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2 beim Graben & Gerth

1 Introduction

Geometric approaches to cognition in general and to symilgolinputation in par-
ticular became increasingly popular during the last twoadies. They comprise con-
ceptual spaces for sensory representations (Garderdory datent semantic analy-
sis for the meanings of nouns and verbs (Cederberg and W&l86G3), and tensor
product representations for compositional semanticstiBh2009, Aerts 2009). Ac-
cording to the dynamical system approach to cognition (valu€} 1998, beim Graben and Potthast
2009), mental states and their temporal evolution are sejpted as states and trajec-
tories in a dynamical system'’s state space. This approadbden used, e.g., for mod-
eling logical inferences (Balkenius and Gardenfors 188i2raji1992) and language
processes_(beim Graben et al 2008a, Tabor [2009). Intergréie states of a dy-
namical system as activation vectors of neural networkdudes also connectionist
approaches of cognitive modeling into geometric cogni{i@arth and beim Graben
2009, Huyck 2009, Vosse and Kempen 2009).

One particularly significant contribution in this direatigs Smolensky’s Inte-
grated Connectionist/Symbolic Architecture (ICS) (Smsle/ 2005, Smolensky and Legendre
20064). This is a dual-aspect approach where subsymbai@andigs of neural acti-
vation patterns at a lower-level description become imtetgul as symbolic cognitive
computations at a higher-level description by means ofrfitiée bindings through
tensor product representations. Closely related to IC8riahic cognitive modeling
(DCM) (beim Graben and Potthast 2009; in press), which ipadmwvn approach for
the construction of neurodynamical systems from symb@presentations in con-
tinuous time.

So far, ICS/DCM architectures have been successfully eyegdidor phonolog-
ical (Smolensky 2006, Smolensky and L egendre 2006a) artd&jcicomputations
(Smolensky 2006, Smolensky and L egendre 2006a, beim Gelz#r2008a) in the
fields of computational linguistics and computational psylnguistics using mainly
context-free grammars and appropriate push-down autofhi@iacroft and Ullman
1979). However, as natural languages are known to belongeteamplexity class
of mildly context-sensitive languages within the Chomslgrarchy (Shiebéer 1985,
Stabler 2004), more sophisticated formal grammars have teeecloped, including
tree-adjoining grammars (TAG) (Joshi et al 1975), multipbatext-free grammars
(Seki et al 1991) and minimalist grammars (Stabler 199hI8taand Keenan 2003).
In particular, Stabler’s formalism of minimalist gramm#kG) codifies most con-
cepts of generative linguistics (e.g. from Government aimdliBg Theory(Chomsky
1981) Haegeman 1994) and Chomsky’s Minimalist Program (@1 1995, Weinberg
2001)) in a mathematically rigorous manner. In early MG tias been achieved by
defining minimalist trees and the necessary transformabgmeans of set and graph
theoretic operations. In its later development, minintalises have been abandoned
in favor of chain-based calculus (Harkema 2001, Stables®han 2003) due to
Harkema’s statement that “the geometry of a [minimaliggtis a derivational arti-
fact of no relevance [...]1(Harkema 2001, p. 82). Based @s#results MG could be
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recast into multiple context-free grammars for furtheristigation|(Michaelis 2001,
Harkema 2001).

Recently, Gerth (2006) and Gerth and beim Graben (2009yedvhe ideas of
early MG, by presenting two ICS/DCM studies for the procegsdf minimalist
grammars in geometric representation spaces, becausmalisti tree representa-
tions could be of significance for psycholinguistic prodeggperformance. In these
studies, differentfiller/role bindings for minimalist fieae arrays and minimalist trees
have been used: one purely arithmetic representation fer fildatures and syntactic
roles (Gerth 2006); and another one, combining arithmetitraumerical representa-
tions into a fractal tensor product representation (Gamthtzeim Graben 2009). Until
now, these studies lack proper theoretical justificatiomm®ans of rigorous mathe-
matical treatment. The present work aims at delivering gwired proofs. More-
over, based on the metric properties of representatiorespacpresent an extension
of MG toward harmonic MG, for providing a complexity measafeninimalist trees
that might be of relevance for psycholinguistics.

