated for all combinations of maintenance actions, m,
and execution actions, e.

If the goal of the current

C, = 0 task is achieved (D)

Cg Otherwise
Ca(e) =Cg(e) + Cp(e) Py + (1 — PG)Cy)
C3(m, e) =Cp(m)/N(m) + Cz m(e) (3)

When moving to another task (strategy 1), the system can
choose to revisit a previously attempted task. The expected
cost of executing a previously attempted task is evaluated by
simulating that the system moves to this task. The system
returns to a previously attempted task if the expected cost of
executing the task, C2(e), plus the cost of returning to the
previous task, Cre:, is lower than the cost of omitting the

@ Springer

31 Page6of16

Journal of Intelligent & Robotic Systems (2023) 109:31

task, C1, as shown in equation Eq. 4. A task is reattempted
if the visit is warranted for any of the available execution
actions. If none of the previously attempted tasks are worth
another attempt, then the system will move to the next task
in the sequence that is not attempted.

CRrer + Ca(e) < Cq 4

Attempting a task before and after maintaining the sys-
tem enables the system to identify if a maintenance action
helped. This behavior is encouraged by always choosing an
execution action if the current task has not been attempted
and if strategy 2 is cheaper than strategy 1. If this is not the
case, then the normal policy is followed.

5 Case Study

In this section, the proposed method is applied to a multiro-
tor drone tasked with industrial inspection. The case study
setup is developed in cooperation with the drone inspection
technology company ScoutDI. Figure 4 shows the ScoutDI
drone performing an ultrasound thickness measurement. The
case study is based on simulation.

5.1 Developing the DDN
Step 1 - Describe the Operation and System

The operation consists of measuring metal surface thickness
with an ultrasound sensor mounted on a multirotor drone. A
large number of points are typically inspected. Every inspec-
tion point is considered a task in the proposed method. The
system can choose between two different ways of inspecting
the surface of the inspection point: a normal inspection and
a slower but safer inspection. A small amount of gel is dis-
pensed from a tank mounted on the drone for each inspection.
One maintenance action available to the drone is to refill this

Fig.4 A ScoutDI prototype drone during an ultrasound inspection of
a storage tank. Courtesy ScoutDI

@ Springer

tank. Another is to request a full maintenance check by an
operator. The drone can skip inspection points deemed too
costly to inspect autonomously.

The drone is equipped with a lidar used to detect obstacles
and navigate.

Step 2 - Model Relevant Objectives

The goal of each task is to measure the surface thickness
of the inspection points. The drone is assumed to operate
in controlled industrial facilities consisting of metal surfaces
without any humans present. This makes damage to the drone
the most relevant loss. A hazard that can cause this loss is
uncontrolled contact with a surface or other object. Nodes
representing the two objectives are shownonline L1 inFig. 5.

Step 3 - Model Failure Causes

Through discussions with ScoutDI different failure causes
were identified. Some of the failure causes, such as an empty
gel tank, rust or dirt stuck on the ultrasound sensor, or inspec-
tion surfaces covered with rust or dirt can prevent data from
being gathered. Other failure causes, such as a worn motor,
poor navigation quality, or obstacles, can lead to uncontrolled
contact in addition to preventing data from being gathered. To
simplify modeling, two intermediate nodes are introduced:
one for failure causes preventing data from being gathered,
the other for failure causes preventing both controlled con-
tact and data from being gathered. These are shown on line
L2 in Fig. 5.

The drone and the surface of the inspection point are
affected differently by choice of action. Executing an inspec-
tion may damage the drone, while the surface will not be
affected. Similarly, maintaining the drone does not affect
the surface. Moving to a new inspection point will change
the surface but not affect the drone. A distinction between
drone-related and surface-related nodes is therefore needed.
Furthermore, the refill-gel action only affects the gel level.
These nodes are shown on line L3 in Fig. 5.

Before an inspection is executed, a lidar scan of the inspec-
tion surface can reveal protruding obstacles that will prevent
controlled contact and data gathering. The limited resolution
of the lidar can cause it to systematically miss thin obstacles,
such as welding joints or minor surface irregularities. A dis-
tinction between failure causes that are measurable and those
that are not can therefore be made, as shown on line L4 in
Fig. 5.

Step 4 - Model the Condition of the Failure Causes
A slightly dirty or uneven surface, or a minor fault in the

drone, can reduce the likelihood of an inspection succeeding
without hindering it completely. For all nodes except the “gel

Journal of Intelligent & Robotic Systems (2023) 109:31

Page70f 16

31

Trajectory conformity

Gathered data L1.1: Gathering data measurement L1.2: Avoiding uncontrolled
measurement
L1.2 [F S contact
T z 5 L2.1 Failure Success
- P 0.6 0.01 L2.2 Fail
- . . o s 5 z 5 oor ailure | Success
< i b .09 |4— Fai
g = a a a 0 Medium | 0.3 | 0.09 Failure 1 0
b Yes 0 1 Good 0.09 | 03 Success 0 1
bt Success 0 0 0 1 - -
| Perfect 0.01 | 0.6 T
4 |
- !
L2.1: Failure causes preventing L2.2: Failure causes preventing |
data gathering / controlled contact and data gathering|
13.1 Failure Success 7/ 3.4 Failure Success ‘
L3.2 F S F S // L3.5 F S F S \
o 133 FIS|F|s|F|s|F|s Failure | 1 | 1 | 1 | 0 \
g Failure 1(1|1(1f{1|1(1]|0 Success 0 0 0 1
2 Success [0[o|o|ofo]o]o]1 [\
- v T
) . 13.3: Surface-related failure L3-4: Surface-related failure \
13.1: GeHlevel-related fallure causes preventing causes preventing controlled \ L3.5: Drone-related failure
ca:ses prehverj‘ung L3.2: Drone-related failure data gathering contact and data gathering \ causes preventing controlled
ata gathering i .
ca;ses prehver_u'mg a1 Failure Success \ contact and data gathering
o [Gellevel [0% [10% | 20% | .. | 100% | 92ta gathering * o I = = \ "
o b
L [Failure 1|050| o 0 | * | / T Failure 1] 1] 1] o \ | . |
r\n Success | 0 (050 | 1 1 7 | SuEeEs 0 0 0 1 \
— h
| L4.1: Measurable surface- L4.2: Unmeasurable surfa i
| related failure causes related fallure causes
- preventing controlled preventing controlled_ \
o [contact and data gathering contact and data gathering \
& | t+1
<
S | \
Drone condition wrt.
Drone condition controlled contact
Gel level wrt. data gathering and data gathering
Prev. value Measurable surface Unmeasurable surface Prev. value
Prev. value e———— condition wrt. condition wrt. =
Prev. action 5 . Surface condition controlled contact ~ controlled contact Rieviaction
rev. -) -
. and data gatherin Prev.
0% uncontrolled wrt. data gathering and data gathering 8 g e
5% contact Prev. value Prev. value Prev. value contact
10% 0% 0% 0% 0% 0%
o 25% 25% 25% 25% 25%
8 90% 50% 50% 50% 50% 50%
& 95% 75% 75% 75% 75% 75%
|
1 100% 100%[100% 100% 100% 100%
) 1 — 4R - —) — %
L+ N N | N | ~ A \\ 1
Surface suitability measurement
% [condition | 0% | 25% | 50% | 75% | 100% Condition | 0% | 25% | 50% | 75% | 100%
Failure 1 |075| 05 |025| 0O Poor 05] 03 [015]005] O
Success 0 0.25 0.5 0.75 1 Medium 0.5 0.69 0.8 0.3 0.1
Good 0 0.01 | 0.05 0.6 0.4
Perfect 0 0 0 0.05 0.5

