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Abstract. We propose a framework for modelling situated resource-bounded agents. The
framework is based on an objective ascription of intentional modalities and can be easily tai-
lored to the system we want to model and the properties we wishto specify. As an elaboration
of the framework, we introduce a logic,OBA, for describing the observations, beliefs, goals
and actions of simple agents, and show thatOBA is complete, decidable and has an efficient
model checking procedure, allowing properties of agents specified inOBA to be verified using
standard theorem proving or model checking techniques.
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1. Introduction

A major goal in intelligent agent research is the formal modelling of agent-
environment systems. Such an account is key both in deepening our un-
derstanding of the notion of agency, e.g., the relationships between agent
architectures, environments and behaviour, and for the principled design of
agent systems. A common approach is to model the agent and itsenvironment
in some logic and prove theorems about the agent’s behaviourin that logic.
It is perhaps most natural to reason about the behaviour of the agent in an
epistemic logic; epistemic notions such as knowledge and belief provide a
compact and powerful way of reasoning about the structure and behaviour of
agents (McCarthy, 1978), and there has been a considerable amount of work
in this area, for example, (Levesque, 1984; Lakemeyer, 1986; Parikh, 1987;
Fagin and Halpern, 1988; Rao and Georgeff, 1991; Fagin et al., 1995; Moore,
1995; van der Hoek et al., 1999; Singh, 1999; Wooldridge and Lomuscio,
2001; van Ditmarsch et al., 2007).

Much of this work has focused on postulating properties of agents in gen-
eral, such as the relationships between beliefs, desires and intentions investi-
gated by Rao and Georgeff (1991). While useful, such an approach can only
provide very general guidance to the agent designer, since it abstracts away
from the specifics of particular agent-environment systems. However, many
interesting logical properties of agents depend on the agent’s architecture and
program and the environment in which it is situated. In addition, from a tech-
nical point of view, existing work often makes strong assumptions which can
limit its applicability when considering feasible (i.e., implementable) agent
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designs, e.g., the assumption that agents are logically omniscient (Hintikka,
1962). While this is a reasonable assumption in some situations, for exam-
ple where the agent is capable of only a very restricted classof inferences
(Alechina and Logan, 2002), there are many cases where the time taken to
do deliberation is of critical importance. Practical agents take time to de-
rive the consequences of their beliefs, and, in a dynamic environment, the
time required by an agent to derive the consequences of its observations
will determine whether such derivations can play an effective role in action
selection.

In this paper, we propose a logical framework for modelling agent-
environment systems. We adopt an explicitly design-oriented view in the
sense that our framework makes only minimal assumptions about agents in
general, and those assumptions we do make are motivated by consideration
of feasible agent designs. For example, we assume that agents will have a
finite state and will require time to perform inferences. We assume the agents
execute a ‘sense-think-act’ cycle and consider beliefs andgoals of the agent
at various points in the cycle; this allows us to express fine-grained properties
of the agent’s beliefs, such as ‘after sensing, the agent’s observational beliefs
are always correct’.

The remainder of the paper is organised as follows. In sections 2 and 3
we present our modelling framework and develop a model of a simple agent-
environment system within the framework. In section 4 we introduce a new
logic based on these ideas,OBA, which can be used to model a resource-
bounded agent’s observations, beliefs, goals and actions,and state some
complexity results forOBA. In section 5 we illustrate our approach with
a simple example based on the well known Tileworld domain (Pollack and
Ringuette, 1990) and show howOBA can be used to specify properties of a
Tileworld agent. In section 6 we discuss related work, and insection 7 we
conclude with some ideas for future work.

2. The Agent-Environment Model

In this section we present a logical framework for modellingagent-
environment systems based on state transition systems. We first describe how
to ascribe beliefs to agents on the basis of the contents of their state and then
outline how to specify properties of agent-environment systems on the basis
of transitions between states.

The state of an agent-environment system,w, consists of two parts: the
environment statee(w) and the agent’s states(w).1 The environment state
is a description of the (physical or computational) environment in which the

1 For simplicity, we consider only a single agent.
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agent is situated. The agent’s state contains all the internal representations
which determine the behaviour of the agent. We assume that some parts of the
agent’s state can be interpreted as referring to (real or hypothetical) objects
or events in the environment, e.g., that there is an obstacledead ahead, or to
properties of the agent itself, e.g., the level of the agent’s battery. The com-
bined agent-environment states are assumed to be finite (i.e. can be specified
using finitely many variables) and we assume that there are finitely many of
them.

