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Abstract
Vision-based deep learning perception fulfills a paramount role in robotics, facilitating solutions tomany challenging scenarios,
such as acrobatic maneuvers of autonomous unmanned aerial vehicles (UAVs) and robot-assisted high-precision surgery.
Control-oriented end-to-end perception approaches, which directly output control variables for the robot, commonly take
advantage of the robot’s state estimation as an auxiliary input. When intermediate outputs are estimated and fed to a lower-
level controller, i.e., mediated approaches, the robot’s state is commonly used as an input only for egocentric tasks, which
estimate physical properties of the robot itself. In this work, we propose to apply a similar approach for the first time – to the
best of our knowledge – to non-egocentric mediated tasks, where the estimated outputs refer to an external subject. We prove
how our general methodology improves the regression performance of deep convolutional neural networks (CNNs) on a broad
class of non-egocentric 3D pose estimation problems, with minimal computational cost. By analyzing three highly-different
use cases, spanning from grasping with a robotic arm to following a human subject with a pocket-sized UAV, our results
consistently improve the R2 regression metric, up to +0.51, compared to their stateless baselines. Finally, we validate the
in-field performance of a closed-loop autonomous cm-scale UAV on the human pose estimation task. Our results show a
significant reduction, i.e., 24% on average, on the mean absolute error of our stateful CNN, compared to a State-of-the-Art
stateless counterpart.

Keywords Artificial intelligence · Deep learning · Visual perception · Robotic sensing · Sensor fusion

1 Introduction

Vision-based deep convolutional neural networks (CNNs)
are fueling intelligent robotics, from industrial manipula-
tors [1] to nano-sized unmanned aerial vehicles (UAVs) [2]
– as big as the palm of a hand and weighting a few tens of
grams. In this work, we consider a broad class of robot per-
ception tasks in which a robot has to estimate the relative
pose of a subject of interest from high-dimensional data by
an onboard sensor, such as camera images.

State estimation is a fundamental component of any
robotic system, yet, not all perception tasks take advantage
of this readily information about the robot’s own state. It is
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Fig. 1 Robotics system architecture with proposed auxiliary state input
to a non-egocentric perception CNN

common for control-oriented tasks, in which the output is
fed directly into the robot’s control loops (i.e., end-to-end
CNNs), to use both visual data and the system’s state as
inputs [3, 4]. Similarly, also in egocentric perception tasks,
where the output refers to the system itself (e.g., egomotion,
state estimation, visual odometry), it is natural to consider
the system’s current state to determine its future one [5, 6].
Still, there is a class of robot perception tasks not – yet –
vastly characterized by the use of state information as addi-
tional input: non-egocentric perception tasks, whose output
refers to subjects external to the system.

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-024-02091-6&domain=pdf
http://orcid.org/0000-0001-8888-3538
http://orcid.org/0000-0002-3736-0419
http://orcid.org/0000-0003-1240-0768
http://orcid.org/0000-0003-4487-0836


   58 Page 2 of 13 Journal of Intelligent & Robotic Systems           (2024) 110:58 

This paper explores how the robot state can improve
the spatial prediction performance of non-egocentric deep
learning-based perception models, when available as an aux-
iliary input, as shown in Fig. 1. The robot state influences
the perceived data predictably and can help interpret it. For
example, images acquired by a camera mounted on the end
effector of a robot arm depend on the arm’s configuration,
which affects the camera pose and the acquired images. Simi-
larly, images acquired by a front-looking cameramounted on
a drone are affected by the drone’s attitude (pitch and roll),
which varies continuously during flight, e.g., a drone will
pitch down to move forward and, in turn, see the horizon line
towards the top of the image. To ensure good performance in
the field, perception CNNs should be as invariant as possible
to these changes in the robot state.

Our approach is attractive because it matches how human
perception works. Recent neuroscience research found that
vestibular information, which encodes the pose of the head, –
roughly analogous to the robot state – contributes to the ego-
centric spatial representation of visual stimuli. This has been
verified in humans both by observing changes in spatial per-
ception while electrically stimulating vestibular organs (i.e.,
actively corrupting state information) [7, 8], and by studying
geometric illusions (i.e., mistakes in spatial perception) in
people with a malfunctioning vestibular system [9, 10].

Designing a CNN architecture that fuses visual and state
inputs is non-trivial.Ourmain contribution is a general fusion
methodology that results from comparing four alternative
architectures and is supported by three different use cases,
as shown in Fig. 2, built upon the perception task of vision-
based 3D pose estimation of an object/subject. In the first use
case, the camera is mounted on the end effector of a manip-
ulator’s arm (arm-to-object – A2O). In the second one, a
nano-drone’s pose is estimated from a peer drone equipped
with a low-quality forward-looking camera (drone-to-drone
– D2D). In the last case, the human’s pose is estimated from
a nearby nano-drone (drone-to-human – D2H). We address
these perception problems eachwith a specificCNN, leverag-
ing the respective State-of-the-Art (SoA). We provide high
variability in several key aspects, such as the robotic plat-
form, the non-egocentric target of the pose estimation, the
state information used as the auxiliary input, and the train-

Fig. 2 Our3Dpose estimationuse cases:A) arm-to-object (simulation),
B) drone-to-drone (on-board view), and C) drone-to-human (in-field
test)

ing data (simulation vs. reality), ultimately supporting the
generality of our approach.

