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Abstract
Hull inspection is an important task to ensure sustainability of ships. To overcome the challenges of hull structure inspection
in an underwater environment in an efficient way, an autonomous system for hull inspection has to be developed. In this paper,
a new approach to underwater ship hull inspection is proposed. It aims at developing the basis for an end-to-end autonomous
solution. The real-time aspect is an important part of this work, as it allows the operators and inspectors to receive feedback
about the inspection as it happens. A reference mission plan is generated and adapted online based on the inspection findings.
This is done through the processing of a multibeam forward looking sonar to estimate the pose of the hull relative to the
drone. An inspection map is incrementally built in a novel way, incorporating uncertainty estimates to better represent the
inspection state, quality, and observation confidence. The proposed methods are experimentally tested in real-time on real
ships and demonstrate the applicability to quickly understand what has been done during the inspection.

Keywords Computer vision · Underwater navigation · Underwater robotics · Visual inspection · Sonar processing ·
Robotic perception · Coverage mapping

1 Introduction

Inspections are essential for good maintenance procedures,
to establish the integrity and status of the ship hulls.
Robotic documentationmethods can improve both efficiency
and safety for maritime operations. Shipping activities can
range from transport of goods, extraction and production
of resources, and tourism and recreation. The structures
involved are all affected by the dynamic and rough oceanic
environmental conditions and structural damages can sig-
nificantly impact the operations. The presence of fouling
has an impact on the fuel consumption; it generates fric-
tional resistance [1]. Other defects can appear such as cracks
and corrosion. The necessary repairs cause loss in time and
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money [2]. Recurring inspections are thus required by inter-
national regulations and often reveal necessary maintenance
needs. Traditionally, on ships and floating vessels, these tasks
are carried out through dry-docking, which can immobi-
lize the vehicle for a long period of time. Prior inspection
and maintenance operations are commonly performed by
trained divers while the ship is still in water, but docked [3].
This is a dangerous, challenging, and non-exhaustive activ-
ity. Recently, inspectors have started to take advantage of
modern technologies to reduce cost and time. By making use
of Remotely Operated underwater Vehicles (ROVs) [4], they
can operate efficiently and quickly to record evidence of the
visual inspection without endangering human life. ROVs can
be efficient but require skilled operators and constant atten-
tion. The quality of the documentation often varies and relies
on the performance of the human in the loop.

An autonomous system can improve the quality of the
inspection by providing accurate and repeatable results by
maneuvering for the underwater vehicle precisely relative to
the vessel. Data interpretation for ship hull inspection can
also be automated. A major progress towards this direction
is presented in [5], presenting a casewith inspectionmissions
for anti-terrorism and force protection, which consists of
sonar based investigations using guidance and control system
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relative to the ship hull andwith global synchronisation using
a GPS. The inspection vehicle follows horizontal and verti-
cal slices pointing a Doppler Velocity Log (DVL) towards
the hull to keep the vehicle normal to the hull’s surface. The
onboard sensors are actuated to adapt to the orientation of
the hull sections during the inspection mission.

In [6], the inspection vehicle is capable of drift-free self-
localisation relative to the ship hull using only onboard
sensors. It relies mostly on sonar scans from an imaging
sonar; however, when the vehicle is approaching more com-
plex region of the ship hull, the acoustic lens needs to be
changed in order to transform the imaging sonar into a pro-
filing sonar. This work is extended in [7] where planning
routines are developed for efficient visual coverage of the
complex region linked to a waypoint following method for
navigation. The work presented in [8] also implements way-
points tracking to follow a predefined vertical lawn-mower
pattern. During the operation, user inputs from an onshore
joystick are incorporated to adapt the heading of the vehi-
cle and its distance to the hull enabling a semi-autonomous
mode of operation.

All the presented previous works require prior knowledge
or prior processing in order to efficiently perform the inspec-
tion. Many of them depend on data post-processing for the
interpretation of the results which would require the opera-
tion to befinished before havingmeaningful results.Also, not
all solutions can adapt autonomously to the shape of the hull
while navigating, making human intervention necessary. A
small, low-cost, and energy-efficient vehicle should be used
to provide cost-effective logistics and access to confined vol-
umes while adhering to class society regulations.

When considering the side of a ship, the hull can be con-
sidered as locally flat, and represented as a set of planes.
Navigation along it can be viewed as a wall following
problem. Wall detection in an underwater environment is
often resolved using range measurements from an acous-
tic sensor. In [9], a Mechanically Scanned Imaging Sonar
(MSIS) is deployed. After applying a standard Hough trans-
form combined with an improved sonar model to detect line
features, a wall is tracked by an Extended Kalman Filter
(EKF). A method to detect the wall and estimate the pose
of the vehicle is proposed using the Random Sample Con-
sensus (RANSAC) [10] using measurements received from a
multibeam imaging sonar [11]. Recently, an approach using
reinforcement learning was studied in [12], where a set of
ranging sensor is used and efficiently manipulated to allow
an underwater vehicle to navigate along the wall. However,
the proposedmethods often lack robustness and cannot adapt
well to shape changes, especially in the presence of more
objects than the wall or acoustic noise.

Generally, for guidance and path following, line-of-sight
(LOS) guidance laws [13, Chapter 12] are employed. It is
mainly used for paths composed of straight lines. For more

complex parameterised path, guidance laws are often devel-
oped in a Serret-Frenet framework [13, Chapter 12]. In [14],
a LOS-based guidance law is employed to inspect aquacul-
ture net pens and combined with the beams from a DVL to
approximate the geometry of the local region facing the ROV
as a plane. Path tracking and following for an underactuated
inspection class ROV is studied in [15]. Inspection of cylin-
drical structures are considered and the lookahead-based
LOS guidance lawwas chosen to follow a path parameterised
as a 3D spiral. In [16], profile following is performed using
a sonar that construct a local representation of the environ-
ment and linear regression is utilised to estimate the local
profile. Profile following is then achieved with behavior-
based controllers. Although the mentioned solutions work
well for their respective applications, they do not allow an
advanced parameterisation of the speed along the path, and
cannot follow the path with very high accuracy and including
the constraints.

A fully autonomous hull inspection system should be
aware of its inspection coverage and, therefore, be able to
detect holes and gaps in the data set. Common approaches
to this problem work directly with the original point cloud,
[17] presented hole boundary detection using the method
presented in [18] by projecting the 3D point cloud on the
2D plane Oxy. A growth function is then applied to extract
the boundaries. In [19], the boundaries are extracted using
2D phase information by detecting phase jumps, and the
holes are then repaired with an algorithm based on Struc-
ture From Motion (SFM) and point cloud registration. The
method by [20] converts first the point cloud into a voxel
grid based on the same methods as previously mentioned
to detect boundaries. However, to detect height jumps and
vertical away holes, thresholding operations are performed.

The work presented in this paper aims at developing the
basis for an end-to-end autonomous solution for ship hull
inspection by focusing on real-time navigation and con-
trol, and inspection monitoring using a small and low-cost
ROV. Human intervention is only required for deployment,
monitoring, and retrieval of the underwater vehicle. The nav-
igation and control system consists of following a vertical
lawnmower pattern generated from the main dimension of
the ship hull provided as a priori user input. The approach is
model free, and no Computer Aided Designs (CAD) or hull
drawings are required. The vehicle adapts and autonomously
updates the mission plan based on quality and progress
of the mapping data. The inspection pattern is adapted in
real-time based on measurements from a forward looking
multibeam sonar. Processing of the sonar data results in ori-
entation changes and translations of the desired vehicle path
tomaximise the visual coverage of the shipwhile keeping the
underwater vehicle normal to the hull’s surface. An inspec-
tion map is constructed online to keep track of the areas
inspected. The map incorporates uncertainty measurements
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and hole detection features to provide relevant and under-
standable information to the operator and inspector. Themain
contribution is a resilient navigation system adapting themis-
sion of the underwater vehicle using observations from the
onboard sonar and navigation sensors. This is made possible
by using a new approach to the interpretation of the sonar
measurements to not only update the current path but also to
estimate the shape of the structure over time.Holes in the cov-
erage map of the structures are detected through a proposed
processing pipeline suited to this ship hull scenarios. Finally,
the occupancy map is augmented with uncertainty estima-
tions to quantify the inspection quality and confidence.

Theproposed solution is extensively tested, includingfield
trials with six different ships distributed in three different
locations. The inspections are performed in harbors and ship-
yards on docked ships and taking into account the rules and
regulations proposed by the class societies.

