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Abstract
This paper presents a new fuzzy interacting multiple-model velocity obstacle (FIMVO) approach for collision avoidance of
unmanned aerial vehicles (UAVs). The proposed approach adopts in one framework the advantages of geometric collision
avoidance approaches, namely of the velocity (VO), reciprocal velocity (RVO), andhybrid reciprocal velocity obstacle (HRVO)
avoidance approaches combined with fuzzy logic. This leads to a combined decision-making rule, with real-time efficiency.
The developed approach is compared with geometric conventional velocity obstacle avoidance approaches: VO, RVO, and
HRVO avoidance approaches. The proposed approach is carefully evaluated and validated in a simulation environment and
over realUAVs. The case study includes threeminiUAVs and a human teleoperatorwho can control only one of them.The other
UAVs used the computer-based teleoperator with the proposed and compared approaches. The performance criteria have been
defined in four parts: trajectory smoothness, task performance, algorithm simplicity, and reliability. In 1000 independently
repeated simulations, the performance results showed that the proposed FIMVO approach was 10 times better than the
VO approach in terms of the number of avoided collisions. The statistical analysis demonstrates that the proposed FIMVO
approach outperforms geometric velocity obstacle avoidance approaches concerning reliability and real-time efficiency.

Keywords Unmanned aerial vehicles (UAVs) · Swarm of UAVs · Velocity obstacle avoidance approaches · Unmanned air
vehicles · Fuzzy control · Collision avoidance

1 Introduction

Unmanned aerial and unmanned ground vehicles (UAVs and
UGVs) have been subject to intensive research and devel-
opments since they offer effective solutions in many areas
such as search and rescue, defence, aerial inspections [1], and
surveillance [2]. However, unmanned and uncrewed vehicles
face several challenges, especially with respect to swarm
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UAV control, path planning and collision avoidance. Con-
sidering the control part, linear and nonlinear controllers
have been developed and implemented in many different
types of UAVs [3]. Proportional-integral-derivative (PID),
linear quadratic regulator - linear quadratic Gaussian (LQR-
LQG) [4], fuzzy PID (FPID) [5], interval type-2 fuzzy PID
(IT2-FPID) [6], model predictive control (MPC) [7] and neu-
ral network based controller [8, 9] can be given as examples
for that.

Considering multi-agent systems (MAS) or swarms,
observation and path planning are other challenging prob-
lems [10], especially when swarms of UAVs need to perform
a mission in unknown environments. Path planning algo-
rithms can be changed for different tasks with static and/or
dynamic obstacles, and each agent/UAV can be defined as
an obstacle to each other. The individual UAV velocity or
UAV local path points may vary to avoid a collision. This
paper focuses on the topic of collision avoidance in real-time
systems.

Several velocity obstacle avoidance approaches have been
developed for swarm or MAS such as the potential field
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and geometric, velocity obstacle avoidance approaches [11–
14]. In this paper, we consider velocity obstacle avoid-
ance approaches. There are two main types of geometric-
based velocity obstacle approaches cooperative and non-
cooperative [15, 16].