We describe the properties of the environment in a language built from a
set of propositional variablesP. Beliefs ascribable to the agent come from a
finite set of literals (propositional variables or their negations)Lb = {(¬)p1,
...,(¬)pm} (wherepi ∈ P). Following, for example Rosenschein and Kael-
bling (1995), we assume that the agent’s state consists of finitely many
‘memory locations’l1,. . . ,ln, and that each locationli can contain (exactly)
one of finitely many values,vi1 , . . . , vik . For example, we could have a loca-
tion lt for the output of a temperature sensor which may take an integer value
between -50 and 50. Based on those values, we can ascribe beliefs about the
external world to the agent: for example, based onlt = 20 we ascribe to the
agent a belief that the outside temperature is 20 C. Eachφ ∈ Lb corresponds
to the fact that a given memory locationli (or set of memory locations) has
a given a set of values, but ‘translates’ this into a statement about the world.
We assume a mappingBel assigning to each states(w) of the agent a set of
propositional variables and their negations which form beliefs of the agent
in states(w). Note that this ‘translation’ is fixed and does not depend on
the truth or falsity of the formulas in the real world. In general, there is no
requirement thatBel(s(w)) be consistent; if a propositional variable and its
negation are associated with two different memory locations (e.g., in an agent
which has two temperature sensors) then the agent may simultaneously be-
lieve thatp and¬p.Bel(s(w)) does not have to map a single value to a single
belief, for example, all values oflt > 20 could be mapped to a single belief
that it’s “warm”. Conversely, we do not assume that for everypropositional
variablep ∈ P, eitherp or ¬p belong toBel(s(w)); if a location li has no
value (e.g., if a sensor fails) or has a value that does not correspond to any
proposition, then the agent may have no beliefs about the outside world at
all. Other intentional notions such as goals can be modelledanalogously to
beliefs, i.e., by introducing an explicit translation fromthe contents of the
agent’s state into the set of goals. We elaborate belief and goal ascription
using the notion of a memory location rather than assuming that agents have
an internal representation of beliefs or goals e.g., as a list of literals, for rea-
sons of generality. The ascription mechanism described above is applicable
to arbitrary agents, not only those with an explicit internal representation of
beliefs and goals.
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Our aim is to model the transitions of the agent-environmentsystem as a
kind of Kripke structure and express properties of the agentin some modal
logic. We consider transition systems similar to the interpreted systems of
Fagin et al. (1995), except that the agent’s beliefs are modelled as a local
property of the agent’s state.2. To be more precise, the structure consists of a
set of agent-environment statesW , each statew ∈W has an agent parts(w)
and an environment parte(w). The state of the agents(w) comes equipped
with a set of formulasBel(s(w)) corresponding to the agent’s beliefs; the
state of the environmente(w) corresponds to a classical possible world, or a
complete truth assignment to propositional variables inP. The agent believes
thatp in statew, w |= Bp, if p ∈ Bel(s(w)). Note that this truth definition
for B does not give rise to any interesting logical properties ofB, e.g. to
KD45 axioms. This is intentional: we do not want our agents tobe logically
omniscient and the logical properties of agent’s beliefs should be determined
by the agent’s architecture and program.

Within this basic set up, we can express some properties of the agent in a
suitable logic, such as CTL (Clarke and Emerson, 1981), and use a standard
model checker such as SMV to check whether the properties aretrue of the
agent-environment system. For example, we may want to checkwhether the
agent always has true beliefs about a propertyp, i.e., whetherAG(Bp → p).
The set of states is generated by the agent’s program together with appropriate
environment responses. Note that the check for beliefs is done locally in state
w and consists of checking whether a given formula is in the setBel(s(w)),
so the problem can be easily solved by a standard model checking techniques
(e.g., with beliefs encoded as propositional variables).

However such an approach is too coarse grained even for analysing simple
agents. For example, ifp is a property observable by the agent and obser-
vation of p is always reliable, then the agent will have true beliefs about p
immediately after it has performed an observation. However, this does not
guarantee that the agent will always have true beliefs aboutp in every state—
if the agent doesn’t sense its environment continuously, itmay have false
beliefs aboutp in some states, for example, in states resulting from a change
in the environment. We want to be able to express the fact thatin all states
resulting from the agent performing an observation,Bp is true only if p is
true. The most natural way to express this is to label transitions of the system
by ‘moves’ of the agent and the environment. We have chosen a variant of
the Propositional Dynamic Logic PDL (Pratt, 1976) because it allows us to
reason about labelled transition systems (another option would have been for
example Multi-Modal CTL (̊Agotnes et al., 2007)).

2 Unlike in (Fagin et al., 1995), where beliefs are modelled using an equivalence relation
on the set of agent’s states
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In the remainder of this paper we work out this idea for a simple agent-
environment system in which the agent senses the environment, updates its
state (in particular, selects an action to perform), and sends the chosen action
to the environment, which in turn changes according to one ofthe possible
outcomes of the action (actions are assumed to be nondeterministic).

3. A Simple Agent-Environment System

In what follows we view the agent and its environment as a pairof interacting
automata (cf (Rosenschein and Kaelbling, 1995)) performing a sense-think-
act cycle (see Figure 1). At each cycle, the environment generates an input
or ‘percept’ to the agent (updating several locations in theagent’s memory),
followed by the agent generating an output or ‘action’ to theenvironment. We
assume that the environment “computes” its response to the agent’s action
instantaneously and that the agent produces its response tothe input from the
environment (chooses an action) in bounded time. We model perception and
action as two non-deterministic transitions,obs andact . An obs transition
takes the state of the environment and updates the agent’s state with a percept
corresponding to the information returned by the agent’s sensors. We assume
that perception either returns accurate information aboutthe environment or
one of finitely many outcomes of failed perception. The action transitionact
computes the new state of the environment given the current state of the
environment and the action selected by the agent. An action either causes
the environment to change in the desired way (the action succeeds), or results
in one of finitely many outcomes for a failed action. If the response generated
by the environment depends on both the agent’s action and theamount of time
it took the agent to produce it, this approximates an asynchronous interaction
between the agent and a dynamic environment. Intuitively, if the agent spends
too much time selecting an action, then performing it does not produce the
expected result.

