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Abstract
To aid humans in everyday tasks, robots need to know which objects exist in the scene, where they are, and how to grasp and
manipulate them in different situations. Therefore, object recognition and grasping are two key functionalities for autonomous
robots. Most state-of-the-art approaches treat object recognition and grasping as two separate problems, even though both use
visual input. Furthermore, the knowledge of the robot is fixed after the training phase. In such cases, if the robot encounters new
object categories, it must be retrained to incorporate new information without catastrophic forgetting. To resolve this problem,
we propose a deep learning architecture with an augmented memory capacity to handle open-ended object recognition and
grasping simultaneously. In particular, our approach takes multi-views of an object as input and jointly estimates pixel-wise
grasp configuration as well as a deep scale- and rotation-invariant representation as output. The obtained representation is
then used for open-ended object recognition through a meta-active learning technique. We demonstrate the ability of our
approach to grasp never-seen-before objects and to rapidly learn new object categories using very few examples on-site in
both simulation and real-world settings. Our approach empowers a robot to acquire knowledge about new object categories
using, on average, less than five instances per category and achieve 95% object recognition accuracy and above 91% grasp
success rate on (highly) cluttered scenarios in both simulation and real-robot experiments. A video of these experiments is
available online at: https://youtu.be/n9SMpuEkOgk
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1 Introduction

The necessity of using robots in human-centric environments
has led to fast progress in the field of machine learning, com-
puter vision, and robotics [1–3]. To assist humans in various
daily tasks ( e.g., clear table), a robot needs to know which
kinds of objects exist in a scene, where they are, and how to
grasp and manipulate the target object. Robots operating in
such dynamic environments frequently face isolated never-
seen-before objects or a pile of objects (see Fig. 1). Therefore,
they should be able to learn new object categories on-site
from very few training examples while retaining their previ-
ous knowledge. Recent breakthroughs in object perception
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and manipulation often use deep learning techniques. While
deep learning is a very powerful tool, there are several limita-
tions to using deep neural networks in open-ended domains.
First, deep learning approaches are data-hungry approaches
as learning a new skill/concept usually requires hundreds to
thousands of sufficiently similar training instances. There-
fore, the training process is computationally expensive and
slow. Second, the model is trained once all data has been
gathered and its performance strongly depends on the qual-
ity and quantity of training data. Often, the learnedmodels do
not generalize well to never-seen-before objects, and training
with limited data leads to poor performance. Deep learning
approaches are also prone to catastrophic forgetting [4].

In this paper, we aim to address these limitations by mak-
ing robots capable of learning the category label of objects in
an open-ended manner through interaction with non-expert
users. In particular, the robot has the ability to ask users to
label some of the training instances in which it is unsure.
This way, the robot is able to update its knowledge incremen-
tally rather than having to retrain from scratch when a new

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-024-02092-5&domain=pdf
http://orcid.org/0000-0001-9408-7730
https://youtu.be/n9SMpuEkOgk


   62 Page 2 of 19 Journal of Intelligent & Robotic Systems           (2024) 110:62 

Fig. 1 To accomplish various tasks successfully, (left) a robot must
understand which objects exist in the scene, where they are, and where
to move its gripper to pick up the target object. Our approach allows
robots to learn new object categories using very few instances on-site.

(right) The proposed approach also allows the robot to predict stable
grasp configurations for a diverse set of objects in highly cluttered sce-
narios

instance is introduced or a new category is taught. Further-
more, apart from robot self-learning, non-expert users could
interactively guide the robot by teaching new concepts, or
by correcting insufficient or erroneous concepts. We propose
to study this problem at the crossroads of deep learning and
meta-active learning. An overview of the proposed approach
is shown in Fig. 2.We develop an external-memory-equipped
deep learning approach capable of producing grasp configu-
ration and a compact object representation for a given object.

The obtained representation is scale- and rotation-invariant,
informative, and stable, and designed to support accurate
3D object recognition in open-ended domains. More specif-
ically, our approach combines the best of two worlds: the
ability to slowly learn an object-agnostic grasping and a com-
pact object representation function, via gradient descent, and
the ability to rapidly learn about new categories using very
few examples, via meta-active learning. The joint estimation
of pixel-wise grasp configurations and scale- and rotation-

Fig. 2 We propose a deep learning approach with an augmented mem-
ory capacity to handle multi-view object grasping and recognition tasks
simultaneously. First, multiple RGB-D views of a given object are gen-
erated from different perspectives. All RGB views contributed equally
to open-ended object recognition, while the depth view with maximum
entropy is used for grasping and encoding the geometrical feature of the
object. The depth view of the object is then fed to the grasp network to

obtain a pixel-wise grasp configuration and a compact representation.
All RGB views of the object are passed into the Vision Transformer and
fused together using a pooling function to form a feature vector from the
RGB views of the object. The depth representation and the RGB repre-
sentation are then concatenated to form a global representation of the
object. The obtained representation is finally used for the downstream
open-ended learning task
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invariant representations empowers robots to navigate the
complexity of open-ended domains, enabling them to rec-
ognize and grasp objects reliably across diverse conditions,
contributing to their overall versatility and effectiveness in
real-world applications. Therefore, addressing simultaneous
object recognition and grasping is important for real-time
robotic applications, especially if there are resource con-
straints. Our contributions are three-fold:

• We develop a deep learning architecture with an aug-
mented memory capacity to handle object grasping and
continual object recognition simultaneously.

• We develop a probabilistic learning method to handle 3D
object recognition in open-ended domains;

• To assess the effectiveness of the proposed approach, we
perform extensive sets of experiments in both simulation
and real-robot settings. Our method enables a robot to
learn about new object categories using, on average, less
than five instances per category and achieve 95% object
recognition accuracy and above 91% grasp success rate
on (highly) cluttered scenarios in both simulation and
real-robot experiments.

2 RelatedWork

Although an in-depth review is beyond the scope of thiswork,
we discuss recent efforts in three main categories: object
grasping, object recognition, and active learning.