Our results demonstrate the effectiveness of the proposed
approach compared to SoA stateless baseline models on all
use cases,measured by R2 regression score improvements up
to+0.51 on the test sets. For theD2H case, we strengthen our
key findings by implementing, deploying, and testing both
models in the field. When running in real-time on a closed-
loop autonomous nano-drone, the stateful CNN significantly
outperforms its counterpart with a reduction in pose estima-
tion error (MAE) of up to 37%.

2 RelatedWork

Many vision-based deep learning robotic approaches use the
robot’s state as one of the primary inputs to their models [3–
6, 11–13]. Exploiting state information is a well-established
practice in SoA control-oriented approaches, i.e., meth-
ods that directly output actions for the robot’s actuators,
also known as end-to-end approaches. In the context of
autonomous drones, Loquercio et al. [3, 4] achieve agile
flight with end-to-end CNNs that leverage both visual fea-
tures and the drone’s linear and angular velocities, fusing
the two information streams with either spatial [3] or tempo-
ral convolutions [4]. Similarly, in the context of end-to-end
robotic manipulation approaches, many consider the robot’s
state as an auxiliary input of a deep learningmodel. For exam-
ple, Levine et al. [11] train a reinforcement learning agent
for manipulation tasks, combining the camera feed with the
robot’s state given by joints’ encoder readings.WhileKalash-
nikov et al. [12] provide the model with only the height of
the end-effector.

Another class of vision-based deep learning techniques
tries to interpret high-dimensional perception inputs to
achieve a spatial understanding of the world. Our work
belongs to this second category, which we call mediated
approaches. These methods provide greater flexibility than
end-to-end ones by decoupling perception and action in
distinct algorithmic stages, e.g., pipelining multiple convo-
lutional neural networks (CNNs). Depending on their target
outputs, mediated perception approaches can be categorized
as either egocentric or non-egocentric. The model’s output
refers to the robotic system in egocentric tasks. In contrast, in
non-egocentric tasks, the perceptive process aims at under-
standing the properties of an external target, e.g., robotic
manipulation of an object, pose estimation of a person, etc.

Egocentric algorithms, which estimate the robot’s own
trajectory, commonly rely on knowledge about their veloci-
ties and orientations, for example, by leveraging the onboard
inertial measurement unit (IMU) in addition to visual infor-
mation [5, 6, 13]. VINet [5] models visual-inertial odometry
as a sequence-to-sequence learning problem, where the cam-
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era and IMU data form two asynchronous input sequences,
fused using an LSTM-based recurrent neural network to pro-
duce the sequence of egocentric poses. DeepVIO [6] extends
this framework to work without ground-truth data, using
stereo images during training as a source of self-supervision.
On the other hand, Pillai et al. [13] propose a feed-forward
architecture that takes the inertial information as an initial
estimation of the motion and refines it using the visual feed.

To the best of our knowledge, SoA vision-based deep
learning non-egocentric approaches do not exploit informa-
tion about the robot’s state within their perception process. In
autonomous robotics, examples include human pose estima-
tion [2, 14], tracking of peer drones [15], or gates localization
to fly through them in an autonomous drone race [16, 17].
Similarly, approaches for robotic arms manipulation focus
on identifying and localizing an object of interest to be
grasped [1, 18–20]. Ultimately, both robotic domains solve
their deep learning-based perception task by employing
only visual feeds, e.g., front-looking monocular-camera [2,
14–17], eye-to-hand (i.e., fixed in space) [1, 18, 19] or eye-
in-hand (i.e., attached to the end effector) [20] cameras.

Our work extends two well-established SoA stateless
solutions, i.e., that do not exploit state information in their
deep learning-based non-egocentric perception task. For our
robotic arm manipulation use case (A2O), we leverage the
CNN presented in [20]: a MobileNetV2-based model com-
posed of 30 layers and amounting to approximately 1 million
parameters. Themodel takes only a 160× 120pxRGB image
from an uncalibrated monocular camera attached to the end
effector and estimates the full 3Dpose of an object of interest,
a 7-element vector containing the object’s (x , y, z) position
and (qx , qy , qz , qw) orientation quaternion.

For the two nano-drone-related use cases (D2D andD2H),
we take advantage of a recent lightweight CNN, PULP-
Frontnet [2], capable of running up to∼50 frame-per-second
entirely aboard a microcontroller-based 27 g drone. Initially
developed for the drone-to-human pose estimation task, we
extend this CNN to themore challenging drone-to-drone sce-
nario. PULP-Frontnet takes as input a 160× 96 px gray-scale
image and predicts the subject’s relative pose as (x , y, z)
Cartesian position, and yaw orientation (φ). To date, very
few works reach a similar level of maturity in the onboard
throughput, regression performance, and energy efficiency,
delivering an open-source, fully deployable, and field-tested
model for vision-based pose estimation tasks aboard a nano-
drone.

Finally, data augmentation is an alternative approach,
orthogonal to vision-state fusion, to improve the robustness
of CNN models to real-world conditions poorly represented
in the train set [21–23]. Task-specific augmentation strategies
have also been proposed: domain randomization to improve
generalization to unseen environments [14, 18, 20]; view
synthesis to increase the density of camera poses [2, 24,

25]; meta-learning approaches allow automatic tuning of
task-specific augmentations [26]. In our use cases, we lever-
age SoA augmentations, including two task-specific ones,
described in Section 3: domain randomization [20], i.e., ran-
domizing various aspects of the environment’s appearance,
in the A2O use case and pitch augmentation [2], i.e., synthe-
sis of additional camera views at various pitch orientations,
in D2D and D2H.