This article is based on previous work published by the
authors to build a complete robotic solution for ship hull
inspection. The path planner in [21] is augmented with a new
component tailor-made for online adaptation of the path seg-
ments to allow an efficient navigation along the ship hull.
The localisation method employs the framework in [22],
setup to account for the disturbances that exist in a harbor.
In this work, the path following method described in [23]
was used for the transit part of the mission. These methods
are combined with inspection pattern generation, guidance
for inspection paths, generation of voxel coverage map and
sonar based relative navigation to form an integrated solu-
tion.

To summarise, the following main contributions are pro-
posed:

1. A maneuvering-based guidance strategy for precise
inspectionwith online adaption andcontinuously updated
constraints.

2. Robust line detection in sonar imagery with low-level
image processing approach.

3. Online acoustic inspection map generation with self-
monitoring functions and uncertainty estimation.

4. An integrated and functioning system for ship hull
inspection, compatible with the international regulations.

2 Vehicle Setup

The proposed solution is developed using the X3 small ROV
produced by the company Blueye Robotics1 as shown in
Fig. 1(a). The default integrated sensor payload consists of
two Inertial Measurement Units (IMUs), a pressure sensor
providing depth measurements, and a camera inside a glass

1 Blueye: https://www.blueyerobotics.com

dome with ∼48 degrees vertical Field Of View (FOV) and
∼77 degrees horizontal FOV. Three external sensors are con-
nected to the vehicle’s guest ports: a GPS on a stick for
synchronisation with the global navigation frame, a forward-
looking multibeam sonar (FL-MBS), and a DVL oriented
towards the sea bottom to measure the speed over ground in
the vehicle’s frame. The FL-MBS has a configurable range
and 130 degrees horizontal and 20 degrees vertical apertures,
and it is pointed in the same direction as the camera with a
slight vertical offset. The footprints of the camera and the
forward-looking sonar are depicted in Fig. 1(b) with the Blu-
eye ROV facing a ship hull. The acoustic beams from the
DVL are not shown, but they are pointing down and towards
the sea bottom. Also note that the tilt of the vehicle could
have an impact on the inspection because of the sensor foot-
prints but is very limited as long as the vehicle’s tilt is not
superior to the sonar vertical aperture. The vehicle is neu-
trally balanced and passively stable for roll and pitch with a
large righting moment to avoid such situation.

The ROV is actuated in surge, sway, heave, and yaw.
Processing of the localisation, guidance, and control algo-
rithms are fully done onboard the vehicle, whereas the optical
imagery and sonar data are processed on the operator’s laptop
connected to the surface unit via the umbilical and WiFi due
to the limited computational capacity onboard the vehicle.
The operator has the possibility to interact with the vehicle
for safety reasons based on the online data feed and to provide
high level input.

3 Mission Procedure andManager

To autonomously perform a visual inspection of a submerged
ship, the ROV must be able to move while facing the hull,
which requires it to be fully actuated in a 4DOF configuration
space. The operator starts the operation by deploying the
drone nearby the target and start the inspection mission by
sending the mission details to the ROV, such as a starting
position nearby the hull and the area to be covered.

To initialise the state of the vehicle, the gravity direction
is used to align the ROV navigation frame to the global frame
when the ROV is assumed to be static. The initial yaw angle
is estimated using the magnetometer. This is done once and
away from the dock and any strong magnetic disturbances or
metallic structures.Measurements from aGNSS are received
while the vehicle is in the surface, allowing global position-
ing and yaw correction if needed. Satellite navigation is not
available underwater, and the ROV returns to the surface to
update the estimated vehicle pose when the standard devia-
tion grows beyond a threshold value.

Once the initialization is done, the vehicle moves towards
the vessel to the assigned starting position followed by the
execution of the inspection mode. An inspection map is
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Fig. 1 (a) Blueye X3 ROV used
for the experiments. (b)
Representation of the field of
view of the onboard camera and
the forward looking sonar while
the ROV is facing a ship hull

(a) (b)

gradually built using the sonar, to keep track of the inspected
areas. When the ROV has finished the inspection pattern, it
returns to fill eventual detected gaps and uncertain areas in
the inspection map.

As shown in Fig. 2, the embedded mission manager has
control over all components of the autonomous system and
handles their interactions. Although the operator should only
interact with the mission manager, bridges are established
with the other components for safety and debugging pur-
poses.

Each module works at a different update rate based on
the sensor and computing capacities. They are synchro-
nized in each stack mechanism, where the system contains
four stacks: control, guidance, navigation, and mapping. The
update rate is controlled and constant for all stacks except for
the localisation stack which runs at a free rate depending on
the availability and rate of the navigation sensors. The system
with the associated update rates are displayed in Fig. 3.

Autonomous System

Operator

Request WPs/changesMission Manager

Mission specifications
and commands

Mission State

Update progress

Path Planning
and Following

Localisation
Module

Mapping Module

Sensors

Sonar Module

Fig. 2 System components and their interactions. The embedded mis-
sion manager has control over the other components

Figure 4 provides a schematic of the procedures and inter-
actions between the navigation modules. The theory and
implementation details are provided in the next sections.

4 LocalisationModule

Commonly, underwater vehicles employ Kalman Filters or
variations to perform multi-sensor fusion and estimate the
localisation [24, 25]. However, their configurations are gen-
erally fixed and rigid.

In this article, the 6DOF pose of the vehicle is based on
five sensors: IMU, Magnetometer, DVL, GPS, and Pressure
sensor. They are listed with the associated rates and details
in Table 1. To use and combine these sensors efficiently, the
Modular and Robust Sensor-fusion (MaRS) framework [26]
is employed and extended to work with underwater vehi-
cles [22]. It is based on an error-state Extended Kalman
Filter, which handles measurement outliers and outages as
well as online extrinsic calibration of the sensors. TheMaRS

Autonomous System

Operator
(Manual)

Control
(100Hz)

Localisation
(10-100Hz)

Mapping
(10Hz)

Guidance
(10Hz)

Fig. 3 Systemstacks, their interactions, and their approximate averaged
rates
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Sonar scan

Mission details

Filter scan

Detect RANSAC
line and extract
local hull pose

Extract transit path
and generate

inspection pattern

Path type?

Path following
module

Path planning
module

Vehicle pose

Activate transit
mode

Yes

LOS guidance

Activate
inspection mode

Yes

Manevering
based guidance

Transit Inspection

Update path

Control system

Return to
surface

Mission
completed?No

Generate
planning graph

Operator

No
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Reached?

Fig. 4 The stateflow diagram representing the planning, guidance, and
control procedures and interactions

framework estimates the core state

xcore :=
[
N p�

N I , q�
N I , Nν�

N I , I b
�
a , I b

�
ω

]� ∈ R
16×1 (1)

composed within the gravitationally-aligned navigation frame
N of the position of the drone’s IMU p ∈ R

3, its orientation
q ∈ R

4, and velocity ν ∈ R
3. The biases ba ∈ R

3 and
bω ∈ R

3 are also estimated for acceleration and angular
velocities, respectively. The vehicle state is corrected using
the following sensor measurement equations:

zDV L = R�
I D R

�
N I NνN I + R�

I D�I ω̆N I − I bω�× I pI D
(2)

Table 1 Sensor list and details

Sensor Rate (Hz) Details

IMU 100.0 Acceleration readings

Magnetometer 100.0 Direction readings

DVL 5.0 Velocities and attitude

Pressure 45.0 Depth

GNSS 1.0 Global position

zPressure = ‖N g‖ · ρwater · [0, 0, 1] (N pN I + RN I I pI P )

(3)

zPos = G0 pG0N + RG0N (N pN I + RN I I pIG) (4)

zAtt = RA0N RN I RI A. (5)

The calibration states N pI D , N pI P , and N pIG describe
respectively the translation between the IMU and the DVL,
pressure, and position. The orientation offsets between the
IMU and DVL and attitude sensor are described by RI D and
RI A. Two constants are included, the norm of the gravita-
tional acceleration ‖N g‖ = 9.81m/s2, and the density of the
water ρwater = 997kg/m3. Finally, two additional reference
frame are introduced, of the position sensor, G0, and attitude
sensor, A0.

Probabilistic tests are performed on every sensormeasure-
ment received using a χ2-test based on the prior sensor states
and covariance. It is used within MaRS to detect and reject
outliers like noisy or faulty measurements. The framework
also provides the full state covariancematrix, which provides
information of the navigation uncertainty.

Details on the implementation and performance of the
method are provided in [22, 26].

