
https://doi.org/10.1007/s10846-023-02011-0

SURVEY PAPER

A Review of Task Allocation Methods for UAVs

George Marios Skaltsis1 · Hyo-Sang Shin1 · Antonios Tsourdos1

Received: 31 January 2023 / Accepted: 31 October 2023 / Published online: 21 November 2023
© The Author(s) 2023

Abstract
Unmanned aerial vehicles, can offer solutions to a lot of problems, making it crucial to research more and improve the task
allocation methods used. In this survey, the main approaches used for task allocation in applications involving UAVs are
presented as well as the most common applications of UAVs that require the application of task allocation methods. They
are followed by the categories of the task allocation algorithms used, with the main focus being on more recent works. Our
analysis of these methods focuses primarily on their complexity, optimality, and scalability. Additionally, the communication
schemes commonly utilized are presented, as well as the impact of uncertainty on task allocation of UAVs. Finally, these
methods are compared based on the aforementioned criteria, suggesting the most promising approaches.

Keywords Task allocation · UAVs · Auction based algorithms · Optimisation · Reinforcement learning · Game theory ·
Metaheuristics

1 Introduction

In this review we focus on the task allocation techniques
used in UAVs applications. With the increase in computa-
tional power over the last years as well as the production
of more efficient electrical motors and composite materi-
als the usage of UAVs has increased dramatically for both
domestic and military applications. These applications, that
require the use of task allocation techniques inmultipleUAVs
systems, include mobile edge computing (MEC), military
applications, like attack of ground or aerial targets, intelli-
gence surveillance and reconnaissance (ISR), Suppression of
Enemy Air Defenses (SEAD) and Destruction of Enemy Air
Defenses (DEAD), Search and Rescue missions (SAR) for
both military and civilian operations as well as other civilian
operations.

A lot of tasks need to be allocated in UAVs applications
and specifically the distributed ones, are highly complex and
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may need more than one agent in order to be successfully
completed. Also, having multiple agents competing or coop-
erating in an environment can lead to more efficient task
allocation, since usually multiple agents can allocate tasks
faster and also improve the robustness of the system, being
more tolerant to agent’s losses ormalfunctions.Moreover, the
usage of multiple agents can help reduce cost, since rather
than using a costly agent, it may be feasible to employ inex-
pensive and disposable ones.All these reasons highlight,why
the scientific community has increased the research efforts in
task allocation of UAVs, showing an ever increasing interest
in this research direction [1].

One crucial problem that task allocation techniques aim
to solve, is the problem of division of labour, that basically
entails the choice of the tasks that should be allocated to spe-
cific agents and also the choice of the communication type
that will be used between the agents. Generally, division of
labour has to do with the procedure that determines each
agent’s performance in order for the system to achieve opti-
mal overall performance [1, 2]. Moreover, the procedure of
finding an optimal or near optimal solution to task allocation
is not easy, since it has been proven to be NP hard in the
general case [2, 3].

Task allocation can serve various objectives, including
minimizing task execution time, reducing agent idle time,
maximizing task completion time, increasing the number of
completed tasks within a specified time frame, enhancing the
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reliability of the task allocation process (i.e., successfully
completing the assigned tasks), among others. Generally,
the primary goal is always to achieve overall optimal per-
formance of the system [4], but the notion of optimal
performance can be difficult to define, since it is a notion
difficult to quantify and also can depend on each agent’s own
perception of the environment. Therefore, the concept of util-
ity is used instead, that is mainly an estimate of the value or
cost of the task allocation process in relation to the system’s
performance [2].

Task allocation can be either static or dynamic, depending
on the problems it aims to solve. Static task allocation can be
easier to implement, therefore most of the initial algorithms
were static. But, since most real life problems are complex
dynamic environments, these types of algorithms are getting
more and more attention from the research community, since
they exhibit greater resilience in handling online alterations
to tasks or the environment, thereby resulting in amore robust
performance [5]. Also, the task allocation methods can be
divided into decentralised and centralised methods, depend-
ing on the method of communication between the agents and
also to homogeneous and heterogeneous methods, depend-
ing on the type of agents used. Working with homogeneous
agents is easier, since they have the same communication
requirements and action and observation spaces and can also
have less computational cost. But, again, in real applications
heterogeneous agents are frequently needed. For example,
UAVs, that are the focus of this review, can have different
types of sensors on board, depending on the task they have
to fulfill and different types of UAVs might be needed for the
successful completion of a mission. Although heterogeneity
might augment both computational and purchasing costs, it
can be required in many cases of more complex or closer to
reality scenarios [6, 7].

Auction (or market) based approaches, game theory based
approaches, optimization based approaches (including deter-
ministic optimization, heuristic algorithms, metaheuristic
algorithms, etc.), and reinforcement learning techniques are
among the primary task allocation techniques employed in
UAVs. There are also hybrid approaches involving two or
more techniques and also some other approaches that do not
belong to the above categories. Depending on the task allo-
cation method used, the solution found is almost always a
suboptimal, approximate one and depending on the task allo-
cation method used, can have various degrees of efficiency,
complexity and scalability.

1.1 CommonTask Allocation Applications of UAVs

1.1.1 MEC Applications

In the last few years, UAVs have been researched a lot in the
field of Mobile Edge Computing (MEC). UAVs can play the

role ofmobile base stations in areaswith lowcoverage of base
stations, they can be used in computation offloading to MEC
servers or to the cloud and in spectrum resource allocation,
among others. MEC covers a very broad spectrum of appli-
cations [8–12]. Most of the papers researching MEC focus
on minimising the energy consumption, sometimes together
with computation delays, of the UAVs used, like in [13–23].
There are, also, other applications of MEC involving task
allocation, like space-air-ground networks [24, 25], security
in MEC [26, 27] and mobile cloud computing [28].

1.1.2 Military Applications

The greater portion of applications in UAVs task allocation
covers military applications. Many researchers are occu-
piedwith intelligence, surveillance and reconnaissance (ISR)
missions for multiple UAVs. ISR applications include gen-
eral reconnaissance [29], reconnaissance for heterogeneous
UAVs and targets [30], cooperative reconnaissance and mis-
sion strategy [15] and surveillance and reconnaissance [31,
32]. Also, other applications include surveillance with inter-
cept probability [33] and surveillance with task uncertainties
[11].

Othermilitary applications include Suppression of Enemy
Air Defense (SEAD) [34, 35], target attacking [36–38] and
air combat [39].

A very broad category is the combination of ISRmissions
with attack. In most of the approaches, there are UAVs that
have both ISR and attack capabilities, like in [40–42] and
heterogeneous UAVs that have both ISR and attack capabil-
ities, but with different performance values in some of these
capabilities, like in [43]. Also, there are approaches having
different UAVs for each role [44, 45] and a mixture of all the
previous approaches [46].

1.1.3 Search and Rescue (SAR)

Search and Rescue (SAR) missions are a very common field
of usage of UAVs, having mostly as goals the maximisa-
tion of the number of survivors, the minimization of the time
needed for the termination of the SAR mission and the min-
imisation of the distance travelled from the UAVs. The UAVs
taking part in SARmissions can have both search and rescue
capabilities [47, 48] or two different types of UAVs could
exist, with one type being focused on searching for survivors
and the other types focused on the rescue mission [49–51].
Other schemes used include the usage of two different types
of UAVs, where one type is used for providing food to sur-
vivors and the other one for providing medicines like in [52,
53] and the cooperation of UAVs and UGVs for SAR mis-
sions in mountain difficult terrain areas [54].
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1.1.4 Civilian Applications

There are also other civilian applications where task alloca-
tion techniques for multiple UAVs are needed. One field with
potential for future deployment of UAVs is the agricultural
sector where UAVs can be used for crops protection, spray-
ing with pesticides and fertilizers and humidity monitoring,
among others, like in [25, 55]. Other applications like areas
monitoring and target tracking might need a high degree of
cooperation between UAVs, especially when they navigate
in complex urban environments, including high densely built
buildings or factories [56, 57].

Other applications include electric grid inspection [58],
product transfers and logistics [59], structure assembly by
cooperative aerial robots [60], crowdsensing [61], and wild-
fires (see [62] for a comprehensive review).

2 Communication Schemes of Task
AllocationMethods

Based on whether or not a central agent exists, the task allo-
cation methods are divided into the following two categories
(Figs. 1 and 2).

2.1 Centralised Task Allocation

In centralised methods a central agent exists, that can com-
bine information and observations from other agents and also
manage any existing negotiations, if required by the algo-
rithm used, allocating the tasks to the other agents. Usually,
in that case, a global utility function of the system exists too
[1, 63–65].

This type of task allocation algorithms might be recom-
mended in cases where reduced system resources or reduced
implementation cost is the goal, since most of the computa-
tional power is needed on the central agent only, unlike the
decentralised case. They usually can’t be efficiently applied
to systems with large numbers of agents, since they have
increased computational cost. Also, another reason for the
lower degree of scalability is that all the agents have to

Fig. 1 Acentralised system,with agentA7 being the central coordinator

Fig. 2 A decentralised system

communicate with the central one making the communica-
tion burden very high on large numbers of agents. But, the
central allocation of the tasks helps avoid conflicting task
assignments, sometimes making unnecessary the existence
of a consensus phase and also in some cases an optimal solu-
tion can be found. Also, these algorithms are frequently used
in static task allocation methods, since they cannot easily
adjust to highly dynamic environments, lacking in robust-
ness, especially in cases of malfunction of the central agent,
impairing the overall performance [46, 66].