Fig.5 The conditional probability tables and dependencies in the DDN for the inspection drone case study. Some tables are intentionally left blank
and are instead given in Tables 1, 2, and 3. Nodes containing a * refer to the table marked with a * shown on the bottom left of the Fig

@ Springer

31 Page80of16

Journal of Intelligent & Robotic Systems (2023) 109:31

level" node, the states of the condition nodes reflect the aver-
age frequency at which the respective conditions will cause a
failure. These frequencies are discretized into different states,
as shown on line L5 in Fig. 5.

The state of the gel level indicates the amount of gel left.
When the gel level approaches zero, an insufficient amount
of gel might be deployed. This will prevent data from being
gathered.

Step 5 - Model Dynamics

Drone-related conditions have a probability of degrading
with each inspection attempt. The probability and sever-
ity of the degradation depend on whether an uncontrolled
contact occurred and whether a normal or safe inspection
was performed. The gel level is gradually depleted with
each inspection attempt. There can be some variation in the
amount of gel dispensed making the number of inspection
attempts before a refilled uncertain.

The surface-related conditions are assumed constant over
time and independent at each inspection point. These are
handled as discussed in Section 4.1 step 5 and illustrated in
Fig. 3.

Step 6- Model Measurements

The “surface suitability measurement" is introduced as
shown at the bottom of Fig. 5. This measurement is, as
discussed in step 3, based on how flat the area around the
inspection point seems based on the lidar scan.

After an inspection is executed, a measurement of how the
execution went is needed. Whether data is successfully gath-
ered is readily available from the ultrasound thickness sensor.
Whether an uncontrolled contact occurred cannot be directly
measured. Instead, this can be inferred based on the trajec-
tory conformity measurement. This measurement is made
by comparing the observed trajectory of the drone with the
intended trajectory and identifying any deviations in position,
velocity, and heading.

Step 7 - Quantification

Contact-based inspection drones are in the early stage of
development. It is, therefore, little or no operational data and
experience to use as a basis for the quantification. The choice
of hardware and software design will significantly affect the
quantification process. The quantification will be sensitive
to factors such as how robust the ultrasound sensor is, how
robust the drone is to impact, and how well the drone manages
to navigate. To demonstrate the proposed algorithm, some
example values are chosen in collaboration with ScoutDI.
The following assumptions were considered during the quan-
tification process:

e Some inspections require the operators to clean the
inspection surface first [37]. As this is not possible for
the drone, there is a chance that there will be surfaces
where the drone cannot gather data.

e The drone must be in stable contact to get a measurement.
Touching the wall correctly with the sensor is difficult,
making it likely that the drone will fail at some inspection
attempts.

e The sensor can become defect due to dirt or rust stick-
ing to it. This can happen even without an uncontrolled
contact occurring

e An uncontrolled contact can displace the sensor or dam-
age the drone’s integrity, making it unable to continue.
The likelihood of damaging the drone is low as it is built
to be robust to impacts.

The result of the quantification process is shown in Fig. 5
and Tables 1, 2, and 3. The initial probability distributions can
be found in Table 1. Tables 2 and 3 show the probabilities of
transitioning to a worse state for the different drone condition
nodes when an inspection is attempted. The refill gel action
will set the gel level to 100%. The full maintenance action
sets all drone-related nodes, including the gel level, to their
initial distribution.

Table 1 Initial probability

distributi Gel level Drone Surface Unmeasurable Measurable Drone condition
1strbutions condition condition surface surface wrt. controlled
wrt. data wrt. data condition wrt. condition wrt. contact and
gathering gathering controlled controlled data gathering
contact and contact and
data gathering data gathering
0% 0 0.03 0.3 0.02 0.01 0.005
25% 0 0.03 0.05 0.005 0.01 0.005
50% 0 0.04 0.05 0.005 0.01 0.005
75% 0 0.5 0.2 0.005 0.07 0.01
100% 1 0.4 0.4 0.965 0.9 0.975

@ Springer

Journal of Intelligent & Robotic Systems (2023) 109:31

Page9of16 31

Table 2 Probability of transitioning to worse states given the choice of
action and whether an uncontrolled contact is avoided. The table gives
the probability of degrading the state by different amounts. Transitions

that lead to negative probabilities are omitted before the resulting dis-
tribution is normalized. The probability of transitioning to a better state
is 0

Node name Drone condition wrt. data gathering Drone condition wrt. controlled contact
and data gathering
Action Normal inspect Safe inspect Normal inspect Safe inspect
Avoiding uncontrolled contact Failure Success Failure Success Failure Success Failure Success
-100% 0.025 0.005 0.005 0.0025 0.025 0 0.005 0
-75% 0.025 0.005 0.005 0.0025 0.025 0 0.005 0
-50% 0.025 0.005 0.005 0.0025 0.025 0 0.005 0
-25% 0.025 0.005 0.005 0.0025 0.025 0 0.005 0
-0% 0.9 0.98 0.98 0.99 0.9 1 0.98 1

5.2 Decision Policy

The decision policy presented in Section 4.2 is used with
the parameters given in Table 4. These costs are based on
the expected time use of the different actions. The expected
time use of an uncontrolled impact is based on the expected
time needed to repair the different degrees of damages that
can occur times the likelihood of them occurring from an
uncontrolled impact. It is assumed that an uncontrolled con-
tact will seldom damage the drone, making the cost relatively
low. Even if the drone is not damaged, it might require human
assistance if it falls to the ground. The cost of not achieving
the goal is based on the additional time used for a manual
inspection. Evaluating an exact value for these costs can be
difficult in practice. Some tuning of the values might there-
fore be necessary if the observed behavior is inadequate.
Having values that can be interpreted still gives an advan-
tage as it gives an intuition on what the values should be.