Both types of approaches often assume knowledge of each
object’s geometry. Suitable collision avoidance approaches
perform on the assumption that there is an implicit, autonom-
ous communication layer that allows any actor to express
their purpose to another freely. The agent’s aim is only
partially known in non-cooperative techniques, which only
use the kinematic parameters that may be inferred from
the agent’s onboard tracking system. In [13, 14, 17], con-
ventional approaches such as conventional velocity obstacle
(VO), reciprocal velocity obstacle (RVO), hybrid reciprocal
velocity obstacle (HRVO) avoidance and optimal reciprocal
collision avoidance (ORCA) have been simulated and com-
pared to each other on MAS. In [18], a three-dimensional
velocity obstacle avoidance has been designed for fixed-
wing-based UAVs. By manipulating the vehicle’s velocity
vector in response to the geometry of the encounter, The
velocity obstacle avoidance technique, a three-dimensional
(3-D) version of the approach, has the ability to design an
avoidance manoeuvre proactively. The results of a valida-
tion using Monte Carlo simulations in challenging super
conflict scenarios show that none of the 25,000 samples
had collisions. In another paper about obstacle avoidance
approach [19], The Pythagorean Hodograph (PH) curve
trajectory re-planning serves as an illustration for the inves-
tigation of the 3-D direct obstacle avoidance technique in
dynamic space. The simulation results demonstrate that the
suggested approach’s ability to implement obstacle avoid-
ance trajectory re-planning substantially as an online and
it improves the flexibility of obstacle avoidance manoeu-
vre. Unlike 3-D velocity obstacle avoidance approaches, we
focused on VO, RVO, and HRVO, directly. Next section,
its formulation and its geometric figures will be explained
deeply.

The main contributions of this paper are the following: 1)
a new approach for UAV collision avoidance called Fuzzy
Interacting Multiple-Model Velocity Obstacle Avoidance
Approach (FIMVO) is proposed. The approach adopts in
one framework the advantages of geometric collision avoid-
ance approaches such as the VO, RVO, and HRVO within
a fuzzy interaction decision-making logic. 2) This approach
has been thoroughly tested over both simulated data and with
DJI Edu UAV in real-time tasks. The relative distances of the
agents/UAVs are measured for FIMVO because the system’s
decision andweightings of the calculated velocities are based
on relative distance criteria for these multi-model velocity
obstacle avoidance approaches. With the HRVO approach,

UAVs/agents can determine the optimal and best velocity
among VO, RVO and HRVO selected and then selected
weights taken. The chosen evaluation performance criteria
show that the developed approach provides a smooth trajec-
tory, accurate real-time task performance accomplishment,
algorithm simplicity and reliability.

The rest of this paper is organised as follows. Sections 2
and 3 describe the approaches of velocity obstacle avoidance
as preliminary work and the proposed approach. More-
over, the simulation results for comparison and the proposed
approaches are also shown in Section 4. Then, Real-time
experimental results are given in Section 5. After that, a thor-
ough evaluation and validation of this proposed approach are
given. Finally, SectionVI presents the conclusions and future
work.

2 Geometric Collision Avoidance
Approaches

This section describes briefly three of the most popular
geometric velocity obstacle avoidance approaches, namely
the VO, RVO, and HRVO avoidance approaches [14, 20].
Figure 1 shows themain idea behind suchmethods. It is illus-
trated for two UAVs, with their safety regions and respective
velocity vectors of the UAVs.

2.1 The Classical Velocity Obstacle Avoidance
Approach

Conventional velocity obstacle avoidance approaches rely on
the so-called Collision Cone (CC) directly. It is described in
detail in [21]. In this project, we focused on the UAV’s 2-D
local plane (XY). In Fig. 1, the geometrically relative position
(λαβ) of the obstacle, defined radius rc of obstacle, and the

Fig. 1 The geometric-based velocity obstacle avoidance approaches
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velocity vector vβ are used to generate the collision cone for
obstacle β as CCαβ . Moreover, pβ is represented as a planar
cross-section centre

VOαβ = CCαβ ⊕ vβ. (1)

where the classical velocity obstacle avoidance formula is
written by using the Minkowski Sum (⊕). the numerous
number (n) of velocities VO1:n is taken into account while
considering multiple-model obstacle avoidance. Therefore,
agent velocities are regarded as acceptable if vα,k+1 /∈
VOk = ∪n

β=1VOβ,k in [21]. In the existence of obstacles
VOβ=1:n for current time k = tk , velocities respecting this
restriction define a collision-free track for each agent α.