Object grasping – Earlier methods on object grasp-
ing were mainly based on hand-crafted features [5]. In
recent studies, much attention has been given to deep
neural networks [6][7][8][9][10][11][12][13]. In particular,
Convolutional Neural Networks (CNN) have been applied
successfully for empirical object-grasping methods. In such
approaches, the grasps are classified and ranked using a
CNN, after which a robot executes the highest-ranked grasp
such as in [7]. One of the biggest bottlenecks with recent
deep learning-based object-grasping approaches is the exe-
cution time. Some of the deep-learning-based approaches
take a very long time to sample and rank grasp candidates
(e.g., [6][7]), while others first need to explore the environ-
ment to acquire a full model of the scene and then generate
point-wise 6D grasp configuration (e.g., Volumetric Grasp-
ing Network (VGN) [11]. These approaches are mainly used
in open-loop control scenarios and are not suitable for closed-
loop scenarios. This limitation arises from the requirement
for the robot to initially capture multiple views of the scene
and then fuse them to generate a complete point cloud of
the environment. Morrison et al. [8] proposed the Generative
Grasping CNN (GG-CNN), a small neural network, which
generates pixel-wise grasp configurations for a given single-
modal image (depth-only). Kumra et. al., [11] developed

GR-ConvNet, a large deep network that generates pixel-wise
grasp configurations using multi-modal data. Contrary to our
approach, VGN [12] and GG-CNN [8], which only use depth
data, GR-ConvNet combines color and depth information.

Similar to our approach, GG-CNN is designed to be
used for real-time closed-loop control using visual feedback.
Unlike GG-CNN, our approach works in an eye-to-hand sys-
tem, where the robot considers an entire scene and not just a
narrow top-down view. Our approach generates a grasp map
per object while GG-CNN, GR-ConvNet, and DexNet gen-
erate a grasp map per scene. Unlike our approach and VGN,
GR-ConvNet, and GG-CNN both work in top-down camera
settings andmainly focus on solving 4DoF (x, y, z, φ) grasp-
ing, where the gripper is forced to approach objects from
above. A major drawback of these approaches is inevitably
restricted ways to interact with objects. We recommend the
reader explore a recent survey paper on object grasping for
valuable insights into the latest techniques [14].

Object perception – Nowadays visual perception sys-
tems are often designed based on deep networks, where the
number of classes is known in advance as prior informa-
tion [15]. Although these approaches work well in static
closed set environments, they easily fail when facing an
out-of-distribution instance (e.g., fooling image) by predict-
ing a “known” label with high confidence [16, 17]. Some
researchers tried to handle this limitation by incorporating an
“unknown” class [18]. Although these approaches can detect
“unknown” objects to some extent, they cannot learn about
new categories due to catastrophic forgetting (learning about
new object categories leads to forgetting previously learned
categories) [4, 19]. In general, deep learning approaches for
3D object recognition can be categorized into three different
categories depending on their input. First, there are volume-
based approaches [20, 21], where the object is represented as
a 3D voxel grid and then fed to a CNN with 3D filter banks.
Second, there are pointset-based approaches [9], which work
directly on the 3D point clouds. The final category is view-
based approaches, which are used in this research. These
approaches appear to be most effective in 3D object recog-
nition, as shown by [10], [22][23]. In such approaches, 2D
images are extracted from the 3D representation by project-
ing the object’s points onto 2D planes [23, 24]. H. Su et al.,
[24] developed a system that learns to recognize 3D shapes
from a collection of their rendered views on 2D images, for
which multiple view-wise CNN features were used. Another
approach, by [10, 25], takes multi-view images of an object
as input and jointly estimates its pose and object category
label using a CNN. In another work, authors used multi-view
CNN and Vision Transformers (ViT) to address fine-grained
recognition tasks in the context of few-shot 3d object recog-
nition [26]. Our research relates to these works as both use
multi-view representations of 3D objects to learn deep fea-
tures. However, we trained an autoencoder to generate a
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grasp map as well as a compact deep representation for a
given object. The learned deep features are used for open-
ended object category learning and recognition. Unlike these
approaches, the set of object categories to be learned is not
completely known in advance in our approach, and themodel
does not know which additional objects it will have to learn,
which observations will be available, and when they will be
available to support the learning. We encourage readers to
delve into a recent survey paper on object grasping to gain
insights into the latest techniques [27].

Active learning (AL) – In recent years, ALmethods have
been gainingmuch attention to overcome the aforementioned
limitations [28–31], but few AL methods target the prob-
lem of open-ended learning [32, 33]. In particular, most
AL approaches first sample a subset of training examples
from a pool of unlabeled data using an acquisition function
based on either ’uncertainty’ measures (entropy, variance,
etc.) or density/geometric similar measures in feature space
(i.e., sampling diverse instances by considering the similari-
ties among training data). An oracle is then asked to label
the selected samples. Finally, the model is incrementally
trained or re-trained from scratch to incorporate new infor-
mation without catastrophic interference. These approaches
are incremental by nature but not open-ended since the num-
ber of categories is pre-defined and the main objective is to
update the model of known categories by finding minimally
required training examples to reach a certain classification
accuracy. Moreover, unlike these approaches, we formulate
the AL to learn from online robot observation and not from
a set of training data. More specifically, instead of selecting
a set of instances that represents the entire training dataset,
we want to select a set of training samples that best repre-
sents the novel classes. We also update the model of known
categories only when it is necessary. This way, we mainly
use our limited labeling budget to learn about new object
categories and update the model of known classes when
necessary. Alternative approaches have incorporated multi-
view analysis of objects and ensemble learning techniques,
leveraging both handcrafted features and pre-trained Con-
volutional Neural Networks (CNNs) to address open-ended
3D object recognition [34]. Unlike our approach, ensemble
learning-based approaches are computationally expensive in
both the training and testing phases as multiple classifiers
should be trained. For a comprehensive understanding of
the latest techniques, we suggest referring to a recent sur-
vey paper on deep active learning [35].

3 Object Representation and Grasp Learning

We formulate object representation and grasp synthesis as a
learning problem. In particular, we intend to learn a function
that receives a collection of rendered images of a 3D object as

input, and returns (i) a compact, scale- and rotation-invariant
representation, (ii) the best direction for approaching the tar-
get object, and (iii) a grasp map representing per-pixel grasp
configuration for a selected view.

3.1 GeneratingMulti Views of 3D Objects

A point cloud consists of a set of points, pi : i ∈ {1, . . . , n},
where each point is described by its 3D coordinates [x, y, z].
To render 2D depth images from a 3D object, we set “vir-
tual” cameras around the target object, whose Z axes point
towards the centroid of the object. Toward this goal, we first
compute the geometric center of the object, which is defined
as the arithmeticmeanpositionof all its points.Afterward,we
construct a local reference frame for the object by perform-
ing eigenvalue decomposition analysis on the normalized
covariance matrix, �, of the object, i.e., �V = EV, where
E = diag(e1, e2, e3) contains the descending sorted eigen-
values, and V = (�v1, �v2, �v3) shows the eigenvectors. We
consider the first two largest eigenvectors, �v1 and �v2, as X
and Y axes respectively, and define the Z axis as the cross
product of �v1×�v2. The object is then transformed to be placed
in the reference frame (see Fig. 3 right).