6 Results

This section presents four scenarios for the inspection drone
case study. The scenarios represent different types of failures
and events that are deemed likely to occur during the drone’s
mission. Scenario 1 considers a case where the ultrasound
sensor is not working. In scenario 2 the drone is unable to
have a controlled contact. Scenario 3 demonstrates the effect
measurements have on the system’s behavior. Lastly, sce-
nario 4 considers a case where the gel is depleted.

Table 3 Probability of reducing

. Gel level
the gel level by different
amounts -15% 0
-10% 0.1
-5% 0.8
-0% 0.1

The simulations are done by having a model of the drones
state and the sate of the different inspection surfaces as state
machines. Their respective states define which measurements
that are made and what the output will be of performing
an action. The drone’s state can either be working, with a
defective ultrasound sensor, or in a state making it unable to
make controlled contact. Each inspection surface can either
be ideal, unable to be measured, with a measurable blocking
obstacle, or with an immeasurable blocking obstacle. The
DDN used to make decisions is evaluated using the SMILE
[32] library for Python.

6.1 Scenario 1

In this scenario, the ultrasound sensor is not working. All
inspections end with no data being gathered but perfect trajec-
tory conformity. Figure 6 show how the belief of the system
develops over time when new inspections are attempted. Only
the belief that drone-related and surface-related failure causes
will prevent data gathering is shown. The rest of the failure
causes have a belief close to 0 throughout this scenario.

Table 4 The different costs used in the decision policy for the case
study

Symbol Cost
CE (e = Normal inspect) 0.5 min
CEg (e = Safe inspect) 1 min
Cy (e = Normal inspect) 20 min
Ch (e = Safe inspect) 10 min
Cp (m = Refill) 10 min
Cy (m = Full maintenance) 60 min
N(m = Refill) 20

N (m = Full maintenance) 30

Cg 10 min
Cret 0.5 min

@ Springer

31 Page100f16

Journal of Intelligent & Robotic Systems (2023) 109:31

Drone-related failure causes

10 preventing data gathering

Surface-related failure causes
preventing data gathering

1.0

IPO IP1 1P2] IP1 IPO IPO [1P2 IP1 IPO
0.8 +— i o.s-——//—f
/|
%5 0.6 1— 0.6 L
Soal |- | X 04 /| AR
0.2 — — 0.2 e
0.0 ! 0.0 | 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time step Time step
Time step Measured failure causes Chosen action Measured objective fulfillment

0 Surface suitability: Perfect

1 Surface suitability: Perfect
2 Surface suitability: Perfect
3 Surface suitability: Perfect
4 Surface suitability: Perfect
5 Surface suitability: Perfect
6 Surface suitability: Perfect
7 Surface suitability: Perfect
8 Surface suitability: Perfect
9 Surface suitability: Perfect
10 Surface suitability: Perfect
11 Surface suitability: Perfect
12 Surface suitability: Perfect
13 Surface suitability: Perfect
14 Surface suitability: Perfect
15 Surface suitability: Perfect

Normal inspect
Normal inspect
Normal inspect
Move to IP1
Normal inspect
Normal inspect
Normal inspect
Move to IP2
Normal inspect
Full maintenance
Normal inspect
Return to IP1
Normal inspect
Return to IPO
Normal inspect
Move to IP3

Data: No, Trajectory conformity: Perfect
Data: No, Trajectory conformity: Perfect
Data: No, Trajectory conformity: Perfect
Data: No, Trajectory conformity: Perfect
Data: No, Trajectory conformity: Perfect
Data: No, Trajectory conformity: Perfect
Data: No, Trajectory conformity: Perfect
Data: Yes, Trajectory conformity: Perfect

Data: Yes, Trajectory conformity: Perfect

Data: Yes, Trajectory conformity: Perfect

Fig.6 Scenario 1. The table shows the measurements available before
inspection, the choice of action, and the resulting measurements. The
graph shows the state of failure causes relevant in this scenario. The
solid line shows the belief of the drone that a failure cause is present

The four first time-steps of Fig. 6 shows the behavior and
beliefs of the drone when it is at the first inspection point.
As seen in the table in Fig. 6, the drone attempts to execute
an inspection, which results in no data but perfect trajec-
tory conformity. After the first inspection fails, the belief that
surface-related failure causes prevent data from being gath-
ered increases, as shown by the solid blue line. The belief
that drone-related failure causes prevent data gathering also
increases but much less. This is due to it being more probable
that a single failed inspection is caused by the surface than
by the drone. This trend continues for the subsequent inspec-
tion attempts. At time step 3, the belief that surface-related
failure causes will prevent data gathering is high enough,
making the drone skip the current inspection point and move
on to inspection point 1.

The dashed blue line in Fig. 6 shows the system’s belief
about past states evaluated at time step 3. As the stat of the
surface cannot change, the belief about the past states is equal
to the newest belief. The state of the drone can, on the other
hand, degrade, making the updated belief regarding the state
of the drone at time step O slightly lower than at time step 3.

@ Springer

at each time step. The dashed line shows the updated belief of past
states evaluated every time the drone moves to a new inspection point
(IP), which is marked with a vertical line. The color of the dashed line
indicates when the updated belief was evaluated

At inspection point 1, the same behavior is observed as
at inspection point 0. After three failed attempts, the sys-
tem skips this inspection point and moves on to inspection
point 2. When evaluating the past states at time step 7, shown
with the orange dashed line in Fig. 6, the probability that the
drone-related failure causes are preventing data gathering has
increased. Since the belief that drone-related failure causes
prevented data gathering in time steps 0-3 has increased, the
belief that surface-related failures caused the failed inspec-
tion at inspection point 0 decreases. This can be seen by the
dashed orange line being lower than the dashed blue line at
time step 0-3 for the surface-related failure causes.

After failing an inspection at inspection point 2 as well,
the belief that the drone-related failure causes prevent data
gathering is high enough, making a full maintenance worth
the cost. After maintenance, the following inspection at time
step 10 is successful. As the inspection failed before the
maintenance but succeeded after, it becomes more proba-
ble that there was a fault with the drone that was solved
by the maintenance. Reasoning backward in time decreases
the probability that surface-related failures caused the previ-

Journal of Intelligent & Robotic Systems (2023) 109:31

Page110f16 31

ously failed inspections, as shown with the dashed green line
in Fig. 6

When considering where to go next, the system evalu-
ates whether a previously visited inspection point is worth
another inspection attempt. Since the belief that the surfaces
on these inspection points caused the failures has decreased,
the system concludes that they are worth another attempt.
The system first visits inspection point 1 again, where data
is gathered successfully. This further strengthens the belief
that the drone caused the previously failed inspections. The
system then returns to inspection point O and has a successful
inspection before moving on to a new inspection point.