2.2 The Reciprocal Velocity Obstacle Avoidance
Approach

Considering the classicalVOapproach,RVOcreates smooth-
er avoidance trajectories in each iteration. In [22], it makes
an effort to take the reciprocal velocity of the subsequent
decision-making agent β into account; also, in Fig. 1, the
RVO approach is shown and in Eq. 2, the RVO formula is
written.

vα,k+1 /∈ CCαβ ⊕ (vα,k + vβ,k)/2. (2)

Unlike VO, the created VO for each agent is defined as an
enhanced apex by the mean of the agent and object velocities
in RVO. The RVO at time k = tk depicts the area of velocities
for α that is equal to the sum of the velocities of agent α

and obstacle β. With the help of this idea, the agent may
successfully follow the safer trajectory vα,k+1 in line with
vβ when compared to the traditional VO.

2.3 The Hybrid Reciprocal Velocity Obstacle
Avoidance Approach

By enhancing the VO and RVO areas, a solution to the VO
problemhas beenpresented to eliminate the reasons for recip-
rocal dance. In order to evaluate various behaviours based on
the relative velocity of the obstacle vβ , the HRVO, as illus-
trated in Fig. 1, modifies the apex of the HRVO. Since the
origin lines of VOβ and RVOβ are co-linear, the agent should
resolve a trajectory vα,k+1 to pass the obstacle on the left if
it is going to the right, and vice versa. Inaction results in the
phenomenon of reciprocal dancing.

Theoretically, the approach cannot ensure the develop-
ment of smooth avoidance trajectories, despite evidence to
the contrary in [20]. In the illustration shown in Fig. 1, the
directional bias is created by changing the RVOβ ’s apex to
be the point where the RVOβ ’s leading edge and VOβ ’s trail-
ing edge connect, for example, HRVOβ = CCαβ ⊕ vHRVO.

The constraint set that is subsequently placed on agent α at
current time k = tk is thus expressed as vα,k+1 /∈ HRVOk =
⋃n

β=1 HRVOα,k in [20, 23]. The VO and Aβ for obstacles
Oβ are:

vα,k /∈ HRVOk = ⋃n
Aβ=1 HRVOAβ ∪ ⋃n

Oβ=1 VOOβ . (3)

The RVO and HRVO are often only required for comput-
ing inter-agent avoidance trajectories. Instead, the union of
the reciprocal variants (RVO or HRVO) for the surrounding
agents can be used to represent the global VO set for agent
α.

3 Fuzzy InteractingMultiple-Model Velocity
Obstacle Avoidance Approach

In this study,wehave designed the newFIMVOfor a bounded
experimental environment as shown in Figs. 11, 12, 13,
and 14. The FIMVO mechanism is constructed by choosing
its inputs as the absolute relative distances of the UAVs and
obstacles with respect to each other, as illustrated in Fig. 2.
These absolute relative distances are the distances between
UAVs and the obstacle are defined as in the following:

D̃1 = √
(x1 − x2)2 + √

(y1 − y2)2,
D̃2 = √

(x1 − xo)2 + √
(y1 − yo)2,

D̃3 = √
(x2 − xo)2 + √

(y2 − yo)2,

(4)

where, (x1, y1), (x2, y2) and (xo, yo) represent the locations
of the UAV1, UAV2 and obstacle in 2-D plane, respectively.
The universe of discourse of the antecedents membership
functions (MFs) of FIMVO are defined in between [0, 1],
thus the inputs (D̃1, D̃2 and D̃3) of the FIMVO are scaled
into the universe of discourse as follows:

D1 = D̃1 ∗ K 1
s ,

D2 = D̃2 ∗ K 2
s ,

D3 = D̃3 ∗ K 2
s ,

(5)

where, K 1
s and K 2

s are the scaling factors for the relative
distances D1, D2 and D3. In summary, the FIMVO uses the
absolute relative distances of the UAVs and obstacles with
respect to each other to decide the best obstacle avoidance
approach among the employed approaches in this work. The

