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Abstract
This study addresses the problem of cooperative control design for a group of car-like vehicles encountering fading channels,
actuator faults, and external disturbances. It is presumed that certain followers lack direct access to the states of the leader via
a directed graph. This arises challenges in maintaining synchronization and coordination within the network. The proposed
control strategy utilizes non-singular fast terminal sliding mode control to accelerate consensus tracking and enhance the
convergence of the overall system. This controller is designed to mitigate the impact of actuator faults in the presence of
fading channels in the communication network. The effects of such issues on team performance are rigorously analyzed.
Based on the Lyapunov stability principle, it has been demonstrated that the controller is capable of providing satisfactory
performance for the entire system despite these challenges. Moreover, vehicle synchronization can be effectively maintained.
Numerical simulations are conducted to verify the theoretical findings.

Keywords Car-like vehicle · Faded neighborhood information channel · Fault-tolerant control ·Actuator faults ·Non-singular
fast terminal sliding mode · Adaptive control

1 Introduction

Recent years havewitnessed an increasing interest in the con-
trol community to study the challenges associated with the
development of cooperative controls for Networked Control
Systems (NCSs). These challenges involve the coordination
of various tasks, including but not limited to spacecrafts,
unmanned aerial vehicles, and mobile robots [1, 2]. Coop-
erative control primarily focuses on the consensus problem,
this entails developing an algorithm that ensures all vehicles
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in the system reach an agreement on a common goal or state.
Numerous studies have been documented concerning con-
sensus issues of first-order [3, 4], second-order [5, 6], and
high-order systems [7]. Consensus problems were primarily
investigated within the linear systems [8].

Studying consensus in nonlinear systems poses greater
challenges compared to linear systems. However, nonlinear-
ity is pervasive in practice, and several studies have been
carried out to investigate nonlinear dynamic systems [9,
10]. For instance, the authors in [11] introduced a control
methodology for nonlinear systems utilizing a backstepping
approach to mitigate the effects of hysteretic actuator faults.
However, it is worth mentioning that the unknown compo-
nents of the nonlinear systems were assumed to have linear
parameters. In other related studies, the effects of stochastic
disturbances on systems with nonlinear behavior have been
investigated in [12] and [13]. It is recognized that stability
issues in such systems present a greater challenge to resolve
compared to deterministic systems. A physical system is
inherently nonlinear. It is therefore important to consider
nonlinearity when studying NCSs. It is clear that consensus
research for NCSs that considers non-linearity is of increas-
ing significance [14]. As a means of handling the consensus
problem associated with stochastic disturbances, two dif-
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ferent delay-free impulsive pinning control methods were
proposed in [15]. The proposed methods, however, cannot
ensure synchronization among teammembers. SlidingMode
Control (SMC) is a reliable strategy for handling uncertain-
ties and external disturbances in nonlinear systems. In [14],
for instance, tracking of consensus in finite time for NCSs
under uncertainty and perturbation is effectively attained
by employing the SMC technique alongside a time-varying
approach capable of accommodating temporal fluctuations
and uncertainties.

In practical applications, convergence emerges as a crucial
metric for assessing the tracking error mechanism. Con-
vergence over finite-time consensus can be achieved at a
faster rate than asymptotic convergence. Hence, it is imper-
ative to conduct further investigations into NCSs within
the framework of finite-time consensus. While the Terminal
Sliding Mode Control (TSMC) method is highly respon-
sive, resilient, and offers a high degree of convergence in
a finite time, it may however encounter singularity problems
as errors approach zero, potentially resulting in unbounded
parameters. The Non-singular Terminal Sliding Mode Con-
trol (NTSMC) approach has been developed to mitigate
this limitation [16]. Further, an improved form of NTSMC,
known as the Non-singular Fast Terminal SlidingMode Con-
trol (NFTSMC) has been developed by some researchers.
The NFTSMC offers a faster convergence to the state vari-
ables compared to the NTSMC, preserving the advantages
of the NTSMC [17, 18]. However, various practical chal-
lenges persist, including communication network faults, state
limitations, and actuator faults, among others, which remain
difficult to address while ensuring the necessary system per-
formance. It is known that actuator failure is a common fault
encountered in physical systems, which can cause instability
in individual subsystems, ultimately failing the overall sys-
tem [19]. None of the studies mentioned earlier addressed
the problem of component faults as well as their influence
on the stability of networked systems. Hence, this study is
motivated by a need to fill this gap in the literature.

Actuator faults can manifest in physical systems due to
various reasons such as component aging, power issues, or
uncontrolled crashing. Previous studies [20–22] examined
faults of actuators, including those that result in loss of effec-
tiveness and bias. Aside from commonly used approaches
like Linear Matrix Inequality (LMI) approaches [23], and
Fault Detection and Isolation (FDI)-based methods [24, 25],
an adaptive approach has been recognized as an efficient
method for mitigating various types of actuator faults [26,
27]. Nevertheless, the proposed methodologies would be
impractical if agents cannot share complete state informa-
tion due to issues such as fading channels, time delays, or
packet losses.

In light of the extensive integration of wireless commu-
nication technologies into practical systems, we address a

prevalent issue known as fading channels. Fading is one
of the most significant phenomena that occurs in wireless
networks as a result of diffraction, reflection, and refrac-
tion during propagation [28]. Essentially, fading occurs due
to the reduction in signal strength as transmitted data trav-
els through particular propagation mediums. This leads to a
deterioration in the shared state information among agents,
encompassing parameters such as displacement, speed, and
others that are crucial for the development of controllers and
maintenance of systems’ stability [29]. Several studies have
examined the stability of NCSs in the presence of fading
channels [30, 31]. In [30], the authors employed a learning
algorithm to enhance linear system tracking performance in
the presence of faded information, allwithout enforcing strin-
gent restrictions on the characteristics of the fading channel.
Anoptimization frameworkbasedonKalmanfiltering is used
in [32] for optimizing the learning gain by incorporating the
covariancematrix of the input error. In [31], a control scheme
that relies on approximation is utilized to address the track-
ing problem for systems with unknown dynamics and fading
channels. The proposed framework models random signals
as a combination of multiplicative and additive stochastic
components. There are further studies related to this issue
in [33, 34]. Until now, the control tracking issue for NCSs
facing challenges commonly encountered on large-scale sys-
tems such as actuator faults, fading channels, and external
disturbances has not been studied.