The paper is structured as follows. In SEk. 2 we algebrgicatapitulate Sta-
bler’s original proposals for minimalist grammars whiclrégjuired for subsequent
dynamic cognitive modeling. We also illustrate the abstitagory by means of a par-
ticular linguistic example in Se€._2.5. Next, we build an IDEM architecture in
Sec[3 by mapping filler/role decompositions of minimaliatadstructures onto ten-
sor product representations in geometric spaces. The resiits of the section are
summarized in two theorems about minimalist represemtakieory. We also intro-
duce harmonic minimalist grammar (HMG) here, by proposihgianony metric for
minimalist trees in representation space. In §kc. 4 we reshmlinguistic example
from Sec[2.b and construct arithmetic and fractal tensodyct representations for
our minimalist toy-grammar. The paper concludes with auison in Sed.]5.

2 Minimalist Grammars Revisited

In this section we rephrase derivational minimalism (Sabh9¥, Stabler and Keenan
2003,/ Michaelis 2001) in terms of term algebras (Kracht 2368 feature strings
and trees which is an important prerequisite for the aim isfgtudy, namely vector
space representation theory. Moreover, following Hark¢éa@®@1), we disregard the
original distinction between “strong” and “weak” minimgtifeatures that allow for
“overt” vs. “covert” movement and for merge with or withou¢dd adjunction, re-
spectively. For the sake of simplicity we adopt the noteagioh“strict minimalism”
(Stablelr 1999, Michaelis 2004), yet not taking its morerietstd move operation, the
specifier island condition (Gartner and Micheelis 200 account.
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2.1 Feature strings

Consider a finite set dieatures F and its Kleene closurgg. The elements oF¢
can be regarded as terms over the signafre {€}, where the empty word has
arity 0 and feature$ € Fr are unary function symbols. Then, the term alg€elras
inductively defined through (19 € Tr is a term. (2) Ifs€ T is a term andf € F¢,
thenf(s) € Tr. Thus, a string (or likewise, an arrag}= f1f2... fy € B¢, p € Np, of
featuresf; € Fr isregarded as aterm= (fio fao...o fp)(€) = f1(fa(... (fp(€)))) €
Tk, where ‘0" denotes functional composition (the $€4 contains the non-negative
integers 01,2,...).

First, we define two string functions for preparing the sgjosat introduction of
minimalist grammars.

Definition 1 Letse Tr be a feature string with= f(r), f e Fe, r € Tr.

1. Thefirst featureof sis obtained by the function firstTe \ {e} — F¢, first(s) =
first(f(r)) = f.

2. In analogy to théeft-shiftin symbolic dynamics (Lind and Marcus 1995) we de-
fine shift : Te \ {e} — Tg, shift(s) = shift(f(r)) =r.

Basically, the functions first and shift correspond to th&8RIfunctions car and cdr,
respectively.

2.2 Labeled trees

In early MG, a minimalist expression is a finite, binary, andeyed tree endowed
with the relation of (immediate) projection among sibliregsl with a labeling func-
tion mapping leaves onto feature strings (Stabler 1997h&#tis 2001). Such trees
become terms from a suitably constructed term alg@hyas follows. As signature
of Ta we choose the ranked alphalet Tr U{<, >}, whereTg is the previously in-
troduced algebra of feature strings, and rank — Ng. Feature strings are ranked as
constants through rapks) = 0 for all s € Te. Furthermore, the minimalist projection
indicators <, >, are regarded as binary function symbols: rgrK) = ranky(>) = 2.
Then we define by means of induction: (1) EversyTg is atermse Ta. (2) For terms
to,t1 € Ta, <(to,t1) € Ta and>(to,t1) € Ta. Then,<(to,t1) denotes a minimalist tree
with root <, left subtreetyg and right subtred;. The root label indicates thatg
“projects over't;. By contrast, in the tree (tp,t1) t1 “projects over't.