From each virtual camera pose, we map the point cloud
of the object into an RGB-D image using the z-buffering
and orthogonal projection methods [36] regardless of how
accurate/complete the point cloud of the object is. In partic-
ular, we first project the object to a square plane centered
on the camera’s center. Note that the size of the projection
square area, l × l, is an important factor for both object rep-
resentation and object grasping tasks. In the case of object
representation, we define the size of the projection relative to
the size of the object for producing a scale-invariant object
representation. In particular, the size of the projection plane is
defined as l p×l p dimension,where l p is the largest side of the
axis-aligned bounding box of the object. Since the grasp con-
figurations depend on the pose and size of the target object,
a view of the object should not be scale-invariant. There-
fore, we consider a fixed-size projection plane for grasping
(lg × lg). In our setup, the lg parameter is set to 0.45m. The
projection area is then divided into k × k square bins, where
each bin is considered a pixel. An illustrative example of this
procedure is provided in Fig. 3.

3.2 Virtual Viewpoint Setups

The number of views for each object is an important parame-
ter for both object grasping and object recognition. Although
viewpoint setup can be any arbitrary choice, we consider
three setups in this work: (left) orthographic projections,
i.e., {vi }3i=1, (center) an orbit elevated by φ (similar to
MVCNN [24]), and (right) a sphere viewpoints setup, which
is similar to the previous setup but with multiple elevation
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Fig. 3 A cordless drill (left); the
partial point cloud of the object,
its local reference frame,
bounding box, and three
projected views of the drill. In
each projection, the darker area
shows the image size for the
object representation task, and
the lighter area represents the
size of the image for the object
grasping task (right)

levels (see Fig. 4). The setup of orthographic projection has
been explained in the previous subsection. For the orbit view-
point setup, we place virtual cameras around the Z axis at
intervals of α, elevated by a fixed φ. Therefore, the number

of views for a given object is set to {vi }V = 360
α

i=1 . In the case
of sphere viewpoint setup, instead of having a fixed eleva-
tion, we placed virtual cameras at multiple elevation levels,
β, with the interval of [−90◦, 90◦]. Therefore, we capture
V = 360

α
× 180

β
views for a given object. We have optimized

φ, α, and β parameters to obtain a good balance between
object recognition accuracy and computation time (see sec-
tion 5-A). It should be noted that object recognition treats all
views equally important, while object grasping ranks views
based on visibility, reachability, and collision-free metrics.

3.3 View Selection for Grasping

View selection is crucial to make a multi-view object
grasping approach computationally efficient. Although it is
possible to pass all the views of the object into the network
and then execute the graspwith amaximumscore that is kine-
matically feasible (see Fig. 5), such approaches are feasible
but computationally expensive. In contrast, choosing a view
that covers more of the target object’s surface will not only
reduce the computation time but also increase the likelihood
of grasping the object successfully. Information theory pro-

vides a range of metrics (variance, entropy, etc.) from which
the expected information gain can be calculated. Among
thesemetrics, viewpoint entropy is a good proxy for expected
information gain [37]. In particular, viewpoints that observe
the area of high entropy are likely to be more informative
than those that observe low entropy areas. Therefore, we for-
mulate our view ranking procedure using viewpoint entropy,
which considers both the number of occupied pixels and the
pixels’ values. In particular, we calculate the entropy of a nor-

malized projection view, v, by H(v) = −∑k2
k=1 pk log2(pk),

where pk is the normalized value of pixel k, and
∑

k pk = 1.
The viewwith the highest entropy is considered the best view
for grasping and then fed to the network to predict pixel-wise
grasp configuration and encode the geometrical feature of the
object. The gripper approaches the object from an orthogonal
direction to the projection.

3.4 Network Architecture

The development of a compact convolutional grasp network
that is designed for real-time robotic applications with lim-
ited resources is of utmost importance in the field of robotics.
In dynamic environments, it is crucial to have systems that
can execute tasks efficiently and quickly. A compact network
is designed to optimize computational resources, making it
ideal for deployment on robots with limited hardware capa-

Fig. 4 Illustration of three
viewpoint setups used in this
study. In all cases, the distances
between the cameras and the
center of the target object remain
constant, and levels of elevation
are represented by colors
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Fig. 5 The top row shows virtual views of a sample bottle object. In the bottom row, we highlighted the best grasp configuration in each view using
different colors and visualized grasp quality maps for a sample RGB-D view

bilities. Therefore, we develop a convolutional grasp network
that maps an input depth image tomultiple outputs, including
a compact deep representation for encoding the geometrical
feature of the object for recognition purposes, and a set of
images representing pixel-wise antipodal grasp configura-
tions. To encode the textural feature of the object, we use
a Vision Transformer (ViT) [38], pre-trained on ImageNet-
1k [39]. The RGB views of the object are independently
fed into the ViT, and the resulting features are fused into a
single vector representation using a pooling function. The
depth and the RGB representations are then concatenated to
form a single global representation for the given object. The
obtained representation is then used for downstream open-
ended object category learning and recognition tasks.

The grasp network receives a depth image with height
H and width W as input, X ∈ R

H×W , and returns multi-
ple outputs including (i) a reconstructed image X̂ , and (ii) a
pixel-wise grasp configuration map,G, which is represented
by rotation, width, and quality images (φ,W,Q) ∈ R

H×W ,
i.e., fθ : X → Y , where Y = [G, X̂ ]. We have consid-
ered the dense autoencoder and image reconstruction loss to
force the network to learn a compact deep representation in
the bottleneck layer in an unsupervisedmanner. The obtained
representation is used for object recognition purposes (i.e.,
meta-learning, as we learn about new categories using the
output of another learning method). The overall architecture
of the network is depicted in Fig. 6. The encoder part of

the network is composed of an input layer followed by eight
convolutional layers, while the decoder part is composed of
seven deconvolutional layers. We use Rectified Linear Unit
(ReLU) as the activation function of all layers. Except for the
last deconvolution layer, we have added a batch normaliza-
tion layer after each convolution and deconvolution layer to
stabilize the learning process and reduce the number of train-
ing epochs by keeping the mean and standard deviation of
output close to 0 and 1, respectively.Weuse the same padding
in all convolution and deconvolution layers to make the input
and output the same size. The output of the last convolution
layer is flattened and considered as the deep representation
of the object (see Fig. 2). The network is trained in an end-to-
end manner using the Huber loss (see the details in Sec. 5.2).