6.2 Scenario 2

The drone is in a condition such that it cannot establish good
contact with the surface. All inspections result in data not
being gathered and medium path conformity. The belief that

Drone-related failure causes
preventing data gathering

drone-related and surface-related failure causes prevent data
gathering and that drone-related and unmeasurable surface-
related failure causes prevent controlled contact and data
gathering is shown in Fig. 7. The rest of the failure causes
have a belief close to zero throughout this scenario.

In this scenario, the drone does not attempt to inspect the
inspection point again after the failed inspection attempt at
time step 0, as shown in Fig. 7. This is due to the large cost
associated with the possibility of having uncontrolled contact
if the inspection is reattempted. At inspection point 1, a safe
inspection action is performed since there is a considerable
probability that the failure at time step 0 was caused by the
drone. The system attempts one last inspection at inspection
point 2 before requesting full maintenance. After mainte-
nance, a safe inspection is executed since the failure might
have been caused by the surface, which was unaffected by
the maintenance action. As the inspection was successful, the
belief that surface-related failure causes prevented controlled

Surface-related failure causes
preventing data gathering

1.0 1.0
IPO IP1 P2 IP1 IPO IP1 P2 IP1
0.8 0.8
% 0.6 0.6 VZ
< [
@04 0.4 Sl
0 ANEH AN
0.2 0.2
0.0 0.0
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9
Drone-related faiure causes preventing Unmeasurable surface-related failure causes
10 controlled contact and data gathering preventing controlled contact and data gathering
“|ipo IP1 P2 IP1 IPO IP1 P2 IP1
0.8 0.8
4% 0.6 0.6
2
@ 0.4 0.4
0.2 b \ 0.2
0.0 —— 0.0 : !
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9
Time step Time step

Time step Measured failure causes

Chosen action

Measured objective fulfillment

0 Surface suitability: Perfect

Surface suitability: Perfect
Surface suitability: Perfect
Surface suitability: Perfect
Surface suitability: Perfect
Surface suitability: Perfect
Surface suitability: Perfect

© 00 O Ut i Wi+

Normal inspect

Safe inspect
Full maintenance
Safe inspect
Return to IP1
Safe inspect
Move to IP0O

Data: No, Trajectory conformity: Medium

Surface suitability: Perfect Move to IP1
Surface suitability: Perfect Safe inspect Data: No, Trajectory conformity: Medium
Surface suitability: Perfect Move to IP2

Data: No, Trajectory conformity: Medium
Data: Yes, Trajectory conformity: Perfect

Data: Yes, Trajectory conformity: Perfect

Fig.7 Scenario 2. The table shows the measurements available before
inspection, the choice of action, and the resulting measurements. The
graph shows the state of failure causes relevant in this scenario. The
solid line shows the belief of the drone that a failure cause is present

at each time step. The dashed line shows the updated belief of past
states evaluated every time the drone moves to a new inspection point
(IP), which is marked with a vertical line. The color of the dashed line
indicates when the updated belief was evaluated

@ Springer

31 Pagel120f16

Journal of Intelligent & Robotic Systems (2023) 109:31

Fig.8 Scenario 3. The table Time step

Measured failure causes

Chosen action Measured objective fulfillment

shows the measurements 0
available before inspection, the
choice of action, and the
resulting measurements. No
graphs are shown as they give
little additional information in
this scenario

N O U W N

Surface suitability: Poor
Surface suitability: Medium
Surface suitability: Medium

Surface suitability: Good

Surface suitability: Good

Surface suitability: Good
Surface suitability: Perfect
Surface suitability: Perfect

Move to IP1
Safe inspect
Move to IP2
Safe inspect
Normal inspect
Move to IP3
Normal inspect
Move to 1P4

Data: No, Trajectory conformity: Perfect

Data: No, Trajectory conformity: Perfect
Data: No, Trajectory conformity: Perfect

Data: Yes, Trajectory conformity: Perfect

contact and data gathering at inspection point 2 decreased.
When reasoning backward in time at time step 7, as shown
by the dashed green line, the belief that “drone-related fail-
ure causes prevents controlled contact and data gathering" at
time steps 0 and 2 is significantly increased. This decreases
the belief that the failed inspection was caused by surface-
related failure causes, making another attempt worth its cost.
A safe inspection is performed at inspection point 1, as there
could still be surface-related failure causes at this inspection
point.

6.3 Scenario 3

This scenario demonstrates how the surface suitability mea-
surement affects the choice of actions. Figure 8 shows how
the system decides not to attempt an inspection if the surface
suitability measurement is poor. With a medium surface suit-
ability measurement, a safe inspection is attempted, but the
system only attempts one inspection. When the surface suit-
ability measurement is good but not perfect, two inspection
attempts are attempted before moving on.

Expected value of gel level node

6.4 Scenario 4

This scenario demonstrates the effects of the gel level
node. Figure 9 shows the expected value of the gel-level
node in addition to the belief that gel-level-related failure
causes prevent data gathering to better show how the
gel depletes over time. The figure starts after 12 suc-
cessful inspections. With each inspection, the expected
gel level decreases. The belief that the “gel-level-related
failure causes preventing data gathering” first increases
when the expected gel level is close to depleted. When no
data is gathered in the inspection attempt at time step 37,
the drone assumes a low gel level caused it, making it exe-
cute a refill.

7 Discussion

Scenario 1 shows that the system is able to distinguish
between faults with the drone and adverse inspection surfaces
by combining information over time. This enables the system

Gel-level-related failure causes
preventing data gathering

10 Tiro IP1 1P2 IP3 1P4 IP5 IP6 10 Tiro IP1 P2 IP3 1P4 IP5 |P6|
0.8 0.8 i
% 0.6 0.6 !
3
0 0.4 4= 0.4
0.2 e] 0.2
0.0 = 0.0 I o
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Time step Time step
Time step Measured failure causes Chosen action Measured objective fulfillment
33 Surface suitability: Perfect Move to IP5
34 Surface suitability: Perfect ~Normal inspect Data: Yes, Trajectory conformity: Perfect
35 Surface suitability: Perfect Move to IP6
36 Surface suitability: Perfect =~ Normal inspect Data: No, Trajectory conformity: Perfect
37 Surface suitability: Perfect Refill gel
38 Surface suitability: Perfect ~Normal inspect Data: Yes, Trajectory conformity: Perfect

Fig.9 Scenario 4. The table shows the measurements available before
inspection, the choice of action, and the resulting measurements. All
inspections prior to time-step 33 resulted in data being gathered and per-
fect trajectory conformity. The graph shows the state of failure causes
relevant in this scenario. The solid line shows the belief of the drone

@ Springer

that a failure cause is present at each time step. The dashed line shows
the updated belief of past states evaluated every time the drone moves
to a new inspection point (IP), which is marked with a vertical line. The
color of the dashed line indicates when the updated belief was evaluated

Journal of Intelligent & Robotic Systems (2023) 109:31

Page130f16 31

to executing maintenance actions when needed. Further-
more, this scenario demonstrates that reasoning backward
in time enables the system to realize that the previously vis-
ited inspection points were not the cause of the failure as
it previously assumed. This enables the system to return to
previously failed tasks and reattempt the inspection.