2.2 Decentralised Task Allocation

Recently, researchers are more and more interested in decen-
tralised algorithms due to their ability to address some
of the limitations of centralised algorithms. Decentralised
algorithms operate without a central agent responsible for
assigning the tasks, but with agents using their local obser-
vations and a local perception of the environment as well as
having the ability to communicate and negotiate with one
another, if it is required by the algorithm in use. This allows
for the task allocation decision to be made locally, by each
agent, in a distributed manner. Each agent may also have its
own utility function, with the overall utility function being
estimated [1, 63–65].

These methods offer several benefits, including robust-
ness in terms of agent malfunctions with little impact on
overall performance. Additionally, they are highly scalable,
since the communication requirements are usually less than
in the centralised methods, since no frequent communication
with a central coordinator is necessary and in some cases, the
other agents can even be perceived as part of the environment.
Another advantage is their relatively low computational cost,
compared with the centralised methods, making them well-
suited for use in large-scale systems. However, the downside
is that thesemethodsmayonly provide suboptimal or approx-
imate solutions to the task allocation problem. Furthermore,
because of the lack of the central coordinator, a consensus
algorithmmaybe necessary, in some task allocationmethods,
to resolve conflicts that can arise from local task assignments
[46, 66].
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3 Types of Methods used in Task Allocation
of UAVs

Numerous methods are employed for task allocation in
UAVs. Presented below, is a classification and comprehen-
sive explanation of these techniques, emphasizing their key
features. (see Fig. 3). Also, in every category, a table sum-
marizes the key information from every algorithm, like the
application on which the UAVs could be used, the name of
the algorithm used, the metric and the key characteristics of
the algorithm. The metric used is usually the baseline algo-
rithm with which the performance of the proposed algorithm
was compared or the method that was used to prove the key
advantages of the algorithm, like simulation or experiments.
The characteristics of the proposed algorithm are proved by
comparing it to themetric, usually being the baseline asmen-
tioned before.

3.1 Auction Based Algorithms

A commonly utilized group of algorithms used in task allo-
cation of UAVs are the auction-based algorithms. These
methods rely on economic principles, with agents utilizing a
negotiation protocol to bid on tasks in an auction, based on
their local perception of the environment. As a result, these
approaches are often referred to as market-based. The agents
bid based on the calculated utility or cost of the task, aiming
to achieve the highest utility or lowest cost for the allocated
task. Taking into consideration the local utility functions of
the agents, a global objective function can be optimised.
Depending on whether the algorithm is centralised or not,
the auctioneer can either be either the central coordinator

agent or the auction can be conducted in a decentralised way
by the other agents. The auctions, which can involve one or
several tasks, may require multiple rounds [7, 63, 67, 68].

Auction-based algorithmshavenumerousbenefits, includ-
ing high solution efficiency, despite the fact that they may
only provide suboptimal solutions, aswell as a gooddegree of
robustness. This is because they incorporate elements of both
centralized and decentralizedmethods.Additionally, they are
scalable, as they have amoderate computational and commu-
nication cost. They are particularly well-suited for dynamic
task allocation, as new tasks can be added or removed from
the auction procedure [1].

3.1.1 CBBA Based Methods

The consensus based bundle algorithm (CBBA) [69] is a
decentralised technique for solvingmulti-objective optimiza-
tion problems in UAVs. It enables agents to obtain solutions
regardless of inconsistencies in their situational awareness.
The utility perceived by each agent for performing bundles of
tasks serves as the cost function and the algorithm employs
auctions with greedy heuristics in the first stage to select
tasks and uses a consensus-based procedure in the second
stage to resolve any overlapping tasks. Although CBBA pro-
vides suboptimal solutions for the single robot single task
allocation problem [2], the algorithm is highly scalable and
well-suited for dynamic task allocation applications due to
its polynomial time bidding. [69, 70].

The approaches presented below can be classified into two
primary categories, being either enhancements to the CBBA
algorithm or the performance impact (PI) algorithm. The PI
algorithm is a distributed approach that runs on all agents

Fig. 3 Task allocation techniques categories
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concurrently. However, unlike CBBA, it employs the per-
formance impact metric to assess and arrange task bundles.
[53]

CBBA Improvement Approaches

A very common UAV application using CBBA based task
allocation methods is SAR missions. In [52] the authors
focus on giving priority to tasks closer to each agent, propos-
ing a cluster first strategy combined with a CBBA based
algorithm, for improving the CBBA based task allocation. In
[50] the authors propose the consensus-based bundle algo-
rithm with task coupling constraints (CBBA-TCC). This is a
two stage approach where initially the heterogeneous agents
define on a list the tasks they can do. This method compared
with baseline CBBA, a negotiation-based algorithm and a
hybrid auction algorithm has better efficiency and is more
reliable, but also has higher computational cost. Focusing on
task replanning for dynamic tasks in [49] an algorithm, called
CBBA with local replanning (CBBA-LR) is proposed, that
has better performance than other baseline replanning meth-
ods. When we state “better performance”, it implies that
the method outperforms the other methods compared with
respect to performance criteria, e.g., total utility value, used
in the paper. The proposed algorithm chooses the tasks for
reallocation considering the time window available resetting
fewer tasks and leading to lower computational cost.

Also, CBBA based methods are used in ISR applications
like, [32], where a CBBA based method for task allocation
together with a behaviour based system called subsumption
architecture (SA) for task execution is proposed, leading to
the bound consensus based bundled algorithm (BCBBA) that
has faster convergence than baseline CBBA. An approach
taking into consideration task uncertainties is [71], where
an MDP-based robust CBBA scheme is proposed and is
compared with baseline CBBA, robust CBBA [72] and
cost benefit greedy algorithm. The MDP-based approach
has more robust allocation and better task assignment than
all the baselines and less computational cost than baseline
robust CBBA, but still, it is unsuitable for large scale prob-
lems, having more computational cost than baseline CBBA
and CB greedy algorithm. Also, in [34] an improved vari-
ant of CBBA is proposed for SEAD applications. It uses a
dynamic task generation mechanism, decomposing complex
tasks into simpler subtasks that are appointed to singleUAVs.
In [73] they study the problem of task allocation with mul-
tiple UAVs in collaborative tasks, proposing an improved
Consensus-Based Grouping Algorithm (CBGA), that per-
mits task bundle revision, selecting better candidate UAVs.
The proposed method, even though it has similar perfor-
mance with baseline CBGA with small number of tasks,
succeeds better task allocation with greater number of tasks,
having higher quality of solutions.

PI Improvement Approaches

Also, there are a lot of PI based methods for SAR applica-
tions, like in [53], where a robustness module for distributed
multi-agent task allocation algorithms is studied. This mod-
ule is developed using the performance index (PI) algorithm.
In most of the cases faster mean task time than conventional
PI is achieved, but with lower scalability and bigger run time.
In [66] they study the problem of task allocation in ST-SR-
TA problems (single task single robot time extended) and
propose an improved version of the PI algorithm, that can
deal with dynamic task allocation (online replanning) and
has a broader solution area, since it can escape local min-
ima. The proposed approach is suitable for dynamic task
allocation, because classical PI is usually used in static task
allocation. It also has improved solution fitness, by enlarging
search space and escaping local minima, compared to base-
line PI and CBBA, but higher computational time, especially
for large scale systems. In [44] the authors focus on critical
tasks for ISR and attack applications, proposing an algo-
rithm that prioritizes the task allocation of the critical tasks.
They propose the extended PI algorithm with critical tasks
(EPIAC), which is a PI variant. The proposed approach has
better performance while increasing UAVs number, capac-
ity and critical tasks number, compared to baseline PI and
CBBA. Nevertheless, this approach has more computational
cost and requires more iterations to converge.

3.1.2 CNP Based Methods

The Contract Net Protocol (CNP) [74] was the initial negoti-
ation platform applied in task allocation problems and forms
the basis for various task allocation algorithms. It is a stan-
dardized protocol that assigns tasks to the most suitable
agents and allows for task reassignment when necessary
[75]. However, CNP is susceptible to message congestion,
which can disrupt the negotiation procedure between agents.
In contrast to other approaches, like pheromone-based tech-
niques, CNP relies heavily on message-based communica-
tion between agents, increasing the computational cost of the
algorithm and leading to reduced communication efficiency
and system performance [76].

In [29] the authors study the problem of real-time task
allocation in reconnaissance missions of multiple UAVs in
the battlefield, proposing an improved contract network algo-
rithm. The proposed method has higher efficiency and needs
less auction rounds than baseline contract network.