5 Inspection Pattern Generation

Path planning is adaptive anddone inmultiple stepswithmin-
imum prior information. The first step is completed using the
vessel length and draught. Here, the Parameterized Rapidly-
exploring RandomGraph (PRRG) method is employed [21],
developed in previous work based on the Rapidly-exploring
Random Tree (RRT) [27] for safe and dynamic navigation
in multi-dimensional environments. The generated graph is
designed to enable updates in real-time. It can be combined
with a classical planner such as the Dijkstra algorithm [28]
or a more specific planner such as D* Lite [29], which fea-
tures embedded methods for obstacle avoidance. Rules can
also be defined to allow dynamic node selection based on
constraints. An extension is also proposed to generate a par-
allel custom graph composed of custom nodes. This enables
a precise route creation and online update mechanism based
on the mission details and findings.

During the operation, the first step is to initialize the
workspace in the form of a 3D occupancy map based on the
ship’s particular dimensions and generate a planning graph
inside it. Numerous collision free paths are then found as
the map is being gradually built. An inspection pattern is
generated to fit a classic lawnmower pattern and added to
the graph. This allows the vehicle to efficiently find escape
routes in case an obstacle is observed on the survey path, and
to quickly return to it.
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Since the precise ship geometry is not known, a classic
vertical lawnmower pattern is first generated based on two
inputs: height and width. The goal of this path is to provide
full visual coverage. It can be formed in two ways, with ver-
tical or horizontal segments which divide this inspection area
in vertical or horizontal slices. Therefore, the area the camera
can cover at a specific distance and the wanted visual overlap
need to be considered. Each waypoint (WP) of the path P is
defined by a vertical and horizontal distance, respectively�v

and �h , to the starting position denoted WP0, that is,

P := [WP0,WP1,WP2, ...,WPn] (6)

WPi := [
�v,i ,�h,i

]�
, (7)

where i indicates the ith waypoint. We consider horizon-
tal slices, but similar operations can be performed for a
path based on vertical slices. The number of horizontal lines
nhlines is

nhlines :=
⌈

H

Cvrgv − Ovrl · 2
⌉

, (8)

where �·	 is the ceil mathematical operation, H is the total
height that needs to be visually covered, Cvrgv (abbreviation
of Coverage) is the vertical coverage of the camera, and Ovrl
(abbreviation of Overlap) is the required visual overlap. Ovrl
is multiplied by two to take into account the two overlapping
areas, with the slices above and below. The horizontal and
vertical distances are then calculated by

�h,i :=
{
W(i mod 2), if (i mod 4) < 2

W |(i mod 2) − 1| , otherwise
(9)

�v,i := −
⌊
i

2

⌋
(Cvrgv − Ovrl) − Cvrgv − Ovrl

2
, (10)

using �·� as the floor operation, and W is the total surface
width that needs to be visually covered for each slice. The
mod operation corresponds to themodulo operation returning
the remainder of the division. Applying Eqs. 9 and 10 will

results in a correct path. However, it may not be centered on
the structure, which can present risks for the visual coverage.
For this reason, horizontal and vertical shifts should be added,
according to

Shifth := Cvrgh
2

− Ovrl(2 · (i mod 2) − 1) (11)

�h,i =
{

�h,i − Shifth, if (i mod 4) < 2

�h,i + Shifth, otherwise.
(12)

The horizontal Shifth is then applied to the horizontal dis-
tances. For the vertical Shiftv , we use

Shiftv :=1

2
(−H + nhlines(Cvrgv − Ovrl) + Ovrl) (13)

�v,i = �v,i + Shiftv, (14)

where Cvrgh is the horizontal coverage of the camera. An
example of a final generated pattern is depicted in Fig. 5(a)
with the camera coverage of each horizontal slice in different
colors to highlight the overlap. The next step is to rotate and
translate the pattern to the vehicle’s reference frame and align
it with the ship.

6 Online Path Adaptation

As soon as the vehicle starts to follow the pattern to inspect
the hull, the path needs to be updated for the drone to keep a
constant distance to the hull. It needs to be constant to ensure
good visual coverage. If the distance varies, spots will be
missed if the drone is too close or details could be missed if
it is too far away. Over time, with a constant distance, the pat-
tern should adapt to the actual shape of the ship. Amultibeam
forward-looking sonar is deployed to achieve this, imposing
the constraint to always be facing the hull. By assuming that
most parts of the structure are locally flat, it becomes possible
to perform line detection based the acoustic image from the
sonar measurement and similar to a wall following problem.

Fig. 5 (a) Vertical lawnmower
pattern with horizontal slices
generated to visually cover a
plane of size 30 × 10 meters.
Each horizontal slice is depicted
with a different color to
represent the coverage
difference in each slice. In this
case, a camera coverage of
3 × 2.5 meters with a required
overlap of 0.3 meters was used
and resulted in the creation of 5
horizontal slices. (b) Equivalent
pattern with vertical slices (a) (b)
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6.1 Wall Detection

Considering that the hull is locally flat, estimating the hull
orientation and position with respect to the vehicle using line
detection methods on the acoustic data remains the most effi-
cient approach. A comparison of line detection methods is
done in [30]. The main algorithms are described and tested
on 2D data from a laser rangefinder. Methods based on the
RANSAC algorithm have the important advantage of fitting
in the presence of outliers. However, in the presence of mul-
tiple dense area of features, it can be largely biased and result
in a high number of false positives. As a counter measure, it
is necessary to sparsify these areas or apply a constraint to
require better distribution of the features on the line. We pro-
pose to first apply an edge detection operator to address this
issue. It has the effect of significantly reducing the number of
features while keeping those of interest that are on the line.
That way, RANSAC is less subject to bias, and the line fea-
tures are highlighted and better distributed. The Canny edge
detector [31] is employed to achieve this. Both techniques
have been widely used in computer vision applications and
are known for their efficiencies [32].

With the acoustic data from the sonar, the intensity map
is first formed based on the ranges and bearings, displayed
in Fig. 6(a). Threshold operations are performed before the
Canny edge detector is applied. Pixels with intensity lower
than Tlow and higher than Thigh are removed and set to 0.
After processing the edge detector, including the Gaussian
filter to smooth the image, all pixels considered as edge are
stored and converted from Polar to Cartesian coordinates. It
is now possible to fit a reliable line with the remaining points.
Although there are outliers left, as observed in Fig. 6(b), they
will be detected as such in the RANSAC process. The fitted

line, displayed in Fig. 6(c), is visually correct and corre-
sponds to the object’s pose relative to the drone.

Using the line’s geometric details, representing the wall
locally, it is possible to place it in the ROV reference frame
based on the vehicle’s headingψ , the detected line inclination
αl relative to the normal of the line of sight of the vehicle,
and the forward distance dw from the ROV to the object. The
definition of the wall is based on the point w, the point on
the wall the drone is looking at, given by

w =
[
wx

wy

]
:=

[
px + cos (ψ) dw

py + sin (ψ) dw

]
, (15)

where (px , py) is the drone’s position. The orientation of the
wall is estimated by

αw := ψ − αl + π

2
. (16)

Therefore, any pointwk on the line going throughw andwith
orientation αw is given by

wk =
[
wk,x

wk,y

]
:=

[
wx ± cos (αw) ck
wy ± sin (αw) ck

]
, (17)

where ck > 0 is an arbitrary constant that represents the
distance to the main pointw. The wall’s coordinates are esti-
mated in the 2D plane Oxy and positioned at the vehicle’s
depth, pz , in the vertical direction. The geometry involved is
depicted in Fig. 7 with examples of positions.

6.2 Path Update Mechanism

With the position of the ROV and the hull known, the ini-
tial path P can be updated to a new path P′ to adapt to the

(a) (b) (c)

Fig. 6 Representation of the detection process of the local wall-shaped
object, where (a) is the raw sonar data presented as an image, (b) depicts
the results after the thresholding operations and the application of the

Canny edge detector, and (c) displays the fitted line using RANSAC on
the remaining features from (b) in Cartesian coordinates
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NED fixed frame
E

N

Hull

Fig. 7 Here is represented the geometry of the method. In the first case
(drone on the left part of the image), the ROV with heading ψ has a
forward distance to the wall of dw , which creates the point located in
w(wx , wy). The angle between the abscissa axis and estimated local

wall orientation is here very small and represented by αw . With the
constraint of facing the wall at a specific distance, εd and εψ repre-
sent respectively the errors in distance and heading. The second drone
satisfies the constraints

structure in front of the ROV. For each new sonar measure-
ment, the path is re-positioned, i.e., translated and rotated.
This is achieved by considering a desired distance dd to the
hull and a generic path variable θ , representing the progres-
sion on each path segment. dd is provided by the user and
is constant. θ is calculated based on the current position and
the two waypoints {WPi−1,WPi }, the previous and current
targets, that is,

θ := ||Pr(p, WPi−1, WPi ) − WPi−1||
||WPi − WPi−1|| . (18)

The functionPr, projecting a point ξ onto a line going through
p1 and p2, is defined according to

Pr(ξ, p1, p2) := p1 + ((ξ − p1) · (p2 − p1))
p2 − p1

||p2 − p1||2 .