Scenario 2 shows a case similar to scenario 1, with the
difference that the drone experienced a worse trajectory con-
formity. This could be explained by an unmeasured obstacle
in this current location, by a damage to the drone, or it could
be a random failure. The possibility that there was an unmea-
surable obstacle made the system not reattempt the failed
task, as it did in scenario 1, but rather go directly to the next
task. The possibility that there was a failure with the drone
made the drone execute a safe inspection at the second loca-
tion. This demonstrates how the system reasons with risk,
and how it considers the underlying causes while doing so.

Scenario 3 demonstrates that the system considers the
measurements available before the task execution to proac-
tively manage risk. Scenario 4 demonstrates how the gel-level
node affects the behavior. In scenario 1, the system does not
believe that the gel level caused the failed inspections, as the
failure occurs immediately after take-off. In scenario 4, many
inspections were successfully performed before the execu-
tion failed, making it probable that the gel was depleted.
This shows that the system manages to distinguish between
different types of internal faults when it affects the system
differently.

The proposed method for building the DDN ensures that
the condition nodes, which are the possible explanations
for the observed behavior, are quite general. Having gen-
eral nodes ensures that the nodes actually represent features
the system is able to distinguish based on the observations.
When there is a high belief that “drone-related failure causes
prevent data gathering”, the system does not know what the
failure cause is. It could be anything preventing the drone
from gathering data at multiple inspection points that do
not affect its motion. The sensor could be displaced, there
might be dirt on the sensor, or the sensor might be wrongly
calibrated or unsuitable for the current mission. Which of
these scenarios is true is irrelevant, as they all prevent data
from being gathered and have the same solution: request-
ing maintenance. Constructing general condition nodes for
all possible ways the system can be affected by actions and
measurements ensures that the system has a possible expla-
nation for all observations.

The DBN produced by the proposed method does not
model the severity of the losses that can be caused by the
occurrence of a hazard, such as having an uncontrolled con-
tact. The different losses that can occur may have different
severity and probabilities associated with them. Modeling
the losses could enable the system to distinguish between

different levels of severity, enabling the system to change its
behavior accordingly.

Based on the observed results, no obvious sub-optimal
behavior with the proposed heuristic decision policy was
observed. One drawback with the heuristic is the discount
factor, N(m). This factor could, in theory, be based on
the probability of degrading the drone with each inspection
attempt. This factor has a straightforward interpretation and
effect on the resulting behavior, making the discount factor
an acceptable trade-off between simplicity and quality of the
heuristic.

The resulting decision policy needs to evaluate the net-
work multiple times for each time step to simulate the effect
of different maintenance actions and to evaluate whether
the system should return to a previous point. This could
potentially be alleviated by further simplifications, such as
specifying thresholds for the different condition nodes. A pre-
defined maintenance action can then be executed when the
belief surpasses the threshold. The drawback of this approach
is that it would lose information on the interaction between
components. This is especially important for more compli-
cated systems with more causal factors.

The point of the case study was to demonstrate capabilities
that can be achieved with the proposed system. It was not to
solve the case study in the most optimal or simplest manner.
Similar behavior as the presented results could be achieved
by, for example, defining an exhaustive set of conditional
rules. These types of methods may work for very simple
problems but do not scale well for more complex problems.
Having a systematic approach, such as the one presented, that
achieves the capabilities needed for an autonomous system to
operate without human supervision can therefore be of great
value.

Evaluating DDNs becomes computationally expensive
when the number of time steps increases. The number of
time steps can be limited by using a sliding window approach
where only the n newest time steps are included in the DDN.
The initial condition of the DDN must reflect the informa-
tion that is no longer inside the sliding window. This can be
achieved by setting the priors at the first time step inside the
window equal to the posterior evaluated at the last step out-
side the window. A drawback with a sliding window approach
is that only time steps inside the window will be considered
when evaluating past states with new information. This con-
stitutes a challenge for the proposed method as the number
of time steps that are computationally feasible to consider
might be too low to consider all previously attempted tasks
that are interesting to reconsider. One possible way to allevi-
ate this problem is to find a more compact way to represent
information on previous tasks. Currently, previous tasks are
represented by multiple time steps, one for each execution
attempt and a time step for every move and repair action.

@ Springer

31 Pagel140f16

Journal of Intelligent & Robotic Systems (2023) 109:31

8 Conclusion

This article presents an approach for structuring a DDN and
using it for operational decision-making. The article’s goal is
to contribute toward enabling autonomous systems to safely
operate without direct human supervision. Through a case
study of an industrial inspection drone it is demonstrated
how the resulting system is able to increase the drones sit-
uation awareness about its own state and the state of the
environment, and how the drone can use this information to
make risk-based decisions. Additionally it is demonstrated
how evaluating past states with new information can reveal
tasks the drone wrongly skipped that it should return to for
another inspection attempt.

Future work can consider how the severity of a hazard
occurring can be modeled, how evaluating past states could
be simplified such that a longer time horizon can be consid-
ered, and on experimental validation.

Acknowledgements We would like to thank ScoutDI for cooperation
on the case study. Specifically we would like to thank Morten Fyhn
Amundsen for discussion regarding the quantification and Kristian
Klausen for general discussions on how the system works and potential
failure causes.

Author Contributions S. Rothmund and C. Thieme developed the
method and case-study with supervision from I. Utne and T. Johansen.
Software and simulations were done by S. Rothmund. The first draft of
the manuscript was written by S. Rothmund. C. Thieme, I. Utne, and
T. Johansen revised the manuscript. Funding acquisition and project
management was performed by I. Utne and T. Johansen.