Numerous studies have recently examined the stability
of NCSs with actuator faults, including those discussed in
[25, 35, 36]. The authors in [25] proposed a fractional-
order sliding-mode control strategy for a team of Unmanned
Aerial Vehicles (UAVs) subject to actuator faults during a
fire monitoring mission. The actuator faults and the exter-
nal disturbances are estimated by sliding-mode disturbance
observers. In [35], an event-triggered adaptive fault-tolerant
control method was developed for a class of nonlinear multi-
agent systems with actuator and sensor faults. The control
design incorporates fault compensationmechanismand com-
mand filtering methods to avoid duplicative differentiation
leading to a burst of complexity. The study in [36] inves-
tigated the fault-tolerant tracking problem of time-varying
formation for nonholonomic multi-robot systems. Fuzzy
logic systems are used to approximate uncertain nonlinear
dynamics, and an adaptive backstepping recursive procedure
and dynamic surface technology are used to develop a fuzzy
adaptive formation tracking control scheme. Furthermore,
a decentralized adaptive fault-tolerant control strategy was
proposed to compensate for actuator faults and ensure that all
signals are semi-globally uniformly and ultimately bounded.

However, the above-mentioned studies have the limi-
tations of assuming that the state information exchanged
between vehicles is always available and that there is no faded
neighborhood information in the network. It is challenging
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to develop a fault-tolerant cooperative control algorithm for
NCSs when considering the actuator faults problem with the
lack of complete state information shared in the network.
The purpose of a fault-tolerant controller is to cope with the
faults of actuators and achieve a certain group behavior with
acceptable performance. Nevertheless, this objective cannot
be accomplished when the vehicles share their state informa-
tion via fading channels.

In the fading channels condition, if one vehicle’s actu-
ator fails, its impact can spread to other vehicles, severely
degrading the overall system performance. This limitation
motivated us to address the actuators’ and fading chan-
nels’ issues and investigate how they impact the stability of
networked systems. In contrast to the control methods pro-
posed in the relative studies, our developed controller can
handle actuator faults in the presence of faded state infor-
mation. Moreover, it is more responsive, robust, and stable
in unknown circumstances. To the authors’ best knowledge,
this is the first attempt to address such a challenging problem
for a team of car-like vehicles.

Inspired by the preceding discussions, this paper investi-
gates the problem of cooperative control design for NCSs
affected by fading channels, actuator faults, and external
disturbances. To this end, we develop an Adaptive Non-
singular Fast Terminal Sliding Mode Control (ANFTSMC)
for a group of car-like vehicles. This controller enables each
vehicle to mitigate the effects of faults, if present, and com-
plete the mission with the other members of the team. Our
first step involves establishing an ANFTSMC mechanism to
address the challenges posed by fading channels and external
disturbances. Then, we develop an ANFTSMC strategy con-
sidering the effects of actuator faults, fading channels, and
external disturbances. Thedevelopedmethodologies have the
capability of overcoming the singularity and providing fast
convergence of the team members to reach a consensus.

The contributions of this research can be outlined as follows:

1. Different from [25] and [35–37], our study introduces
a feasible methodology to handle the actuator faults of
vehicles interacting over fading communication channels
and subject to external disturbances.

2. This developed controller introduces an adaptive mech-
anism that allows for the automatic modification of
the control gain, which differs from the sliding mode
protocols described in [38] and [39]. This presents an
advantage compared to a constant control gain, as slid-
ing mode control can operate effectively with no prior
knowledge of disturbances and uncertainties within the
system.

3. In comparison with existing methods of fault-tolerant
control design, the proposed ANFTSMC features a sim-
ple structure and can be easily implemented in various
applications.

The subsequent sections of this paper are structured as
follows: Section 2 introduces preliminaries and problem
formulation. In Section 3, a controller is proposed for leader-
follower systems impacted by fading channels, actuator
faults, and external disturbances. Section 4 includes numer-
ical simulations to validate the effectiveness of the proposed
approach. Finally, Section 5 presents a conclusion and out-
lines potential avenues for future research.

2 Preliminaries and Problem Formulation

2.1 Graph theory [40]

The graphG = (V , E, A) depicts the communication topol-
ogy of a team, with V = {v1, v2, ..., vn} representing the
vertex set and E = {ei j = (vi , v j )} denoting the set of
edges. An adjacency matrix A is defined as A = [ai j ]n×n ,
where ai j > 0 signifies the existence of an edge between
node vi and node v j , and ai j = 0 indicates the absence of
such an edge. A graph G is considered strongly connected if
there is a path connecting every pair of distinct nodes vi and
v j .

Aweighted graph’sLaplacianmatrix is defined as follows:

Lm = D − A = [li j ] ∈ R
n×n (1)

In this context, the degree matrix D = diag(d1, d2, ...dn),
where di = ∑N

j=1 ai j , li j = −ai j , ∀ j �= i and
∑N

j=1 li j =
lii ,∀i = 1, 2, ..., N .

This research examines a group of vehicles with l rep-
resenting the leader and i = 1, 2, ..., N denoting the
followers. DigraphsG are employed to illustrate the commu-
nication among leaders and followers. The diagonal matrix
B = diag(b1, b2, ..., bN ) captures the direct communication
between the leader and followers,where bi =1 signifies direct
communication, and zero otherwise.