3 Use Cases, Models, and Deployment

This section focuses on our non-egocentric spatial percep-
tion problems. We start by introducing the problem of pose
estimation in three different use cases: robot arm-to-object
(A2O), drone-to-drone (D2D), and drone-to-human (D2H).
Then, we present the corresponding SoACNNmodel used as
the baseline for each use case in our comparisons. Finally, we
analyze the problem of feeding state information into a CNN
model, identifying four general techniques, i.e., applicable to
any CNN architecture. We evaluate them in terms of regres-
sion performance and computation/memory cost on the D2H
use case, identifying the best one, which we then apply to all
three use cases. We conclude this section by presenting our
nano-drone prototype, where we deploy and field-proven our
vision-state fusion implementation for the D2H use case.

3.1 Robot Arm-to-Object: A2O

In this first scenario, we consider the task of visually esti-
mating the full 3D pose of an object of interest, i.e., a
rainbow-colored mug, defined with respect to the base of
a robot arm. We challenge the estimation problem by intro-
ducingmultiple decoy objects sharing similar shapeswith the
target mug, such as cans and cylinders, as shown in Fig. 2-
A. We use a seven degree-of-freedom manipulator (Panda
by Franka Emika), using an eye-in-hand configuration, i.e.,
a downward-looking camera is attached to one side of the
end-effector.

Basedon the backgroundwork,weuse theGazebo simula-
tor to collect our dataset, generating multiple environments:
each environment consists of a 90×90cm table, on top of
which we place the object of interest along with decoy
objects. Using domain randomization [18], we randomly
change the pose of the object of interest; the scale, color,
and pose of the decoy objects; the texture of the table; and
the scene lighting direction and intensity. Before acquiring
an image of the scene from the camera, the robot is tasked to
move its end-effector to a random pose within the environ-
ment, sampled from a sphere of radius 50 cm overarching
the table, and oriented to look towards a random point on
the table’s surface. For each environment, the robot moves
to a random pose and acquires an image 32 times, before
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a new environment is generated. The robot is controlled by
the MoveIt planner implementation for ROS [27]. In total,
we obtain approximately 240k sample images over 160 envi-
ronments – 120 used for training, 20 for validation, and 20
for testing. For our proposed stateful model on this use case,
we consider a 7-element state vector as an additional input,
representing the full 3D pose of the camera w.r.t. the robot’s
base in the same form as the regression output: position plus
orientation quaternion.

3.2 Drone-to-Drone: D2D

In the second use case, we consider the challenging problem
of localizing a palm-sized nano-drone (i.e., 10-cm diame-
ter) in an indoor environment, using low-resolution images
acquired by a nearby peer nano-drone.

Our dataset is collected over multiple flights in a room
equipped with a motion capture system, which provides
millimeter-precision tracking of the drones at 100 Hz. Dur-
ing the data collection process, two human pilots control
the two peer nano-drones paying attention to maximize the
variance in the acquired images and relative positions, while
keeping each drone within its peer’s field of view. To max-
imise data collection efficiency, each drones simultaneously
acts as an observer and as a target for the other drone, result-
ing in two parallel streams of samples each containing the
camera images of one drone. Combining the two streams,
the final dataset is composed of 10k samples over 21 flights,
where each sample consists of one camera image, the corre-
sponding observer drone’s onboard state, and target drone’s
relative pose. Before starting the training procedure, we fil-
ter our dataset to remove all images where the target drone
is either not visible or at a distance greater than 2 m. This
process results in 1805 samples, 60% of which are used for
training, 10% for validation, and 30% for testing. Finally,
we apply different photometric augmentations to increase
the number of training samples, such as gamma correction,
dynamic range changes, generation of synthetic noise/blur,
vignetting, and a horizontal flip. For our stateful model on
this use case,we propose to feed an additional 2-element state
input to the model containing the observer drone’s onboard
estimate of its pitch and roll.

3.3 Drone-To-Human: D2H

The third use case considers the task of estimating the pose
of a human subject from a nano-drone flying in their vicin-
ity. As for the previous use case, we base our model on the
SoA PULP-Frontnet architecture. This model estimates four
components of the subject’s relative pose w.r.t. the observer
drone’s base frame: its x , y, and z Cartesian position, and its
yaw orientation φ. As shown in Fig. 3, our models estimate
the target relative pose w.r.t. base, with yaw φ defined as the

angle between Xtarget and Xbase. We use a reference frame
base identical to camera with roll and pitch angles set to
zero, so that Zbase is always aligned with the world z-axis.

Data for our experiments consists of a combination of
samples collected with the drone fixed on top of a wheeled
cart (20%) and samples collected in flight while controlled
by a human pilot (80%), in two different mocap-equipped
laboratories. In total, we collect 12k samples from 17 dif-
ferent human subjects of varying age, height, ethnicity, and
clothing. Each sample is composed of a camera frame and
associated ground-truth poses and state estimation. Three
subjects (4.7k samples) are kept for testing, while the remain-
ing 14 subjects (7.3k samples) are split as 90% training and
10% validation.