Funding Open access funding provided by NTNU Norwegian Univer-
sity of Science and Technology (incl St. Olavs Hospital - Trondheim
University Hospital). The work is sponsored by the Research Coun-
cil of Norway through the UNLOCK project, project number 274441,
and through the Centre of Excellence funding scheme, project number
223254, AMOS.

Data Availability The code used for simulation will made available upon
request. Due to the use of a commercial third-party library restrictions
apply preventing sharing of the complete code. No data set was produced
in this study beyond what is shown in the figures.

Declarations

Ethics approval Not applicable as the research does not involve human
or animal subjects.

Consent to participate Not applicable as the research does not involve
human subjects.

Consent to publish Not applicable as the research does not involve
human subjects.

Competing interests T. Johansen is a shareholder and board member
in ScoutDI. S. Rothmund has had a part-time position at ScoutDI. C.
Thieme and I. Utne have no financial or non-financal interests to dis-
close.

@ Springer

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Schjglberg, I., Utne, I.B.: Towards autonomy in ROV operations.
IFAC-PapersOnLine 48(2), 183-188 (2015). https://doi.org/10.
1016/j.ifacol.2015.06.030

2. Endsley, M.R.: Autonomous Horizons: System Autonomy in the
Air Force - A Path to the Future. Technical Report 2015-0267,
United States Air Force, Washington DC (2015). http://www.af.
mil/Portals/1/documents/SECAF/AutonomousHorizons.pdf

3. Bruzzone, A.G., Massei, M., Di Matteo, R., Kutej, L.: Introduc-
ing Intelligence and Autonomy Into Industrial Robots to Address
Operations Into Dangerous Area vol. 11472 LNCS, pp. 433-
444. Springer, Cham (2013). https://doi.org/10.1007/978-3-030-
14984-032

4. Seto, M.L.: Marine Robot Autonomy. Springer, New York, NY
(2013). https://doi.org/10.1007/978-1-4614-5659-9. http://link.
springer.com/10.1007/978-1-4614-5659-9

5. Wong, C., Yang, E., Yan, X.T., Gu, D.: Autonomous robots for
harsh environments: a holistic overview of current solutions and
ongoing challenges. Systems Science & Control Engineering 6(1),
213-219 (2018). https://doi.org/10.1080/21642583.2018.1477634

6. Hagen, PE., Hegrenas, @., Jalving, B.,Midtgaard,@., Wiig, M.,
Hagen, O.K.: Making AUVs Truly Autonomous. In: Inzartsev,
A.V. (ed.) Underwater Vehicles, pp. 129-152. I-Tech, Vienna,
Austria (2009). Chap. 8. https://doi.org/10.5772/6700. http://
www.intechopen.com/books/underwatervehicles/making_auvs_
truly_autonomous

7. Jonsson, A., Morris, R.A., Pedersen, L.:Autonomy in space: Cur-
rent capabilities and future challenges. Al Magazine 28(4), 27-42
(2007)

8. German, C.R., Jakuba, M.V., Kinsey,J.C., Partan, J., Suman,
S., Belani, A.,Yoerger, D.R.: A long term vision for long-range
ship-free deep ocean operations: Persistent presence through
coordination of Autonomous Surface Vehicles and Autonomous
Underwater Vehicles. In: 2012 IEEE/OES Autonomous Under-
water Vehicles (AUV), pp. 1-7. IEEE, Southampton, UK (2012).
https://doi.org/10.1109/AUV.2012.6380753. http://ieeexplore.
ieee.org/document/6380753/

9. Utne, L.B., Sgrensen, A.J., Schjglberg, I.: Risk Management
of Autonomous Marine Systems and Operations. In: Volume
3B: Structures, Safety and Reliability. American Society of
Mechanical Engineers, Trondheim (2017). https://doi.org/10.
1115/0OMAE2017-61645. https://asmedigitalcollection.asme.org/
OMAE/proceedings/OMAE2017/57663/Trondheim, Norway/
280986

10. ISO: ISO 31000 Risk management -Principles and guidelines.
International Organization for Standardization, Geneva, Switzer-
land (2018). https://www.iso.org/iso-31000-risk-management.
html

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ifacol.2015.06.030
https://doi.org/10.1016/j.ifacol.2015.06.030
http://www.af.mil/Portals/1/documents/SECAF/AutonomousHorizons.pdf
http://www.af.mil/Portals/1/documents/SECAF/AutonomousHorizons.pdf
https://doi.org/10.1007/978-3-030-14984-032
https://doi.org/10.1007/978-3-030-14984-032
https://doi.org/10.1007/978-1-4614-5659-9
http://link.springer.com/10.1007/978-1-4614-5659-9
http://link.springer.com/10.1007/978-1-4614-5659-9
https://doi.org/10.1080/21642583.2018.1477634
https://doi.org/10.5772/6700
http://www.intechopen.com/books/underwatervehicles/making_auvs_truly_autonomous
http://www.intechopen.com/books/underwatervehicles/making_auvs_truly_autonomous
http://www.intechopen.com/books/underwatervehicles/making_auvs_truly_autonomous
https://doi.org/10.1109/AUV.2012.6380753
http://ieeexplore.ieee.org/document/6380753/
http://ieeexplore.ieee.org/document/6380753/
https://doi.org/10.1115/OMAE2017-61645
https://doi.org/10.1115/OMAE2017-61645
https://asmedigitalcollection.asme.org/OMAE/proceedings/OMAE2017/57663/Trondheim,Norway/280986
https://asmedigitalcollection.asme.org/OMAE/proceedings/OMAE2017/57663/Trondheim,Norway/280986
https://asmedigitalcollection.asme.org/OMAE/proceedings/OMAE2017/57663/Trondheim,Norway/280986
https://www.iso.org/iso-31000-risk-management.html
https://www.iso.org/iso-31000-risk-management.html

Journal of Intelligent & Robotic Systems (2023) 109:31

Page150f16 31

11.