The agent consists of some state and an internal transitioninf which mod-
els the computation the agent uses to update its state (e.g. update its beliefs
and select an action to perform).inf is assumed to depend on the agent’s
percept at this cycle and its state from the previous cycle and to terminate in
bounded time. This is a reasonable assumption for the types of agents which
we consider in this paper (such as the simple Tileworld agentdescribed in
section 5).

As above, we describe the properties of the environment in a language
built from a set of propositional variablesP, with a finite setLb of literals
which can be ascribed to the agent as beliefs and goals. In addition to the map-
pingBel introduced in the previous section, we define a mappingObs which
takes the agent’s states(w) and returns a set of formulas, as a restriction of
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State

obs act

Agent

Environment

inf

percepts actions

Figure 1. Simple agent-environment system

Bel to the locations holding percepts. Since observational beliefs are a subset
of all beliefs, for every agent states(w) we haveObs(s(w)) ⊆ Bel(s(w)).
Analogously we ascribe a set of goalsGoal(s(w)) to the agent based on a
designer-specified translation of the agent’s state.

O(s(w0))

e(w0)

w1

O(s(w1))inf

obs 

O(s(w0))

e(w0)

w0

O(s(w0))

act

O(s(w0))

e(w2)

w2

O(s(w1))O(s(w3))

e(w2)

w3

O(s(w1)) obs 

inf

Figure 2. World Transitions, whereO(s(w)) = Obs(s(w)) andŌ(s(w)) = −Obs(s(w)),
the set of non-observational beliefs.Bel(s(w)) = Obs(s(w)) ∪ −Obs(s(w)).

The cycle of the combined agent-environment automaton consists of the
three transitions:obs , inf and act (see Figure 2). At each cycle the envi-
ronment updates the agent’s states(w) with its percept for this cycle. The
agent then derives the consequences of its new beliefs (if any) and performs
an action on the basis of this new state. The agent’s observational beliefs,
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Obs(s(w)), only change after theobs transition and the rest of the agent’s be-
liefs and goals only change after theinf transition. We assume thatinf does
not change the agent’s observational beliefsObs(s(w)), as these correspond
to the agent’s ‘sensor readings’, and, as such, should not beoverwritten by
inference.3 We further assume that the environment only changes in response
to the agent’s action.

Introducing three separate transitions rather than collapsing them into one
single step (corresponding to a fullobs , inf andact cycle) allows more pre-
cise modelling of changes in the agent’s beliefs and goals. We want to be able
to talk about the state of the agent after it has performed theobservation but
before it completed all the planning necessary to choose an action, or after it
has performed an action but before it has sensed its effects.This is essential
in analysing a resource-bounded agent which may be capable of selecting
the “right” action to perform but is unable to do so before theenvironment
changes so as to invalidate the action’s preconditions.

4. A Logic for Agent-Environment Systems

In this section, we give a formal definition of the transitiongraphs of the
agent-environment system described in the previous section, and a logical
language to reason about the agent’s observations, beliefsand goals.

We describe transition graphs in a logic which we callOBA (for ‘Observa-
tion, Belief and Action’).OBA includes PDL (Propositional Dynamic Logic,
see (Pratt, 1976)) with three atomic transition labelso, i anda corresponding
to obs , inf and act , and in addition contains observation, belief and goal
operators. We define a transition termx aso | i | a | x; y |x∗, where ifx and
y are transition terms thenx; y is their sequential composition (transitionx
followed byy) andx∗ stands for 0 or finitely many iterations ofx. (We could
have added other constructs such as non-deterministic choice∪ but we do not
need them for axiomatising the logic below.)

In addition to the set of propositional variablesP, a set of literalsLb which
are ascribable to the agent as beliefs and goals, and booleanconnectives, the
language ofOBA contains:

− for each transition termx, a unary modality〈x〉. 〈x〉φ, whereφ is any
formula, stands for ‘from here we can make anx transition after whichφ

3 This limitation is not overly restrictive: theobs transition is non-deterministic (perception
is not guaranteed to veridical) and the agent may still derive incorrect beliefs about the world
on the basis of its percepts. Note however that those beliefswill be expressed by different
literals, since observational and non-observational beliefs are disjoint. For example, the agent
may have an observational belief ‘Collision sensor indicates that there is no obstacle in front
of me’ and an inferential belief ‘There is an obstacle in front of me’ (which prevented the
agent from moving forward).
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holds’. A dual modality[x]φ is defined as¬〈x〉¬φ and stands for ‘after
all x transitions we can make from here,φ holds’.

− unary modalitiesO, I andG, which can only be applied to elements of
Lb. Oφ stands for ‘the agent observes thatφ’, Iφ stands for ‘the agent
has a non-observational beliefφ’, andGφ stands for ‘the agent has a
goal thatφ’, φ ∈ Lb.

The belief modalityB is defined as follows:Bφ =df Oφ ∨ Iφ.
In the models below we only allow legal states of the system aspossible

worlds, i.e., states which are possible given the characteristics of environment
and the agent’s program. We assume that beliefs are assignedto states as
described in section 2

DEFINITION 1. An OBA model M is a tuple
〈W,V,Obs,−Obs,Goal, obs , inf , act〉 where

W is a set of worlds. Each worldw is a pair (s(w), e(w)) wheres(w) is the
state of the agent ande(w) the state of the environment.