We also synthetically increase the available training data
through a number of standard photometric data augmen-
tations that improve robustness to illumination changes –
exposure, gamma correction, dynamic range adjustments,
Gaussian noise, and blurring – followed by vignetting and
horizontal flipping with 50% probability. We provide visual
examples of each augmentation in Fig. 4. We further apply
synthetic pitch augmentation [2] to improve the model’s
robustness to a broader range of pitch values, by synthesiz-
ing the image at a random synthetic pitch sampled uniformly
from the ±17◦ range. Each training sample is augmented
offline, producing 10 augmented copies, from which we dis-
card those samples where the subject is outside the field of
view. For this use case, we propose a stateful model which
considers a single-element state input containing the drone’s
estimated pitch.

3.4 Vision-State Fusion Techniques

We then analyze the problem of feeding state information
into a feed-forward vision-based deep CNN, comparing
four different techniques from the point of view of i)
regression performance and ii) memory and computational
costs. If reducing the memory footprint and the number of
multiply-and-accumulate (MAC) operations is desirable for
any autonomous robot, it assumes paramount importance for
resource-constrained platforms, such as the nano-drones we

Fig. 3 Reference frames in the D2H use case
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Fig. 4 Individual photometric data augmentations (top). Ten images produced by the full augmentation pipeline (bottom)

address in the D2D and D2H use cases. We perform this
investigation in the context of the D2H use case, leveraging
the PULP-Frontnet [2] CNN to precisely assess performance
improvements and costs of each method proposed. In this
preliminary evaluation, we use the drone’s pitch angle as
state input (single scalar) and we focus on the output vari-
able z: because of the close correlation between z (relative
altitude), pitch angle, and image formation, we expect this
output to benefit the most from the additional state input. In
particular, when the drone flies at different z altitudes, it can
obtain similar images that can be disambiguated by checking
its pitch orientation. We measure regression performance in
terms of the R2 coefficient of determination – as will be dis-
cussed more in depth in Section 4 – on a challenging test set
built upon 5k images from 8 subjects in a never-seen-before
environment. We summarize the results of this evaluation in
Table 1, highlighting desirable characteristics in bold. The
baseline PULP-Frontnet (no state as input) requires 300 kB
of memory, 14 MMAC, and scores an R2 = −0.58 on the z
variable.

Single neuron This first method for introducing state
information into our target CNN concatenates the scalar
state to the existing 1920-unit activation in input to the last
fully connected (FC) layer, therefore adding one single neu-
ron. The main advantage of this approach is the negligible
cost, i.e., +4 B and +4ṀAC. The main drawback instead
is the limited representative power as it can only model a
linear mapping between the state and the regression output.

Table 1 Comparison of CNN architectures for vision-state fusion in
terms of memory, computation (multiply-and-accumulate operations)
and regression performance

Architecture Memory [B] Comput. [MAC] R2 on z

Baseline [2] 300.0 k 14.00 M -0.58

Single neuron 300.0 k [+4] 14.00 M [+4] 0.20

Fully connected 354.0 k [+54 k] 14.05 M [+54 k] 0.20

Double input 300.8 k [+800] 17.00 M [+3 M] 0.11

Multi-layer perc. 300.1 k [+120] 14.00 M [+104] 0.24

Nonetheless, this method improves the R2 score on the z
output variable from -0.58 to 0.20.

Fully connected To better capture non-linear mappings
between the input state and the output, we consider a sec-
ond approach that introduces both a second 32-unit FC layer
and a ReLU non-linearity after the existing 1920-unit FC.
Despite the increased cost, i.e.,+54 kB and+54 kMAC, and
the additional representative power, this approach achieves a
similar improvement as the previous method, i.e., R2 = 0.20
compared to -0.58 of the stateless baseline.

Double input. The third strategy explored is to extend
the single-channel input image by a second one where each
“pixel” of the newchannel contains the samepitch value. This
method does not require any significant modification to the
original architecture and has a limited impact on the memory
footprint, i.e., +800 B. On the other hand, our experiment
shows a R2 score of 0.11, a smaller improvement upon the
stateless baseline compared to the previous two techniques,
while the computational effort grows significantly, as much
as +3 MMAC.

Multi-layer perceptron The fourth method extends the
reference CNN with a small multi-layer perceptron (MLP)
branch, composed of two 8-unit FC layers interleaved by
ReLU non-linearities, to process the state before concatenat-
ing it to the visual features produced by the last convolutional
layer. This variant has a minimal cost both in terms of mem-
ory and computation, i.e., +120 B and +104 MAC, while
it shows a R2 score on z of 0.24, the highest among the four
alternatives. For this reason, in the rest of the work we focus
on this fourth variant, i.e., the MLP, which has the best trade-
off in terms of regression capability and compute/memory
costs – see Table 1.

3.5 Proposed CNN Architectures

We extend the SoA models of the three use cases to handle
the additional state input using the MLP vision-state fusion
technique identified in the previous section. In each case, we
keep themain convolutional branch of themodel, unchanged,
to process the camera image input and produce a vector of
visual features; on the side, we introduce the proposed 2-
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layer MLP to process the respective state input and produce
an 8-element vector of state features. The two feature vectors
are then concatenated and fed to the fully connected layers.
Fig. 5 depicts the proposed stateful CNN architectures: the
MobileNetV2-based architecture for the A2O use case and
the PULP-Frontnet based architecture for the D2D and D2H
use cases.