2.2 System description

In this study, it is assumed that the system comprises one vir-
tual leader and multiple followers. The dynamics pertaining
to i th (i = 1, 2, ..., N ) follower can be described as follows:

{
q̇i = J i ω̄i

˙̄ωi = M̄
−1

B̄(qi )τ i − hi (qi , ω̄i ) + di
(2)

Similarly, the dynamics of a leader can be presented as fol-
lows:

{
q̇l = J i ω̄l

˙̄ωl = M̄
−1

B̄(ql)τ l − hl(ql , ω̄l)
(3)
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where

hi (qi , ω̄i ) = M̄
−1

V̄ (qi , q̇i )ω̄i ; hl(ql , ω̄l) = M̄
−1

V̄ (ql , q̇l)ω̄l

ω̄i = [
vi wi

]T ; M̄ = JT
i M J i ; V̄ = JT

i (M J̇ i + V J i )

B̄ = JT
i �; J i =

⎡

⎢
⎢
⎣

cosφi 0
sin φi 0
tan(ψi )

L 0
0 1

⎤

⎥
⎥
⎦

M =

⎡

⎢
⎢
⎣

m 0 Ic sin(φi ) 0
0 m −Ic cos(φi ) 0

Ic sin(φi ) −Ic cos(φi ) Ib Iw
0 0 Iw Iw

⎤

⎥
⎥
⎦

V =

⎡

⎢
⎢
⎣

0 0 −Icφ̇ cos(φi ) 0
0 0 −Icφ̇ sin(φi ) 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ ; � =

⎡

⎢
⎢
⎣

cos(φi ) 0
sin(φi ) 0

L sin(ψi ) cos(ψi ) 0
0 1

⎤

⎥
⎥
⎦

where ql = (xl , yl , φl , ψl)
T and qi = (xi , yi , φi , ψi )

T denote
the state vectors of the leader and i th follower respectively.As
shown inFig. 1, the coordinates (xi , yi ) represent the position
of i th follower. The state variables vi andωi , denote the linear
and steering velocities respectively. The variables ψi and φi

represent the steering and heading angles of i th follower. The
torque applied to the actuators of the i th follower is denoted
by τi . The external disturbances acting on the system are
represented by di .

The equations provided represent the following parame-
ters: m = mc + 4mw represents the total mass, where mc

denotes the vehicle mass and mw deontes the mass of each
wheel. Ic = (L − b)mc + 2Lmw represents the inertia about

Fig. 1 Car-like vehicle reference frame and parameters

the center of mass, where L denotes the length between the
vehicle’s axles and b represents the length from the front axle
to themass center. Ib = mc(L−b)2+4W 2mw+ Ibzz+4Iwzz ,
refers to the inertia about the mass center of the entire vehi-
cle, where W denotes the width of the vehicle and Iw and
Ibzz represent the inertia about the vertical axis for the vehi-
cle and each wheel respectively. As illustrated in Fig. 1, CoR
(Center of Rotation) is a center of rotation around the rear
wheel axis.

Assumption 1 There exists a positive constant d̄ such that
||di || < d̄, representing an upper bound for the external dis-
turbances.

Assumption 2 [41] For any qi , ω̄i ,i ∈ [1,...,N], there exist
positive constants μ1 and μ2 so that:

‖H(q, ω̄, t)−1⊗h(ql , ω̄l , t)‖ ≤ μ1‖q − 1⊗ql‖+μ2‖ω̄ − 1⊗ ω̄l‖ (4)

where H(q, ω̄, t) = [h1(q1, ω̄1), ..., hN (qN , ω̄N )]T , and⊗
is the Kronecker product.

Remark 1 Assumption 2 holds significant importance in the
development of the control law, as it ensures that the solu-
tion is uniquely determined. This premise holds true when
the function h(q, ω̄) exhibits continuity and boundedness.
The utilization of the Lipschitz condition for the function
h limits the variation rate of the function. Thus, ensuring
function boundedness involves considering the Lipschitz con-
dition. In practice, compliancewithAssumption 2 enables the
controller to achieve vehicle convergence towards the pre-
defined reference trajectory.

Lemma 1 The invertibility of the matrix (Lm + B) is con-
tingent upon the existence of a directed spanning tree within
the digraph G.

Definition 1 [42] For any interconnected system, the track-
ing error is said to be cooperatively uniformly ultimately
bounded if a compact set θ̄ ε1 ⊂ R

N and θ̄ ε2 ⊂ R
N exists

with the property that {0} ⊂ θ̄ ε1 and {0} ⊂ θ̄ ε2 , ∀ ε1 ∈ θ̄ ε1

and ε2 ∈ θ̄ ε2 there exist bounds B̄ε1 and B̄ε2 and time
T (B̄ε1 , B̄ε2 , ε1, ε2) such that ‖ε1‖ ≤ B̄ε1 , ‖ε2‖ ≤ B̄ε2 ,
∀t ≥ to + Ta, where ε1 and ε2 are the position and velocity
tracking errors of the system, respectively.

Remark 2 The primary objective of cooperative control sys-
tems employing the leader-follower approach is to direct the
followers to track the leader’s state information. However,
achieving precise control tracking in practice is hindered
by challenges such as unknown dynamics, external dis-
turbances, and component faults. To address these issues,
the Cooperative Uniform Ultimate Boundedness (CUUB)
approach is introduced to manage unforeseen variations
encountered in real-world scenarios.
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In fault-free scenarios, the tracking error variables for the
i th follower can be written as follows: [43]:

{
e1i =∑N

j=1 ai j ( pi − p j −�i j ) + bi ( pi − pL−�i L)

e2i =∑N
j=1 ai j (ω̄i − ω̄ j ) + bi (ω̄i − ω̄l)

(5)

where e1i and e2i represent the position and velocity track-
ing error variables respectively. ai j = 1 whenever there is a
communication between i th follower and its neighbor j ; if
not, it is zero. pi = (xi , yi , ψi )

T and�i j = (� j −�i ) is the
measure of the distance and orientation of the i th follower
with respect to its neighbor j . �i L is the measure of the dis-
placement and orientation of the i th follower with respect to
the leader.