Obs(s(w)) ⊆ Lb is a finite set of observational beliefs associated withs(w),

−Obs(s(w)) ⊆ Lb is a finite set of non-observational beliefs associated
with s(w); Bel(s(w)), the set of agent’s beliefs ats(w), isObs(s(w))∪
−Obs(s(w)).

Goal(s(w)) ⊆ Lb is a finite set of goals associated withs(w);

V assignstrue or false to pairs (e(w), p) where e(w) is a state of the
environment andp ∈ P.

obs , inf , act are binary relations onW . To say that a worldv is reachable
from a worldw by an atomic transitionx (e.g.,obs) we will use the
notationw

x
−→ v (e.g.,w

obs
−→ v).

The following restrictions onobs , inf andact hold:

Availability For everyw, exactly one of the following is true:∃v(w
obs
−→ v),

∃v(w
inf
−→ v), ∃v(w

act
−→ v)

Order On all paths in the transition system, atomic transitions succeed each
other in the orderobs ; inf ; act . (We require this property since we want
to model the sense-think-act cycle of the agent).

Change(obs) If w
obs
−→ w′ then Goal(s(w)) = Goal(s(w′)),

−Obs(s(w)) = −Obs(s(w′)) and e(w) = e(w′). (Observation may
change the perceptsObs(s(w)) but not the environment, non-observable
beliefs or goals.)
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Change(inf ) If w
inf
−→ w′ thenObs(s(w)) = Obs(s(w′)) and e(w) =

e(w′). (Inference does not change the environment or percepts.)

Change(act) If w
act
−→ w′ then Bel(s(w′)) = Bel(s(w)) and

Goal(s(w′)) = Goal(s(w)). (The agent’s beliefs and goals do not
change as a consequence of action.)4

Before we give the truth definition forOBA, we define the relationsRx

corresponding to transition termsx inductively as follows:

Ro = obs, Ri = inf , Ra = act

Rx;y = {(w,w′) : ∃v(Rx(w, v) ∧ Ry(v,w
′)}

Rx∗ = {(w,w′) : ∃n ≥ 0 ∃v0 . . . ∃vn(w = v0 ∧ Rx(v0, v1) ∧ . . . ∧
Rx(vn−1, vn) ∧ vn = w′)}

The relation of a formulaφ being true at a worldw in M ,M,w |=OBA φ

(or, for simplicity when no confusion can ariseM,w |= φ) is defined as
follows:

M,w |= p iff V (e(w), p) = true;

M,w |= ¬ψ iff M,w 6|= ψ

M,w |= ψ ∧ χ iff M,w |= ψ andM,w |= χ

M,w |= 〈o〉ψ iff there exists a worldw′ such thatw
obs
−→ w′ andM,w′ |= ψ.

M,w |= 〈i〉ψ iff there exists a worldw′ such thatw
inf
−→ w′ andM,w′ |= ψ.

M,w |= 〈a〉ψ iff there exists a worldw′ such thatw
act
−→ w′ andM,w′ |= ψ.

M,w |= 〈x; y〉ψ iff there exists a worldw′ such thatRx;y(w,w
′) and

M,w′ |= ψ.

M,w |= 〈x∗〉ψ iff there exists a worldw′ such thatRx∗(w,w′) andM,w′ |=
ψ.

M,w |= Oψ iff ψ ∈ Obs(s(w));

M,w |= Iψ iff ψ ∈ −Obs(s(w));

M,w |= Gψ iff ψ ∈ Goal(s(w));

4 We could have added a condition that the outcome of an action depends only on the state
of the environment (and not on the state of the agent) but in the current setting something like
‘if e(w) = e(w′) then{v : w

act

−→ v} = {v : w
′ act

−→ v}’ is false because we abstract
from the actual action performed during theact transition, and different actions would result
in different sets of reachable states).
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A formula φ is OBA-satisfiable if there is anOBA modelM and a world
w in M such thatM,w |= φ. A formula φ is OBA-valid (|=OBA φ) if its
negation is not satisfiable.

THEOREM 1. The axiom system below is sound and weakly complete for
OBA, that is, for every formulaφ,

⊢OBA φ iff |=OBA φ.

⊢OBA φ stands forφ is either one of the axioms below or is obtained from
axioms by application of inference rules given below:

Classical propositional logic:

CL Axioms of classical propositional logic;

MP ⊢ φ, φ→ ψ =⇒ ⊢ ψ

Normal modal logic axioms for[x], wherex is any transition

K [x](φ→ ψ) → ([x]φ→ [x]ψ)

N ⊢ φ =⇒ ⊢ [x]φ

Axioms for composition and iterations

C [x; y]φ ↔ [x][y]φ

It1 〈x∗〉φ↔ (φ ∨ 〈x〉〈x∗〉φ)

It2 [x∗](φ→ [x]φ) → (φ→ [x∗]φ)

Availability and order of transitions

T1 (〈o〉⊤ ∧ ¬〈i〉⊤ ∧ ¬〈a〉⊤) ∨ (〈i〉⊤ ∧ ¬〈o〉⊤ ∧ ¬〈a〉⊤) ∨ (〈a〉⊤ ∧
¬〈i〉⊤ ∧ ¬〈o〉⊤)