3.6 In-field Deployment: D2H

To enable closed-loop in-field testing of the D2H use case,
we deployed both the proposed stateful and the SoA baseline
(i.e., stateless) models on the Bitcraze Crazyflie 2.11, a 27
g nano-quadrotor. This robotic platform exploits an STM32
microcontroller unit (MCU) to run its basic state estimation
and control tasks while it is extended with the commer-
cial AI-deck companion board [28]. The AI-deck features
an additional MCU: the GreenWaves Technologies GAP8,
which embodies the parallel ultra-low power paradigm [29]
through a RISC-V-based multi-core System-on-Chip (SoC).
These twoprocessors communicate via a bidirectionalUART
interface. The GAP8 is designed with two power domains: a
single-core fabric controller that orchestrates the interaction
with external memories/sensors and offloads computation-
ally intensive kernels on a second 8-core cluster domain.
The SoC’s memory hierarchy relies on 64 kB of low-latency
L1 memory shared among all cluster cores and 512kB of L2
memory within the FC domain. The GAP8 also features two
DMA engines to efficiently automate data transfers from/to
all memories and external peripherals, such as the QVGA
monochrome camera available on the nano-drone. However,
it provides neither data caches nor hardware floating-point
units, dictating explicit data management and the adoption
of integer-quantized arithmetic, respectively.

We adopt the PULP-Frontnet deployment pipeline for the
CNN’s main branch, composed of 300 k parameters and
14 MMAC: all convolutional layers are quantized to 8-bit
integers and run on the GAP8’s parallel cluster on images
acquired by the drone’s camera. On the other hand, the pro-
posed MLP is executed as a floating-point sequential block
(soft-float), executed right after the main branch due to its
minimal computational requirements, i.e., 104 multiplica-
tions (including the additional operations in the CNN’s final
fully connected layer). Our soft-float choice is based on i)
the MLP’s negligible workload, accounting only for 0.5%
of the total operations (∼ 20k cycles), and ii) the com-
putational overhead that would be introduced with parallel
execution. Finally, during the in-field mission, the current
pitch is retrieved from the STM32’s state estimation task and
forwarded, via theUARTserial interface, to theCNNrunning
on the GAP8.

1 https://www.bitcraze.io/products/crazyflie-2-1/

3.7 Training and Hyper-parameters

We train all models with the Adam optimizer at a learn-
ing rate of 0.001 for 100 epochs, over the respective train
sets described in Sections 3.1–3.3. We minimize the L1 loss
between ground-truth outputs yi andmodel prediction ŷi , for
each training sample i :

L = 1

N

∑

i

|yi − ŷi | (1)

As in previous work [2, 20], each regression output of our
models contributes with equal weight to the final loss func-
tion. Further, we employ early stopping with patience of 15
epochs and select the model that achieved the lowest valida-
tion loss. Finally, all use cases consider a target pose defined
w.r.t. the base frame of the robot, which can always be trans-
formed into camera frame coordinates through a calibration
procedure [30]. For in-field deployment of the D2H model,
we apply 8-bit integer quantization, performing 10 epochs
of quantization-aware fine-tuning [2] over the train set, with
Adam optimizer, learning rate 10−4, and weight decay 10−6.

4 Experimental Results

In this section, we present four groups of experiments to
assess the impact of the proposed MLP extension on the
three use cases introduced in Section 3. We first investigate
the regression performance of the proposed stateful models
(with the MLP) comparing them against the respective SoA
baseline – called stateless models. To further consolidate our
regression analysis on the D2H scenario, we also evaluate it
by deploying both models aboard a closed-loop autonomous
nano-drone, i.e., relying only on onboard computation and
sensors, and comparing their in-field behavior. Finally, we
discuss our key findings with respect to the SoA for all three
use cases.

To guarantee the soundness of our regression analysis, for
each use case, we trainmultiple instances of both stateful and
stateless models, which differ only in the random initializa-
tion of the model parameters. Pairs of stateful and stateless
models trained from the same initial parameters share the
same color in the figures below.

Our key assessment metric for regression performance
is the coefficient of determination R2. It is independently
computed for each target output of the CNNs, and represents
a standard adimensional metric which measures the fraction
of variance in the target variable explained by the model:

R2 = 1 −
∑

i (yi − ŷi )2∑
i (yi − ȳ)2

(2)
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Fig. 5 Proposed stateful CNN architectures extended with a multi-layer perceptron branch (MLP). A) A2O use case: MobileNetV2-based CNN,
with details of the repeated bottleneck residual blocks and bottleneck blocks. B) D2D and D2H use cases: PULP-Frontnet-based CNN

where yi and ŷi are, respectively, the ground-truth output
and model prediction for each test sample i and ȳ the mean
of ground-truth outputs. R2 = 1.0 corresponds to a perfect
regressor, while R2 = 0.0 corresponds to a dummy regressor
which always predicts the mean of the test data; models can
perform arbitrarily worse than this dummy regressor, leading
to negative R2 scores.