Remark 3 The tracking error defined in (5) is formulated to
fulfill the primary objective of cooperative system design.
This system is developed to guide all followers to accurately
trace their designated reference trajectories while maintain-
ing prescribed relative distances, essential for accomplishing
specific cooperative tasks. Moreover, followers are expected
to synchronize their velocities with that of the leader. The
desired relative distance, denoted by �i j = (xi j , yi j , φi j ),
assumes a pivotal role in shaping the intended structure
of the team formation to effectively execute cooperative
tasks. Through the incorporation of �i j into the system, the
controller can effectively manipulate follower movements,
ensuring the convergence of e1i and e2i towards zero, thereby
achieving precise trajectory tracking.

When the error variables in Eq. 5 approach zero, the fol-
lowers achieve the consensus while tracking the leader’s
coordinates. To simplify notation, Eq. 5 can be expressed
in a compact form as follows:

{
ε1 = (Lm + B) ⊗ Im. p̃

ε2 = (Lm + B) ⊗ Im. ˜̄ω (6)

where ε1 = [e11, . . . , e1N ]T , ε2 = [e21, . . . , e2N ]T , p̃ =
p − 1 ⊗ ( pl − �i L), ˜̄ω = ˜̄ω − 1 ⊗ ˜̄ωl , Im ∈ Rm×m .
The derivative of Eq. 6 can be written as:

{
ε̇1 = ε̄	

2

ε̇2 = (Lm+B)⊗ Im
(
H−1 ⊗ h(ql , ω̄l )+M̄

−1
τ −1 ⊗ M̄

−1
τ l

)(7)

where

ε̄�
2 = J̄ε2; J̄ = [ J̄1, J̄2, ..., J̄ N ]T ; J̄ i =

⎡

⎣
cosφi0
sin φi 0
tan(ψi )

L 0

⎤

⎦ ;

τ = [τ 1, ..., τ N ]T and M−1 = diag[M−1
1 , ..., M−1

N ]T .

The objective set forth in Eq. 7 is to attain limt→∞ ε1 = 0
and limt→∞ ε2 = 0. However, when faced with degraded

neighborhood data and faults in actuators, reaching this goal
becomes impracticable unless the effects of such faults are
taken into account during system design. Therefore, it is
imperative to incorporate the effects of such faults into the
system design to effectively address these challenges.

2.3 Modeling of fading channels

In practical systems, many factors can obstruct the com-
munication of information among agents, leading to agents
receiving distorted information instead of the precise data
sent by their neighbors. In this work, we propose the hypoth-
esis that signal fading only takes place as part of the exchange
of data between followers, without any fading influencing the
transmission of state information between the followers and
leader.

The fading channels can be described in the following
manner:
{
p	
j = 1

δ	 δi j p j

ω̄	
j = 1

δ	 δi j ω̄ j
(8)

where δi j stands for the attenuation parameter, while δ	

denotes the mean value. p	
j and ω̄	

j represent information

pertaining to faded state that i th follower is receiving from
neighbor j . Thus, Eq. 5 can be rewritten as follows:

{
e�

1i = ∑N
j=1 ai j ( pi − p	

j −�i j )+bi ( pi − pL−�i L)

e	
2i = ∑N

j=1 ai j (ω̄i − ω̄	
j ) + bi (ω̄i − ω̄l)

(9)

It is worth noting that in networked systems with fading
channels, where the quality of communication links fluctu-
ates over time, the graph structure plays a crucial role in
convergence rates. To mitigate fading channels’ impact on
the convergence rate of the tracking errors, we involved the
expectation of the random variable in Eq. 8 to improve the
accuracy of the calculation of the shared information between
vehicles and improve the convergence rate of the tracking
errors.

Remark 4 In practice, many factors can contribute to the
fading of channels, including time, radio frequency, geo-
graphical location, etc. Accordingly, fading can be viewed
as a random variation in the transmitted signal’s amplitude
andphase over timeas presented inEq. 8. This concept canbe
extended to large-scale systems, presuming that all followers
experience the fading channel phenomenon. It is important
to note that in Eq. 8, the variable δi j is not estimated. Instead,
the expectation of this random variable is utilized to accu-
rately calculate the tracking errors between one follower and
another. In the scenario where δi j adheres to a Gaussian dis-
tribution featuring a central parameter denoted by its mean
value δ	, the value is highly likely to fall within the range of
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the mean. Consequently, the utilization of the mathematical
expectation expression is deemed to augment the precision
of computations.

For the sake of analytical simplification, we introduce the
vector αi , characterized by a single non-zero entry in its i th

position and zeros elsewhere. Consequently, Eq. 9 can be
succinctly reformulated as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ε�
1 = (Lm + B) ⊗ Im

∑N
i=1

(
1
δ	 
i ( p − αi ⊗ ( pi − �i j ))

+αi ⊗ ( pi − �i j ) −1N ⊗( pl − �i L )
)

ε	
2 = (Lm + B) ⊗ Im

∑N
i=1

(
1
δ	 
i (ω̄ − αi ⊗ ω̄i )

+αi ⊗ ω̄i − 1N ⊗ ω̄l

)

(10)

where 
1=diag[0, δ12, ..., δ1N ], 
2=diag[δ21, 0, ..., δ2N ],
..., 
N = diag[δN1, δN2, ..., 0] and 
i ( p − αi ⊗ pi ) refers
to the transmitted state information from team members to
i th follower.