(19)

By then projecting theROVposition on the estimated local
wall, which corresponds to the closest point on the wall from
the ROV, it becomes possible to create a parallel line at an
offset distancedd . However, because θ represents the normal-
ized progression on the current path segment, i.e., θ ∈ [0, 1)
between WPi−1 and WPi , the general direction dir between
the previous and next waypoints of the path, relative to the
starting pose of the drone, must be taken into account. This
corresponds to how the drone should be moving in its own
frame until the next waypoint is reached. It has the three pos-
sible outcomes [−1, 0, 1], which respectively correspond to a
left-right direction, vertical direction, and right-left direction
from theROV’s perspective. Therefore, it should respectively
be moving either sideways to its right, or up/down vertically,

or sideways to its left. The computation of this value depends
on the type of inspection pattern. In case of a pattern with
vertical slices, dir is given by

dir(i) := (i mod 2) − 1, (20)

where i indicates the ith target waypoint. Similarly, in case
of a pattern with horizontal slices, dir is calculated by

dir(i) := (i mod 4 − 2)(i mod 2). (21)

With these definitions of directions, the vehicle is by default
following the path at the start from left to right and from up
to down. The new waypoints WP′

i−1 and WP′
i are adapted,

respectively, fromWPi−1 andWPi using the sonar measure-
ments. They satisfy local constraints and become

WP′
i−1 := p′ − θ dir(i)

[
cosαw

sin αw

]
||WPi − WPi−1|| (22)

WP′
i :=WP′

i−1 + dir(i)

[
cosαw

sin αw

]
||WPi − WPi−1||,(23)

with WP′
i defined based on WP′

i−1 and the path segment
length. p′ is the position where the ROV should be with the
new pair of constraints on P′. It corresponds to a point on
the line going from the projected position of the drone on the
wall pproj to its own position p, that is,

pproj := Pr(p, w1, w2) (24)

p′ := pproj + dd

[
cosαd

sin αd

]
, (25)
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where w1 and w2 are defined using Eq. 17, and αd is the
angle

αd := atan2(py − pproj,y, px − pproj,x ). (26)

The desired headingψd satisfying the current constraint of
facing the hull can now be obtained. Similar to the path, it is
re-estimated for each sonar measurement, at approximately
10Hz. The frequency can be considered as relatively high
but it has a natural averaging effect because of the control-
guidance-localisation rate differences. As a result, if an error
occur with a sonar measurement, it will be quickly elimi-
nated. The new angle is derived from αd and corresponds to
its opposite angle that is

ψd := αd + π. (27)

This path adaptation part is executed online for each esti-
mated pair of constraints considered as valid. An example of
the results is depicted in Fig. 8 with a drone having similar
constraints and a wall that has a slight curvature, requiring
the vehicle to adapt.

The new path P′, desired heading ψd , and position p are
then passed as parameters to the guidance stack to solve the
desired velocity and position along the path. The function
sequence to produce these is provided as pseudocode inAlgo-
rithm 1.

7 Path Following

With the drone being able to locate itself, generate path
segments, and adapt them over time, all the tools that are
necessary for efficient path following along the computed
segments are established. To develop a fully autonomous sys-
tem, two independent types of paths are defined: transit and

Algorithm 1 Update path segment
input : 2D position of the ROV p, current path segment S, local

wall segment W and its orientation αw , desired distance
dd

output: updated path segment S′ and desired heading ψd

1 θ ← get_segment_progress(p, S) Eq. 18
pproj , αd ← get_projected_pose(p, W ) Eqs. 24 and 26
p′ ← offset_point(pproj , dd , αd ) Eq. 25
if Pattern is vertical then

2 dir ← get_current_vdir() Eq. 20
3 else
4 dir ← get_current_hdir() Eq. 21

5 S′ ← update_segment(pproj , θ , αw , S) Eqs. 22 and 23
ψd ← get_desired_heading(αd ) Eq. 27

inspection paths. The former provides a path from the deploy-
ment position to the starting position of the inspection. The
latter defines the actual route for the drone to follow during
the survey. The guidance method is also different for the two
operation modes.

The vehicle is controllable in 4 DOF, where the heave
motion is decoupled from the horizontal DOF and controlled
using a vertical thruster. For the path-following problem,
depth control is, hence, solved independently from the guid-
ance problem in the horizontal plane.

7.1 Guidance for Transit Paths

To follow a transit path, a method using the Line Of Sight
(LOS) steering laws based on [33] and [34] for straight-line
following is developed and presented in deeper details in
[23]. The purpose is to give inputs for heading control while
following the path. The time-varying term �(ye) [35] repre-
sents the line of sight distance,which is the distance to a target
point on a tangent line to the path that the drone aims at. This
term is designed to vary with the cross track error ye to avoid

E

N

NED fixed frame
P

P' P' P'

Hull

WP0 WP1

Fig. 8 The path adaptation along the wall is depicted here along with the geometry involved. P is the original path segment (red) and transformed
into P ′ (yellow) for each new sonar measurement resulting in a new estimate of the wall orientation and its distance to the ROV
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aggressive and oscillatory movements. When estimating the
desired heading ψd , an integral action is also incorporated
[36] to compensate for external disturbances, that is,

ψd = γp − atan2(ye + κ yint , �(ye)) (28)

ẏint := Uye√
�(ye)2 + (ye + κ yint )2

, (29)

where γp is the horizontal path-tangential angle and U , the
total velocity of the ROV. The integral action is tuned by
κ > 0.

The vehicle has reached the waypoint when it has entered
a circle of acceptance in the horizontal plane and its depth
error is below a specific threshold.

7.2 Guidance for Inspection Paths

Although a method was developed in previous work for
the inspection path guidance, the lack of precise control in
slow speed inspection mode redirected the method to a more
convenient solution for that scenario, maneuvering-based
guidance [37, 38]. This method provides more convenient
specification of the speed along the path as well as a bet-
ter compensation of the heading and depth errors during
the inspection. These two errors are especially important for
the inspection procedure, and priority is given to them over
positioning in the horizontal plane. When the errors are con-
sidered as too large, the inspection motion should be paused
until they are corrected. This contributes to the inspection
quality.

In themaneuvering problem [37], the goal is to converge to
and follow a continuously parameterized path. The problem
can be divided in two parts, to stay on and follow the path
and to satisfy a speed assignment along the path. Therefore,
a desired speed requirement is assigned to the vehicle if the
path is being followed well, i.e., the vehicle is close to the
path. If this is not the case, in order to better compensate for
the path following errors, the speed should be adjusted to
prioritize controlling the vehicle towards it.

To describe the desired position and speed along the path,
each path segment are redefined as

ρi (θ) := (1 − θ)pi−1 + θ pi , (30)

where the waypoints WP′
i estimated from the sonar are used

as pi in the horizontal plane. Therefore, pi−1 and pi are
respectively the previous and next waypoints in the set of
waypoints {p0, p1, p2, ..., pn}. By definition, ρ has then the
following limits: ρi (0) = pi−1 and ρi (1) = pi , since local
θ ∈ [0, 1). Subsequently, a global dynamic path variable
s ∈ [0, n) can be defined, representing the global progression

on the path. The following mapping,

i(s) = �s� + 1 (31)

θ(s) = s − �s�, (32)

enables correspondences between the local and global pro-
gression and the index of the current path segment. The
desired position is

pd(s) := ρi(s)(θ(s)), (33)

which ensures a continuous and connected motion along all
path segments. Similar to the path segments, but this time for
the entire path, pd(0) = p0 and pd(k) = pk . We next design
a speed assignment vs(s, t) for ṡ along the path according to

vs(s, t) := us(s)

||psd(s)||
ud(t). (34)

Here, ud(t) is the desired speed of the ROV along the path.
This value can be set and updated manually or autonomously
according to the inspection state. It is typically monitored by
the ROV operator and inspector. Also note that ||psd(s)|| is
the distance between pi and pi−1 because the path is a set of
straight line segments, and therefore ||psd(s)|| = ||pi−pi−1||
for i = i(s). us(s) is a speed modifier to help slow down the
speed of the vehicle at corners, i.e., when close to awaypoint.
It is using the saturation function sat1(x) to not exceed the
bounds and is given by

satb(x) :=
{
x, if |x | ≤ b

sgn(x)b, otherwise
(35)

us(s) :=
{ sat1(kslope(s+1−i))+u0

1+u0
, if s ∈ [i − 1, i − 1

2 )
sat1(kslope(i−s))+u0

1+u0
, if s ∈ [i − 1

2 , i),
(36)

where u0
1+u0

is a regularization parameter and
kslope
1+u0

becomes
the convergence speed around the waypoints.