3.5 Grasp Execution

After obtaining the output of the network for a given input,
fθ (I ) = G, the best grasp configuration, g*, is defined as
the one with maximum quality, and its coordinate shows the
center of grasp, i.e., (u, v) ← g* = argmaxQ G. Addition-
ally, the distance that the robot needs to travel within the
configuration space, as well as the pose of other objects in
the scene are considered to verify the feasibility of executing
the grasp. Additional constraints due to the kinematic chain
of a manipulator are beyond the scope of this work and can
be handled by trajectory optimization techniques. When a
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Fig. 6 Theoverall architecture of the proposed network involves receiv-
ing a depth image as input (300 × 300 × 1) and generating both a
reconstructed view and a pixel-wise grasp configuration as output. The
dimensions of the image and the number of filters post-convolution are

denoted as I × I × F. Additionally, we represent the strides as “s”, with
the understanding that when it has not been explicitly mentioned, s is 1.
It is noteworthy that the final layer of the encoder undergoes flattening,
serving as the deep representation of the input image

pile of objects is involved, grasping from above has a clear
advantage (e.g., no collisions), but when there are isolated
and cluttered objects, it completely depends on the object’s
position. Examples of grasping objects in different situations
are shown in Fig. 7

In this work, we represent the grasp point as a tuple,
g∗ = 〈(u, v), φi , wi , qi 〉, where (u, v) represents the cen-
ter of grasp in virtual image coordinates, φi indicates the
rotation of the gripper around the depth axis, wi represents
the necessary width of the gripper, and the success proba-
bility of the grasp is represented by qi ∈ [0, 1]. The depth
value of the grasp point is determined by the minimum depth
value of its surrounding neighbors within a distance of �.
We set � = 2.5cm based on the size of the robot’s finger.
Afterward, we transform the coordinates of the grasp point

from the virtual view of the object to the reference frame of
the object and instruct the robot to perform the grasp action.

4 Open-ended Object Category Recognition

The acquired deep feature derived from the input image to
the grasping network, specifically the flattened output of the
final layer in the encoder, is concatenated with the RGB rep-
resentation object to form a single global feature vector for
the given object. The obtained representation is then fitted
into the subsequent open-ended object category learning and
recognition process. It should be noted that, in this work, the
learning process involves a two-step approach: first, learning
a compact representation from grasping tasks, and second,

Fig. 7 Examples of grasping objects in different situations: (left)
predicted grasp configurations for orthographic views of the object;
(center) grasp prediction for a clutter scene that is both kinematically

feasible and collision-free; (right) the best grasp configuration for grasp-
ing a Colgate object in two different situations

123



   62 Page 8 of 19 Journal of Intelligent & Robotic Systems           (2024) 110:62 

using this learned representation for improving performance
in open-ended object recognition tasks. The ability to trans-
fer knowledge or representations from one domain to another
is a key characteristic of meta-learning, allowing the model
to adapt and generalize better across different but related
tasks.

In our meta-active learning scenario, the robot not only
learns to provide a compact representation for a given input
from grasping and reconstruction tasks (meta-learning) but
also actively asks a user to label instances during the run-time
process (active learning). Our meta-active learning approach
aims to enhance the robot’s ability to learn more efficiently,
especially in situations where labeled data is scarce.

Most active learning methods do not perform well in
open-ended domains since they need to know the number
of categories in advance. In open-ended learning scenar-
ios, the number of classes is updated over time, based on
the robot’s observations, experiences, and interactions with
human users. In other words, instead of sampling and label-
ing the training data in advance, we propose to iteratively
and adaptively choose which training instance should be
labeled next. In this study, we follow an active learning sce-
nario by identifying the need for teaching a new category
or by letting the user provide corrective feedback to learn
the model as quickly as possible (see Fig. 8). In particu-
lar, we provide three basic actions for the user to either
teach the robot about new categories or correct the
robot on errors by providing feedback. These actions consist
of the following: (i) ask: to check the prediction accuracy
of an object category model, (ii) teach: to introduce a new
object category using a set labeled samples, and (iii) cor-
rect: to improve an object category model using a new
instance. The teach and correct actions lead the robot to
initialize a new class or to modify a known class incremen-
tally using a particular instance the current classifier is the
least certain about. In particular, we are interested in learn-
ing a probabilistic model for each object category, C, using
very few labeled data in the augmented perceptual mem-
ory, Lt = {x1, . . . , xnt }, where nt is the number of seen
instances until time t , and each instance, x, is fed into the
encoder network and represented as a d-dimensional feature

vector, [x1, . . . , xd ] where ∑d
i xi = 1. Therefore, we stored

an object category in the augmented perceptual memory as a
tuple Ck = 〈 nk, ak, P(Ck), [P(x1|Ck), . . . ,P(xd |Ck)] 〉,
where nk represents the number of seen instances in cate-
gory k and ak is a vector of accumulator for category k. In
particular, aki is the probability accumulation of i th element
of all instances of category Ck and |a| = |x|. P(Ck) shows
the prior probability of category Ck (i.e., P(Ck) = nk/N ,
where N is the number of seen instances in all categories).
In this work, we consider the probability of each element
of the feature vector independently, regardless of any pos-
sible correlations with the other elements. This way, the
P(Ck)P(x|Ck) is equivalent to the joint probability model.
Therefore, the P(xi |Ck) can be estimated based on the aver-
age probability of xi in the category k:

P(xi |Ck) =
∑nk

n=1 xik

nk
= aik

nk
(1)

In addition, Laplace smoothing is used to avoid the zero prob-
ability problem. Upon each teach/correct action, the prior
probabilities of all categories as well as the probabilities of
xi in the category k, P(xi |Ck), are updated incrementally.
It is worth mentioning that Bayesian approaches are com-
putationally efficient since the parameter of the model can
be updated upon a new data point is added. Moreover, they
are memory efficient as new training instances are used to
update category models and then forgotten immediately. We
have considered a probabilistic classifier to map the rep-
resentation of a given object, x∗, to a label, ft (x∗) = ŷi ,
through the maximum likelihood, argmaxk P(Ck |x∗) =
log P(Ck) + ∑d

i x∗
i log P(xi |Ck).