Taking the time derivative of Eq. 10, one can get

⎧
⎪⎪⎨

⎪⎪⎩

ε̇�
1 = ε̄�

2

ε̇�
2 = (Lm + B) ⊗ Im

(
H̄ − 1 ⊗ h(ql, ω̄l )

+M̄−1τ − 1 ⊗ M̄−1τl

)
(11)

where ε̄�
2 = J3×2ε

�
2 , H̄ = ∑N

j=1
1
δ� 
i ( ˙̄ω − αi ⊗ ˙̄ωi )+αi

⊗ ˙̄ωi . Then, the goal ofEq. 11 is to achieve that limt→∞ε�
1 =

0 and limt→∞ε�
2 = 0.

2.4 Modelling of actuator faults

Actuator faults are recognized as among the most formidable
challenges to mitigate within the spectrum of potential sys-
temmalfunctions. Such faults can significantly impair system
performance and precipitate catastrophic incidents. Hence,
this study aims to analyze the performance of follower agents
affected by multiplicative and additive actuator faults. This
investigation is conducted based on the following assump-
tion:

Assumption 3 [44] There are two types of faults, namely the
multiplicative actuator fault denoted by γi (t) and additive
actuator fault denoted by ϑi (t). All of these fault types are
restricted within finite boundaries, and their derivatives are
existed and bounded as well. Furthermore, we have ϑi ≤ ϑ̄i

where ϑ̄i is a known bound.

Given Assumption 3, the actuator faults outlined in Eq. 2
can be represented by the following model:

τi = (1 − γi (t))τN + ϑi (t) (12)

where ϑi (t) ∈ R
2, γi (t) ∈ R

2×2, with γi (t) = diag([γ1(t),
γ2(t)]), and 0 < γi (t) ≤ 1. τN denotes the nominal torque
inputs. It is believed that in the fault-free condition, all the
elements of γi (t)andϑi (t) equal zero.

3 Main Results

3.1 ANFTSMC design under the impact of fading
channels and external disturbances

This section is dedicated to developing an adaptive fault-
tolerant controller aimed at preserving the team’s stability
under the influence of deteriorated neighborhood informa-
tion. We employ a non-singular fast terminal sliding mode
surface to avoid singularities and achieve convergence in a
short time. The surface of sliding mode control for the i th

follower is chosen as follows:

si = ε	
1i + K 1i (ε

	
1i )

η1 + K 2i (ε
	
2i )

η2 (13)

where K 1i > 0 and K 2i > 0, then, Eq. 13 can be expressed
in compact form as follows:

s = ε	
1 + K 1(ε

	
1)

η1 + K 2(ε
	
2)

η2 (14)

with

s = [sTi , sT2 , ..., sTN ]

Taking the differentiation of Eq. 14 yields:

ṡ = ε̇	
1 + K 11diag(|ε	

1|η1−1)ε̇	
1 + K 22diag(|ε	

2|η2−1
)ε̇	

2

= J3×2ε
	
2 + K 11diag(|ε	

1|η1−1)J3×2ε
	
2 + K 22diag(|ε	

2|η2−1)ε̇	
2

= (I + K 11diag(|ε	
1|η1−1)ε̄	

2 + K 22diag(|ε	
2|η2−1)ε̇	

2 (15)

where 1 = diag(η1) and 2 = diag(η2) and |ε�
1 |η1−1 =

(|ε�
11|η11−1T , |ε�

12|η12−1T , ..., |ε�
1N |η1N−1T )T and |ε�

2 |η2−1 =
(|ε�

21|η21−1T , |ε�
22|η22−1T , ..., |ε�

2N |η2N−1T )T .

TheANFTSMCcan be formulated for a collective of vehi-
cles in the presence of fading channels as follows:

τ = M̄(Lm + B)−1 ⊗ Imdiag(ε	
2|1−η2)(K 22)

−1

×
(

− (I + K 11 × diag(|ε�
1 |η1−1

))ε̄	
2

+ϒ(s) − K 3sν1 − K 4sν2
)

+ 1N ⊗ τl (16)

where ϒ(s) = [υ(s1), υ(s2), ..., υ(sN )] and υ(si ) is the
smoothing function defined in Eq. 18. K 3 and K 4 are positive
gains. By choosing a substantial switching gain, cooperative
tracking, as described in Eq. 17, can be attained. However,
this approach may lead to severe chattering of actuators and
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increased energy usage in real applications. Hence, the adap-
tive mechanism is used to overcome this issue by computing
the switching gain σi as follows:

σ̇i = μ(‖si‖ − κσi ) (17)

where μ > 0 and κ > 0. The term −κσi is used to limit the
growth of σ̇i .

From Eq. 17, the smoothing function can be written as
follows:

υ(si ) =
{

−2σi si
‖si‖ if σi‖si‖ ≥ χ

−2σi siχ if σi‖si‖ < χ
(18)

where χ > 0, and σi is computed by the adaptive law in Eq.
17.

Theorem 1 Considering the system introduced in (2) and (3),
subject to the effects of fading channels, the utilization of the
control law defined in Eq. 16 facilitates the convergence of
the tracking error variables presented in Eq. 11 to zero in a
finite-time.

Proof Let us consider the candidate Lyapunov function as
follows:

V1 = 1

2
sT s + 1

2μ

N∑

i=1

(σ i − σ̄ )2 + 1

2μ

N∑

i=1

σ 2
i (19)

where σ̄i is the upper bound of σi . A σ̄i is designed to be
σ̄i > ϕ + σ0, and σ0 > 0.