In order to compensate for the previouslymentioned errors
in depth and heading, the speed assignment should be modi-
fied to account for the errors εz and εψ in, respectively, depth
and heading. Accordingly, we define

σδ(ε) := brelu1

(
kδ(δ − |ε|)1

δ
+ 1

)
(37)

brelu(x, b) := min(max(0, x), b). (38)

The function Eq. 37 is a deactivation function with the
effect that when ε > δ, i.e., when the threshold δ > 0 is
exceeded, the returned value decreases until it reaches 0. It
can be seen as a gain in [0, 1]. Its slope at |ε| towards 0 is tuned
by kδ > 0. To ensure that the ratio σδ(ε) does not exceed the
limits, the resulting value of the operation is passed through
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the brelu(x, b) activation function which bounds the result in
[0, b], with in this case b = 1. Using Eqs. 37 and 38 on the
two errors εz and εψ , the modified speed assignment vs(s, t)
becomes

vs(s, t, εψ , εz) = σδψ (εψ)σδz (εz)
us(s)

||psd(s)||
ud(t), (39)

which will regulate the motions along the path according to
the errors in heading and depth when these grow too large,
that is, it will make the desired position pd(s) slow down and
possibly stop until the errors are compensated. The desired
velocity vd is finally defined to make sure the vehicle reaches
the waypoints. It is based on the constant bearing nonlinear
approach from [39, 40]. It prevents the vehicle fromdeviating
from the path segment by making it converge towards it,
while maintaining its velocity along the path. To this end,
the position error e1 := p − pd(s) is included such that

vd := psdvs −Up
e1√

|e1|2 + �2
1

, (40)

where Up > 0 is the approach speed, and �1 is a tuning
parameter. This approach also allows to robustify the path
following system as the path as well as the vehicle evolve
over time.

In this inspection mode, the desired heading ψd evolves
over time and is set according to Eq. 27, as updated by the
sonar measurements.

7.3 Depth System

Thedepth instructions are similar regardless of the navigation
mode and waypoint positions. The desired depth zd is always
set to the next waypoint’s depth, that is,

zd := WPi,z . (41)

Unlike the horizontal position of the waypoints, their depths
are defined as constant. The desired vertical velocity wd is
designed to compensate the error in depth, such that

wd := satuz (κz(zd − pz)), (42)

where satuz is defined in Eq. 35, uz is the maximum desired
vertical speed, and κz a gain setting the convergence rate.

7.4 Control System

To control the surge, sway, heave, and yaw motions, Propor-
tional Integral Derivative (PID) controllers are employed.
Each controller has its own set of gains Kp, Ki , and Kd ,
which also differs according to the navigation mode. The

following errors εp,1 ∈ R
2 and εp,2 ∈ R

2 are respectively
defined as state position error and velocity error in the 2D
plane Oxy, that is,

εp,1 := R�
ψ (pd − p(t)) = R�

ψ

[
pd,x − px (t)
pd,y − py(t)

]
(43)

εp,2 := vd − R�
ψ ν(t) =

[
vd,x − R�

ψ νx (t)
vd,y − R�

ψ νy(t)

]
. (44)

The load τp ∈ R
2, vector of desired forces and moments, is

then given by

ξ̇p := εp,2 (45)

−Kp,iξp :=

⎧⎪⎨
⎪⎩

τp,min, if − Kp,iξp < τp,min

τp,max, if − Kp,iξp > τp,max

−Kp,iξp, otherwise

(46)

τp := −Kp,pεp,1 − Kp,iξp − Kp,dεp,2, (47)

with the addition of the anti-windup action on the integral
term and the diagonal gain matrices Kp,p, Kp,i , Kp,d ∈
R
2×2. Similar operations are performed with the errors in

depth and heading,

εz,1 := zd − pz(t) (48)

εz,2 := wd − νz(t) (49)

εψ,1 := ψd − ψ(t) (50)

εψ,2 := ε̇ψ,1 − ψ̇(t). (51)

A similar PID controller Eq. 47 is used for depth and head-
ing control, using εz and εψ instead of εp, resulting in
respectively the force τz and moment τψ . The gains are set
individually for each controller.

8 InspectionMap

To keep track of the inspection progress during the operation,
an inspection map is built online. Using sonar and navigation
data, everything seen by the vehicle is registered with posi-
tion, and point clouds are established to form an occupancy
map. Themap contains local uncertainty information that the
operator can use to assess the reliability of the inspection by
area. Automatic detection of coverage holes is added to allow
the autonomous system to find them and (re)inspect the area.
The map is here referred to as the inspection map, because it
is solely used for the drone to keep track of the mission and
not other tasks such as the ship hull reconstruction—which
is an independent task.
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8.1 OccupancyMap Generation

Although the line detection method presented in Section 6.1
provides good estimates of the structure in front of the vehi-
cle, it is not accurate enough to build a map because the
features of the sonar scans are not always aligned. Using the
assumption that the surface in front of the ROV has a flat
shape, the closest detected feature for each sonar beam pro-
vides a set of information about the surroundings that allows
the creation of the inspectionmap. After processing the sonar
image, it is possible to obtain features like in Fig. 9, and rep-
resent them in the vehicle’s frame. The set of 3D points is
given by

f V := p + f S R
(
ψ − π

2

)
, (52)

where f V is in the vehicle’s frame and extracted from the
sonar points f S converted toCartesian coordinates. The orig-
inal 2D sonar features f are transformed into f S using the
conversion

f Si :=
⎡
⎣
sin α fi
cosα fi

0

⎤
⎦ r fi . (53)

For each beam i , the pair in polar coordinates (α fi , r fi ) cor-
responds respectively to the horizontal beam angle and range
of the measurement. The set f V can then be used to build
the 3D occupancy map. The grid is defined by its resolution,
i.e., how many cells or voxels that are contained in one unit
distance. A resolution too highmay result in important mem-
ory consumption and heavy computational costs. Depending
on the mapping strategy, missing parts in the grid may also
happen. On the contrary, a resolution too low will have the
consequenceof imprecision and inconsistency in themap, but
with lower computational costs. The sensors characteristics

Fig. 9 Thedetected features on the sonar image are represented as green
squares. There is only one feature per beam. The scan does not display
perfectly linear features because of the estimation of the speed of sound.
However, because of the sampling method, it become negligible, and
the error is in the order of a millimeter

can also have an impact on themapping task depending on the
resolution [41]. The map resolution should therefore be cho-
sen carefully. In this project, high resolution is not required.
The resolution should match the actual information content.

Before building the map, the sonar features must be fil-
tered for noise and outliers. To achieve this, a method based
on averaged point distances is proposed. It measures the aver-
age distance between the surrounding points in a window for
each point at the time. For present objects, corresponding
feature points of consecutive beams should be close to each
other. The window size s ∈ {2x ∈ Z

+} selects a total of s+1
consecutive beams,with s/2 beams before and after the focus
point. The average distance value for a point becomes

d̄ f
i = 1

s + 1

i+ s
2∑

j=i− s
2

√
( f Six − f Sjx )

2 + ( f Siy − f Sjy )
2, (54)

where f Si is the focus point for all other points f sj surround-
ing it. The process is represented in Fig. 10. This method is
more robust and less prone to true positive rejection com-
pared to methods such as bin based evaluations [42] using
the direct sonar distances to the points. In such methods, val-
ues at both end of the bin see their chances of being rejected
greatly increase whereas with a moving window evaluating
each neighborhood individually, the bias brought by themean
is vanished. Note, however, that a cluster of noisy points will
anyway create a local bias and might increase rejection of
true positives in that area. The rejection of the point is then

Fig. 10 The moving average outlier removal procedure with three win-
dows displayed. Eachwindow is represented by a different color (green,
red and blue) and is centered on the starting point of all lines. In this case
the window size is 7. With a threshold distance of 1.5, points marked
with a red cross would be rejected, the blue window therefore evaluated
the neighborhood as too far away
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based on the threshold test

{
accept, if d̄ f

i < T f

reject, otherwise.
(55)

Over time a dense point cloud is generated and enables
the creation of the voxel map. A voxel is created only if
there are enough reliable points inside the area of the voxel.
Figure 11 presents both the dense point cloud and its conver-
sion into a voxelmap thatwas automatically processedduring
an autonomous inspection mission of a wall. In Fig. 11(a), it
is possible to observe behind the wall of green points, points
in shades of blue that are the rejected points. Note the sparse
distribution of points at the left and right edges of the cloud,
this is due to the configuration and resolution of the sonar that
makes it less precise with beams at the edges of the sensor.
In Fig. 11(b), the voxel map width is smaller that the wall
of points because the sparse parts of the point cloud is not
considered during the voxel creation.