5 Experimental Results

We evaluated our approach in both simulation and real-robot
settings. Our setup consists of a Kinect camera, a Universal
Robot (UR5e) with a two-fingered gripper (Robotiq 2F-140),
and a user interface. It should be noted that the pose of the
robot and the camera in the simulation are similar to the real-

Fig. 8 Abstract architecture for
interaction between the
simulated user and the robot:
The simulated user utilizes the
"teach" action to teach the robot
a new object category; the “ask”
action is used to assess the
robot’s performance on
previously learned categories,
and the correct action is used to
provide corrective feedback
when misclassification occurs
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Fig. 9 Our experimental setups:
(top-left) simulation
environment in Gazebo;
(top-right) real-robot setup. The
pose of the robot and the camera
in the simulation are consistent
with the real-robot setup.
(bottom-left) Objects used in
simulation experiments;
(bottom-right) Objects used in
real-robot experiments

robot setup (see Fig. 9 top-row).Weused a set of 20 simulated
objects, imported from the YCB dataset [40] and Gazebo
repository, and another set of 20 real daily-life objects with
different shapes, materials, sizes, textures, and weights (see
Fig. 9 lower-row). More specifically, the selected objects
have cubic, cylindrical, spheres, and special shapes and are
made out of cartons, iron, fabric, and plastic. All the objects
used in real experiments were “novel” and were not involved
in the training procedure. We used the same code and net-
work in both real and simulation experiments. Note that all
tests were performed with a PC running Ubuntu 18.04 with
a 3.20 GHz Intel Xeon(R) i7, and a Quadro P5000 NVIDIA.

5.1 Multi-view Grasp Dataset Generation

In order to generate a synthetic dataset, we randomly spawn
an object in the workspace of the robot as shown in Fig. 10.
The robot then detects the object and extracts multiple views
of the object. In order to obtain a ground truth grasp config-
uration, we randomly sample grasp configurations for each
of the extracted views of the object. We then convert each
grasp configuration to 3D space and optimize the selected
grasp configuration using simulated annealing [41] by itera-
tively updating the orientation and width of the gripper. We
compute a fitness value for the optimization process based
on three main factors: (i) the proportion of the object’s points
that are between the gripper’s fingers relative to all object’s

points (coverage criteria); (ii) how stable the point is, which
is measured based on how well the normals of the fingers
overlap with the normals of the selected points between the
two fingers; and (iii) we also considered the distance of the
selected grasp point to the center of the projected view.Exam-
ples of generated grasp synthesis for different objects are
depicted in Fig. 10 (top-row).

Furthermore, to make sure that the obtained grasp con-
figuration is stable enough during the manipulation phase,
we instruct the robot to place the object into the blue basket
(see Fig. 10 lower-row). To extend the size of the dataset
and cover various objects with different shapes and sizes, we
formed packed and a pile of objects scenes using four to six
objects and generate grasp configurations for those scenes in
addition to generating grasp synthesis for isolated object sce-
narios. Using the described procedure, we generate a grasp
dataset of approximately one million positive grasp configu-
ration and discard those configurations that lead to a collision
with the object or the table (negative samples).

5.2 Ablation Study

We trained several networks with the proposed architecture
but with different parameters including filter size, dropout
rate, number of units in fully connected layers, loss func-
tions, optimizer, various learning rates, and batch size for 50
epochs each.We usedAdam optimizer with a learning rate of
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Fig. 10 Multi-view grasp dataset generation: (top-row) Examples of
generated grasp synthesis for various objects; (lower-row) Sequence
of snapshots taken from one of the performed simulation experiments:
(left) we randomly place an object (e.g., juice box) in the workspace
of the robot; (center) The robot iteratively selects one of the extracted

views of the object to approach and grasp the object; (right) the selected
grasp synthesis is considered as a positive sample if the robot could pick
and place the object into the basket. We record all positive samples and
discard those configurations that lead to a collision with the object or
the table (negative samples)

0.001, Huber loss function (δ = 1.0), and the batch size was
set to 16. The final architecture is depicted in Fig. 6. We used
our synthetic grasp dataset to train the model. It should be
noted that we augmented the data by zooming, random crop-
ping, and rotating functions to generate approximately 5M
grasp configurations. We trained the model on 80% of data,
and we kept 20% for validation. We reported the obtained
results based on the Intersection over Union (IoU) metric. A
grasp pose is considered a valid grasp if the intersection of
the predicted grasp rectangle and the ground truth rectangle
is more than 25%, and the orientation difference between
predicted and ground truth grasp rectangles is less than 30
degrees.

To study the effect of reconstruction loss on the perfor-
mance of object grasping, we trained the network with and
without reconstruction loss. We observed that the network
without reconstruction loss achieved slightly better perfor-
mance (89.51% vs. 89.24%). It is expected since by adding
the reconstruction loss, we force the representation to include
information that might be redundant for the grasping task. To
encode the geometrical feature of the object for downstream
recognition tasks, we used the output of the encoder part of
the network, and discuss the effect of reconstruction loss on
object recognition in the next section.

5.3 Evaluations of Object Recognition

Two rounds of experiments were performed to evaluate the
proposed approach in offline and open-ended scenarios.

1) Offline Evaluation: In this round of evaluation, a
10-fold cross-validation protocol (train-then-test) is
used to assess the performance of the proposed approach.
We used the Restaurant Object Dataset [42], which con-
tains 306 objects’ views organized in 10 categories with
significant intra-class variations. Therefore, it is suitable
for performing extensive sets of experiments. Our approach
has several parameters that must be optimized to provide a
good trade-off between recognition performance, memory
usage, and computation time. The parameters are including:
φ ∈ {30◦, 45◦, 60◦}, α ∈ {4, 8, . . . , 20}, β ∈ {3, 4, . . . , 7},
view_pooling∈ {max, avg, appending}. The best results
in terms of instance accuracy, class accuracy, and average
computation time were found by running each possible per-
mutation of the available parameters forOrthographic,Orbit,
and Sphere setups. To measure the performance of object
recognition we used both instance accuracy (accmicro =
# true predictions
# predictions ) and average class accuracy (accmacro =

1
K

∑K
i=1 acci ). Note that we report average class accuracy to

address the class imbalance since instance accuracy is sensi-
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tive to class imbalance. In addition, we evaluated the effect
of various input modalities on object recognition, including
depth-only, RGB-only (embedding of ViT is used as object
representation), and RGB-D (the concatenation of embed-
ding layers of Grasp network and ViT is considered as object
representation). Refer to Table 1 for a summary of the best
results for each camera setup.
Depth-only In this round of experiments, we fed the depth
views of the object into the encoder part of the Grasp net-
work and considered the output of the embedding layer as
the feature vector. Results are reported in the depth-only part
of Table 1. By comparing all the results, we observed that the
best results were obtained by the Orbit setup with 20 views
and max pooling. We also visualized the confusion matrix
for this setup in Fig. 11. It is evident that most of the mis-
classification happened between objects that were extremely
similar to one another (e.g., fork vs. spoon). This issue can be
addressed through a fine-grained object categorization [43,
44]. By comparing all experiments, it is visible that Orbit
(φ = 60◦) and Sphere (α = 7, β = 4) setups achieved
slightly better instance and average class accuracies than
Orthographic setup (∼ 2%).