3.1.3 Other Auction Based Methods

Also, there are other auction based approaches except for the
CBBA and CNP based ones, like in [54], where the problem
of task allocation in Wilderness Search and Rescue missions
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Table 1 Characteristics of auction based approaches

Ref. Application Algorithm Metric Characteristics

[52] SAR improved CBBA baseline without clustering higher efficiency, faster convergence

[34] SEAD improved CBBA simulation efficiency under time constraints

[49] SAR CBBA-LR baseline replanning methods better performance, lower computational cost

[32] ISR BCBBA baseline CBBA faster convergence

[50] SAR CBBA-TCC baseline CBBA, negotia-
tion based, hybrid auction

better efficiency and reliability, higher
computational cost

[71] ISR MDP-based
robust CBBA

baseline robust CBBA,
CBBA, CB-Greedy

better performance, unsuitable for large scale

[53] SAR improved PI PI faster task time, worse scalability, compu-
tational time

[44] ISR and attack EPIAC PI, CBBA better performance, more computational
time and iterations

[66] urban SAR improved PI PI, CBBA dynamic task allocation, improved solution
fitness, higher computational time

[73] collaborative tasks improved CBGA CBGA higher efficiency for large number of UAVs

(WiSAR) for heterogeneous UAVs and UGVs is studied,
using a market based approach together with a coordinated
decentralized perspective. The algorithm proved its compu-
tational efficiency in simulation results. In [77] the authors
study the problem of task allocation with tasks having differ-
ent requirements in UAVs swarms. They propose an auction
mechanism based task allocation (AMTA) algorithm, which
they compared with the closed - loop CBBA. The proposed
algorithm has better performance compared to the baseline in
total reward, total path length, completion time, and energy
consumption.

Table 1 summarizes the main characteristics of some typ-
ical auction based approaches.

3.2 GameTheory BasedMethods

Game theory-based methods assume that agents are players
who choose their actions according to a specific strategy, that
is basically the task allocation concept that will be applied.
The payoff, which is the reward they receive, depending on
their chosen actions, after the game has finished, determines
their strategy. The objective of these approaches is to reach
a Nash equilibrium, where players have selected the optimal
strategy and will not want to change it since it is the best
outcome achievable [78].

Games can be divided into two basic categories, the coop-
erative and non-cooperative ones. In cooperative games,
agents collaborate or form coalitions before taking actions,
which can impact their overall strategy and utilities. One
example is the coalition formation game. In non-cooperative
games, agents act individually and choose their own strate-
gies based on self-interest, aiming to achieve the highest pay-
off. Examples of non-cooperative games include Bayesian

games, non-cooperative differential games, and sub-modular
games, among others [79].

Some game theory approaches are used for MEC applica-
tions like [28], where the problem of continuous offloading
in UAV assisted mobile edge computing is studied, where
drones can decide the percentage of a task computed locally
and the one to offload in cloud. They propose a potential game
theory based approach leading to a decentralised offloading
algorithm. Compared to a global optimal decentralised Par-
ticle Swarm Optimization with Simulated Annealing (PSO-
SA), the proposed method has the same performance, but
with lower computational cost. Furthermore, in [81], the
uncertain task allocation problem in UAVs MEC systems
is examined using a Bayesian coalition game approach. The
approach is based on possible environments that incorporate
a belief update scheme for acquiring the probability of envi-
ronments associated with the uncertainty of tasks. Maximum
utility of the coalition structure is achieved, while maintain-
ing stability. Also, the increase in the detail of the division of
the environment, leads to better coalition structure, but with
higher computational cost, because of the higher algorithm
complexity and the scale of the environment segmentation. In
[82] the problem of task allocation of swarm of UAVs, with
limited communications andpartial information for citymap-
ping applications is studied. They propose one cooperative
and another one competitive game theoretic algorithm. Even
though the competitive algorithm has higher social utility,
meaning it spends less resources, the cooperative approach
has higher task completion rate and therefore has better
overall performance. The competitive algorithm has smaller
communication burden and because of the higher utility is
suitable for applications with limited resources. In [80] the
authors study a pursuit - evasion problemwhich they simplify
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Table 2 Characteristics of game theory based approaches

Ref. Application Algorithm Metric Characteristics

[80] NA AAPC simulation good scalability, suitable for large scale systems

[28] MEC potential game theory based PSO-SA lower computational cost

[81] MEC Bayesian coalition game simulation better performance, high computational cost

[82] area mapping cooperative and competitive derivative simulation cooperative has better overall performance

with a dynamic divide and conquer strategy. The task alloca-
tion algorithm uses the Apollonius circle to help the pursuers
allocate their resources and capture the evaders in minimum
time, proposing the Apollonius circle-based Active Pursuer
Check (AAPC) algorithm. The algorithm demonstrates good
scalability therefore is appropriate for large scale systems.

Table 2 summarizes the main characteristics of some typ-
ical game theory based approaches.

3.3 Optimisation BasedMethods

Optimisation refers to the application of mathematical prin-
ciples to find the most suitable solution for a given problem,
by selecting the best option from a group of potential solu-
tions, either by minimizing the cost or maximizing the
profit of an objective function while adhering to certain con-
straints. The selection of the objective function determines
the system’s aim [1, 83]. Optimisation techniques can be
deterministic or stochastic based on the specific algorithm
used. Deterministic methods do not involve randomness
and generate the same solution for a problem, provided
the same starting point is used. Examples of determinis-
tic techniques are graphical methods, graph-based methods,
sequential programming, linear programming, and mixed-
integer linear programming (MILP). On the other hand,
stochastic techniques, or metaheuristics, involve random-
ness in the calculations and include evolutionary algorithms,
swarm intelligence, and simulated annealing. Another cat-
egory of methods is heuristic algorithms that are employed
for obtaining fast and quality solutions to challenging opti-
mization problems, where using deterministic optimisation
methods would lead to disproportional computational cost.
Nevertheless, the drawback of thesemethods is that they pro-
vide approximate, suboptimal solutions [84].

3.3.1 Deterministic Optimisation Based

The Hungarian algorithm [85], is a frequently used optimi-
sation algorithm that sometimes serves as the foundation for
developing new task allocation algorithms. It views the task
allocation problem as a combinatorial optimisation prob-
lem, using graph theory to solve it in polynomial time.

By estimating each agent’s utility, the algorithm maximises
the overall utility. However, this approach can be compu-
tationally expensive and of lower value when significant
uncertainties are present in the system. As a result, numer-
ous enhancements to the algorithm have been proposed
[86].

Some Hungarian based approaches include [56], where
the problem of multi-UAV collaboration and target alloca-
tion is studied in area monitoring applications, focusing on
minimising the battery consumption of UAVs. They pro-
pose a Hungarian method based algorithm calledMulti-UAV
Collaborative TargetAllocation algorithm (MCTA). The pro-
posed method demonstrates better performance than random
and greedy baseline derivatives. In [14] they study the prob-
lem of task allocation of UAV-aided IoT network, taking
into consideration balanced tasks, limited channel resources
and signal interference and aiming to minimise the total
transmission power. They decompose this MINLP into three
sub-problems and solve them using amodifiedKmeans clus-
tering algorithm to balance tasks, matching theory based
modified-Hungarian-based dynamic many-many matching
(HD4M) for channel allocation and an alternative iterating
method for power control of UAVs. The proposed approach
has better efficiency than a benchmark with random alloca-
tion and fixed altitudes.

A very big portion of the deterministic optimisation based
task allocation techniques found, regard MEC applications,
focusing mainly on the energy consumption minimization,
like in [17]. Here the problem of energy consumption min-
imization in UAV-enabled MEC networks is studied by
addressing jointly the problems of service placement, UAV
trajectory, task scheduling, and computation resource alloca-
tion, having task latency and network resources constraints.
An alternating optimisation algorithm with BnB and SCA
techniques is used, as well as another one algorithm of
the same category, but with lower complexity. Both algo-
rithms have lower overall energy consumption compared to
random and greedy baselines, but with the higher complex-
ity algorithm achieving lower overall energy consumption
than the lower complexity one. In [22] the authors study
the problem of device association, task assignment and
computing resource allocation in multi-UAV-assisted MEC
systems, focusing again on decreasing energy consumption
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of UAVs, having as constraints the task completion dead-
lines, the maximum energy consumption of the UAVs, as
well as the available computational resources. They solve this
MINLP problem by decomposing it in convex sub-problems
using an iterative block coordinate descent (BCD) algorithm.
The proposed methods have better performance than ran-
dom association and offloading baselines. Also, in [19] they
study the problem of dynamic task allocation in multi-UAV-
enabledMEC systems, following a layered approach dealing
with task scheduling and bit allocation and UAVs trajectory
planning. The goal is the minimisation of total energy con-
sumption, while the UAVs trajectory satisfies specific safety
constraints aiding to UAVs conflicts resolution. The algo-
rithm proposed is a dynamic programming bidding method
together with alternating direction method of multipliers
(ADMM). Compared with greedy and random strategies the
proposed method demonstrates lower energy consumption
and satisfactory conflict resolution. In [27] the challenge
of task offloading, resource allocation, and security assur-
ance in UAV-assisted MEC networks is investigated. The
authors introduce an iterative algorithm based on the relax-
and-rounding method and the Lagrangian method, referred
to as the LBTO algorithm. In terms of task processing ratio
and delay, the LBTO algorithm outperforms other algorithms
significantly, according to the study. In [18] they study the
problem of joint resource allocation and trajectory optimiza-
tion for multi-UAV-assisted multi-access MEC systems by
simultaneously optimising bit allocation, transmit power,
CPU frequency, bandwidth allocation, and UAV trajectories,
with a primary focus on minimizing the weighted energy
consumption of both UAVs and users. The proposed algo-
rithm, which is based on sequential convex approximation
(SCA) technique and alternative optimization demonstrated
better efficiency compared to fixed trajectory, fixed band-
width allocation and the single access schemes. In [87] the
authors study the problem of task assignment in collabo-
rative UAVs with sequence-dependent tasks. They propose
a spatial brunch limiting algorithm (SBLA) to solve this
MINLP problem that has task assignment constraints, band-
width and energy consumption of the UAVs constraints, as
well as, time constraints for the time dependent tasks. The
proposed method has higher quality of solution and less
energy consumption than ant colony algorithm (ACA) and
simulated annealing algorithm (SAA). An another approach
focusing on maximising the number of IoT devices served
and following certain time deadlines is [8], where the prob-
lem of resource allocation and computation offloading in
multi-UAV-enabled MEC is studied. They solve this MINLP
problem by decomposing it to the sub-problems of resource
allocation and trajectory optimisation and using jointly alter-
nating optimization and successive convex approximation
(SCA), leading to the multiple traveling salesman prob-
lem with time windows (m-TSPTW) based method. The

proposed method has better performance than greedy, static
and local computing baselines.