8.2 Uncertainty Estimations

When performing the mapping task, there can be multiple
sources of errors that can make the final map or some parts of
it unreliable. Evaluating the uncertainty of the data instantly
provides relevant information to the ship hull inspector,
and poorly covered areas can then be re-inspected by the
autonomous vehicle upon request. Themain source of uncer-
tainty of the map is the position inaccuracy of the drone, and
errors in vehicle position estimates can greatly impact the
final results, i.e., the position of the voxels. The second source
of uncertainty considered here is the sonar accuracy, includ-
ing acoustic conditions and the assumption of a flat surface.
The latter is the first subject for a test to decide if the drone
is actually looking at a wall. To achieve this, the distances
d̄ f are fitted to a probability distribution whose parameters
describe the shape of the sonar image features.

The fitness of distributions was tested experimentally and
the average distances were found to fit best the Gamma dis-
tribution d̄ f ∼ �(α, β, γ ) with a shape parameter α, a scale
parameter β, and shift parameter γ (shifting the distribution

to the right by γ ). This was done by performing and compar-
ing log-likelihood goodness-of-fit statistical hypothesis tests
and by analysing the reliability functions. To first assess the
type of object in front of the sonar, i.e. a wall or something
else, the skewness w of the distribution is used as key value.
It is determined by the shape and is given by

w := 2√
α

. (56)

Although the point distances follow aGamma distribution
even when a wall is not present, the shape is significantly
impacted and makes it possible to create correspondences
between the shape parameter α and what is in front of the
sonar. The distribution is expected to be strongly positively
skewed when all the points are aligned, indicating the pres-
ence of a flat surface. In this case, points are close to each
other with only the bearings of the sonar beams affecting
the distances between the points. Therefore, points with very
low d̄ f

i will accumulate quickly, creating the skewness of the
distribution. To determine if a flat surface is detected, the test

w > c, (57)

is performed, where the value c is an arbitrary constant
threshold value. Using c = 2 allows tolerant detection, to
accept not exactly flat surfaces or unlinked flat surfaces. A
higher value makes it stricter.

The uncertainty from the sonar is evaluated using the dis-
tribution’s variance with a population mean given by the
estimated true mean for the line inclination αl , and forward
distance dw calculated in Section 6.1. For that purpose, the
estimated true population is estimated by first generating a
feature per sonar beam. The estimated true sonar points f T

in Cartesian coordinates are expressed as follows:

f Ti :=
[
sin α fi
cosα fi

]
r f Ti

(58)

r f Ti
:= dw sin βA

sin βM
, (59)

Fig. 11 The vehicle path for an
autonomous inspection of a wall
displayed as an orange line in
front of the mapped area. In (a),
the dense point cloud is
displayed with green points as
inliers and the rest as outliers.
(b) corresponds to the
conversion of the point cloud to
the voxel map. Red voxels are
detected missing voxels as
explained in the later Section 8.3

(a) (b)
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considering the three points O , A, M forming an ordinary
triangle with the corresponding angles βO , βA, βM and βA =
π
2 + αl . By then applying (54) to f T , a new set of distances

d̄ f T is obtained, corresponding to how the data should look
like. Calculating the variance of the set d̄ f therefore becomes

var(d̄ f ) = 1

n

n∑
i

(
d̄ f
i − μ

d̄ f T

)2
, (60)

indicating how far the data is from the expected true mean,
where μ

d̄ f T is the mean of all averaged distances in d̄ f T .
The main source of uncertainty, the position of the vehi-
cle, is represented by the state covariance matrix. However,
to better represent the uncertainty in the inspection map, a
single value must be extracted from the covariance matrix.
This representative value should be defined using an 1-
homogeneous function S with a normalization constraint
[43]. The approach chosen here is based on the point variance
describing the location precision [44, 45],

S(Kxcore ) := trace(Kxcore )

k
, (61)

where Kxcore is the covariancematrix of the drone’s core state
xcore. The trace or the equivalent sum of the matrix eigen-
values is divided by k, the total number of core components
included in the matrix.

Tomix and obtain only a single value from both sources, a
weighted sum is applied to give the possibility to emphasize
one source more than the other, that is,

u := S(σxcoreKxcore ) + σd̄ f var(d̄ f ), (62)

with u the final uncertainty estimate, and the weights σxcore ∈
R
k,+ and σd̄ f ∈ R

+. Calculated during the mapping pro-
cess, the uncertainty can be visualized as a color shade based

on u, as shown in Fig. 12. First, the uncertainty from the
sonar Fig. 12(a) is displayed; secondly, the uncertainty of
the position estimates is shown in Fig. 12(b); finally, both
components are combined in Fig. 12(c). It is important to
note that a red voxel does not always mean it is specifically
uncertain, but instead that it is the most uncertain of the map.
The pipeline of the voxel map creation is illustrated in Fig. 13
together with the uncertainty estimation.

8.3 Hole Detection

The last step of the mapping process is to detect holes in the
voxel map for identification of potential missing coverage,
indicating places that may need re-inspection.

Existing methods in literature, presented in Section 1, are
not suited for the inspection map developed in this project.
The shape of the structure being inspected makes it chal-
lenging to rely on height jumps alone or projections on 2D
planes. The method proposed to perform hole detection is
based on neighbors checking in a 3D moving kernel. With
a cubic shape, the kernel moves in the existing voxels and
first selects all empty cells around the voxel located in the
center of the kernel and add them to the candidate list. The
selected empty cells are then considered as part of a hole if
they satisfy neighborhood constraints: the number of exist-
ing voxels around it is above a threshold and the number of
lines involving symmetrical voxels with respect to the center
of the local neighborhood is above a second threshold. For
a line to exists and be considered, there must be at least one
occupied cell on both sides of the line. Depending on the size
of the window, there could be more than one voxel on both
sideswithout being symmetrical. Thiswill still be considered
symmetrical since they are on a common line. This methods
allows 3D structural constraints that can be adjusted with
the thresholds. High thresholds will results in the detection
of only closed spaces whereas low thresholds can work with

(a) (b) (c)

Fig. 12 Uncertainty visualisation in the voxel map. Note that the more
a voxel tends to the red color, the more it is uncertain. In (a), the uncer-
tainty in the sonar measurements is projected and in (b), the uncertainty

in the core state of the vehicle is propagated to the voxel map. Both are
combined in (c) with more weight on the uncertainty from the pose of
the ROV
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Fig. 13 The occupancy map creation pipeline with the uncertainty esti-
mation

open spaces. It will also identify hollowed corners as missing
cells and consider them as a parts of the map where points
might be missing. The detected holes are then interpreted as
potential missing parts in the inspection map. Examples of
detected holes with several neighborhood configurations are
presented in Fig. 14.

9 Component and System Integration
Testing

Prior to the field trials, each component was extensively
tested, in a simulated environment or in a test setup using
previously logged sensor data. The guidance and control
modules were developed using a simulated environment with
static inspection paths to provide a minimum viable solution
with stable control and appropriate response. Outputs from
the sonar module were also simulated to test the path update
mechanism and make sure the vehicle reacts safely to the
changes. The sonar module was evaluated using real-world
data acquired while operating the ROV manually for ship
hull inspection. This enabled assessment of the pose esti-
mation of the wall relative to the vehicle. Similarly, for the
mappingmodule, the ROV was driven manually in front of a
wall with known geometry which enabled efficient tuning of
the parameters and assessment of the outlier rejection results.
Finally, the integrated system was tested in an outdoor pool,
by repeatedly inspecting a wall, simulating a ship hull. The
system was ready for full-scale testing when all components
had shown consistent performance for all testing cases.

10 Inspection of a Vessel

To assess and validate the proposed methods, full-scale ship
hulls have beenmapped.Mono-hull commercial and research
vessels which present different constructive features were
considered, including the main andmost common hull types:
displacement, semi-displacement, and planning hull types.
Field trials were conducted in three shipyards and on ships
of different types and sizes. The summary of the ships
autonomously inspected using the presented solution is dis-
played in Table 2. In addition to repeated trials, this variety
of vessels allowed to test the universality and repeatability
of the proposed approach.