The derivative of Eq. 19 can be given by:

V̇1 = sT
(
(I + K 11diag(|ε	

1|η1−1))ε̄	
2 + K 22diag(|ε	

2|η2−1)ε̇	
2

)

+
N∑

i=1

(σ i − σ̄ )(‖si‖ − κσ i ) +
N∑

i=1

σ i (‖si‖ − κσ i ) (20)

Substituting Eqs. 11 into 20 one has

V̇1 = sT
(
(I + K 11diag(| ε	

1|η1−1))ε̄	
2 + K 22

diag(| ε	
2|η2−1)(Lm + B) ⊗ Im(H̄ − 1 ⊗ h(ql, ω̄l , t)

+d + M̄
−1

τ − 1 ⊗ M̄
−1

τ l)
)

+ �(si , σ ) (21)

where

�(si , σ )=
N∑

i=1

(σ i − σ̄ )(‖si‖ − κσ i )+
N∑

i=1

σ i (‖si‖ − κσ i )

(22)

Given Assumption 2 and the properties associated with
the norm, one can obtain:

‖H̄ − 1 ⊗ hl‖ = ‖(h̄1(q1, ω̄1, t) − hl(ql , ω̄l , t))
T , ...,

(h̄n(qn, ω̄n, t) − hl(ql , ω̄l , t))
T ‖

≤ ‖(‖h̄1(q1, ω̄1, t) − hl(ql , ω̄l , t)‖, ...,
‖(h̄n(qn, ω̄n, t) − hl(ql , ω̄l , t)‖)‖

≤ ‖(μ1‖q1 − ql‖ + μ2‖ω̄1 − ω̄2‖, ...,
μ1‖qn − ql‖ + μ2‖ω̄n − ω̄l‖)‖

≤ ‖(μ1‖q1 − ql‖, ...,+‖qn − ql‖)‖
+μ2‖(‖ω̄1 − ω̄2‖, ..., ‖ ω̄n − ω̄2‖)‖

≤ μ1‖ε	
1‖ + μ2‖ε	

2‖ (23)

By leveraging the Kronecker product property, one can
derive the following:

‖(Lm + B) ⊗ Im‖ =
[
λm

(
[(Lm + B) ⊗ Im]T [(Lm + B) ⊗ Im]

)] 1
2

= [λm(Lm + B)T (Lm + B)] 1
2

= ‖(Lm + B)‖ (24)

From Lemma 1, Eqs. 23 and 24, one can have

‖(Lm+B) ⊗ Im(H̄−1 ⊗ hl )‖ ≤ ‖Lm + B‖(μ1‖ε	
1‖ + μ2‖ε	

2‖)
≤ ‖Lm + B‖‖Lm + B‖−1(μ1‖ε	

1‖
+μ2‖ε	

2‖) ≤ ζμ1‖ε	
1‖ + ζμ2‖ε	

2‖ (25)

By means of Eqs. 24 and 25, one then has

V̇1 = sT
(
(I + K 11diag(|ε	

1|η1−1))ε̄	
2 + K 22

diag(ε	
2|η2−1)(ζμ1‖ε	

1‖ + ζμ2‖ε	
2‖) + K 22

diag(| ε	
2|η2−1)(Lm + B) ⊗ Im(M̄

−1
τ − 1 ⊗ M̄

−1
τ l

+√
N d̄)

)
+ �(si , σ ) (26)

By replacing Eqs. 16 into 26, the following inequality
holds:

V̇1 ≤ K 22diag(|ε	
2|η2−1)

[
(ζ(μ1‖ε	

1‖ + μ2‖ε	
2‖)

+‖Lm + B‖√N d̄
]
‖s‖ − (K 3sν1 + K 4sν2)‖s‖

+sTϒ(s) + �(si , σ ) (27)
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We will consider two cases to begin our theoretical anal-
ysis:

First, when σ i‖si‖ ≥ χ , ∀i = 1,..., N , sTϒ(s) =
−∑N

i=1 σ i‖si‖. Thus, Eq. 27 can be rewritten as follows:+

V̇1 ≤ ϕ‖s‖ + �(si , σ ) − 2
N∑

i=1

σ i‖si‖ − K 3

N∑

i=1

‖si‖ν1i+1

−K 4

N∑

i=1

‖si‖ν2i+1 (28)

where ϕ =K 22diag(|ε	
2|η2−1)

(
ζ(μ1‖ε	

1‖ + μ2‖ε	
2‖) +

‖(Lm + B)‖√N d̄
)
. From Eq. 22, one can write

�(si , σ i ) = 2
N∑

i=1

σ i‖si‖ − κ

N∑

i=1

(σ i − σ̄ )σ i − κ

N∑

i=1

(σ i )
2 − σ̄

N∑

i=1

‖si‖

= 2
N∑

i=1

σ i‖si‖ + κσ̄

N∑

i=1

σ i − 2κ
N∑

i=1

(σ i )
2 − σ̄

N∑

i=1

‖si‖ (29)

By substituting Eqs. 29 into 28, one can get that

V̇1 ≤ −(σ̄ − ϕ)‖s‖ + κσ̄

N∑

i=1

σ i − 2κ
N∑

i=1

(σ i )
2

−(K 3 + K 4)

N∑

i=1

‖si‖ν̄+1 (30)

Considering that σ i attains its peak when σi = σ̄ , one can
get that

V̇1 ≤ −(σ o)‖s‖ + ρ1 (31)

with ρ1 = −κN σ̄ 2 − (K 3 + K 4)
∑N

i=1 ‖si‖ν̄+1.
Second, when σ i‖si‖ < χ , ∀ i = 1,..., N , sTϒ(s) =

∑N
i=1

σ
χ
‖si‖. It follows from Eq. 27 that

V̇1 ≤ ϕ‖s‖ +
N∑

i=1

(σ i − σ̄ )(‖si‖ − κσ i ) −
N∑

i=1

σi

χ
‖si‖

≤ −(σ o)‖s‖ − ρ1 − σ i

N∑

i=1

(
1
χ

− σ i )‖si‖

≤ −(σ o)‖s‖ − ρ2 (32)

with ρ2 = ρ1 + σ i
∑N

i=1(
1
χ

+ σ i )‖si‖.
The following inequality holds when Cases I and II are

combined as follows:

V̇1 ≤ −(σ o)‖s‖ + ρ

≤ −(1 − �)σ 0‖s‖ (33)

where ρ represents the maximum value between ρ1 and ρ2,
with � constrained within the range 0 < � < 1. As a result,
the sliding manifold s will converge to the boundary layer θ̄1
in a finite time.