Fig. 2 Distance-based decision making
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Fig. 3 Fuzzy membership functions

rule base of the FIMVO has been designed through expert
knowledge and by taking into account the boundaries and
limitations of the experimental environment. The rule struc-
tures of the mechanism are constructed as follows:

Rq : If (D1 is Ai
1) and (D2 is A j

2) and (D3 is Ak
3)

Then α1 = oq1 , α2 = oq2
(6)

where q : 1, ..., M(M = 27) is the rule number index, andM
is the total rule number of the FIMVO. Here, the antecedent
parts of the rule (Ai

1, A
j
2, A

k
3 ; i = 1, 2, 3, j = 1, 2, 3, k =

1, 2, 3) defined with triangular MFs while o1q and o2q are the
parameters of the consequent MFs.

As seen in Fig. 3, the antecedent MFs are specified using
symmetrical triangular MFs that are uniformly distributed.
Moreover, the linguistic fuzzy variables are defined as Small
(S), Medium (M), and Big (B). The consequent parts (o1(.),

o2(.)) of the rules are specified using crisp singletons that cor-
respond to the three velocity obstacle avoidance approaches
that are used (VO: 1, RVO: 2, HRVO: 3). The implemented
FIMVO uses and employs the product implication and the
centre of sets defuzzification approach [6, 24, 25].

Remark 1 It should be noted that all antecedent MFs for the
D1, D2, and D3 selected same as shown in Fig. 3. In a similar
way, the consequent MFs (o1(.), o

2
(.)) of the FIMVO are the

same as illustrated in Fig. 4.

The outputs of FIMVO (α1, α2) represent the fuzzy inter-
acting value for each velocity obstacle avoidance approach
(VO, RVO, and HRVO). Moreover, υ(.) denotes the output

Fig. 4 Consequents of the FIMVO

velocities of fuzzy-basedVO approaches. Thus, we proposed
and designed an algorithm, given in Algorithm 1, that com-
bines implemented velocity obstacle avoidance approaches
which can be defined asmulti-model velocity obstacle avoid-
ance approaches. In other words, the combining mechanism
acts like a type of filter byweighing the implemented velocity
obstacle avoidance approaches in a factor of αm,m ∈ 1, 2.

Algorithm 1 Algorithm for combining mechanism.
if α > 2 then−→υ FIMVO = (3 − α)−→υ RVO + (α − 2)−→υ HRVO
else if α < 2 then−→υ FIMVO = (2 − α)−→υ VO + (α − 1)−→υ RVO
else−→υ FIMVO = −→υ RVO
end if

Remark 2 It should be noted that the same algorithm is used
for both agents/UAVs.

4 Simulation and Real-Time Experimental
Results

Simulation tests and real-time experiments have been done.
Both simulation and real-time experiments are done on 2D
Cartesian coordinates. For this reason, in real-time experi-
ments, the altitude distance of the UAV has been set, and
it is defined as 50cm. Moreover, the heading angle (ψ) of
the UAV has been also set ψ = 0◦. The UAV mathemati-
cal model and specification of the UAV have been explained
deeply. For simulation experiments, used agent/UAV model
has been defined and tested. The parameters of the proposed
and compared approaches have been selected with the same
values and used in the simulation and real-time systems.
For both experiments, the proposed and compared obstacle
avoidance approaches have been performed in a Python 3.9
environment on a laptop computer running a 64-bitWindows
11 operating system with a 2.60 GHz Intel i7-10750H CPU
processor. Moreover, the sampling time is the same both in
the real-time experiments and in the simulations since the
same latency assumption in the communication between the
UAV and the computer.