T2 [o]〈i〉⊤ ∧ [i]〈a〉⊤ ∧ [a]〈o〉⊤

Changes after transitions

C(obs) φ → [o]φ, whereφ does not contain subformulas of the form
Oψ

C(inf ) φ→ [i]φ, whereφ does not contain subformulas of the formIψ
or Gψ

C(act ) Xφ→ [a]Xφ, whereX ∈ {O, I,G}.
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Note that there are no axioms connecting beliefs and goals, in particular
no requirement that the agent does not intend what it alreadybelieves (cf Rao
and Georgeff (1991)). We will see in the next section that it is possible for a
resource bounded agent to both believe and have a goal thatφ, e.g., while it
is updating its goals.
Proof. To prove soundness, we need to show that all axioms are valid and
rules preserve validity. The argument for standard axioms and rules such as
CL, MP, K, N, C, It1, It2 is omitted. The axiomT1 is valid because from
every statew, exactly one of the three transitions is possible. The axiomT2
is valid because if it is possible to make anx transition fromw then from
the resulting state it is possible to make ay transition, provided(x, y) ∈
{(o, i), (i, a), (a, o)}. Validity of C(obs) follows from Change(obs). We can
show by induction on subformulasχ of φ built from propositional variables
and subformulas of the formIψ andGψ thatM,w |= χ iff M,w′ |= χwhere
w′ is accessible fromw by obs . Analogously forC(inf ) andC(act).

Now we prove completeness. Letφ be anOBA-consistent formula. We
will construct a finite satisfying model forφ in a standard way (see, for
example, Blackburn et al. (2001)). LetCl(φ) be the Fisher-Ladner closure
of the set of subformulas ofφ together with three formulas〈o〉⊤, 〈i〉⊤ and
〈a〉⊤. The satisfying model forφ,Mφ, is defined as follows:

The set of worldsWφ is the set of all maximal consistent subsets ofCl(φ)

Vφ(e(w), p) = true iff p ∈ w

Obsφ(s(w)) = {ψ : Oψ ∈ w}

−Obsφ(s(w)) = {ψ : Iψ ∈ w}

Goalφ(s(w)) = {ψ : Gψ ∈ w}

w
obs
−→ v in Mφ iff the conjunction of formulas inw, which we denote bŷw,

is consistent with〈o〉v̂, similarly for inf andact .

For every regular expressionπ composed fromobs , inf and act using
sequential composition and finite iteration, we define the corresponding ac-
cessibility relation asSπ(w, v) iff the formula ŵ ∧ 〈π〉v̂ is OBA-consistent.
The proof that relations defined this way do indeed correspond to sequential
composition and finite iteration, as well as the existence lemma and the truth
lemma, are standard. Note that the restriction on the language ensures that
Belφ(s(w)) andGoalφ(s(w)) only contain propositional variables and their
negations.

We need to show that the special conditions on theOBA models hold:
namely, that the transitions follow each other in the right way, and change
the world in the way constrained byAvailability, Order, Change(obs),
Change(inf ) andChange(act).
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Let us first show that in each world, exactly one of the transitions obs,
inf , act is possible. Note that the conjunction of formulas in each world
is consistent with exactly one of〈o〉⊤, 〈i〉⊤ and 〈a〉⊤ (because the world
is maximally consistent with respect toT1 and contains some〈x〉⊤). This
means that̂w ∧ 〈x〉⊤ for somex is consistent, and⊤ can be expanded into
a maximally consistent conjunction of formulasv̂ from Cl(φ) by forcing
choices; this gives us a worldv accessible byx from w. For all other atomic
transitionsy, there is no such worldv, because if̂w ∧ 〈y〉v̂ is consistent, then
so isŵ ∧ 〈y〉⊤, butw is inconsistent withT1.

Next, let us show that theOrder property holds. As an example, we show
thatobs cannot be followed byact : proofs for the other conditions are similar.
Suppose somêw is consistent with〈o〉v̂ andv̂ is consistent with〈a〉û. Note
that in this casêv contains〈a〉⊤. So it follows that〈o〉〈a〉⊤ is consistent, but
this contradictsT2.

To prove thatChange(obs) holds, we need to show that wheneverŵ∧〈o〉v̂
is consistent, the state of the environment is the same inw and v, that is
for every propositional variablep, p ∈ w iff p ∈ v. Supposep ∈ w but
p 6∈ v. Then it follows thatp ∧ 〈o〉¬p is consistent, but it contradictsC(obs).
Similarly for the casep 6∈ w but p ∈ v. Non-observational beliefs are the
same inw andv, that is−Obsφ(s(w)) = −Obsφ(s(v)): this follows from
Iψ ∈ w iff Iψ ∈ v, by C(obs). Similarly for the set of goals inw andv.

The case ofChange(inf ) is analogous.
Finally, Change(act ) holds if Obsφ(s(w)), −Obsφ(s(w)) and

Goal(s(w)) do not change as a result of anact transition. In other
words, if ŵ ∧ 〈a〉v̂ is consistent, thenXφ ∈ w iff Xφ ∈ v, where
X ∈ {O, I,G}. But this is exactly what the axiomC(act) guarantees. Note
that the form of the axiom is as it is becauseact may change the truth value
of arbitrary formulas, including non-modal formulas, but cannot change the
agent’s beliefs and goals. 2

THEOREM 2. The satisfiability problem forOBA is decidable.