Another set of experiments was conducted with the net-
work without reconstruction loss to check the effect of
reconstruction loss on object recognition accuracy. Results
are depicted in Fig. 12. By comparing the obtained results, it
is visible that the reconstruction loss contributes significantly
to learning descriptive representation. In particular, in all
view setups, our network with reconstruction loss produced
richer representations that led to better performance. In the
case of the Orthographic setup, both instance accuracy and
average class accuracy are significantly improved (approxi-
mately 20%and24%)byusing reconstruction loss. Similarly,
in the case of Orbit and Sphere setups, the network with
reconstruction loss outperformed the network without recon-
struction loss concerning both instance accuracy and average
class accuracy. In addition, we observed that the performance
of the network without reconstruction loss increases as the
number of views increases. This can be due to the fact that
various views may activate different filters, and as a conse-
quence, the obtained representation involves diverse features

of the object which might improve the recognition perfor-
mance.
RGB-only In this round of experiments, we fed the RGB
views of the object into the ViT and considered the output of
the global embedding layer as the representationof the object.
Results are reported in the RGB-only part of Table 1. Exper-
imental results showed that the best recognition accuracies
achieved by Sphere camera setup using 20 views distributed
around the object as α = 5, β = 4. The second best result
was achieved by Orbit setup by considering 12 views of the
object. In particular, orbit setup achieved 0.9642 instance
accuracy and 0.9424 average class accuracy. Orthographic
setup showed slightly worse instance and average class accu-
racies, 0.9609 and 0.94, respectively.
RGB-DTo encode RGB-D views, we fed the best depth view
into the Grasp network and passed the RGB view to the ViT
network. The obtained representations are then concatenated.
To form a global representation of the object, all the views of
the object are fused using a pooling function. The right part of
Table 1 summarizes the results for various camera setups and
RGB-D modality. By comparing all results it is clear that the
Sphere setup achieved the best recognition accuracies using
24 views. Interestingly, the orthographic setup achieved the
second-best recognition accuracies and the best computation
time. In this round of experiments, the orbit setup with 12
views obtained third place.

In the case of average computation time, the orthographic
setup outperformed orbit and sphere configurations by a large
margin (see Table II) regardless of input modality. This result
shows that the orthographic setup can be used in closed-loop
control (∼> 25Hz feedback) while orbit (∼> 5Hz feed-
back) and sphere (∼> 2Hz feedback) are computationally
expensive for real-time applications. Therefore, we used the
orthographic camera setup with RGB-D input modality for
the real-robot experiments.

2) Open-ended Evaluation: We adopted an open-ended
evaluation protocol that followstest-then-train sche-
me [45, 46], to emulate the learning behavior of a robot over
long periods of time. In particular, it would be expected
that the robot could be taught new categories that are
present in its surroundings. It would be corrected on mis-

Table 1 Summary of offline evaluations for different input modalities and various camera setups

Camera setup Depth-only RGB-only RGB-D
Orthographic Orbit Sphere Orthographic Orbit Sphere Orthographic Orbit Sphere

#Views 3 20 28 3 12 20 3 12 24

Pooling Avg Max Max Max Max Max Max Max Max

Instance accuracy 0.9511 0.9674 0.9642 0.9609 0.9642 0.9674 0.9674 0.9511 0.9772

Avg. class accuracy 0.9366 0.9588 0.9406 0.9400 0.9424 0.9531 0.9588 0.9324 0.9611

Avg. computation time (s) 0.0167 0.1102 0.1540 0.0214 0.1574 0.2623 0.0381 0.2235 0.4470

The best of each modality is highlighted in bold, and the second-best is denoted by italicized text
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Acc_micro: 96.74%    Acc_marco: 95.88%

100.0%
20

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

100.0%
34

0.0%
0

0.0%
0

0.0%
0

2.0%
1

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

100.0%
22

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

81.8%
9

0.0%
0

0.0%
0

0.0%
0

9.1%
3

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

100.0%
28

0.0%
0

0.0%
0

3.0%
1

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

98.0%
50

0.0%
0

0.0%
0

7.1%
2

1.8%
1

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

100.0%
23

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

18.2%
2

0.0%
0

0.0%
0

0.0%
0

87.9%
29

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

92.9%
26

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

0.0%
0

98.2%
56

Bottle Bowl Flask Fork Knife Mug Plate Spoon Teapot Vase

Target Category

Bottle

Bowl

Flask

Fork

Knife

Mug

Plate

Spoon

Teapot

Vase

P
re

d
ic

te
d

 C
at

eg
o

ry

0

10

20

30

40

50

60

70

80

90

100

Fig. 11 Confusion matrix for the best depth-only orbit setup (φ = 60◦): based on this matrix, it is visible that most of the misclassification happened
among fine-grained categories (i.e., Fork, Knife, Spoon)

classifications it makes by a human user. Such experiments
might take a long time with a human user. Therefore, we
developed a simulated user to conduct systematic, con-
sistent, and reproducible experiments. The simulated user
can interact with the robot using teach, ask, and correct

actions. We connect the simulated user to the largest pub-
licly available 3D partial view object dataset [47] that
contains 51 object categories with 250, 000 views of 300
objects.

In this round of experiments, the robot will start with no
previous knowledge. The user teaches a category using three
randomly selected views.After that, the user repeatedly picks
unseen object views of the currently known categories and
tests the robot to see if it has learned the category. This is
done by asking the robot to identify new testing examples
of all previously learned categories. When the agent makes
a classification mistake, the user will provide feedback with
the correct category label. This causes the robot to adjust
its category model using the mistaken instance and also the

Fig. 12 The effect of reconstruction loss on object recognition performance onRestaurant andWashington datasets. For a comprehensive evaluation,
we have evaluated all virtual camera setups (orthographic, orbit, and sphere)
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Table 2 Open-ended
evaluations