The R2 score is closely related to another standard metric
for regression performance, while being more conservative
and easier to interpret: R2 can be seen as one minus the
ratio between a model’s Mean Squared Error (MSE) and the
dummy regressor’sMSE (which corresponds to the test data’s
variance). As such, a model’s R2 can always be interpreted
in relation to the perfect and dummy regressor benchmarks.
MSE, on the other hand, is expressed in the target vari-
able’s unit of measure (squared): determining whether an
improvement is meaningful and comparing MSEs on dif-
ferent variables is only possible with the help of domain
knowledge.

4.1 Regression Performance: A2O

In Fig. 6, we compared both stateful and stateless models on
the testing set, estimating the pose of the object of interest
w.r.t. the robot’s base frame. We compute the models’ R2

score on the x , y, and z components of the object’s pose, as
well as the 3D rotation error on the orientation component,
defined as the average quaternionic distance [31, Eq. 4]. The
quaternionic distance measures the angle difference between
two unit quaternions, defined between 0 and 180 degrees.
This metric is robust to the double-cover problem, i.e., it
considers a quaternion q and the negated one −q to be at a
distance 0, as opposed to more naive distance functions such
as L p-norms.

Themedian R2 value of the statefulmodel is 0.83 on x and
0.80 on y, which significantly improves (more than doubles)
its stateless counterpart – limited to 0.34 and 0.28 on these
two variables. Similarly, on the z component, the stateful
model outperforms the SoA baseline (stateless) increasing
the R2 from 0.24 to 0.55. On the rotational component of the
pose, the stateful model achieves a median error 10 degrees
lower than the baseline model [20]. These improvements
are statistically significant to the non-parametric paired
Wilcoxon test (p ≤ 0.001 for all variables).

Overall, knowing the robot’s state leads to significant
improvements over the performance metrics, since the state-
ful model can directly relate the perceived images to the pose
of the camera. This simplifies the regression task compared

Fig. 6 Test set performance comparison of R2 scores on the A2O use
case for both stateless and stateful models. Color identifies pairs of
models trained from the same set of random initial parameters
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to its stateless counterpart, which additionally needs to esti-
mate the camera pose from the image to correctly determine
the mug’s pose.

This experiment shows the value of measuring perfor-
mance with R2 instead of MSE: our stateful model achieves
median MSE values on x , y, and z of respectively 0.020,
0.024, and 0.018, similar among the three outputs. However,
due to the varying size of the robot workspace along the three
axes (90×90×50 cm), a dummy regressor would achieve
MSEs of respectively 0.118, 0.116, and 0.041, which need
to be accounted for when comparing the three outputs. This
is reflected in stateful R2 scores, 0.83 and 0.80 for x and y
against only 0.55 for z, highlighting that our stateful model’s
performance on the latter output is not as good as those on
the former two.

4.2 Regression Performance: D2D

Figure 7 reports the R2 metric for the D2D use case by ana-
lyzing both stateful and statelessmodels. Bothmodels score a
similar median R2 of 0.75 on the x output variable, the high-
est among the four output variables. A difference between
models can be seen on y, where the stateless and stateful
models score respectively 0.55 and 0.57, and on z, where
they score respectively 0.58 and 0.62. On the other hand,
the φ variable achieves the lowest scores with a median of
respectively 0.32 and 0.33, which can be ascribed to the low
visibility of the 10 cm-diameter target nano-drone on the
images, i.e., not always sufficiently big to disambiguate the
drone’s yaw orientation. Considering stateful performance
relative to the stateless models, Fig. 7 shows an improvement
on all four target variables, withmedian R2 scores improving
by x = +0.001, y = +0.016, z = +0.039 and φ = +0.008.

Fig. 7 Test set performance comparison of R2 scores on the D2D use
case for both stateless and stateful models. Color identifies pairs of
models trained from the same set of random initial parameters

This improvement is statistically significant for the z variable
using the non-parametric paired Wilcoxon test (p = 0.031),
while all variables show a small positive effect.

These results show how z is the output variable that
benefits most from the pitch as input. In particular, when
comparing pairs of stateless and stateful models trained
from the same random initial parameters in Fig. 7, state-
ful models show a consistent improvement on z w.r.t. their
corresponding stateless model. This can be attributed to a
strong correlation between z, pitch orientation, and image
formation: when the drone flies at different z altitudes, it
can obtain similar images which can be disambiguated by
checking its pitch orientation.

Also in this case, should we measure performance exclu-
sively with MSE, the baseline stateless model would achieve
median MSE values on x , y, z and φ of respectively 0.030,
0.017, 0.007, and 0.964, which our stateful model improves
to 0.030, 0.016, 0.006, and 0.953. The dummy regressor on
the same four output variables would achieveMSEs of 0.122,
0.037, 0.017, and 1.420, highlighting the difference in range
between the four variables.

4.3 Regression Performance: D2H

In Fig. 8, we show the results on the third case study in
terms of R2 score on our test set, considering the four CNN’s
outputs of the relative pose between the drone and the human
subject. On the x output, bothmodels assess the samemedian
R2 of 0.60, while on y and z, they achieve higher perfor-
mance, i.e., 0.76 and 0.72 for the stateless model, 0.76 and
0.78 for the stateful one. Similar to the previous work [2],
φ achieves lower performance compared to the other out-
put variables, i.e., -0.17 for the stateless and -0.10 for the

Fig. 8 Test set performance comparison of R2 scores on the D2H use
case for both stateless and stateful models. Color identifies pairs of
models trained from the same set of random initial parameters
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stateful model, while still showing improved performance
by the proposed stateful one. As a sanity check, we test our
stateful model against the original PULP-Frontnet test set,
which is significantly different both in terms of subjects and
environments. In this case, our model scores an R2 of 0.2,
doubling the performance vs. the original stateless one (R2

of 0.1), due to the combination of our novel training set (2.6×
larger than the previous one [2]) and the proposed visual-state
fusion technique.