Proof. Decidability follows from the bounded model property forOBA

which can be established as a by-product of Theorem 1: every satisfiable for-
mulaφ has a model of size at most2|φ|. This gives the following NEXPTIME
decision procedure: guess a model of size2|φ| and check whetherφ is true
there. 2

In fact, the complexity of the decision procedure can be improved to
EXPTIME analogously to PDL (see Blackburn et al. (2001)).

THEOREM 3. Given a formulaφ and a model, state pairM,w there is an
O(|M | × |φ|) algorithm for checking whetherM,w |=OBA φ.
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A logic of situated resource-bounded agents 13

Proof. This follows from the result on complexity for model checking for
PDL (Emerson and Lei, 1986). In addition to PDL modalities wehave modal
operatorsO, I andG in the language, but checking whetherOψ, Iψ orGψ
is true in a worldw can be done in constant time; subformulas of the form
Oψ, Iψ andGψ can be treated as propositional variables. 2

In OBA, we can express properties of a particular agent design and verify
whether they hold as expected. There are two possible ways ofdoing this.
We can axiomatise the agent’s program and the interaction between the agent
and its environment, and prove that the property follows from those extra
axioms and theOBA axioms. Alternatively, given the agent’s program and all
possible responses to the agent’s actions by the environment, we can generate
the state transition graph and check whether the property istrue in all states
in the graph. Both approaches are feasible given the decidability and low cost
of model checking ofOBA.

In this paper, we are concerned with axiomatising phases in the agent’s
execution cycle rather than properties of a particular inference mechanism or
of the agent’s actions. This limitation can easily be relaxed. Namely, we can
consider agents capable of performing a finite set of actionsa1, . . . , an, and
define an action transitiona asa1 ∪ . . . ∪ an (union of basic actions). In ad-
dition to the general conditions on the models above, we would add pre- and
postconditions of all the basic actions, and the corresponding axioms to the
logic. Similarly, we could add more conditions on the inference mechanism
of the agent in the semantics and add corresponding axioms. For example,
if an agent’s program has a rule ‘ifp is in the set of beliefs, then adopt a
goal q’ then the semantic condition oninf would include a corresponding
condition on assignments before and afterinf and the logic will have an
axiomBp→ 〈i〉Gq.

5. An example: the Tileworld

In this section we illustrate our approach with an example based on the well-
known Tileworld domain (Pollack and Ringuette, 1990). The Tileworld is a
testbed for the evaluation of agent architectures, and has been used to in-
vestigate agent commitment strategies (when an agent should abandon its
current goal and replan) (Pollack et al., 1994) and in comparisons of reac-
tive and deliberative agent architectures (Pollack and Ringuette, 1990). The
Tileworld environment consists of a rectangular grid. Eachsquare contains
either a ‘tile’ or a ‘hole’ or is empty (i.e., contains neither a tile or a hole).
The goal of a Tileworld agent is to fill the holes in the grid with tiles. In
the original Tileworld, tiles and holes appear and disappear at random, and
the agent’s success is measured by the number of holes it is able to fill with
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14 Natasha Alechina and Brian Logan

tiles in a given amount of (real or simulated) time. For reasons of brevity, our
Tileworld is very simple. The environment consists of an unbounded strip of
grid squares. Each grid square contains either a tile or a hole or is empty, and
tiles and holes are distributed randomly along the strip of grid squares.5 The
environment contains a single agent which can move forward on rails laid
over the squares and has a sensor which allows it to see whether the square
directly underneath it contains a tile or a hole or is empty. If it sees a tile
it can pick it up and carry it. If it is holding a tile and is located above a
hole it can drop it in the hole. Holes are one tile deep and dropping a tile
into a hole ‘fills it in’, turning the hole into an empty square. For simplicity
we have assumed that the agent’s sensors are veridical in thesense that they
either return correct information about the environment oran ‘undefined’
value indicating the sensor returned no data at this cycle. We also assume
that the actions of picking up or dropping a tile can fail, leaving the world
unchanged; moving forward always succeeds and leaves the agent above the
next square. We stress that these assumptions are not essential, andOBA can
be used to reason about more complex environments and more realistic agents
with unreliable perception and more complex actions failures.

The goal of the Tileworld agent is put a tile in a hole. Informally, the
program of the agent consists of the following simple rules:

− if holding a tile and above a hole, repeatedly try to drop the tile until the
tile is in the hole;

− if not holding a tile and above a tile, repeatedly try to pick it up until the
square below the agent is empty;

− otherwise, move forward.

The agent’s state consists of four memory locations,p, g, h, anda:

p is for storing percepts, and can take one of four values: 0 forthe agent is
above a tile, 1 for the agent is above a hole, 2 for the agent is above an
empty square and 3 for ‘undefined’.

h is for storing information about whether the agent is holding a tile: 1 for
the agent is holding a tile, and 0 for the agent is not holding atile. For
the sake of the example, we assume that there is no sensor which can
determine whether an agent is holding a tile, but instead this information
has to be inferred by the agent.

g is for storing goals, and can take one of four values: 0 for looking for a tile,
1 for picking up a tile, 2 for looking for a hole, and 3 for dropping a tile.

5 Unlike the original Tileworld (Pollack and Ringuette, 1990), there are no obstacles and
tiles and holes do not appear and disappear randomly, i.e., the environment is static.
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a is for storing selected actions, and can also take one of fourvalues: 0 for
pick up the tile beneath the agent, 1 for drop the tile the agent is holding,
2 for move forward one grid cell, and 3 for a special ‘no-op’ action which
does not change the environment.