12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Rajan, K., Saffiotti, A.: Towards a science of integrated Al and
Robotics. Artificial Intelligence 247, 1-9 (2017). https://doi.org/
10.1016/j.artint.2017.03.003

Bremnes, J.E., Thieme, C.A., Sgrensen, A.J., Utne, I.B., Norgren,
P.: A Bayesian Approach to Supervisory Risk Control of AUVs
Applied to Under-Ice Operations. Mar Technol Soc J 54(4), 16-39
(2020). https://doi.org/10.4031/MTSJ.54.4.5

Coombes, M., Chen, W.-H., Render, P.: Site Selection During
Unmanned Aerial System Forced Landings Using Decision-
Making Bayesian Networks. Journal of Aerospace Informa-
tion Systems 13(12), 491-495 (2016). https://doi.org/10.2514/1.
1010432

Qin, Y., Zhang, Q., Zhou, C., Xiong, N.: A Risk-Based Dynamic
Decision-Making Approach for Cybersecurity Protection in Indus-
trial Control Systems. IEEE Transactions on Systems, Man, and
Cybernetics: Systems 50(10), 3863-3870 (2020). https://doi.org/
10.1109/TSMC.2018.2861715

Cai, B., Liu, Y., Xie, M.: A Dynamic- Bayesian-Network-Based
Fault Diagnosis Methodology Considering Transient and Intermit-
tent Faults. IEEE. Trans. Autom. Sci. Eng. 14(1), 276-285 (2017).
https://doi.org/10.1109/TASE.2016.2574875

Luque, J., Straub, D.: Reliability analysis and updating of deterio-
rating systems with dynamic Bayesian networks. Structural Safety
62, 3446 (2016). https://doi.org/10.1016/j.strusafe.2016.03.004
Gomes, I[P, Wolf, D.F.: Health Monitoring System for
Autonomous Vehicles using Dynamic Bayesian Networks for
Diagnosis and Prognosis. J Intell & Robot Syst. 101(1), 19 (2021).
https://doi.org/10.1007/s10846-020-01293-y

Hernandez, Y., Noguez, J., Sucar, E., Arroyo-Figueroa, G.:
Incorporating an Affective Model to an Intelligent Tutor for
Mobile Robotics. In: Proceedings. Frontiers in Education. 36th
Annual Conference, pp. 22-27. IEEE, San Diego, CA (20006).
https://doi.org/10.1109/FIE.2006.322407. http://ieeexplore.ieee.
org/document/4116913/

Murray, R.C., Vanlehn, K., Mostow, J.: Looking Ahead to Select
Tutorial Actions?: A Decision-Theoretic Approach. International
Journal of Artificial Intelligence in Education (IJAIED) 14, 235-
278 (2004)

Conati, C.: Probabilistic assessment of user’s emotions in educa-
tional games. Appl. Artif. Intell. 16(7-8), 555-575 (2002). https://
doi.org/10.1080/08839510290030390

Mott, B.W., Lester, J.C.: U-DIRECTOR: A decision-theoretic
narrative planning architecture for storytelling environments.
In: Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems - AAMAS 06,
vol. 2006, p. 977. ACM Press, New York, New York, USA
(2006). https://doi.org/10.1145/1160633.1160808. http://portal.
acm.org/citation.cfm?doid=1160633.1160808

Bui, T.H., Poel, M., Nijholt, A., Zwiers, J.: A tractable
hybrid DDN-POMDP approach to affective dialogue modeling
for probabilistic frame-based dialogue systems. Natural Lan-
guage Engineering 15(2), 273-307 (2009). https://doi.org/10.
1017/S1351324908005032

Codetta-Raiteri, D., Portinale, L.: Dynamic Bayesian Networks
for Fault Detection, Identification, and Recovery in Autonomous
Spacecraft. IEEE Transactions on Systems, Man, and Cybernet-
ics: Systems 45(1), 13-24 (2015). https://doi.org/10.1109/TSMC.
2014.2323212

Trujillo, M., Martinez-de Dios, J., Martin, C., Viguria, A., Ollero,
A.: Novel Aerial Manipulator for Accurate and Robust Industrial
NDT Contact Inspection: A New Tool for the Oil and Gas Inspec-
tion Industry. Sensors 19(6), 1305 (2019). https://doi.org/10.3390/
s19061305

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Mattar, R.A., Kalai, R.: Development of a Wall-Sticking Drone for
Non-Destructive Ultrasonic and Corrosion Testing. Drones 2(1), 8
(2018). https://doi.org/10.3390/drones2010008

Kocer, B.B., Tjahjowidodo, T., Pratama, M., Seet, G.G.L.:
Inspection-while-flying: An autonomous contact-based nonde-
structive test using UAV-tools. Automation in Construction
106(July), 102895 (2019). https://doi.org/10.1016/j.autcon.2019.
102895

Gonzalez-deSantos, L.M., Martinez-Sanchez, J., Gonzalez-Jorge,
H., Navarro-Medina, F., Arias, P.. UAV payload with colli-
sion mitigation for contact inspection. Automation in Construc-
tion 115(March), 103200 (2020). https://doi.org/10.1016/j.autcon.
2020.103200

Zhang, D., Watson, R., Dobie, G., MacLeod,C., Pierce, G.:
Autonomous Ultrasonic Inspection Using Unmanned Aerial Vehi-
cle. In: 2018 IEEE International Ultrasonics Symposium (IUS),
vol. 2018-Octob, pp. 1-4. IEEE, Kobe, Japan (2018). https:/
doi.org/10.1109/ULTSYM.2018.8579727. https://ieeexplore.ieee.
org/document/8579727/

Shani, G.: Task-Based Decomposition of Factored POMDPs.
IEEE. Trans. Cybern. 44(2), 208-216 (2014). https://doi.org/10.
1109/TCYB.2013.2252009

Fenton, N., Neil, M.: Risk Assessment and Decision Analysis with
Bayesian Networks, 2nd, editio Chapman & Hall/CRC, Boca Raton
(2018)

Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern
Approach, 3rd edn. Pearson Education, Harlow (2014)
BAYESFUSION LLC: SMILE Engine. https://www.bayesfusion.
com/smile/

Rausand, M., Haugen, S.: Risk Assessment, Ist edn. Wiley, New
Jersey (2020). https://doi.org/10.1002/9781119377351. https://
onlinelibrary.wiley.com/doi/book/10.1002/9781119377351
Leveson, N.G., Thomas, J.P.. STPA Handbook, MA, USA,
p- 188 (2018). http://psas.scripts.mit.edu/home/get_file.php?
name=STPA_handbook.pdf

Mkrtchyan, L., Podofillini, L., Dang, V.N.: Methods for building
Conditional Probability Tables of Bayesian Belief Networks from
limited judgment: An evaluation for Human Reliability Applica-
tion. Reliability Engineering & System Safety 151,93-112 (2016).
https://doi.org/10.1016/j.ress.2016.01.004

Ross, S., Pineau, J., Paquet, S., Chaibdraa, B.: Online Planning
Algorithms for POMDPs. J. Artif. Intell. Res. 32, 663-704 (2008).
https://doi.org/10.1613/jair.2567

DNV GL AS: Non-destructive testing. Technical Report Decem-
ber (2015). https://rules.dnv.com/docs/pdf/DNV/CG/2015-12/
DNVGL-CG-0051.pdf

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Dr. Sverre Velten Rothmund received his MSc degree in 2018 and his
PhD in 2023, both from the Department of Engineering Cybernetics
at the Norwegian University of Science and Technology, Trondheim,
Norway. His PhD was done in affiliation with the Center of Excellence
on Autonomous Marine Operations and Systems (NTNU AMOS),
where the focus of the PhD was on applying tools and concepts from
the risk sciences in the control of autonomous systems. Sverre cur-
rently works as a senior engineer at the drone inspection technology
company ScoutDI, where his work focuses on flight robustness and
autonomy.