θ̄1 =
{
‖s‖ ≤ σ

�σ0

}
(34)

The property of ultimate boundedness exhibited by s entails
that ε	

1 and ε	
2 are bounded. Hence, based on Definition 1 and

Remark 2, it can be inferred that the CUUB criterion is met.
This concludes the proof. �

3.2 ANFTSMC design under the impact of actuator
faults, fading channels, and external
disturbances

This section presents a consensus algorithm for multiple
vehicles affected by actuator faults, fading channels, and
external disturbances.

Theorem 2 The implementation of the Cooperative Uniform
UltimateBoundedness (CUUB)approach for a groupof vehi-
cles encountering actuator faults, random fading signals,
and external disturbances is attainable through the utiliza-
tion of the control law in Eq. 16 and the adaptive mechanism
in Eq. 17 under the condition that

ε = (Lm + B)γ̄ (Lm + B)−1 (35)

where ε > 0 and γ̄ = diag{γ1(t), ..., γN (t)}.

Proof Consider the following candidate Lyapunov function:

V1 = 1

2
sT s + ε

2μ

N∑

i=1

((σ i − σ̄ )2 + σ 2
i ) (36)

we assume that σ̄ > ϕ′ + σ ′
o, where, ϕ′ will be explicitly

defined at a later stage, and σ ′
o is stipulated to be greater than

zero.
By computing the time derivative of Eq. 36 and utilizing

equations Eqs. 11, 12 and 25, one can obtain

V̇1 = sT
(
(I + K 11diag(|ε	

1|η1−1))ε̄	
2 + K 22.

diag(|ε	
2|η2−1)(ζμ1‖ε	

1‖ + ζμ2‖ε	
2‖) + K 22

diag(|ε	
2|η2−1)(Lm + B)Im(M̄

−1
(I − γ i (t))τ N

+ϑ i (t) − 1 ⊗ M̄
−1

τ l +
√
Nd̄)

)
ε�(si , σ ) (37)
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By replacing Eqs. 16 and 35 into Eq. 37, one can obtain the
following:

V̇1 = sT
(
K 22diag(|ε	

2|η2−1
[
(ζ(μ1‖ε	

1‖ + μ2‖ε	
2‖)

+‖Lm + B‖√Nd̄ + ‖Lm + B‖√Nϑ̄ i

]

−(K 3s
ν1+K 4s

ν2)+ϒ(s)−‖Lm+B‖γ̄‖Lm+B‖−1

⊗Im
[
b ⊗ M̄

−1
τ l−(I+K 11diag(|ε	

1|η1−1))ε̄	
2ϒ(s)

−K 3sν1 − K 4s
ν2

])
+ ε�(si , σ )

≤ K 22diag(|ε	
2|η2−1

[
(ζ(μ1‖ε	

1‖ + μ2‖ε	
2‖)

+|Lm + B‖.√Nd̄
]
‖s‖ − ‖Lm + B‖γ̄ ‖Lm + B‖−1

⊗Im
[
b ⊗ M̄

−1
τ l − (I + K 11diag(|ε	

1|η1−1))

ε̄	
2

]
‖s‖ − εsT (K 3sν1 + K 4sν2) + εsTϒ(s)

+‖Lm + B‖√Nϑ̄‖s‖ + ε�(si , σ )

≤ ϕ′‖s‖ + εsTϒ(s) − εsT (K 3sν1 + K 4sν2)

+ε�(si , σ ) (38)

whereϕ′=ϕ−‖Lm + B‖γ̄ ‖Lm + B‖−1⊗Im.
[
b⊗M̄

−1
τ l−

(I + K 11diag(|ε	
1|η1−1))ε̄	

2

]
+ ‖Lm + B‖√Nϑ̄

Now, let’s consider that when σ i‖si‖ ≥ χ , ∀i = 1,..,N ,
sTϒ(s) = ∑N

i=1 σ‖si‖.

V̇1 ≤ ϕ′‖s‖ − εσ̄

N∑

i=1

‖si‖ + ε

[

κσ̄

N∑

i=1

σ i − 2κ
N∑

i=1

(σ i )
2

−(K 3 + K 4)

N∑

i=1

‖si‖ν̄+1
]

≤ −(σ ′
o)‖s‖ + ερ1 (39)

Second, when σ i‖si‖ < χ , ∀i = 1,..., N , sTϒ(s) =∑N
i=1

σ
χ
‖si‖.

V̇1 ≤ ϕ′‖s‖ +
N∑

i=1

(σ i − σ̄ )(‖si‖ − κσ i ) −
N∑

i=1

σi

χ
‖si‖

≤ −(σ ′
o)‖s‖ − ρ′

1 − σ i

N∑

i=1

(
1
χ

− σ i )‖si‖

≤ −(σ ′
o)‖s‖ − ρ′

2 (40)

with ρ′
2 = ρ′

1 + σ i
∑N

i=1(
1
χ

+ σ i )‖si‖.

The following inequality can be obtained by combining
Cases I and II:

V̇1 ≤ −(σ ′
o)‖s‖ + ρ′

≤ −(1 − �)σ ′
0‖s‖ (41)

Thus, the sliding manifold s will reach the boundary layer θ̄2
within a finite time.