4.1 Simulation Experiments

In this part, the robot model and one of the results for each
velocity obstacle avoidance approach have been represented.
After that, 1000 times independent repeated performance
results, in terms of collision counts and task performance
time, have been tabulated. A simple holonomic robot kine-
matic model has been used for each agent/UAV instead of
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using a complex UAV model. The simple holonomic kine-
matic model for each agent is represented as:

[
xt
yt

]

=
[
xt−1

yt−1

]

+
[
v(x)t�t
v(y)t�t

]

, (7)

where xt and yt are current position coordinates of the agent
at time t , xt−1 and yt−1 denote the respective coordinates at a
previous time t − 1. The velocities of the agent are v(x)t and
v(y)t , respectively. The sampling time (�t) of the UAV has
been set up as 0.05s. Moreover, in the equation above, the
heading angle has not been defined because it has been set
to 0 and has not changed for the whole process. Therefore, it
has not been added to the kinematic model.

Remark 3 Throughout the paper, agent and UAV have the
samemeaning. In the simulation tests, noise and disturbances
have been neglected. The green star (�) in the simulation
is defined as the goal points of the agents. Moreover, all
simulations are performed on Python environment [26].

In Fig. 5, the velocity obstacle avoidance simulation result
can be seen. The total task time is 7.5 sec, and agents are close
to each other. It can increase the collision possibility.

In Fig. 6, RVO avoidance approach results are presented.
The results of RVO show that it has done more manoeuvre
than conventional one. The total task time of RVO has been
measured as 9.2 sec.

Figure 7 shows the trajectories for eachUAV.The total task
time of HRVO has been found to be 13.6 sec. Red and Blue
agents have shownmanoeuvremotion when facing static and
dynamic obstacles simultaneously. For this reason, compu-
tation time has increased to avoid collision cone area.

Compared with VO, RVO, and HRVO, agents with
FIMVO have smooth trajectory results, and the proposed
novel method has 8.9 sec total time. The FIMVO method
shows less manoeuvred motion than HRVO, and it has a

Fig. 5 Simulation result of the VO avoidance approach

Fig. 6 Simulation result of the RVO avoidance approach

better safe collision-free trajectory than RVO. However, the
proposed method, FIMVO, is not faster than VO, but it has
many advantages, which aforementioned before (Fig. 8).

In Table 1, 1000 times independent simulation results
of the proposed and compared velocity obstacle avoidance
approach results are shown. It is seen that the highest num-
ber of collisions belongs to VO, but the fastest one is still
VO. FIMVO, the proposed method, has significant results
in terms of total collision and task performance time. The
proposed method, FIMVO, has the least number of colli-
sions.Moreover, the computation times gap between VO and
FIMVO are negligible values; they are 0.001s and 0.0023s,
respectively. Themultiple agent experiments are presented in
Appendix A.

4.2 Real-time Experiments

For the real-time testing, three DJI Tello UAVs have been
used; the UAV [27] and its coordinates can be seen in Fig. 9.
It is possible to calculate the conversion from the inertial

Fig. 7 Simulation result of the HRVO avoidance approach
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Fig. 8 Simulation result of the FIMVO avoidance approach

frame to the body frame or vice versa using transforma-
tion and rotation matrices. Moreover, linear velocities and
attitude angles are represented as [υx , υy, υz] and [φ, θ, ψ],
respectively. Each UAV is designed like a holonomic robot;
therefore heading angle of each UAV (ψ) has been fixed, and
it isψ = 0. The detected surface is coloured for each top side
of the UAV (in red, blue, and yellow, respectively).

In Eq. 8, a dynamical model of the UAV has been written.
In this study, we directly focused on velocity obstacle avoid-
ance approaches; therefore, internal models and controllers
have not been explained. Furthermore, controller inputs of
the UAVs have been defined as linear velocities. In the equa-
tion, T, m and g denote thrust from UAV rotors, the mass of
the system and gravity acceleration, respectively.
⎡

⎣
ẍ
ÿ
z̈

⎤

⎦ =
⎡

⎣
υ̇x
υ̇y
υ̇z

⎤

⎦ = T
m

⎡

⎣
cos(φ)cos(ψ)sin(θ) + sin(φ)sin(ψ)

cos(φ)sin(ψ)sin(θ) − cos(ψ)sin(φ)

cos(φ)cos(θ)

⎤

⎦ −
⎡

⎣
0
0
g

⎤

⎦ (8)

Remark 4 The dynamical model of the UAV has been
designed as decoupled instead of creating highly-coupled
dynamics. Due to the UAV size and weight, the coupled
dynamics problems can be eliminated.