Other optimisation based approaches include [88], study-
ing the problem of UAV-priority-based resource coordina-
tion, with focus on reliable communication in a base station
controlled UAV network. In order to control channel assign-
ment they propose a mixed integer programming approach
using smoothing and alternating optimisation. This method
is more efficient than a baseline random channel assignment
method. In [59] they study the problem of using UAVs for
logistics, especially for product transfer from the warehouse
to the customers. They use a dynamic allocation algorithm
assuming this problem as a type of vehicle routing prob-
lem, taking into consideration load, endurance and airspace
constraints. In [89] the authors study the problem of energy
efficiency and profit maximising in multiple UAVs assisted
MEC networks. They use a Lyapunov optimisation method
proposing the joint optimization algorithmof the deployment
and resource allocation of UAVs (JOAoDR). Compared with
a greedy algorithm the proposedmethod has better long-term
performance.

Table 3 summarizes the main characteristics of some typ-
ical deterministic optimisation based approaches.

3.3.2 Metaheuristic Based

Metaheuristics comprise various methods, such as genetic
algorithms, simulated annealing, and swarm intelligence.
Swarm intelligence is a biologically inspired algorithm that
has found extensive use in the task allocation of multi-
agent systems. It draws inspiration from animals with social
behaviour, including insect colonies, schools of fish, and
flocks of birds, among others [90]. These animals exhibit
efficient division of labor, with specialized members con-
tributing to the overall efficiency of the colony [91].Although
individual agents may not be complex, they can perform
complex tasks collectively through cooperation, resulting in
robust, efficient, and not computationally expensive solutions
[92]. However, these algorithms may sometimes allocate not
required tasks to agents, resulting in conflicts and also exhibit
slow global responses to environmental changes [90]. The
two main categories of metaheuristic methods are threshold-
based and probabilistic methods.

Threshold-based methods, like the response threshold
method [93], determine agent actions based on some mon-
itored values and a fixed or variable threshold. Agents may
have only local or global information about these values.
In probabilistic methods, the tasks are changed randomly
utilising probability distributions exported fromenvironmen-
tal observations or historical data. Moreover, in this type of
methods an environmental stimulus can be used, with the
stimulus value being the criterion of selection of a specific
task [94].
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Table 3 Characteristics of deterministic optimisation based approaches

Ref. Application Algorithm Metric Characteristics

[56] Monitoring MCTA random and greedy baseline better performance

[14] MEC HD4M random allocation better efficiency

[17] MEC Alternating optimisation random, greedy, local lower energy consumption

[22] MEC BCD based random better performance

[8] MEC Alternating optimization, succes-
sive convex approximation (SCA)

greedy, static, local better performance

[19] MEC Dynamic programming bidding,
ADMM

random, greedy lower energy consumption

[27] MEC Relax-and-rounding, Lagrangian
method

vehicle local computing, aver-
age task offloading, RSU LBTO

better task processing ratio
and processing delay

[18] MEC Sequential convex approximation
(SCA), alternative optimization

fixed trajectory, fixed bandwidth
allocation, single access scheme

better efficiency

[87] MEC SBLA ACA,SAA better solutions, less
energy consumption

[88] channel
allocation

Smoothing, alternating optimisation random higher efficiency

[59] logistics Dynamic allocation simulation effectiveness in dynamic
environments

[89] MEC Lyapunov optimisation (JOAoDR) greedy better long-term performance

Most of the metaheuristics based techniques are focused
on ISR combined with target attacking applications like, [95]
where they study the problem of task allocation between
cooperative UAVs in attack and reconnaissance applications.
They use the beetle antennae search (BAS) together with a
genetic algorithm, thus enhancing the diversity and search
ability of the genetic algorithm. The new algorithm is proved
to have faster convergence and better performance than the
baseline genetic algorithm and a PSO based baseline variant.
Also, in [43] the problem of task allocation in reconnais-
sance and attack applications of multiple UAVs is studied,
proposing an improved simulated annealing fusion genetic
algorithm (ISAFGA), that has improved solution acceptance
criteria compared to simulated annealing. The algorithm has
lower solving time than baseline simulated annealing and
improved efficiency. In [42] the authors study the problem
of cooperative search-attack joint mission planning of mul-
tiple UAVs, proposing a dynamic discrete Pigeon-inspired
Optimization (D2PIO) algorithm. The effectiveness of the
algorithm is shown by simulation results and the algo-
rithm showed better performance than PSO, PIO, DPSO and
MPSO. In [40] the problem of task allocation in reconnais-
sance and attack applications of multiple UAVs is studied,
proposing a chaotic wolf pack algorithm based on enhanced
Stochastic Fractal Search (MSFS- CWPA). Compared to
baselineWolf pack algorithm (WPA) and two other improved
Wolf pack algorithms, the QWPA and TLWPA methods, the
proposed approach demonstrates better global search and
performance in general. In [96] they study the problem of

multi-UAV task allocation and route planning in ISR and
attack applications, using Dubins curve and proposing an
improved PSO algorithm. The improved algorithm has better
convergence and provides better solutions than the baseline
PSO. In [46] they study the dynamic task allocation of a
swarm of UAVs in ISR and attack applications, used for mil-
itary purposes, using a distributed, bottom up, dynamic ant
colony’s labor division (DACLD) approach. Compared to the
WPA algorithm the proposed method has better task alloca-
tion, faster response to threats, robustness and flexibility.

Also, there are plenty of ISR or attack for multiple UAVs
applications covered, like [33] where the problem of task
allocation of multiple UAVs is studied, focusing on the low
probability of intercept of the UAVs signals during the task
allocation procedure. They propose a low probability of
intercept-based task allocation (LPI-TA) algorithm, using the
standard particle swarm optimization method. Simulations
conducted proved the effectiveness of the algorithm. In [30]
the problem of multi-UAV reconnaissance task allocation
is studied, dividing the targets according to their geomet-
ric characteristics. They propose the grouping ant colony
optimization (GACO) algorithm based on ACO, that has
better exploration capabilities and lower cost than baseline
ACO and OGA-DEMMO. As for the attack only applica-
tions, in [38] the problem of mission planning in multiple
UAVs for cooperative combat tasks is covered. The prob-
lem is decomposed in task assignment, which is modeled
as a multi-constraint, multi-objective, coupled integer opti-
mization problem and the resource allocation problemwhich
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is a linear integer optimization problem. A genetic algo-
rithm based and simulated annealing approach is used for
both problems respectively. Simulations were performed to
validate the effectiveness of the algorithms that proved to
achieve rapid task assignment, making them suitable for
complex constrained environments. In [36] they study the
problem of task allocation and track planning of multiple
UAVs attacking ground targets. They developed a new ant
colony optimization algorithm based on adaptive parameter
adjustment and bidirectional search (BSAP-ACO) for coop-
erative path planning together with a new improved particle
swarm optimization algorithm based on guidance mecha-
nism (GMPSO) dealing with the moving target problem.
The proposed algorithms are compared with the baseline
Ant Colony Optimisation (ACO) algorithm, the Dynamic
feedback ant colony optimization algorithm (DFACO), the
GA algorithm, PSO algorithm and the Multi-objective Par-
ticle Swarm Optimization (MOPSO) algorithm respectively,
proving the effectiveness of the proposedmethods. In [37] the
authors study the problem of task assignment of cooperative
multi-UAVs with resource constraints and precedence con-
straints for combat UAVs applications, like targets attacking.
They propose the Fully Adaptive Cross-Entropy Algorithm
(FACE), which is compared with cross-entropy (CE) method
and particle swarm optimization (PSO) algorithm. The
proposed technique has better performance and faster con-
vergence than PSO and CE only in larger scale problems,
while having a bit slower convergence than CE in small scale
applications.