Fig. 14 Detection of potential
missing voxels (red) in different
scenario. In (a), holes of
different sizes and shapes are
placed on the structure and
correctly detected. In (b), in
addition to holes, red voxels are
placed in corners as they are
considered as potentially
missing data

(a) (b)
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Table 2 Ship details Location Category Hull Type Size

Perama shipyard Ro-ro cruise ferry Displacement 146 × 26 × 5.7m3

Ro-ro cruise ferry Displacement 102 × 21 × 5.2m3

Klagenfurt lake Lake ferry Planning 38 × 8 × 1.1m3

Lake ferry Planning 40 × 6 × 1.1m3

Trondheim fjord Research vessel Displacement 31 × 10 × 3.0m3

Ro-ro ferry Semi-displacement 48 × 14 × 3.5m3

In this section, the inspection of a Ro-Ro cruise ferry from
the port of Perama, near Athens in Greece, is considered
in detail. The selected ferry is 146 m long, has a beam of
26 m, and draught of 5.7 m. It was repeatedly inspected to
ensure the viability and consistency of the system. The addi-
tional details about the vessel are anonymised at the request
of the shipowner. In this section, two surveys of pattern size
30 × 5 m2 are considered. They consist of two autonomous
inspections using different inspection patterns. The first sur-
vey contains horizontal slices spaced vertically 0.7 m apart
and with 1.0 m distance requirement to the hull. The second
survey contains vertical slices with 2.0 m horizontal distance
using 1.3 m distance to the hull. In both cases, the inspec-
tion start at the water surface and ends at the keel. The two
surveys are summarized in Table 3.

The operator’s laptop was a standard consumer laptop,
containing an IntelCore i7 vPROCPUand16GBRAM.Parts
of the implementation of the methods are done in Python
and others in C++ for optimization and compatibility pur-
poses. Computer vision operations are performed using the
OpenCV library2.

10.1 Real-TimeManeuvering Evaluation

First, the maneuvering is evaluated by measuring the posi-
tion, heading, and distance errors over time as the difference
between the actual states and desired states. The results
are shown in Fig. 15. Both path types had characteristic
navigation error modes related to the heading. Because of
the required motions in the second survey, which contains
more diverse and simultaneous motions, combined with the
thruster setup of the ROV, yaw motions are more sensitives
and can be amplified by the surge motions. Also, since in
this second survey the drone is regularly going back to the
water surface, the impact of waves aremore significant on the
positioning than in the first survey. The sonar measurements
have an impact on the estimated errors as for each new sonar
measurements received, the path is re-adapted and therefore
a new desired position is estimated. This is done on aver-
age at a rate of 10Hz during the experiment. Globally, the

2 OpenCV (Open Source Computer Vision Library): https://opencv.org

navigation and maneuvering errors remain in an acceptable
range and do not have an impact on the visual and acoustic
coverage of the hull.

A comparison between the proposed localisation filter,
MaRS, explained in Section 4, and a basic Kalman Filter
fusing the measurements from the DVL and IMU is done
to highlight the relevance of the framework. The results can
be visually compared in Fig. 16. Although it is not possi-
ble to quantity how accurate the localisation system is, it is
clear that the MaRS framework outperforms the embedded
localisation filter. The drift in attitude and the depthmeasure-
ment errors are apparent and easily identifiable, since with
such a trajectory the vehicle would have hit the hull multiple
times. Furthermore, the trajectory produced by MaRS can
be verified using the 3D inspection map as it would expose
the errors and contain inconsistencies. The two trajectories
drifted from each other at a rate of 0.008m/s, ending with
5.6m position difference. Similarly, the heading drifted at a
rate of 0.026◦/s and the operation finished with a heading
difference of 18.26 degrees.

For more comparisons and details on the performance of
the MaRS framework, the reader is recommended to read
[22, 26].

10.2 InspectionMap Generation

The generation of the inspection map of the hull section is
done in real-time in both scenarios. The resolution of the 3D
grid is purposely increased. This has the effect of increasing
the number of small holes. Therefore, only large gaps are
considered for re-mapping, indicating truly a missing cover-
age. The results are displayed in Fig. 17 with the uncertainty
as color gradient. In both cases, the inspection operation
started from the top right and finished at the bottom left.
The observed results have significant differences, especially

Table 3 Survey details

Survey Pattern type Pattern size Slice distance Hull distance

1 Horizontal 30 × 5m2 0.7m 1.0m

2 Vertical 30 × 5m2 2.0m 1.3m
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(a) (b)

Fig. 15 Graph plots displaying the errors in position, heading, and distance to the hull, over time during two autonomous inspection. In (a), a survey
with horizontal slices is performed, and with vertical slices in (b)

regarding the coverage. When following the path with hor-
izontal lines, the sonar coverage is sparse and corresponds
to each path segment. However, it does not mean the hull
is not correctly visually documented. On the contrary, being
able to observe and differentiate the path segments from the
inspection map allows easy and intuitive observation of the
camera coverage. This is also possible with the second sur-
vey but would require to additionally look at the trajectory of
the ROV since the horizontal FOV of the camera and sonar
are different.

In Fig. 17(b), it is possible to observe a large gap in the
inspection map, which is enlargened in Fig. 18. To correct
it, a request is sent to the ROV to cover this area and obtain
better coverage. Once this area is visited, the section of the
hull is considered as fully covered and the ROV returns to
the surface to end the mission.

In both scenarios it was possible to achieve full visual
coverage of the hull with full autonomy and no prior knowl-
edge of the hull’s geometry. The hull shape estimated during
the mission using the sonar is close to reality and allows a
better understanding of the local inspection area. Together
with the online visual documentation, this provides relevant
information and details to a ship inspector supervising the
operation.

As mentioned earlier, the resolution of the grid needs to
be chosen carefully and the parameters must be tuned to rep-
resent the hull with high enough resolution to recognise hull
featureswhile at the same time avoiding large holes due to the
resolution. The first survey was used to represent the trade-
off between the resolution, the minimum number of points
required to create a voxel, i.e. the threshold, and detected
holes, and is plotted in Fig. 19. The number of voxels quickly

(a) (b)

Fig. 16 3D plots of the vehicle’s trajectory with two localisation strategies. In (a), a survey with horizontal slices is performed, and with vertical
slices in (b)
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(a)

(b)

Fig. 17 Resulting 3D inspection maps from two inspection missions.
They are represented as 3D voxel maps andwere generated in real-time.
The color correspond to the uncertainty with in green the most reliable
voxels and in red the least ones. In (a), horizontal slices are considered.
The mission ends with the drone going back to the water surface, top
left. In (b), vertical slices are considered

grows with the resolution, however decreases with a higher
threshold since more points are required to create a voxel.
This indicates the potential existence of places with sparser
acoustic coverage, which are more likely to contain holes.
These places typically appear at the edges of the covered
areas. Therefore, a combination of high resolution with very
low threshold should be avoided. However, a place with a
sparse point cloud still indicates that the corresponding hull
section was observed. This should be represented in the map,
requiring the threshold to not be too high.

The accuracy of the manoeuvring performance during the
surveys is summed up in Table 4 to provide a better under-
standing of the capabilities of the system.The guidance errors
are represented in the table, i.e, how well the vehicle follows

Fig. 19 The number of cells and detected coverage holes are reported
after generating the 3D grid of the first survey with a set of parameters,
including the resolution and threshold for the required number of sonar
ranges to create a voxel

the path. The good navigation performance propagates to the
mapping module, which leads to higher expected accuracy
for the survey results. If the navigation errors are beyond
our level of acceptance, re-calibration at the surface can be
done. For both surveys, the vehicle could provide full visual
coverage of the hull sections larger than 200m2 in less than
15 minutes. The capabilities of the ROV used allow faster
inspection. However, slow speed maneuvering was preferred
in order to achieve a full, accurate and consistent documen-
tation of the hull, allowing further data processing.

10.3 Complementary Case

To further demonstrate the consistency and robustness of the
solution, a smaller ro-ro ferry was inspected in the Trond-
heim fjord, Norway. The results displayed in Fig. 20 were
collected while following an inspection pattern with verti-
cal slices of size 15 × 2m2 and a required distance to the
hull of 1.3m. Similar to the previous case, the autonomous

Fig. 18 Visualisation of the gap
in the inspection map in (a), and
how it is repaired, (b). Based on
the colors of the voxels
representing the uncertainty, it is
possible to observe that the
drone comes from the left part of
the image and scan the missing
area from the bottom to top

(a) (b)
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Table 4 Maneuvering and
inspection performance of the
surveys

Survey Time Surface covered Estimate Mean error Std. Error

1 857s 201m2 Position (m) 0.06 0.07

Heading (deg) 3.39 2.88

Distance (m) 0.05 0.05

2 729s 224m2 Position (m) 0.09 0.10

Heading (deg) 4.20 3.25

Distance (m) 0.05 0.06

inspection performed well, with an observed mean position
error of 0.06m, heading error of 3.11◦, and distance error
of 0.05m. The 3D voxel map of the inspected section of the
ferry was also visually validated.