@ Springer

https://doi.org/10.1016/j.artint.2017.03.003
https://doi.org/10.1016/j.artint.2017.03.003
https://doi.org/10.4031/MTSJ.54.4.5
https://doi.org/10.2514/1.I010432
https://doi.org/10.2514/1.I010432
https://doi.org/10.1109/TSMC.2018.2861715
https://doi.org/10.1109/TSMC.2018.2861715
https://doi.org/10.1109/TASE.2016.2574875
https://doi.org/10.1016/j.strusafe.2016.03.004
https://doi.org/10.1007/s10846-020-01293-y
https://doi.org/10.1109/FIE.2006.322407
http://ieeexplore.ieee.org/document/4116913/
http://ieeexplore.ieee.org/document/4116913/
https://doi.org/10.1080/08839510290030390
https://doi.org/10.1080/08839510290030390
https://doi.org/10.1145/1160633.1160808
http://portal.acm.org/citation.cfm?doid=1160633.1160808
http://portal.acm.org/citation.cfm?doid=1160633.1160808
https://doi.org/10.1017/S1351324908005032
https://doi.org/10.1017/S1351324908005032
https://doi.org/10.1109/TSMC.2014.2323212
https://doi.org/10.1109/TSMC.2014.2323212
https://doi.org/10.3390/s19061305
https://doi.org/10.3390/s19061305
https://doi.org/10.3390/drones2010008
https://doi.org/10.1016/j.autcon.2019.102895
https://doi.org/10.1016/j.autcon.2019.102895
https://doi.org/10.1016/j.autcon.2020.103200
https://doi.org/10.1016/j.autcon.2020.103200
https://doi.org/10.1109/ULTSYM.2018.8579727
https://doi.org/10.1109/ULTSYM.2018.8579727
https://ieeexplore.ieee.org/document/8579727/
https://ieeexplore.ieee.org/document/8579727/
https://doi.org/10.1109/TCYB.2013.2252009
https://doi.org/10.1109/TCYB.2013.2252009
https://www.bayesfusion.com/smile/
https://www.bayesfusion.com/smile/
https://doi.org/10.1002/9781119377351
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119377351
https://onlinelibrary.wiley.com/doi/book/10.1002/9781119377351
http://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
http://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
https://doi.org/10.1016/j.ress.2016.01.004
https://doi.org/10.1613/jair.2567
https://rules.dnv.com/docs/pdf/DNV/CG/2015-12/DNVGL-CG-0051.pdf
https://rules.dnv.com/docs/pdf/DNV/CG/2015-12/DNVGL-CG-0051.pdf

31 Page160f16

Journal of Intelligent & Robotic Systems (2023) 109:31

Dr. Christoph Alexander Thieme is currently a researcher at SINTEF
Digital in Trondheim, Norway, where he applies his knowledge within
the fields of risk, safety, human factors, and autonomous systems to
different research projects related to technical safety and security of
socio-technical systems. He holds a PhD in Marine Technology from
NTNU, with specialization in safety, reliability, and risk assessment
for autonomous systems. He is a co-organizer of the International
Workshop on Autonomous System Safety and is Visiting Professor at
the University of Toulon lecturing on Risk and Reliability engineering
and potential application of Al methods.

Professor Ingrid Bouwer Utne is a professor at Department of Marine
Technology, NTNU, where she performs research on risk assessment
and modeling of marine and maritime systems. Utne is an affiliated
Researcher in the Center of Excellence on Autonomous Marine Oper-
ations and Systems (NTNU AMOS). She is a principal investigator
of the research projects UNLOCK and ORCAS. These projects focus
on supervisory risk control and bridge the scientific disciplines of risk
management and engineering cybernetics aiming to enhance safety
and intelligence in autonomous systems. She is also responsible for
the work package on Safety and Assurance in the Centre for Research
based Innovation on Autonomous Ships (SFI Autoship).

@ Springer

Professor Tor Arne Johansen received the MSc degree in 1989 and the
PhD degree in 1994, both in electrical and computer engineering, from
the Nowegian University of Science and Technology, Trondheim, Nor-
way. From 1995 to 1997, he worked at SINTEF as a researcher before
he was appointed Associated Professor at the Norwegian University of
Science and Technology in Trondheim in 1997 and Professor in 2001.
He has published several hundred articles in the areas of control, esti-
mation and optimization with applications in the marine, aerospace,
automotive, biomedical and process industries. In 2002 Johansen co-
founded the company Marine Cybernetics AS where he was Vice
President until 2008. Prof. Johansen received the 2006 Arch T. Col-
well Merit Award of the SAE, and is currently a principal researcher
within the Center of Excellence on Autonomous Marine Operations
and Systems (NTNU-AMOS) and director of the Unmanned Aerial
Vehicle Laboratory at NTNU and the SmallSat Laboratory at NTNU.
He recently co-founded the spin-off companies Scout Drone Inspec-
tion, UBIQ Aerospace, Zeabuz and SentiSystems.

	A Bayesian Approach to Risk-Based Autonomy, with Applications to Contact-Based Drone Inspections
	Abstract
	1 Introduction
	2 Problem Statement
	3 Background Theory
	4 Method
	4.1 Developing the DDN
	Step 1 - Describe the Operation and System
	Step 2 - Model Relevant Objectives
	Step 3 - Model Failure Causes
	Step 4 - Model the Condition of the Failure Causes
	Step 5 - Model Dynamics
	Step 6 - Model Measurements
	Step 7 - Quantification

	4.2 Decision Policy

	5 Case Study
	5.1 Developing the DDN
	Step 1 - Describe the Operation and System
	Step 2 - Model Relevant Objectives
	Step 3 - Model Failure Causes
	Step 4 - Model the Condition of the Failure Causes
	Step 5 - Model Dynamics
	Step 6- Model Measurements
	Step 7 - Quantification

	5.2 Decision Policy

	6 Results
	6.1 Scenario 1
	6.2 Scenario 2
	6.3 Scenario 3
	6.4 Scenario 4

	7 Discussion
	8 Conclusion
	Acknowledgements
	References