Other applications include, [97] where the authors study
the problem of mission planning for heterogeneous UAVs
by simultaneously dealing with sensor allocation, task
assignment and collision-free path planning. They use a
meta-heuristic algorithm, the two-level adaptive variable
neighborhood search (TLAVNS) algorithm, where the first
level is used for the sensors allocation plan and the sec-
ond for the path planning. The proposed algorithm has
better performance than non-adaptive variants, but a bit
higher computational cost. In [48] the authors study the
dynamic task allocation problem inmultiple UAVs, using the
distributed immune multi-agent algorithm (DIMAA) based
on an immune multi-agent network framework. In simula-
tions performed the algorithmdistributed quick convergence,
small loss of communication and robustness, but also a slow
convergence rate in static task assignment. In [97] the prob-
lem of task allocation of UAVs and operating vehicles in
electricity grid inspection procedure is studied, using K-
means method and a genetic algorithm. The simulations
performed proved the effectiveness and practical use of the
algorithm. In [98] they study the problemofmulti-UAVcoop-
erative task assignment in battlefield applications, proposing
an improved quantum genetic algorithm, using the grouping
optimization strategy of hybrid frog leaping algorithm and

simulated annealing. The proposed method has better local
optimal solutions and increased diversity compared with
multi granularity genetic algorithm and incremental learning
algorithm, but with the disadvantage of higher computational
complexity. In [55] the authors study UAVs usage in agri-
cultural activities, focusing on the distance between UAVs
and tasks, as well as the resources carried. They propose
the Capability Value Sensitive-Collection Path Ant Colony
Optimization (CVS-CPACO) method, that has better solu-
tions and lower amount of resources are wasted compared
to CPACO and modCPACO. Also, the distance of the pro-
posed method is a bit worse than the benchmarks. In [57]
they study the UAV task allocation problem for missions in
complex chemical plants and city environments with dense
buildings and non-negligible ambient winds. They propose
a technique based on the twin-exclusion mechanism, hierar-
chical objective-domination operator, and segmented gene
encoding (NSGA-III-TEHOD), which is an improvement
of non-dominated sorting genetic algorithm III (NSGA-III).
The proposed approach has better efficiency and convergence
properties than NSGA-III.

Table 4 summarizes the main characteristics of some typ-
ical metaheuristic based approaches.

3.3.3 Heuristic Based

In most of the heuristic approaches the authors are occu-
pied with MEC applications. In [16] they study the problem
of task assignment in UAV assisted MEC networks, focus-
ing on energy consumption and delay minimization. They
proposed a heuristic based method using a differential evo-
lution (DE)-aided algorithmand non-dominated sort process.
The proposed method has lower energy consumption com-
pared with PSO and NSGA-II and better solutions, but PSO
has a much faster convergence speed. In [23] they study the
problem of minimising the transmission energy of UAVs and
computation energy of base stations in MEC-enabled UAV
communication systems. They divide this problem into allo-
cation optimisation and the combinatorial UAV grouping
optimisation, using gradient descent and a heuristic based
on simulated annealing. The proposed method has lower
energy consumption compared to FDMA technique. In [10]
the authors study the joint computation offloading, spec-
trum resource allocation, computation resource allocation,
and UAV placement (Joint-CAP) problem in a UAV-MEC
network. They propose a (1 + ε) approximation algorithm
(AA-CAP) to solve the proposed Joint-CAP problem that
yields solutions with bounded deviations from the optimal
solution. The proposedmethod has reduced cost to the Least-
CAP and S-MBS baselines. A different approach is [39],
where the authors study the problem of cooperative tac-
tical planning in multiple UAVs combat operations, using
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Table 4 Characteristics of metaheuristic based approaches

Ref. Application Algorithm Metric Characteristics

[97] mission planning TLAVNS non-adaptive variants better performance, higher
computational cost

[48] SAR DIMAA simulation good convergence, robustness,
small loss of communication,
slow convergence in static task
assignment

[38] target attacking GA and SA simulation effectiveness, quick task assignment

[95] ISR and attack BAS genetic and PSO faster convergence, better performance

[97] electricity grid inspection K-means method & GA simulation effectiveness and practical use

[98] battlefield applications improved quantum GA, hybrid
frog leaping algorithm, SA

multi granularityGA, incremen-
tal learning algorithm

better local optimal solutions and
increased diversity, higher compu-
tational cost

[43] ISR and attack ISAFGA simulated annealing improved efficiency, lower cost

[55] agriculture CVS-CPACO CPACO and modCPACO better solutions, lower resources
wasted, more distance travelled

[33] ISR LPI-TA simulation effectiveness

[42] ISR and attack D2PIO PSO, PIO, DPSO and MPSO effectiveness

[30] ISR GACO ACO, OGA-DEMMO better exploration, lower cost

[36] ground targets attacking BSAP-ACO DFACO, GA, PSO, MDPSO higher efficiency

[37] target attacking FACE PSO, CE better performance, faster conver-
gence, slower convergence than CE
in small scale

[40] ISR and attack MSFS- CWPA WPA, QWPA, TLWPA better performance, global search

[96] ISR and attack improved PSO PSO better efficiency, convergence

[57] area monitoring NSGA-III-TEHOD NSGA-III better efficiency, convergence

[46] ISR and attack DACLD WPA better task allocation, faster
response to threats, robustness,
flexibility

a hierarchical setup and the A-star algorithm. Simulation
results prove the effectiveness of the proposed methods.

3.4 Reinforcement Learning BasedMethods

Most real-world task allocation scenarios, involve highly
dynamic environments,whosebehaviour cannot bedescribed
by explicit mathematical models, therefore predicting future
disturbances that an agent may encounter in such environ-
ments is extremely challenging.Oneway for agents to handle
such disturbances is by taking into account their previous
actions as well as those of other agents, thereby enhancing
the overall efficiency of the system [99, 100].

Reinforcement learning is a commonly utilized machine
learning method that allows agents to learn how to act in
various states of the environment based on their experience.
In this technique, the agents optimize a cost or reward func-
tion to learn from the environment that is often modeled as
a Markov Decision Process (MDP). Q-learning is one of the
commonly used model-free RL methods that aids agents in
finding optimal solutions in MDPs [99, 100]. Reinforcement

learning offers several benefits, including its ability to handle
environmental uncertainties, real-time implementation (for
well-trained networks), and flexibility in handling different
tasks [41]. However, in large-scale complex systems, most
RL algorithms typically require substantial computational
power [101].

Most of the applications regarding reinforcement learn-
ing based approaches focus on MEC applications, like in
[102] where the authors study the problem of computation
offloading, policy and resource allocation of Edge-Internet-
of-Things (EIoT) devices that in emergency cases use mul-
tiple UAVs as aerial base stations forming a network. They
propose a DDPG learning framework named CCORA-DRL.
The framework has higher efficiency than DQN, A3C and
greedy baselines. In [103] they study the problem of UAV-
enabled edge computing (UEC), where the UAVs can take
computational tasks from ground local devices and from
other neighbouring UAVs. They propose a DRL framework
for the cooperative offloading and resource allocation pro-
cess, based on a deep Q network method for both centralised
and distributed network topologies. Both the centralised and
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distributed cooperative DRL methods outperform in terms
of utility popular non-cooperative baselines, with the cen-
tralised method achieving the highest utility. In [21] the
authors study the problem ofmobile edge computing (MEC),
using UAVs, that perform task offloading from user equip-
ment. They propose a convex optimization based approach
called Trajectory control algorithm (CAT) and a second deep
Reinforcement Learning based Trajectory control algorithm
(RAT), for real time decisionmaking. These approacheswere
compared to baselines like local execution, random moving
and cluster moving. The RAT approach has the best energy
performance, compared to CAT and the baselines that have
the worst. In [25] the problem of joint resource allocation
of UAV based mobile edge computing (MEC) networks in
maritime networks is studied, using a reinforcement learning
DQN based approach. The convergence and performance of
the proposed approach were validated with simulation exper-
iments. In [9] the authors study the problem of coverage
and navigation (resource allocation) of drone cells in cellular
networks on the peak of communication load, using a multi-
agent reinforcement learning centralised approach (MARL)
with an enhanced joint action selection algorithm (enhanced
hill climbing search). The proposed approach demonstrated
better performance compared to classic hill climbing.

In [24] the authors study the problem of task offload-
ing and resource allocation in Space-air-ground integrated
power Internet of Things (SAG-PIoT) networks, using Lya-
punov optimisation to decompose the joint optimisation
problem. Especially for the task offloading QUARTE is pro-
posed, which is a DRL actor critic based method capable
to deal with the curse of dimensionality, while taking into
consideration queue information, being ideal for dynamic
task allocation. The proposed approach has better perfor-
mance, convergence speed and lower energy consumption
compared to baseline DAC and EMM algorithms. In [13]

they study the problem of cooperative multi-UAV enabled
IoT edge network for dynamic task offloading and resource
allocation, proposing a MADRL method. They utilize the
MADDPG algorithm, forming the aforementioned problem
as a stochastic game and focusing on energy consumption
and computation delay minimisation. The proposed method
demonstrated better performance and lower cost than single
agent DDPG and greedy methods. A different application is
studied in [41] where the authors study the problem of ISR
and attack with uncertainty, using a reinforcement learning
approach. The task allocation problem is formed asMDP and
a Q-learning based fast task allocation algorithm is devel-
oped, using neural network approximation. The algorithm
is real time implementable. The algorithm compared to dis-
crete particle-GuoTao-simulated annealing (DPSO-GT-SA)
has better performance with uncertainty. Also, the algorithm
with prioritized experience replay converges faster than the
one with random experience replay.

Table 5 summarizes the main characteristics of some typ-
ical learning based approaches.

3.5 Hybrid Methods

In addition to the aforementioned methods for solving task
allocation problems, there exist hybrid approaches that are a
combination of some of these methods.