The detailed models of the DJI Tello UAV and designed
controller are described in [5, 28]. Briefly, a Fuzzy PID
(FPID) controller has been used, and controller parameters
have been found using the ”Big-BangBig-Crunch” optimisa-
tionmethod. FPID and conventional controller methods have
been tested and compared with each other [5, 29]. After that,
it shows that FPID can guarantee stability. That means when

Fig. 9 The DJI Tello UAV used in the implementation

the system faces errors such as collision or out-of-reference
trajectory problems, it has existed from the position estima-
tion or velocity obstacle avoidance approaches. Moreover,
selected FPID controller parameters have been Ke = 0.019,
Kd = 0.0019, K0 = 0.0001, and K1 = 30, respectively.
The detailed structure of the FPID and the implementation
has been explained in [5]. The sampling time for the real-
time system has been chosen as 0.05s. The designed model
and controller are the same for all UAVs. The properties of
the used UAVs for experiments have been shown in Table 2.

An Intel realsense depth camera [30] with a testing area
provides the testing facilities (shown in Fig. 10) for observing
and localising the UAVs. Intel realsense depth camera has
shown high precision results in terms of resolution, object
detection and position detection. In this figure, the camera
has beenmounted on top of the floor, and some trigonometric
formulation has been used. In [5], it has been explained and
detailed intensely.

In the figure above, the positions of the UAVs have been
defined as xi , yi and i is the number of the UAVs. Compared
with the simulation experiments, the proposed and com-
pared approaches have faced different challenging problems,
such as observation noise for positioning, affecting propeller
torques between each other, and centralised-based velocity
obstacle avoidance calculation. In this study, position data

Table 1 Total 1000
Monte-Carlo simulation test
results

Method Total collision counts Mean of task performance time (s)

VO 692 8.58

RVO 347 13.67

HRVO 128 15.64

FIMVO 68 11.73
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Table 2 DJI Tello UAV specifications

Parameters Value

Number of UAVs 3

UAV dimension 98 × 92 mm

Time of flight 10 min

Maximum linear velocity [−8, 8] m/s

Boundry linear velocity [−12, 12] %
Boundry linear velocity [−12, 12] %

come from the Intel realsense camera as the measurement
distances of UAVs.

In order to increase the challenge of the problem and to
test the answers of velocity obstacle approaches under this
difficulty, noises were added to the position’s data, and the
state estimation method was applied. In Eq. 9,

ω ∼ N (0, 252) (9)

the added noise to each UAV position has been represented
to increase the challenge of the velocity approaches’ com-
parison. Performance criteria which are trajectory smooth-
ness, reliability, algorithm simplicity and task performance,
have been directly related to velocity obstacle avoidance
approaches, controller and position detection. Considering
performance criteria, controller and observation effects have
been minimised by using previous work [5] and a high-
accuracy depth camera system [30]. Before the test in
real-time, position error tolerance from the depth camera has
beenmeasured, and it has been determined as±50mm.After
the collected raw position data from UAVs, the maximum
correntropy Kalman filter (MCKF) was applied to get high
accuracy on the position estimation. Detailed mathematical
explanations and application results have been found in [31–
33].

Fig. 10 Global camera location and positions of the UAVs

Fig. 11 The VO results for UAVs in real-time

The noise level has been between intermediate-level
heavy-tailed and approximate Gaussian distributions. The
heavy-tailed levels of distribution are variable between 50
and 100, monotonously. Detailed information about heavy-
tailed and non-Gaussian distributions has been given in [33–
35].