The execution cycle of the agent then becomes:

obs : sensing the environment to find out what is underneath the agent and
updating thep location;

inf : updating the values ofh, g anda according to the agent’s program; and

act : sending the value ina to the environment.

To ascribe beliefs and goals to the Tileworld agent, we do notneed a dis-
tinct propositional variable for every combination of location and value. The
setPTL = {p0, p1, p2, h, a0, a1, a2, a3} is sufficient to capture those beliefs
and goals which are relevant to the choice of the agent’s actions. To simplify
fully automated belief ascription, we could use a propositional variable for
every combination of location and value.

For the sake of brevity, we do not specifyObs,Bel andGoal completely,
but illustrate them via examples. Letp0 mean ‘the agent is above a tile’.

p0 ∈ Obs(s(w)) iff in s(w), p = 0 (the agent observes that it is above a tile);
similarly for p1 andp2.

¬p0 ∈ Obs(s(w)) iff in s(w), p = 1 or p = 2 (the agent observes that it is
not above a tile); similarly for¬p1 and¬p2.

p0 ∈ Goal(s(w)) iff in s(w), g = 0 (the agent has a goal to be above a tile);
similarly for p1 andg = 2.

Note that it is possible for example for neitherp0 nor¬p0 to be inObs(s(w))
if the agent’s sensors return no data at this cycle (p = 3).

The agent’s program is given by the following rules:
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r1. p = 1, h = 1, g = 2, a 6= 0 =⇒ p = 1, h = 1, g = 3, a = 1
r2. p = 2, h = 1, g = 3, a = {1, 3} =⇒ p = 2, h = 0, g = 0, a = 2
r3. p = 1, h = 1, g = 3, a = {1, 3} =⇒ p = 1, h = 1, g = 3, a = 1
r4. p = 0, h = 1, g = 2, a = {2, 3} =⇒ p = 0, h = 1, g = 2, a = 2
r5. p = 2, h = 1, g = 2, a = {2, 3} =⇒ p = 2, h = 1, g = 2, a = 2
r6. p = 3, h = 1, g = 2, a = {2, 3} =⇒ p = 3, h = 1, g = 2, a = 2
r7. p = 3, h = 1, g = 3, a = {1, 3} =⇒ p = 3, h = 1, g = 3, a = 3
r8. p = 0, h = 0, g = 0, a 6= 1 =⇒ p = 0, h = 0, g = 1, a = 0
r9. p = 2, h = 0, g = 1, a = {0, 3} =⇒ p = 2, h = 1, g = 2, a = 2
r10. p = 0, h = 0, g = 1, a = {0, 3} =⇒ p = 0, h = 0, g = 1, a = 0
r11. p = 1, h = 0, g = 0, a = {2, 3} =⇒ p = 1, h = 0, g = 0, a = 2
r12. p = 2, h = 0, g = 0, a = {2, 3} =⇒ p = 2, h = 0, g = 0, a = 2
r13. p = 3, h = 0, g = 0, a = {2, 3} =⇒ p = 3, h = 0, g = 0, a = 3
r14. p = 3, h = 0, g = 1, a = {0, 3} =⇒ p = 3, h = 0, g = 1, a = 3

wherea = {1, 3} means the agent is in a state in which the value of location
a is either 1 or 3. The first seven rules cover the cases in which the agent
holding a tile and is either searching for a hole to put it in, or has found a
hole and is trying to drop the tile. Rules 8–14 cover the casesin which the
agent is not holding a tile and is either searching for a tile,or trying to pick
up a tile it has found. Rule 1 initiates a drop action when the agent is above a
hole and holding a tile, rule 2 notices that the drop was successful and starts
the agent looking for a new tile (rule 12), and rule 3 repeats the drop action
if it was unsuccessful. Rules 4 and 5 cause the agent to continue searching
(move forward) if it is holding a tile and not above a hole. Rules 8–12 are
similar but handle the case where the agent is trying to pick up a tile. Rules
6 and 7 handle perception failures when the agent is looking for a hole and
dropping a tile respectively, and rules 13 and 14 handle perception failures
while looking for and picking up a tile. If the agent’s sensors return no data
at this cycle (indicated by a value of 3 in locationp), the agent’s beliefs and
goals don’t change and it selects no-op action, in the hope that sensing at the
next cycle will return an informative value forp.

OBA can be used to specify properties of the Tileworld agent thata
designer may want to verify. For example, we can state that the agent will
achieve a particular goal, e.g., finding a tile:Gp0 → 〈(a; o; i)∗〉p0 (‘if the
agent has a goal to be above a tile then after finitely many cycles it will
be above a tile’). This statement holds in all states provided the sensors are
veridical, sensor failures only last for finitely many cycles and it is always
possible to reach a tile after finitely many moves forward. The veridicality
of sensors can be expressed as[o](Oφ → φ) (note thatOφ → φ is only
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guaranteed to hold after anobs transition).6 Another important property is
commitment to goals: if the agent has a goalφ, it will not give it up until φ
becomes true:Gφ→ [a; o; i](φ∨Gφ). As we mentioned in the previous sec-
tion, it is possible for the agent both to believe and intend the same formula:
for example, if the agent’s goal is to be above a tile and it hasperformed a
move forward action which brought it above a tile, then aftera successfulobs
transition it will believe that it is above a tile (Op0 henceBp0), but will still
have the goal of being above the tile (the goals will be updated after theinf

transition); henceBφ→ ¬Gφ is not valid.