The authors of [47] investigate the issue of task alloca-
tion for SARmissions and propose a CBBA-based approach.
They combine this approach with the Ant Colony System
(ACS) algorithm and a greedy-based strategy to enhance
the inclusion phase of the CBBA. This approach has lower
makespan, travel distance and number of exchanged mes-
sages, compared to baseline approaches such as, the Hun-
garian algorithm (HA), the decentralised greedy algorithm
(DGA), the repeat auctions algorithm (RAA) and the spatial

Table 5 Characteristics of RL based approaches

Ref. Application Algorithm Metric Characteristics

[102] MEC CCORA-DRL DQN, A3C and greedy higher efficiency

[103] MEC DQN based non-cooperative baselines higher utility

[21] MEC CAT, RAT local execution, random
moving and cluster moving

lower energy consumption

[25] MEC DQN based simulation convergence, performance

[9] MEC MARL and hill climbing hill climbing better performance

[41] ISR and attack Q-learning based DPSO-GT-SA better local optimal solutions and
increased diversity, higher compu-
tational cost

[24] MEC QUARTE DAC, EMM better performance, convergence
speed and lower energy consump-
tion

[13] MEC MADDPG based DDOG, greedy better performance and lower cost
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queuing-based algorithm (SQA). On the other side, this
approach provides suboptimal (near optimal) solutions and
has bigger number of exchanged messages compared to the
firefly algorithm-quantum artificial bee colony-multi robot
task allocation (FA-QABC-MRTA), even though it has lower
makespan and travel distance. In [31] they propose a frame-
work based on an auction system based on market economy
and a biologically inspired pheromone map for solving the
problem of area exploration, connectivity management and
mission allocation, simultaneously, for multiple UAVs on
ISR applications. Their approach has good coverage per-
formance, better efficiency, presenting positive correlation
between connectivity and area coverage, compared to a ran-
dom explorer algorithm, but the connectivity maintenance
mechanism reduces the area covered by the drones and a
calibration phase is needed before use.

3.6 Other Approaches

There are also some other approaches that could not fit in
the above categories. In [60] they study the method of block
information sharing for decentralised dynamic task alloca-
tion in structures assembly of aerial robots. This method
is based on the one to one strategy that shares informa-
tion between neighbouring agents helping them to reallocate
tasks. Their method converges to an optimal solution, under
certain circumstances, but the block size of the agents, for
which there is not yet an optimal method for its calculation,
has a key role in the balance between convergence time and
robustness. For big size blocks might be cost expensive and
can lead to a decrease in efficiency and fault tolerance. In
[104] the authors work on the coverage path planning prob-
lem for heterogeneous UAVs, having a bounded number of
regions. They propose a new clustering - based algorithm
that classify regions based on using relative distances, called
spatial-temporal clustering-based algorithm (STCA). This
approach provides sub-optimal solutions, but can guarantee
coverage of all regions under specific assumptions. In [45]
they study the problem of multi-target task assignment with
fuzzy inference using a Mamdani-type fuzzy inference sys-
tem, for the application of ISR and attack ofUAVs. In [51] the
authors study the problem of task allocation in SAR appli-
cations, proposing a communication protocol that improves
the Carrier Sense Multiple Access with Collision Avoid-
ance (CSMA/CA) protocol achieving task allocation in a
distributed way. The efficiency of the approach was validated
by simulations as well as field experiments.

4 Discussion

The computational complexity of algorithms, optimality of
solutions, and scalability of approaches used are fundamental

criteria for assessing the task allocation process in UAVs.
Additionally, the ability of algorithms to handle uncertain-
ties and the effectiveness of communication schemes utilized
significantly impact the overall system performance.

4.1 Complexity, Optimality and Scalability

The computational cost of task allocation is influenced by
various factors such as the complexity of the algorithm
employed, the frequency of the algorithm’s usage, and the
computational cost of the communication scheme utilized.
This refers to the amount of information exchanged between
agents in order to achieve successful task allocation [105,
106].

The optimality of the solutions is another crucial factor
to consider in task allocation procedures. By optimality, we
refer to the extent to which the solution found maximizes
the overall utility of the system, while taking into account
the system’s characteristics such as noise, uncertainty, and
inaccuracy of the information available to the agents. The
quality of the solution can be affected by the frequency of
algorithm execution, which should be sufficient to ensure
dynamic, rather than static, solutions, as well as the ratio of
tasks that can be reassigned. As the complexity of tasks and
the number of agents involved increase, the scalability of the
algorithms becomes vital in ensuring their effectiveness. [2].

4.1.1 Auction Based

Most of the auction based methods found are CBBA and
CNP methods improvements, therefore follows a detailed
presentation of their complexity, optimality and scalability.

CBBA Based Most of the CBBA approaches found concern
SAR missions and also there are some regarding ISR and
SEAD military applications. The most frequent baselines
used are baseline CBBA and PI algorithms. Most of the auc-
tion based approaches presented, are improved versions of
these algorithms, that usually exhibit higher efficiency and
scalability. Even though few demonstrate lower computation
cost, most of them have the disadvantage of higher compu-
tational cost and complexity. This is the case for the EPIAC
approach [44], where the computational complexity is domi-
nated byO(

∑Nt
j=1 hi j |ai |2M1σNu), where Nu is the number

of the UAVs, Nt is the number of the tasks, ai is the task list,
hi j is a set of constants and σ is the complexity of computing
the score of a task.

CNPBased In general, techniques basedonContractNet Pro-
tocol (CNP) are very effective in task reallocation, but they
heavily rely on the communication scheme among the agents,
leading to high computational burden. Additionally, mes-
sage congestion has been observed as a problem with CNP.
While some improved CNP algorithms have been proposed
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to address this issue and achieve higher efficiency with lower
computational cost than baseline CNP, the problem of mes-
sage congestion remains a topic of ongoing research. Some
approaches, such as the one proposed by [76], attempt to
address this problem, but further investigation is needed.

4.1.2 Game Theory Based

The game theory approaches that have been presented
demonstrate greater efficiency than the baseline approaches,
producing suboptimal solutions that are closer to the optimal
solution. Furthermore, in general, some game theoretic algo-
rithms exhibit better efficiency compared to auction-based
approaches. In terms of complexity, the Apollonius circle-
based Active Pursuer Check (AAPC) [80], has complexity
of O(n2a), where na is the number of pursuers. Also, in
[81] where a Bayesian coalition game approach is used the
complexity isO(|�|2T ), where� is the set of possible envi-
ronments,with each environment specifying a coalition game
and T is the number of tasks. Aswe see the complexity is also
proportional to the number of possible environments. In [28],
the authors propose a potential game theory based approach
that has complexity of O(N ), where N is the number of
agents. Therefore, as we see, the complexity varies from fast
algorithms to exponential ones, that are unsuitable for large
scale systems. Some game theoretic approaches though, can
have comparable or lower complexity thanCBBAbased ones
and can be suitable for large scale systems like [28].

4.1.3 Optimisation Based

Most of the optimisation based methods found include deter-
ministic optimisation, heuristics andmetaheuristicsmethods,
therefore follows a detailed presentation of their complexity,
optimality and scalability.

Deterministic Optimisation Based For the deterministic
optimisation based approaches we notice that they are
used mainly for MEC scenarios, with common baselines
being random and greedy task allocation algorithms. The
approaches usually have high efficiency but very high com-
plexity and cost. In [17] the authors propose two alternating
optimisation algorithms. The first algorithm has complexity
of O(Imax2N (S+UT )). and the second algorithm has com-
plexity ofO(Imax (Jmax N 3T 3+N 3(S+UT )3+N 2UST )),
where Imax is the number of the algorithm iterations, Jmax

is the number of the iterations of the successive convex
approximation algorithm used, N is the number of ser-
vices, S is the number of user equipments and T is the
number of slots existing. We have to note that the first algo-
rithm has higher efficiency than the second one that has
lower complexity and finds a suboptimal solution. In [8],

the authors propose an algorithm for solving the resource
allocation problem and another one for trajectory optimisa-
tion, using jointly alternating optimization and successive
convex approximation (SCA). The first algorithm has com-
plexity of O((MKN )3.5 log2(1/ε)) and the second one of
O(K 3.5 log2(1/ε)), whereM is the number ofUAVs, K is the
IoT devices, N is the number of time slots and ε is the given
solution accuracy. In [19] a dynamic programming bidding
method together with alternating direction method of multi-
pliers (ADMM) with a conflict resolution phase is used. The
complexity of the algorithm is O(KaMR + Q), where K is
the number of division area, M is the number of the UAVs,
R is the number of iterations to solve and Q is the number of
conflicts. In [14] they propose a modified Kmeans clustering
algorithm to balance tasks, matching theory based modified-
Hungarian-based dynamic many-many matching (HD4M)
for channel allocation and an alternative iterating method
for power control of UAVs. The complexity of the method
is O(M�(M/N )�L1 + NM3.5L3 log2([hmax − hmin]/ε)),
where M is the number of IoT devices, N is the number
of UAVs, Li are the numbers of iterations of algorithm i ,
Hmin is the minimum altitude of the UAVs, hmax is the max-
imum altitude of the UAVs. It is apparent that the majority
of approaches exhibit high polynomial or exponential time
complexity, rendering them impractical for deployment in
large-scale systems.

Heuristics Usually techniques with optimal solutions to the
task allocation problem, like deterministic optimisation ones
might have even an exponential computation cost. On the
other side, heuristic techniques provide suboptimal solutions,
but have minimal computation cost compared to them. Also,
itwas noticed that someheuristic techniques can bemore effi-
cient and less computationally expensive than some genetic
and auction based approaches [107]. In [10] the authors
study the problem of joint computation offloading, spectrum
resource allocation, computation resource allocation, and
UAV placement (Joint-CAP) proposing the (AA-CAP) algo-
rithm. The complexity of the algorithm isO((|B|+log(|U |+
2))|U |CN2

N1
) where B is the set of base stations, U is the set

of internet of things devices, C is the computing capacity
of the base station, N1 is the set of candidate positions for
UAVs in the XY-plane and N2 = B − 1. Generally, heuristic
methods can be used on large scale systems with algorithms
in literature exhibiting complexity of O(n) or O(nlog(n)).