Approaches #QCI↓ ALC↑ AIC↓ GCA↑ APA↑
BoW [48] 724.30 18.40 17.24 0.74 0.78

Open-Ended LDA [49] 572.10 12.50 12.43 0.73 0.79

Local-LDA [33] 872.10 32.30 11.58 0.77 0.81

GOOD [50] 1869.2 34.40 19.70 0.70 0.78

ours-Orthographic 1334.20 51.00 5.78 0.89 0.91

ours-Orbit 1329.40 51.00 5.76 0.89 0.91

ours-Sphere 1325.20 51.00 4.61 0.94 0.95

The arrow demonstrates if better results are higher or lower for each metric

prior probabilities of all categories are updated. The user esti-
mates the recognition accuracy of the robot using a sliding
window over the last 3n iterations, where n is the number
of categories. If the classification accuracy exceeds a thresh-
old, τ = 0.75, a new category is introduced. If the robot
can not reach the classification threshold after 100 itera-
tions since the last category was taught, the user realized
that the robot is not able to learn more categories and termi-
nates the experiment (breakpoint). It is also possible that the
robot learns all categories before reaching the breakpoint, and
hence, the experiment is halted (reported as “lack of data”
condition) [45, 46].
Evaluation metrics Since the order of introducing the cate-
gories maymatter, we run ten experiments for each approach
and evaluate all approaches using five metrics as introduced
in [45, 46]: an average number of learned categories (ALC),
which shows how much the system is capable of learning;

the number of question/correction iterations (#QCI) needed
to learn those categories, and the average number of stored
instances per category (AIC), shows the amount of time and
memory needed for learning; Global ClassificationAccuracy
(GCA), representing the accuracy of agent computed based
all predictions, and the Average Protocol Accuracy (APA),
which represents the average accuracy of the agent overall
sliding windows of the protocol.
Results We compared our approach with four state-of-the-
art methods. The obtained results are summarized in Table 2.
We also plot the performance of the proposed multi-view
approaches in the first open-ended experiment in Fig. 13. By
comparing all approaches, it is visible that sphere camera
setup outperformed orthographic and orbit configurations by
a largemargin in all evaluationmetrics. The same resultswere
achieved when comparing our approach with the selected
state-of-the-art approaches. In particular, the agent with
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Fig. 13 Systemperformance during the first simulated user experiment:
(top) This graph shows the number of instances used to train the object
categories’ model in orthographic, orbit, and sphere setups; (lower-left)

Global classification accuracy as a function of a number of learned cat-
egories; (lower-right) Number of learned categories as a function of
question/correct iterations
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Fig. 14 Visualizing the best grasp configuration for 10 household objects. The green grippers show the predicted grasp configurations

multi-view setup learned all existing categories in all experi-
ments (ALCmetric), and the stopping condition was “lack of
data”. This result shows the potential for learningmanymore
categories. The robot with orthographic and orbit camera
setups achieved similar scalability by learning all 51 cate-
gories. The other selected approaches, on average, learned
less than 35 categories and their performance drops aggres-
sively when the number of categories increases. It is also
clear that the robot with sphere setup, on average, stored
fewer instances per category, i.e., it required less than five
instances per category while the other approaches, on aver-
age, need at least 5.76 instances per category (AIC). It should
be noted that #QCI, GCA, and APA metrics should be seen
in the light of the number of learned categories. For instance,
Open-Ended LDA achieved the best #QCI, which is expected
since it learned much fewer categories than our approaches
(i.e., 12.50). Hence, it can be concluded that our approach
with a multi-view setup could learn all categories and out-
perform all the selected approaches by a large margin.

5.4 Grasp Evaluations

In this round of evaluation, we designed a pick-and-place
scenario in the context of a clear_table task. At the begin-
ning of each experiment, we set the robot to a pre-defined
setting, and randomly placed objects on the table. In these

experiments, the robot needs to learn, recognize, and detect
the pose of the basket as the placing pose, as well as the
label and pose of another object to be cleaned from the table.
Towards this goal, a user teaches the robot about the objects
using a graphical menu. Afterward, the robot infers a gras-
pable pose of the target object, picks it up, and puts it in the
basket (see Fig. 1). We performed this scenario not only to
see whether the object slips due to a bad grasp or not but also
to show the coupling between grasping and recognition. We
assess the performance of our approach in three scenarios,
including an isolated cluttered, pile of objects, and densely
cluttered scenarios by measuring success rate, i.e., #success

#attempts .
In this round of experiments, a particular grasp is considered
a success if the object is inside the basket at the end of the
experiment.

1) Isolated Cluttered Scenario: Each simulated object
was tested in isolation 50 times, while each real object was
tested 5 times. Note that, to speed up the real-robot experi-
ments, we randomly placed four objects on the table to form
a cluttered scenario first, and then instructed the robot to
clean the objects one by one (see Fig. 14 and 15). There-
fore, the robot should recognize all objects precisely, and
move them into the basket. In this round of experiments,
we considered orthographic views to infer grasp configura-
tions. These experiments can therefore be used as a stand-in
for assessing the impact of view selection on grasping. We

Fig. 15 The sequence of snapshots taken from one of the real-robot
experiments: we randomly place four objects in the workspace of the
robot. The robot should pick and place objects into the basket one by
one. In each iteration, the robot selects the nearest object to its base and

chooses the best view of the object to infer grasp points for the object.
To complete the task successfully, the robot executes pick and place
actions to place the object into the basket
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compared our approach against five baselines, including:
Grasp Pose Detection (GPD) [51] (an analytical approach),
DexNet [7], GG-CNN [8], GR-ConvNet [11], and Morrison
et al. [52]. In our experiments, DexNet [7], GG-CNN [8],
GR-ConvNet [11], and Morrison et al. [52] have access to
a global projected top-down view of the full scene, while
our approach uses extracted views of the object. The GPD
method uses the partial point cloud of the object as input.
Results are summarized in Table 3.

In the case of simulation experiments, the proposed
approach achieved a grasp success rate of 91.8% (i.e., 918
success out of 1000 trials), and for real objects, the success
rate was 92% (92 success out of 100 attempts). By com-
paring all approaches, it is clear that the proposed approach
significantly outperformed the selected approaches in both
simulation and real-robot experiments (see Table 3). More
specifically, in the case of simulation experiments, the pro-
posed approach worked 13%, 19.2%, 14.7%, 12.4%, and
10.4% better than GPD, GGCNN, Morrison et al., DexNet,
and GR-ConvNet, respectively.

We found that the bulk of GGCNN, DexNet, and GR-
CovNet errors were mainly due to estimating the center of
the grasp point near the edge of an object. Therefore, as the
gripper closes, the object may be pushed out. It should be
emphasized that even veryminor transformation errorsmight
exacerbate these issues and cause the robot not to be able
to grasp the target object. In contrast, since the proposed
approach computes grasp configuration in the object’s ref-
erence frame, such failures did not happen to our approach.
This key distinction ensures that such failures are mitigated,
thereby enhancing the reliability of grasping outcomes.

Table 3 Evaluation of object grasping methods

Method Type Success rate (%)

GPD sim 78.7 (787/1000)

GG-CNN sim 72.6 (726/1000)

Morrison et al. sim 77.1 (771/1000)

DexNet sim 79.4 (794/1000)

GR-ConvNet sim 81.4 (814/1000)

Ours (top-down) sim 80.1 (801/1000)

Ours (random) sim 52.8 (528/1000)

Our sim 91.8 (918/1000)

GPD real 81.0 (81/100)

GG-CNN real 78.0 (78/100)

Morrison et al. real 77.0 (77/100)

DexNet real 81.0 (81/100)

GR-ConvNet real 81.0 (81/100)

Ours (top-down) real 82.0 (82/100)

Ours (random) real 61.0 (61/100)

Our real 92.0 (92/100)

We also observed that the success rate for GPD, GGCNN,
Morrision et al., in simulation experiments, was less than
80%, as they predicted false positive grasp points and
unsuccessfully attempted those grasp configurations. Such
predictions often happened for small objects as it was not
always possible to infer more than one grasp synthesis for
them. Other failures were those brought on by insufficient
friction, applying limited force to the object, running into
other objects, and predicting unstable grasps synthesis.