We further analyze the regression performance of the
stateful model vs. the stateless one by presenting in Fig. 9 a
leave-one-out cross-validation experiment. Our 12 k-sample
dataset, introduced inSection 3.3, is composedof 17 subjects,
which we use to train as many pairs of models (both stateful
and stateless, 34 in total). One subject is kept exclusively as
test data for eachpair,while the images from the remaining16
subjects form the models’ training set. In Fig. 9, the horizon-
tal axis shows the R2 score of the stateless model while the
vertical axis shows the R2 score of the proposed stateful one;
the dashed diagonal is the line of equivalence. The median
R2 score on z increases by +0.051 from the stateless to the
stateful model, while the performance on x , y and φ stays
almost constant, +0.008, +0.002, and −0.002, respectively.
The improvement on the z variable is statistically significant
using the non-parametric paired Wilcoxon test (p = 0.001).
These results confirm the benefit of the stateful approach,
as seen in the previous experiment, enhancing its statistical
soundness due to the extensive analysis repeated on 17 pairs
of models.

Also in this case, should we measure performance with
MSE, the baseline stateless model would achieve median
MSE values on x , y, z and φ of respectively 0.286, 0.150,
0.058, and 0.371 which our stateful model partially improves
to 0.281, 0.151, 0.046, and 0.351. Due to the different size of
the environment along the different axes, again the dummy
regressor would achieve different MSEs on the same four
output variables of 0.709, 0.623, 0.209, and 0.318.By consid-
ering the R2 score, we obtain a metric that can be compared
among the four variables despite their different ranges.

4.4 In-field Experimental Results: D2H

This section compares the stateful and stateless models
with two different in-field experiments, employing a closed-
loop, fully autonomous, 27 g nano-drone, as described in
Section 3.6. Each of the two investigations constitutes of
five ∼10 s-long flight tests for both models. We repeat these
tests for three subjects, leading to 30 trials for each experi-
ment – 60 flight tests in total. For each test, we record i) the
movements of both subject and drone, thanks to amillimeter-
precise motion capture system, and ii) the real-time model
predictions from the onboard CNN. The two models, quan-
tized to 8-bit integers, run entirely on the GAP8 SoC aboard
the nano-drone and require 20.8 ms per inference on one
camera frame (a throughput of 48 frame/s) at an average
power consumption of 96 mW.

In the first test scenario, the subject is standing still in
front of the drone at ∼6 m distance from it. After takeoff,
the nano-drone hovers in place for a few seconds at 0.5 m
altitude, and then the onboard CNN’s output is enabled and
fed to the control loops,which are set to reach a forward target
velocity of 1.2 m/s. The desired behavior is for the drone to
reach a target position at 1.3 m in front of the person at eye
level. Therefore, this test requires the drone to increase its
altitude during the flight towards the subject, challenging the
model prediction’s x and z components.

Figure 10-A/B shows the twomodels’ behavior under this
test scenario, named subject standing. In Fig. 10-A, we see
the drone’s distance from the target in the horizontal plane.
Both models exhibit almost identical good behavior (state-
less model slightly higher oscillations) by reaching the target
position in around 6 s and converging to a steady-state hover-
ing in front of the subject with almost no error. In Fig. 10-B,
we see the difference (delta) between the drone altitude and
target one, over time. The models’ behavior differs notice-
ably; the stateless model can not reach the target altitude and
overshoots, while the stateful model achieves the correct alti-
tude and firmly converges to the desired hovering position.

Fig. 9 Regression performance in leave-one-out cross-validation of stateless and stateful models on the D2H use case. Each point corresponds to
the pair of stateful and stateless models trained leaving out the same portion of the dataset. The dashed diagonal is the line of equivalence
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Fig. 10 In-field behavior for the D2H use case, under two test scenar-
ios: A/B) the subject standing up and remaining still for the entire test;
C/D) the subject is standing still before kneeling at t=6 s. A/C show
the distance from the target position in the horizontal plane, while B/D

show the distance along the vertical axis. The curves and shaded areas
represent mean and 90% confidence interval computed from 15 flights
of each model

With the second test scenario, named subject standing then
kneeling, wewant to challenge ourmodels (in particular the z
output variable) by making the subject kneel after a time of 6
s from the beginning of the experiment. The experiment starts
with the subject standing still, as in the previous experiment,
waiting for the drone to approach, and then kneeling. This
behaviour stresses the nano-drone’s z prediction by making
it first increase its altitude and then suddenly reducing it. At
first, the nano-dronemoves forward, then it decelerates while
is approaching: a condition that corresponds to a significant
negative pitch. At this point, the drone is quite close to the
subject (around 1.3 m in front), which means the person’s
downward motion corresponds to a considerable movement
in image space, which might lead to losing the target from
the field of view if the drone does not quickly react.