Metaheuristics Someof themethods presented exhibit lower
complexity and improved scalability compared to the base-
line techniques. However, some of these methods are subop-
timal or assume no failures in the communication procedure
between the agents. Furthermore, many methods show better
scalability and efficiency than certain greedy and auction-
based approaches such as CNP.
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In general, metaheuristic techniques are considered to be
cost-effective, robust, and efficient, but they can sometimes
lead to conflicts between tasks, assign unnecessary tasks to
agents, and respond slowly to changes in the environment.
The metaheuristic techniques were mostly used in military
applications like ISR and attack among others. Some of the
methods presented exhibit lower computational cost and are
more scalable compared to the baseline techniques.However,
some of these methods are suboptimal or assume no fail-
ures in the communication between the agents. Furthermore,
many methods are more scalable and efficient than certain
greedy and auction-based approaches such as CNP. In [42]
the authors propose the dynamic discrete Pigeon-inspired
Optimization (D2PIO) algorithm. The computational com-
plexity of the algorithm is O(Nc(NP log NP + DNP +
L f NP + Ldi NP + LdyNP )), where, Nc is the total iteration,
NP is the population size of the pigeons, D the dimension
of the parameter vectors, L f the computational cost of the
objective function J , Ldi is the computational cost of the
discrete mechanism and Ldy is the computational cost of the
dynamic mechanism.

4.1.4 Reinforcement Learning Based

In general, reinforcement learning approaches are known
for their high efficiency, potential for online implementa-
tion, and ability to adapt to environmental disturbances. It
has been observed that many techniques outperform baseline
algorithms such as simulated annealing, hill climbing, and
greedy algorithms. In addition, some methods have demon-
strated greater efficiency than frontier-based and Hungarian
methods. Although some approaches have lower computa-
tional costs than market-based methods, computational cost
and increased dimensionality remain significant challenges
in some reinforcement learning techniques. Also, most of
the approaches found were regarding MEC applications and
most of the algorithms had higher efficiency and some of
them had also lower cost, than the baseline methods.

The authors of [21] propose a deep Reinforcement Learn-
ing based Trajectory control algorithm (RAT), for real
time decision making. The computational complexity is
O(

(
∑L

l=1 nl · nl−1 + NM)T
)
, where L is the number of

network layers, nl is the number of neurons in the l-th layer,
N is the number of user equipments, M is the number of
UAVs and T is the number of time slots. In [13] they propose
a MADRL method utilizing the MADDPG algorithm. The
proposed method demonstrated a training procedure com-
plexity of O(Zeps H Zl N |L|2), where |L| is the number of
the agents, Zeps is the number of training episodes, H is
the batch size, N is the number of hidden layers and Zl is
the agent cost. In [102] the authors propose a DDPG based

learning framework named CCORA-DRL. The complexity
of the framework isO(C×|S|×|A|), whereC is the number
of UAVs cluster heads, S denotes the state set and A denotes
the action set. As we see the complexity varies from O(n)

to O(n2), with n being the number of agents, making some
approaches online implementable and some others not ideal
for large scale systems.

4.1.5 Hybrid

The goal of hybrid approaches is to use two or more tech-
niques aiming to combine their advantages and increase the
efficiency or decrease the computational cost of the case these
methodswere used alone. The approaches found are a combi-
nation of auction based with metaheuristic approaches that is
a common combination for task allocation algorithms. The
proposed approach in [47] combines CBBA with the Ant
Colony System (ACS) algorithm, and a greedy strategy is
employed during the inclusion phase of CBBA. The worst-
case computational complexity of this approach is O(nt 3),
where nt is the number of survivors (tasks).

4.1.6 Other Approaches

In [104] they propose a new clustering - based algorithm
called spatial-temporal clustering-based algorithm (STCA).
The complexity of the algorithm is O(m2), where m is the
number of the regions that the UAVs do a search task.

In Table 6 a summary of the complexity of the aforemen-
tioned algorithms is presented. As we can see the complexity
varies a lot even betweenmethods of the same category.How-
ever, deterministic optimization-based approaches, followed
by CBBA-based algorithms, and hybrid approaches tend to
have the highest computational costs. In contrast, heuristic-
based approaches and metaheuristic-based approaches gen-
erally have the lowest with reinforcement learning and game
theory ones being in the middle but not with high difference.

4.2 Communication

In many task allocation methods, effective communication
between agents is crucial for their coordination and overall
performance. The objective is for agents to exchange neces-
sary information about their state and the environment using
minimal bandwidth and without causing congestion in the
communication network [108]. Communication used in task
allocation methods can be either explicit or implicit. Explicit
or direct communication involves exchanging messages
between agents through a communication network and dedi-
cated protocols, which is the most commonly usedmethod in
existing coordination approaches. On the other hand, implicit
communication involves obtaining information about other
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Table 6 Complexity of some characteristic task allocation algorithms

Category Algorithm Complexity

CBBA based EPIAC [44] O(
∑Nt

j=1 hi j |ai |2M1σNu)

Deterministic optimisation Alternating optimisation based [17] O(Imax2N (S+UT )), O(Imax (Jmax N 3T 3 + N 3(S +
UT )3 + N 2UST ))

Alternating optimization, SCA [8] O((MKN )3.5 log2(1/ε)), O(K 3.5 log2(1/ε))

ADMM [19] O(KaMR + Q)

Modified-Hungarian-based [14] O(M�(M/N )�L1+NM3.5L3 log2([hmax−hmin]/ε))
Game theory based AAPC [80] O(n2a)

Bayessian coalition game based [81] O(|�|2T )

Potential game theory based [28] O(N )

Metaheuristics D2PIO [42] O(Nc(NP log NP + DNP + L f NP + Ldi NP +
Ldy NP ))

Heuristics AA-CAP [10] O((|B| + log(|U | + 2))|U |CN2
N1

)

Learning based RAT [21] O(
(
∑L

l=1 nl · nl−1 + NM)T
)

MADDPG based [13] O(Zeps H Zl N |L|2)
CCORA-DRL [102] O(C × |S| × |A|)

Hybrid CBBA based with Ant Colony Sys-
tem [47]

O(nt 3)

Other STCA [104] O(m2)

agents in a multi-agent system and the environment, through
the agents’ perception of the environment using sensors.
Implicit communication can be active if the agents use infor-
mation left by other agents in the environment, which are
techniques mostly inspired by nature, or passive if the agents
use only their sensors to perceive changes in their observa-
tion spaces [109]. Another communication scheme used is
the blackboard scheme, where agents’ characteristics such
as location and target point are added to a shared file on the
blackboard along with other relevant information.

Auction-based techniques often employ explicit commu-
nication methods, with mesh, row, star, circular, and hybrid
network topologies being commonly used. Among these,
the row topology appears to have the best performance,
while mesh topology may have lower computational cost in
some cases. Asynchronous communication schemes are also
employed to reduce communication costs, as there is no need
for specific time slots. In metaheuristic-based approaches,
the token ring architecture or blackboard schemes are often
used for communication. Reinforcement learning meth-
ods, on the other hand, mostly use implicit communication
schemes, although some methods utilize explicit communi-
cation between UAVs, particularly in MEC applications.

Not all of the aforementioned task allocationmethods give
specific description of the communication technique used, if
any, therefore a detailed representation of the communication
techniques of the rest of the methods follows in the next
paragraphs.

4.2.1 CBBA Based

In [66] where an extended PI algorithm is used, communica-
tion schemes such as mesh, row, and hybrid (row-tree) were
utilized, and they demonstrated comparable performance.
Among them, the row communication scheme exhibited a
greater success rate in solving problems with the best solu-
tion, while the hybrid and mesh approaches followed. In
[50] where the CBBA-TCC algorithm is used, row, star, cir-
cular and mesh communication types were used, with row
type achieving the best performance, while the other types
had almost similar performance. Another improved CBBA
method in [34] uses asynchronous communication for the
conflict mediation phase, decreasing communication cost. In
the improved CBGAmethod [73] a communication matrix is
used for the conflict resolution phase and the communication
network is fully connected.Moreover, in EPIACmethod [44]
mesh, row, circular and star topologies are tried. Mesh seems
to need the fewest iterations to converge, having the smallest
run time, while star topology needs the most iterations and
highest run time.

4.2.2 Game Theory Based

In a potential game theory based technique [28] theUAVs use
a shared communication channel to offload tasks by mul-
tiplexing accessing. Only the queuing status from ground
stations is needed, so the communication cost is decreased
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compared to baseline PSO-SA. Also, in [82] where the
authors propose one cooperative and another one competitive
game theoretic algorithm, the UAVs can only communicate
with their neighbours having only partial information about
their missions.

4.2.3 Metaheuristics Based

In the DACLD method [46] all UAVs can freely commu-
nicate with each other, while in another swarm-GAP based
method [110], a tokenprotocolwith a ring architecture is used
(token ring). In this method, the communication cost was
increased compared to the baseline and a perfect communi-
cation scheme was assumed. In DIMAA [48] the blackboard
communication scheme is used, where agents’ characteris-
tics such as location and target point are added to a shared
file on the blackboard along with other relevant informa-
tion. Here agents can communicate only with neighbouring
agents.