In the real-time tests, the proposed and compared veloc-
ity obstacle avoidance approaches have to overcome static
and dynamic obstacle problems and noised sensor measure-
ment problems even if the measurement data is filtered.
In order to make a significant performance comparison of
the approaches, all real-time experiments have been run ten
times independently. To compare the approaches, desired
velocities, which are generated from VO approaches, and
collision-free positions have been collected. In Eq. 10,
collision-free position and desired velocity have been formu-
lated. In the equation, the combination of the current position
(Pi,k) and current velocity (υi,k) with sampling time (�t)
gives the next step (k) of position

Pi,k+1 = Pi,k + �t .υi,k (10)

Fig. 12 The RVO results for UAVs in real-time
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Fig. 13 The HRVO results for
UAVs in real-time

for each agent/UAV (i). Therefore, the algorithm is able to
compare collision-free trajectories for each VO avoidance
approach.

In Figs. 11, 12, 13, and 14, red and blueUAVs have shown
cooperativeworking, and yellowUAVhas not interactedwith
blue and red UAVs. Other specific information is black cir-
cles. Black circles show the position of theUAVswith noises.
That means the system does not know the exact position of
the UAVs. Lastly, to employ FIMVO, K 1

s and K 2
s scaling

factors have been defined as 1563 mm 750 mm, respectively.
In Fig. 11, applied VO results have been seen as a real-

time system. All approaches have been tested ten times, and
one of them has been chosen randomly. This figure shows the
collision, which is expected because of noises and uncertain
parameters in a real-time system. Considering the algorithm
processing, the VO approach is the fastest compared with
others-total task performance time 9.15 sec.

TheRVO is safer than theVOapproach, and the simulation
results prove it. In real-time tests, this information shows
the same result as the simulation. It shows safer and slower

processing than VO in Fig. 12. Total task performance time
12.35 sec.

In Fig. 13, HRVO shows good cooperative and non-
cooperative working in terms of reliability. It has the safest
approach when compared with traditional and proposed
obstacle avoidance approaches. However, computation time
is a problem for real-time applications. Total task perfor-
mance time has been measured at 15.25 sec.

In Fig. 14, the proposed approach results can be seen. It
is faster than HRVO and safer than RVO. FIMVO scrutinize
the capability of the system performance and reliability. At
this point, it shows novelty. When compared with VO, RVO,
and HRVO, FIMVO has 11.35 sec total time.

In Table 3, total test results of obstacle avoidance in multi-
ple UAV real-time applications have been represented. In the
real-time tests, the total collision counts, and themean of task
performance times have been investigated. The results show
that FIMVO has the best in terms of collision with obsta-
cles; also, when the averages of their task performances are
considered, it is seen that RVO and FIMVO have almost the

Fig. 14 The FIMVO results for
UAVs in real-time
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Table 3 Total real-time test
results

Approach Total collision counts Mean of task performance time (s)

VO 6 9.08

RVO 3 12.48

HRVO 1 16.01

FIMVO 0 12.33

same completion times. However, HRVO shows the slowest
results even though it has considerable collision avoidance
counts, such as 9 avoidance out of 10.

If we evaluate each result in a performance graph in
terms of reliability, trajectory smoothness, task performance
and computation simplicity, the results of the compared and
proposed approaches are seen in Fig. 15. The performance
results of the proposed and compared avoidance approaches
come from ten times real-time testing, independently. The
results have been scaled between [0, 1]. It is observed that
the reliability of the system is closely linked with the col-
lision counts, with trajectory smoothness representing the
first derivative of the warning zone trajectory road. Task per-
formance, focusing on goal attainment, constitutes another
crucial parameter. The final parameter, the computation sim-
plicity, directly correlates with the computation time for
each cycle. Notably, trajectory smoothness holds particu-
lar significance in Multi-Agent Systems (MAS) as, without
a smooth trajectory, controllers in each agent/UAV must
contend with manoeuvring effects to ensure stability. Conse-
quently, employing a classical controller structure can lead
to a smoother trajectory resolution for MAS and multiple
UAVs.