As we can see in Fig. 10-C/D, the stateful model exhibits
superior performances by correctly tracking the subject
movements. Considering the horizontal distance, Fig. 10-C,
we see the stateless model converges to the first target posi-
tion in front of the standing subject (t=6 s), but it loses track
when the subject kneels.On the other hand, the statefulmodel
reaches the desired horizontal position and keeps it despite
the subject kneeling. Similarly, Fig. 10-D shows how the
baseline model (stateless) struggles in dynamically adjust-
ing its attitude when the target altitude changes, resulting in
an overshooting that brings the subject outside the camera’s
field of view. Instead, the stateful model first precisely con-
verges in front of the subject standing (t=6 s). Then, when
they kneel, increasing the delta of the target altitude (t=6 s

- t=7.5 s), the nano-drone correctly follows the movement,
reaching the new target position (t=10 s).

Finally, to quantitatively assess the improvement of the
proposed vision-state fusion technique, we compare the pre-
diction outputs of themodels w.r.t. themotion capture system
ground-truth in terms of mean absolute error (MAE). On x ,
the MAE of the stateful vs. stateless model, decreases from
0.78 m to 0.54 m (-30%), on y from 0.45 m to 0.30 m
(-34%), and on z from 0.54 m to 0.34 m (-37%), while
φ exhibits an almost constant trend, with a MAE of 0.63
rad and 0.65 rad, respectively. From these in-field experi-
ments, we demonstrate how the state (pitch) as input of our
CNN leads to superior regression performance vs. the SoA
baseline model (stateless), significantly when the z output is
most challenging to predict.We provide bothmodels’ in-field
demonstration videos at https://youtu.be/LX0seyXWQKI.

4.5 State of the Art Comparison And Discussion

We evaluated our approach on three use cases, taking state-
of-the-art baselines on the respective tasks and extending
them to take advantage of the robot’s state with the proposed
methodology. For the robot arm use case (A2O), we built
upon theMobileNetV2-based CNN fromNava et al. [20]. As
such,we test an establishedCNNarchitecture already applied
successfully to the A2O task. Nevertheless, this model sees
by far the largest improvementwhenprovided explicit knowl-
edge about the robot’s state, (R2 increases up to+0.514), due
to the higher complexity of the considered end effector’s state
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space (6 degrees of freedom) compared to the other two use
cases (2 and 1 degrees of freedom).

For the two nano-drone use cases, our stateless baseline
is PULP-Frontnet [2], the first CNN for human pose estima-
tion fully deployed and field-tested on a nano-drone. In the
drone-to-drone (D2D) use case, we adapt PULP-Frontnet to
the different task of estimating a peer drone’s pose. For the
same task, Li et al. [15] recently proposed also a YOLOv3-
based [32] CNN, but a direct comparison is not possible,
since neither code or data has been made public. Nonethe-
less, they validate their system only on a limited test set of 48
images froma single drone,with ground-truth labels acquired
through a custom UWB 3D tracking system, with unspeci-
fied accuracy. In contrast, we collect a comprehensive test
set of 542 images over 21 drone flights in varying lighting
and backgrounds, while acquiring precise ground-truth poses
of the two drones with a mm-precise OptiTrack mocap sys-
tem. In addition, PULP-Frontnet is larger (8 convolutional
layers instead of 5 and 12× as many parameters) while run-
ning faster at inference time (30%fewermultiply-accumulate
operations). Due to these considerations, PULP-Frontnet
constitutes the better choice for our D2D stateless baseline.
When extended to take advantage of state information, we
show an R2 improvement of up to +0.039 compared to the
baseline.

The drone-to-human (D2H) use case, on the other hand,
adopts an identical task formulation as the state-of-the-
art PULP-Frontnet [2], allowing a direct comparison that
demonstrates a significant benefit in our approach, both in
offline regression performance (increasing R2 up to+0.051)
and in closed-loop in-flight system behavior. Compared to
previous work, we introduce a larger and more comprehen-
sive dataset (12 k samples vs. 4 k) that covers a larger number
of subjects (17 vs. 10), a wider range of drone’s states (both
in-flight and static, vs. static-only). To further ensure com-
parability, we also test our stateful approach on the original
PULP-Frontnet test set, confirming the improvements against
the state-of-the art.

5 Conclusion

In this work, we explore how the knowledge of the robot’s
state can be beneficial for the correct interpretation of pure-
visual sensory data in many non-egocentric perception tasks.
To support the generality of our methodology, we provide
three complementary robotic use cases in which we address
three different instances of 3D pose estimation problems.

Extending the input of visual deep learning models with
the robot’s state, yields consistent improvements on spatial
perception performance in our experiments, for all use cases.

The improvements scale with the complexity of the robot’s
state space, ranging from +0.051 in median R2 on nano-
drones use cases (2DoF state, pitch and roll attitude) up
to +0.514 on a robot arm (6DoF state, full pose). Finally,
we field-proof the drone-to-human scenario, deploying an
autonomous nano-drone that assesses an average improve-
ment of 24% in MAE vs. a SoA real-world baseline.

Overall, our results across the three use cases consistently
show the benefits upon state-of-the-art model performance
when leveraging the state input. In the future, recurrent
neural architectures are an important research direction, to
further allow vision-state models to learn temporal dynam-
ics. Exploiting raw sensor readings, as opposed to the outputs
of robot’s state estimation, will also be explored.
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