4.2.4 Reinforcement Learning Based

In a MADDPG based method [13], the UAVs that belong
to a cluster are connected to each other with D2D com-
munication, while in a DQN based method, [103], UAVs
communicate with each other, but have different computa-
tion and communication capacities.

4.2.5 Hybrid

In ACS-MRTA [47], UAVs can communicate with every
other UAV, having a fully distributed solution to the task
allocation problem. Moreover, in the auction based and
pheromone map approach [31], the communication utilized
the Pheromone Map Model, which involves the placement
of virtual markers by agents to indicate mission and net-
work states, which are then detected by other agents. This
technique helps to minimize direct communication between
agents.

4.2.6 Other

In the Block information sharing method [60], each UAV
communicates with the neighbouring UAVs only, with lim-
ited communication range, forming a communication graph.
The whole graph is divided into blocks, that the agents
belonging to them can communicate with each other. The
information amount every UAV can accept is unbounded,
unlike a real world scenario.

Consequently, explicit communication has a higher level
of accuracy compared to the implicit approach, but it comes at

the cost of higher communication cost, which is particularly
problematic for larger systems. On the other hand, the
implicit approach is more stable and resilient to faults,
despite its lower accuracy. Therefore, a combination of these
methods is often recommended to take advantage of their
respective strengths and improve overall systemperformance
[109].

Table 7 provides an overview of the communication
schemes used by some typical task allocation methods of
UAVs. Popular techniques include the social network tech-
nique, the pheromone map model, the blackboard scheme,
and graph-based techniques.

4.3 Uncertainty

Considering uncertainty is essential for efficient and reli-
able task allocation in practical applications. However, many
existing approaches, particularly distributed ones, are lim-
ited in their ability to handle uncertainty and often rely on
oversimplified assumptions about the environment. Uncer-
tainty may arise from sensor inaccuracies, agent failures,
environmental disturbances, and more [53, 111]. Previous
research has shown that considering reliability beforehand
is essential, as neglecting the possibility of failure can lead
to performance deterioration [112]. For instance, in [113] it
is proved that the Asynchronous Consensus Based Bundle
Algorithm (ACBBA) produced inefficient task assignments
in environments with uncertainty in the communication pro-
cess, especially for a large number of agents. This is the
reason why there are differences between the theoretical
performance of the algorithm in comparison to more real-
istic scenarios. It is difficult to incorporate uncertainty in
time critical task allocation tasks when optimisation tech-
niques are used, since the uncertainty needs to be represented
within the system and usually some uncertainties cannot be
expressed analytically. On the other side, even when possi-
ble, the dimensionality of the problem increases a lot, hence
the computational cost increases too [53].

Generally, uncertainty is a topic that is not usually taken
into consideration in a lot of the task allocation techniques
discussed above. Nevertheless, it is very important, because
of the complexity of task allocation of UAVs, especially
when real life scenarios are taken into consideration. There-
fore in the following paragraphs are presented some of the
approaches that incorporated uncertainty.

4.3.1 CBBA Based

As for auction based techniques, PI seems to perform bet-
ter than CBBA for probabilistic task allocation with tasks
with tight deadlines, but robustness of the algorithms and
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Table 7 Communication type
of some representative task
allocation algorithms

Category Algorithm Communication

CBBA based Extended PI [66] Mesh, row, and hybrid (row-tree)

CBBA-TCC [50] Row, star, circular and mesh.

Improved CBBA [34] Asynchronous communication.

Improved CBGA [73] A communication matrix with fully
connected network.

EPIAC [44] Mesh, row, circular and star.

Game theory based Potential game theory based [28] Shared communication channel
with multiplexing.

Competitive / cooperative [82] Only communicate with neighbour-
ing UAVs.

Metaheuristic based DACLD [46] All UAVs communicate with each other

Swarm-GAP based [110] A token protocol with ring architecture

DIMAA [48] Blackboard communication scheme.

Learning MADDPG based [13] D2D communication.

DQN based [103] All UAVs communicate with each other.

Hybrid ACS-MRTA [47] All UAVs communicate with each other.

Auction based and pheromone
map [31]

Pheromone Map Model.

Other Block information sharing [60] Only communicate with neighbour-
ing UAVs.

especially for PI has not been researched a lot. Generally,
robustness is essential for time-critical applications like SAR
or military applications where a low percentage of mis-
sion failure is demanded [53]. In [53] they propose different
robustness modules for PI algorithm using a combination of
expected value and the worst-case scenario metric to han-
dle task costs uncertainty. They use probabilistic sampling
assuming uncertain variables of the task allocation proce-
dure modeled with a Gaussian distribution. They conclude
that baseline CBBA is more robust than baseline PI, since
baseline PI cannot handle well uncertainty. When the robust-
ness scheme is incorporated, both algorithms have better
performance with PI performing better than CBBA, while
the solution quality is not affected by the robustness module.
Also, CBBA with the robustness module is better at han-
dling uncertainties than baseline robust CBBA originated in
[72]. Scalability, though, is still a problem with robust PI
having higher computational cost than the baseline versions.
In [71] they assume uncertain duration of the task execution,
since in real life environments each task duration can be usu-
ally considered as a random process. They propose a robust
MDP based CBBA extension, that transforms the reward
function by incorporating the expected values of MDPs,
improving robustness, while maintaining convergence. This
approach also has better performance than baseline CBBA
and better performance and lower computational cost than
baseline robust CBBA, but higher cost than baseline CBBA,
since the constructionmodel of theMDPs is computationally

expensive rendering it unsuitable for large scale systems, like
robust baseline CBBA.

4.3.2 Game Theory Based

In a realMECenvironment assisted byUAVs, tasks are uncer-
tain because of their randomness and mobility. In [81] the
authors propose a Bayesian coalition game based on pos-
sible environments with belief update scheme that acquires
the probability of the environments related to the uncertainty
of the tasks. They found out that, since the uncertainty of
the tasks is related to the environment classification, if the
detail in the classification of the environment is increased,
this leads to a better optimized coalition structure having the
disadvantage of increasing the complexity as well.

4.3.3 Metaheuristics Based

In [36] the authors study the problem of task allocation and
track planning of multiple UAVs attacking ground targets.
When the target is moving there is uncertainty that makes
the battlefield environment even more complex. They devel-
oped an adaptive parameter adjustment and bidirectional
search (BSAP-ACO) for cooperative path planning together
with a new improved particle swarm optimization algorithm
based on guidance mechanism (GMPSO) dealing with the
moving target problem.Theypropose anonline task reassign-
ment method for time-sensitive uncertainty that guarantees
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Table 8 Comparison of the
main task allocation methods

Algorithm category Efficiency Scalabilty DTA Computational cost

CBBA Based ��� �� �� ����
Game Theory ���� ��� ��� ���
Optimisation ����� � �� �����
Heuristics ��� ���� �� �
Metaheuristics ���� ���� ��� ��
Learning ���� ��� ���� ���

that if the moving target state changes, the track of the
UAVs is replanned and task assignment can be accomplished
again.

4.3.4 Reinforcement Learning Based

In [41] the problem of surveillance and attack of targets with
UAVs is studied in the presence of environmental uncertain-
ties, like the local weather with uncertain wind speed and
rainfall. They propose a task allocation algorithm based on
the method of Q-learning that has better performance under
uncertainty than DPSO-GT-SA.

The study presented in [112] investigates the effect of
uncertainty on multi-agent systems (in terms of failures
to task allocation components), utilizing non-Markovian
states and a heuristic approach. They found that simplify-
ing assumptions, such as using Markovian states, can result
in inaccurate representation of system performance. Further-
more, they demonstrated that more sophisticated heuristics
that better describe the physical environment and uncertain-
ties can lead to improved performance in certain problem
categories. Therefore, incorporating uncertainty can enhance
performance in many applications, but there is a trade-off
between efficiency, robustness, and convergence time. This
balancemust be carefully considered, taking into account the
available computational power and the specific requirements
of each application.

5 Conclusion

Table 8 provides a summary of the main performance char-
acteristics of the most prominent task allocation techniques,
graded on a scale from one (low value) to five (very high
value). It is observed that CBBA based techniques typically
have a high computational cost, rendering them unsuitable
for large scale systems. Similarly, deterministic optimization
techniques are also very computationally expensive and not
scalable, despite their great efficiency. Conversely, heuristic
and metaheuristic approaches can provide fast solutions with
moderate to good efficiency at a low computational cost, and
they are suitable for use in large scale systems due to their

good scalability. Game theory and reinforcement learning
approaches have moderate costs, very good efficiency, and
scalability, and they can be employed in medium to large
scale environments, depending on the specific task allocation
problem. Reinforcement learning techniques, in particular,
are highly effective in dynamic task allocation and dynamic
environments.

Improved task allocation algorithms are essential for real
environments with high uncertainties and complex tasks,
especially with the increasing computational power and
evolving technology of UAVS. Real-time implementation of
these algorithms may also be necessary. RL methods have
gained attention in this field due to their adaptability to such
environments, and they have been widely researched by the
scientific community in recent years. In addition, game the-
ory and metaheuristic approaches also show great potential
for these systems. According to [114], combining RL and
game theory-based techniques enhances RL in the multi-
agent case (MARL), making it a very promising approach
for task allocation methods. However, since each UAV appli-
cation is unique and has its own characteristics, one method
may be more suitable than others.
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