θ̄2 =
{
‖s‖ ≤ σ

�σ ′
0

}
(42)

Then, the ultimate boundedness property of s implies that ε	
1

and ε	
2 are confined within finite bounds. Consequently, by

Definition 1 and Remark 2, it follows that the tracking error
system described in Eq. 11 satisfies the CUUB criterion. This
concludes the proof. �

4 Numerical Simulations

Numerical simulations have been performed to examine the
effectiveness of the proposed ANFTSMC in manipulating a
group of car-like vehicles. The ANFTSMC is adaptable for
implementation across various configurations of networked
control systems. For instance, Fig. 2 depicts a configuration
comprising one leader and four followers, where L denotes
the leader, and F1-F4 denotes the four followers. Within the
graph structure, F1 and F2 maintain direct connections with
the leader. F2 transmits faded state information to F3 and
F4 while receiving complete state information from both the
leader and F1. Hence, we can describe the relationships as
follows:

A =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 1 0 0
0 1 0 0

⎤

⎥
⎥
⎦ ; Lm =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 −1 1 0
0 −1 0 1

⎤

⎥
⎥
⎦

Fig. 2 Communication topology
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Table 1 Physical parameters of
vehicles

Parameters Values Unit

mc 2.5 (Kg)

mw 0.23 (Kg)

L 0.2 (m)

2W 0.1 (m)

Ibzz 0.015 (kgm2)

Iwzz 0.002 (kgm2)

and the diagonal matrix B = diag(1, 1, 0, 0).
The parameters of the ANFTSMC in Eq. 16 are chosen

as K1 = 10, K2 = 5, K3 = 0.5, K4 = 0.5, μ = 2.7,
κ = 0.0025 and ξ = 0.0035. Followers are affected by
the following disturbance di = 0.1sin(0.1i t + i

3π). The
identical parameters of the vehicles are given in Table 1.

In the simulation, we have examined the performance of
theANFTSMCcomparedwith the results of the Integral Slid-
ingMode Control (ISMC). In recent years, many researchers
have identified ISMC as a potential candidate for the fault-
tolerant control design problem due to its inherent capability
to handle system uncertainties [45]. In this work, we assume
that Follower 2 experiences a fading channel phenomenon
from time t = 0 second to the time of mission completion.
Therefore, throughout the entire operation, Follower 3 and
Follower 4 receive faded state information.Additionally, Fol-
lower 3 experiences a left actuator fault characterized by
γi = 0.30 and ϑi = 0.5 + 0.2e−0.1t (N.m) from time t =
0 second up to the end of the mission.

Figure 3 shows the trajectory tracking results of the leader
and four followers in the presence of faults usingANFTSMC.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
x (m)
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-0.5

0

0.5

1

1.5

2

2.5

3

 y
 (

m
)

Leader
Follower 1
Follower 2
Follower 3
Follower 4

End of 
trajectories

Start of team motion

Fig. 3 Actual trajectories of the leader and followers using ANFTSMC
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-0.5

0

0.5

1

1.5

2

2.5

3

 y
 (

m
)

Leader
Follower 1
Follower 2
Follower 3
Follower 4

End of 
trajectories

Fig. 4 Actual trajectories of the leader and followers using ISMC

Although F3 and F4 receive faded state information via the
fading channel of F2, the expectation of the random variables
improved the accuracy of the calculation and enabled the
ANFTSMC to cope with the occurrence of faults. Compared
with the results of the ISMC in Fig. 4, ANFTSMC provided
better performance in manipulating the state information
of the followers, enhancing their capabilities to track the
reference trajectoriesmore accurately. Although the two con-
trollers steered the followers within approximately similar
linear velocity, steering velocity, and orientation as pre-
sented in Figs. 5, 6 and 7, it can be observed from Figs.
8 and 9 that the finite-time consensus tracking of the follow-

time (s)
(a)

0

0.5

1
Leader
Follower 1
Follower 2
Follower 3
Follower 4

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

time (s)
(b)

0

0.5

1
Leader
Follower 1
Follower 2
Follower 3
Follower 4

Fig. 5 Consensus of linear velocities. (a) Using ANFTSMC. (b) Using
ISMC
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Fig. 6 Consensus of steering velocity. (a) Using ANFTSMC. (b) Using
ISMC

ers can only be achieved by the proposed ANFTSMC after
approximately 10 seconds on the x-axis and 5 seconds on
the y-axis while maintaining the required distances between
them. Moreover, Figs. 10 and 11 show that the state tracking
errors remained in the vicinity of zero and the CUUB of the
followers was only achieved by ANFTSMC. These results
demonstrate the effectiveness of the proposed ANFTSMC
for tackling issues pertaining to faded state information and
actuator faults amidst disturbances. Additionally, they verify
the theoretical conclusions presented in Theorems 1 and 2.
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Fig. 7 Consensus of orientations. (a) Using ANFTSMC. (b) Using
ISMC
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Fig. 8 Consensus of positions. (a) Trajectories tracking on the x-axis
using ANFTSMC. (b) Trajectories tracking on the x-axis using ISMC

5 Conclusion and FutureWork

This paper focuses on developing cooperative control strate-
gies specifically designed for networked control systems
facing issues such as fading channels, actuator faults, and
external disturbances. A novel control scheme based on the
non-singular fast terminal sliding mode control approach is
proposed, wherein all follower agents synchronize with the
leader, achieving tracking errors that converge to a confined
region around theorigin.Moreover, it is demonstrated that the
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Fig. 9 Consensus of positions. (a) Trajectories tracking on the y-axis
using ANFTSMC. (b) Trajectories tracking on the y-axis using ISMC
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Fig. 10 Position tracking errors on the x-axis. (a) Using ANFTSMC.
(b) Using ISMC

tracking errors remain uniformly boundedwithin a finite time
frame. The effectiveness of the proposed ANFTSMC has
been verified, showing its ability to operate successfully even
in situations where uncertainties or disturbances in the sys-
tem are not known in advance. In future research endeavors,
exploring the cooperative control problem under dynamic
communication networks, considering communication and
actuator challenges, would be a valuable area for further
investigation.
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Fig. 11 Position tracking errors on the y-axis. (a) Using ANFTSMC.
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