6. Related Work

Our approach has some similarities with the situated automata work of
Rosenschein and Kaelbling (1995). Rosenschein and Kaelbling model an
agent using two functions, a state update function,f , which maps the input
(percepts) and the value of the agent’s internal state at thelast cycle into a new
value of the internal state, and an output function,g, that maps the input and
the value of the agent’s internal state at the last cycle intothe output (actions).
They ascribe belief (or rather knowledge) to the agent by associating with ev-
ery combination of location/value pair (l,v) the most informative proposition
φ such that in all runs of the system whenl = v in the agent’s state,φ holds.
This forces the agent to have true beliefs and its beliefs areclosed under
logical consequence. The resulting notion corresponds to implicit knowledge
as defined by Fagin et al. (1995), and satisfies the propertiesof an S5 modal-
ity. van der Hoek, Linder and Meyer (1999) formalise all relevant aspects
of the agent’s architecture and use PDL to reason about statetransitions as
we do. However they model agents as logically omniscient, consider only
deterministic actions, and model knowledge and beliefs using an additional
Kripke structure associated with every global state. In contrast, our approach
combines the modelling of belief change and action performance in a sin-
gle structure and is much simpler, giving a more efficient model-checking
procedure.

A compact modular representation of agent-environment systems has been
recently proposed by Jamroga andÅgotnes (2007); we believe our logic can
be interpreted on such systems rather than on combined transition graphs.

Other related work on epistemic logic for agents includes, for example,
Moore (1995), Singh (1999), Wooldridge and Lomuscio (2001)and recent
work on dynamic epistemic logic (van Ditmarsch et al., 2007). However, as
in (van der Hoek et al., 1999) they consider deterministic actions and a more
traditional definition of knowledge using possible worlds semantics.

6 The condition that sensor failures only last for finitely many cycles cannot in be expressed
in PDL in the non-deterministic case, but can be imposed as a condition on models.
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Our work has more similarities with the approach of Konolige(Konolige,
1986) where beliefs are modelled as formulas, rather than assets of possible
worlds (propositions), and are not automatically closed under logical conse-
quence. Other syntactic approaches to epistemic logic (syntactic belief and
modelling steps of inference) include Step Logic (Elgot-Drapkin and Perlis,
1990). Step Logic provides a mechanism for reasoning about non-omniscient
time-bounded reasoners; an agent’s beliefs are indexed by time points or steps
corresponding to stages in the agent’s reasoning. Other recent approaches
that avoid the problem of logical omniscience and model an agent’s beliefs
as syntactic objects are Duc’s dynamic epistemic logic (Duc, 1995; Duc,
1997), Sierra’s et al.’s (1996) work on logics for reflectivearchitectures,
andÅgotnes’s logic of finite syntactic epistemic states (Ågotnes, 2004) and
(Ågotnes and Alechina, 2007). The approach presented in thispaper concen-
trates on the interaction of a resource-bounded agent with its environment,
rather than on stepwise modelling of its inference process.

In other work, we have applied a syntactic approach to modelling agent’s
beliefs to verifying properties of an agent implemented in asimplified version
of the 3APL agent programming language (Alechina et al., 2007). However,
in that work we made a simplifying assumption that the agent’s beliefs are
veridical and actions successful, to avoid explicitly modelling the agent’s
environment. The current paper provides a way to overcome this limitation.

7. Summary and Future Work

In this paper, we propose a new approach to the formal modelling of agent-
environment systems which focuses on particular agent designs. Properties
of the agent-environment system depend on the agent’s architecture and
program and the characteristics of its environment rather than on a priori
assumptions about agents in general, e.g., that agents are rational or logically
omniscient. We show how to ascribe beliefs and other intentional modalities
based on designer-stipulated correlations between the values of locations in
the state of the agent and the state of the environment, and how to model
operations within the agent and interactions between agentand environment
as state transitions. Our approach to belief ascription is local in the sense that
belief is not defined in terms of all possible runs of the agent-environment
system (cf Fagin et al. (1995)) and the set of transitions canbe tailored to the
system we want to model and the properties we wish to specify.For example,
to model the agent’s deliberation more precisely, we can introduce a finer
grain in the agent’s state update transition.

Drawing on these ideas, we define a new logic,OBA, which can be used
to model a resource bounded agent’s observation, beliefs, goals and actions.
We prove completeness and decidability results forOBA and show that it has
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a reasonable model checking procedure (O(|M |× |φ|), where|M | is the size
of the model and|φ| the size of the formula).OBA allows for both failed
perception and failed actions, and the agent’s beliefs are not required to be
consistent or closed under logical consequence. We explicitly introduce the
cycle of the agent in the logic and analyse the agent’s beliefs at each point in
the cycle, allowing us to distinguish the agent’s beliefs, e.g., after a percept
is received but before the rest of the state is updated. As an illustration, we
model a simple Tileworld agent and express some properties of the result-
ing agent-environment system inOBA. Such properties can be efficiently
checked using standard model checking or theorem proving techniques.

In future work we plan to develop the framework outlined above to analyse
more complicated agent behaviours, for example, to model trial and error
attempts to achieve a goal, or characterise robust behaviours.
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