Fig. 15 Performance results

In the performance result figure, each performance index
has been calculated over N real-time experiments (N = 10)
for the proposed and compared velocity obstacle avoidance
approach. The performance indices have been calculated as
given below:

1. Reliability = (N −C)/N . Here,C represents the number
of collisions in all experiments.

2. Trajectory smoothness performance index value has been
calculated using the first derivative of the trajectory path
at the point where collision cone and warning zone are
intersected. It is noted that the warning zone radius has
been selected as r = 7cm.

3. Task performance = S/N . In the equation, S represents
the number of successful arrivals to the target out of N
number of experiments.

4. Computation simplicity is calculated using the mean of
the performance time, given in Table 3, and scaled in
between [0 − 1].

The VO algorithm stands out as the fastest among the
considered algorithms. However, its applicability falls short
when considering various comparison parameters for all
applications. In terms of reliability, the HRVO approach
yields the best results, as depicted in Fig. 15. Our proposed
FIMVO approach excels in trajectory smoothness. When
assessing task performance, FIMVO and HRVO exhibit
nearly identical results. The performance of the RVO aligns
as intermediate in terms of reliability, trajectory tracking, and
task performance when compared to other algorithms. The
proposed FIMVO approach integrates VO, RVO, and HRVO
approaches using fuzzy logic, resulting in enhanced relia-
bility and superior trajectory smoothness compared to RVO
and HRVO. Furthermore, it demonstrates comparable task
performance to HRVO.

5 Conclusions and FutureWork

In this study, fuzzy interacting multiple-model velocity
obstacle FIMVO avoidance has been proposed as a new
approach for swarm and multi-agent systems. The proposed
approach has been compared with three different geomet-
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ric approaches based on velocity obstacles. For comparison,
simulation and real-time experiments have been tested ten
times independently. For the real-time system, three UAVs
were used as cooperative and non-cooperative. Moreover,
these UAVs had the same controller structure and parame-
ters. The test results were investigated in terms of trajectory
smoothness, task performance, algorithm simplicity, and
reliability. Performance criteria showed that FIMVO had a
better smooth trajectory and better algorithm simplicity than
HRVO, and also, taking into account reliability, it was faster
than RVO and VO.

The proposed approach will be tested with ten UAVs
and different scenarios in future works. Moreover, differ-
ent velocity obstacle avoidance approaches, such as optimal
reciprocal velocity obstacle avoidance or generalised veloc-
ity obstacle avoidance approaches, will be combined with
FIMVO. To increase the challenge in real-time, different
noises will be added to the measurement part, and these
noises can be extremely heavy-tailed non-Gaussian distri-
butions. Lastly, the FIMVO approach will be investigated by
different intelligent controllers, and then stability analysis
will be chosen as another performance criterion for FIMVO
and the compared approaches.

AppendixA: Simulation ResultswithMultiple
Agents

These results demonstrate that the proposed collision avoid-
ance algorithm achieves a comparable performance as in the
case of three UAVs.

In this Appendix presents simulation results from the pro-
posed and comparedmethods withmulti-agents, 14 agents in
the considered example. The sampling time has been selected
and fixed as 0.05s. Then, 1000 time tests independently with
multi-agents have been shown in Table 4, and also, in Fig. 16,
one of the tested results has been represented.

Table 4 Total 1000 Monte-Carlo simulation test results

Method Total collision counts Mean of task performance
time (s)

VO 971 8.58

RVO 524 13.67

HRVO 259 15.64

FIMVO 195 11.73
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Fig. 16 (a) VO, (b) RVO, (c)
HRVO, (d) FIMVO avoidance
approaches’ results
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