With the collected visual data, the inspector can create
reports to document the state of the hull using automatically
generated visual products such as mosaics. Mosaics are an
effective way of combining images of areas that are of par-
ticular interest to the inspector. In spite of sea water turbidity
and limited visual range, an overview of the local area can
be established without loosing important visual details. A
sample set of mosaics is displayed in Fig. 21. These mosaics
also allow to show the local visual coverage capabilities of
the solution.

11 Operation Remarks and Discussions

During the experiments, the sea condition was a chal-
lenge, especially when navigating close to the water surface.
Although positioning is mainly based on acoustics at close
range, which significantly limits the effects of the environ-
mental conditions, since the orientation is based on inertial
measurements, rough weather conditions can lead to numer-
ous small and contradictory motions that can be difficult to
observe and estimate, which will result in orientation preci-
sion errors. Also, the light conditions brought issues. Even
though the focus of this work is not on visual image process-
ing, the visual image acquisition is an important step. During
the operations, a lot of sunlight flickering occurred, making

Fig. 20 The results of another
autonomous inspection are
displayed with in (a), the 3D
voxel map and in (b), the
maneuvering errors

(a)

(b)
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(a)

(b)

(c)

(d)

Fig. 21 Visual orthomosaics of parts of the hull are generated. They
can hold relevant inspection findings which can be useful additions to
the inspector reports. In (a) it is possible to observe a large amount of
paint peel while in (b), the mosaic can be used to document how dirty
the hull is. (c) shows the status of the hull at the waterline and (d) reports
the condition of a bildge keel

difficult further processing of the images. Finally, the ROV’s
structure and physical constraints are not optimal for this
type of tasks. Moving transversely to make sure visual doc-
umentation is enabled, also results in large drag and energy
consumption. With a more adequate sensor setup, i.e., with
the camera and sonar pointing sideways, the vehicle would
be more stable and efficient.

The assumption of the locally flat surface when perform-
ing the inspection implies constraints. It is possible only
because the sides of the ships are considered and can be
visualised as a set of planes. This assumption would not hold
anymore for the more complex parts of the ship, such as
the propellers. Also, damaged hulls can still be considered
as locally flat if a plane can be fitted in the sonar footprint.
Therefore, the capture area does not need to be strictly flat for
the solution to work. However, if the ship has received signif-
icant damage on a very large area which results in important

deformation of the geometry, the proposed solution will not
work optimally.

The proposed approach is efficient and consistent regard-
less of the ship type and size, and does not need further tuning
for each specific ship. This is possible because the solution
was designed to be adaptable and tested repeatedly on numer-
ous vessels. Furthermore, application to aquaculture net pen
inspection was explored in [46], showing the adaptability of
the method.

The proposed navigation solution and procedures will
work in high turbidity water condition because it does not
rely on optic sensors for the real-time operation. Opposed
to previous approaches [6–8, 47], the proposed solution pro-
vides and guarantee full visual documentation in addition
to acoustic coverage. Earlier reported solutions have not
defined full visual coverage as an objective for the inspec-
tion mission. The focus was on the methods rather than the
inspection results, leading to a different set of objectives.
Although local visual maps are generated as a mean to show
the direct results of the developed methods, and that full
coverage remains technically feasible, it is not discussed
and therefore not addressed. A complete visual coverage
is mandatory for a thorough documentation and the detec-
tion and registration of faults such as marine growth, paint
peel, and corrosion as indicated by the American Bureau of
Shipping3 (ABS). Coverage monitoring should be done in
real-time, and dynamically taken into account by a mission
manager to obtain a resilient and robust behavior of the vehi-
cle as shown in this work. Furthermore, the proposed setup is
less expensive and smaller, which makes it more accessible,
easy to deploy and manipulate, hence, the overall operation
runs smoother. However, the proposed solution works best
if the ship inspection is divided in sections that are individ-
ually inspected. This is because of the localisation drift over
time in the horizontal plane. The vehicle cannot perform the
inspection as it should when the position drifts. However, it
can keep running at correct depth, with correct heading and
with correct distance to the hull. Hence the image quality and
visual coverage will remain acceptable, while the integrity
of the coverage mapping will deteriorate with the navigation
drift. A comparison of the existing ship hull inspection solu-
tion is proposed in Table 5, comparing the setups, objectives,
and the type of results. It highlights the proposed approach
in this paper as an alternative solution with complementary
results.

The inspectionmapwill showwhich areaswere inspected,
and it can be used as a support for documentation while the
inspector is looking at the video feed. This enables compli-
ance with the guidelines of the ABS for remote operations
which require real-time streaming of digital data to help
the assessment of the structure integrity while identifying

3 ABS: https://ww2.eagle.org
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Table 5 Comparison of the solutions

Approach Setup Objectives Results

Vaganay et al. [5] AUV + DVL + imaging sonar Autonomous navigation + 100%
acoustic coverage

DVL-based hull-relativemulti-level
control system + post-processed
coverage area

Hover et al. [7] AUV (optional tether) + DVL +
camera + imaging sonar (with pro-
filing lens)

Autonomous navigation + limited
drift + 3D modelling

DVL-based hull-relative control +
camera-sonar combination for drift
correction + post-processed 3D
model

Kim and Eustice [47] AUV (optional tether) + camera Monocular SLAM Robust real-time localisation with
geometrical priors + long termoper-
ations

Hong et al. [8] AUV (optional tether) + DVL +
stereo camera + acoustic altimeter

Autonomous navigation + stereo
SLAM

DVL-based localisation with
manually-aided control system +
hull-relative visual pose estimation
+ visual mosaics

Ours ROV + DVL + camera + imaging
sonar

Autonomous navigation + 100%
visual coverage + real-time moni-
toring

Sonar-based hull-relative control +
online generated acoustic inspec-
tion map + automatically generated
visual mosaics

possible anomalies. Furthermore, the identification of the
dimensions of the anomalies is strongly recommended, and
using the camera only, the scale can be difficult to estimate
underwater. Using the inspection map at the same time pro-
vides a meaningful scale to the ROV observations.

12 Conclusion and FutureWork

In this paper, a new approach to real-time underwater ship
hull inspection was studied. An autonomous maneuvering
solution was proposed to efficiently navigate around a ship
while keeping track of the state of the hull, i.e., its position
and orientation, and condition. The sonar scans are processed
in a novel way for that purpose, to not only obtain the drone’s
orientation relative to the hull, but also to generate an estimate
of the shape of the hull in the form of an inspection map. The
proposed methods allowed to provide the operator/inspector
with a better understanding of the inspection procedure. This
includes uncertainty estimation of the coverage and missing
area detection that can indicate the quality of the inspection
locally and overall. The results were successfully demon-
strated in real field experiments with repeated inspections,
to demonstrate the viability and robustness of the solution.
Additionally, they proved it is possible to achieve high auton-
omy with a simplistic sensor setup and drone configuration.
The ROV efficiently adapted to the shape of the hull in real-
time, which was estimated with a level of accuracy high
enough to recognize places. We believe the proposed meth-
ods presented in this paper contribute to the development of
the basis for an end-to-end autonomous solution for ship hull
inspection.

Future works include developing methods towards more
real-time operation such as online reconstruction of the
model using cloud-based techniques [48]. Adding in the loop
the detection of faults on ship hull using previous work by
[49] would allow to go a step further in the end-to-end auton-
omy of ship hull inspection. Expanding the autonomy to
the inspection of more parts of the ship such as propellers
[50] would enable to obtain a complete inspection map. Fur-
ther work on the sonar is also considered, including intrinsic
calibration to estimate biases relative to bearings as well as
intrinsic calibration for better synchronisation with the vehi-
cle odometry. This would increase greatly the accuracy of the
sonar points. Also, we believe the gamma distribution as used
in this paper hold geometric information and descriptions of
what the sonar sees. Further analysis in that direction could
results in better scene understanding using acoustic images.
The application of machine leaning for autonomous control
will also be explored. Previous works [51, 52] showed great
potential, including in underwater inspection scenarios [12].
Finally, since most inspections occur in harbors, the use of
external sensors installedwithin the inspection area to extend
the inspection efficiency and capabilities will be explored.
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