Another interesting observation is that our approach with
a top-down view performed slightly better than GGCNN,
GPD, Morrison et al., DexNet, in both simulation and real-
robot experiments. We hypothesize that such differences
come from this point that, since we placed several objects in
the scene,GGCNNandGPDcould infer a tiny space between
two objects as a graspable area, leading to failures. In con-
trast, our approach considered a local top-down view of the
object. We also observed that other failures mainly happened
in grasping SodaCan, Colgate, Fork, and Toy. Investigating
the networks’ output reveals that the selected grasp point
was in an unstable area where the supporting area for grasp
was too small, and therefore, the object slipped and fell dur-
ingmanipulation. Regarding our approachwith random view
selection, collision with the table, e.g., grasping a toppled
soda can from the side, was the main reason for failure. Fur-
thermore,we noticed that sometimes the robotwas not able to
find a kinematically feasible grasp point from the randomly
selected view or top-down view. It is crucial to address both
grasp stability and collision concerns to improve the overall
reliability of robotic manipulation.

We also observed that some failures occurred when one
of the fingers of the gripper was tangent to the surface of the
target object,which led to pushing the object away.Other fail-
ures were mainly due to inaccurate object’s bounding box,
and collision between the object and the basket (which hap-
pened for large objects such as Pringles and JuiceBox). In
the case of real-robot experiments, in addition to the men-
tioned points, we found out some failures happened because
ofmisclassification of the target and/or basket objects. In par-
ticular, as the robot placed more and more objects into the
basket, the shape of the basket object was changed resulting
in misclassification.

2) Pile scenario: We assess the performance of the pro-
posed object-grasping approach in pile scenarios. In this
round of experiments, the robot knows in advance the pose
of the basket and needs to infer grasp points for the pile of
five objects and put the objects into the basket one by one. An
experiment is continued until either all objects get removed
from the workspace, or three failures occurred consecutively.
We performed 10 real and 25 simulated pile removal experi-
ments. We visualized the top-three grasp predictions on four
simulated piles of objects in Fig. 16 (top-row). The sequence
of pick and place actions for two successful real experiments
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Fig. 16 Qualitative results:
(top-row) visualizing the
top-three grasp configurations
on four simulated piles of
objects; (lower-row) The
sequences of pick and place
actions in two pile removal
experiments. To complete the
task successfully, the robot
should pick and place all of the
objects into the basket

is shown in Fig.16 (lower-row). Regarding the simulation
experiments, our approach could successfully remove 23
out of 25 pile of objects achieving 0.92 pile removal. In
the case of real-robot experiments, the robot could suc-
cessfully complete the pile removal task in 9 out of 10
experiments, obtaining 0.90 pile removal. We observed that
the unreachable object was the underlying cause of the fail-
ure. In particular, when the robot was interacting with the
pile of objects, one of the objects fell into a position that
was not reachable by the robot. As a consequence, the exper-

iment terminated after three consecutively failed attempts.
Other reasons for failures were applying limited force to the
object, collidingwith another object, and predicting an unsta-
ble grasp.

3) Highly Cluttered Scenario: Throughout the evaluation
phase,we carried out ten experiments to evaluate the system’s
performance performance in highly cluttered scenarios. Fig-
ure 17 displays an example of such an experiment. In the
majority of cases (9 out of 10 experiments), the robot suc-
cessfully completed the assigned tasks of clearing the table.

Fig. 17 Object grasping in the highly cluttered scenario (> 15 objects):
In this experiment, we make a pile of 15 objects in front of the robot and
instruct the robot to perform a clear table task. The robot should then
detect the grasp syntheses and execute the best grasp configuration. If

the object is on the right side of the robot, the robot put the object into
the right basket otherwise, the object is placed into the left basket by
the robot. This procedure is repeated until all objects get removed from
the table or five consecutive failures happen
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However, one failure occurred due to a specific scenario
where the spray object was placed next to the aluminum
frame after removing some objects from the table. The robot
attempted to grasp the spray object but ended up gripping
both the object and the aluminum frame, resulting in failure.
The experiment concluded after encountering five consecu-
tive failures. Such failures canbehandledby learning synergy
between pushing and grasping [53]. Our experiments high-
light the proposed object-agnostic grasp network’s ability to
consistently predict stable grasp configurations for a diverse
range of novel objects, including both isolated items and piles
of objects. A video of these experiments is available online
at: https://youtu.be/n9SMpuEkOgk

6 Conclusion

In this paper, we present a deep learning method to han-
dle object recognition and grasping simultaneously. Our
approach is especially suited for robots with limited resources.
The proposed approach allows robots to incrementally
learn new object categories and adapt to new environments
by accumulating and conceptualizing experiments through
interaction with non-expert human users. We trained the pro-
posed network in an end-to-end manner using a synthetic
object dataset. As an input, the network receives a depth
image and generates a deep representation encoding the geo-
metrical feature of the object as well as pixel-wise grasp
configuration as output. We fed the RGB views of the object
into a ViT network to encode the textural feature of the
object. We then concatenated both RGB and depth feature
vectors to form a global object representation. The obtained
representation is finally used for open-ended object cate-
gory learning and recognition through a meta-active learning
technique. To validate the performance of our approach, we
performed extensive sets of experiments in both simulation
and a real robot. Experimental results showed that the overall
object recognition and grasping performance of the proposed
approach is significantly better than the best results obtained
with the selected state-of-the-art approaches. Furthermore,
the proposed approach allows robots to robustly interact
with the environments in isolated object scenarios, cluttered
scenes, and piles of objects.

In the continuation of this work, we aim to explore
the potential of learning synergies between pushing and
grasping, coupled with the refinement of predicted grasps.
Additionally, investigating the feasibility of generating an
affordance mask as an additional network output of the
network to facilitate task-informed grasping, such as distin-
guishing between the handle and blade of a knife, presents
an intriguing avenue for future work [54]. These envi-
sioned directions hold significant promise in enhancing the
robustness and adaptability of robotic manipulation sys-

tems, ultimately contributing to the continual improvement
of robots in real-world applications.
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