Definition 2 A minimalist treet € Ta is calledcomplexif there are termg,t; € Ta
andf = > or f = < suchthat = f(to,t1). A tree that is not complex is callesimple
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In correspondence o Smolensky and Legendre (2006a) anteB8sky (2006),
we define the following functions for handling minimalistés.

Definition 3 Lett € Ty be given ag = f(tp,t1) with f = > or f = <, to,t; € Ta.
Then we define

1. Left subtree extraction: gx Ta — Ta,

ex(t) =to.
2. Right subtree extraction: exTa — Ta,

exy(t) =t;.
3. Tree constructions: copsTa x Ta — Ta,

cons (to,t1) =t.
Recursion with left and right tree extraction is applied@ofvs:

Definition 4 Let| = {0,1}* be the set of binary sequencegs= yiys... ¥ € |, for
n € No. Then the function gx: Ta — Ta is given as the concatenation product

exe = id
eXy = eX oeXy,

where id :Tao — Ta denotes the identity function, () =t, for all t € Ta. The bit
stringsy € | are callechode addressdsr minimalist trees andlis theaddress space

Using node addresses we fetch the function symbols of tennasigh another
function.

Definition 5 Lett € Ta be given as = f(to,t1) with f => or f = <, to,t; € Ta, and
y€l. Thenlabel 1 x Ty — A with

labele,t) = f
labeliy,t) = labely,ex(t)).

If t is a constant ifa, however (i.et € Tg), then
labely,t) =t,

for everyyel.
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Corollary 1 As a collorary of definitioni]3 arid 5 we state

t = CONSapeet) (exo(t),ex(t)), (1)
if ranka(label(e,t)) =2fort € Ta.

Definition 6 Theheadof a minimalist treg € Tp is a unique leaf that projects over
all other nodes of the tree. We fints head address by recursively following the
projection labels. Therefore, heads — | is defined through

head< (to,t1)) = 0" headty)
head> (to,t1)) = 1" headt;),

where string concatention is indicated by”; and
headt) = ¢,

fort e Tg

Definition 7 The featureof a treet is defined as the first feature 8§ head label.
Thus feat Ty — F¢,
feat(t) = first(labelheadt),t)),

where we appropriately extended domain and codomain of s e} — Fr U{e},
by setting firsf<) = first(>) = €.

A node in a minimalist tre¢ is known to be anaximal projectiorif it is either
t's root, or if its sister projects over that node. We explbistproperty in order to
recursively determine the address of a maximal subtree dorem node address.

Definition 8 Lett € Taandy € 1. Then, maxi x T — 1,

€ : y=headt)
maxy,t) =< i~ maxd,ex(t)) : y=idandy+# headt)
undefined . otherwise

is a partial function.
We also need a variant thereof with wider scope. Thus we iaddity define:

Definition 9 LetP C | be a set of node addresses, then fitd% (1) x Ta — O(1),

max*(P.t) = | J{maxy.t)}.

yeP

If Pis a singleton se® = {y}, we identify the actions of max and méxHere,[7(1)
denotes the power set of node addresses
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Moreover, we define a function that returns the leaf addeeska tree possess-
ing the same featuré € F¢.

Definition 10 Lett € Ta andf € Fe. Then, leavesFg x Ta — (1), with
leavesf,t) = {y < l|first(labely,t)) = f}.

wherey varies over the address space.of

Next, we introduce a term replacement function.

Definition 11 Lett,t’ € Ty andy € |. Then replacel x Ta x Ta — Ta with

replacée,t,t’) =t’
replaceOy.t,t') = CONSupere 1) (replacey, ex(t). ), ex(t))
replacély,t.t') = Congupee ) (€Xo(t), replacey. ex(t).t))

Using replace we extend the domain of the shift functidn ajrf the string algebra
Te to the tree algebr@a.

Definition 12 Lett € Ta. Then, shift : Ta — Ta with
shift(t) = replacé¢headt), t, shift(labelheadt),t))) ,

deletes the first feature 66 head.

The effect of the tree functions head and max are illustrateig.[1. The head
of the tred is obtained by following the projection indicators recuedy through the
tree: hea@t) = 0"headexy(t)) = 00" headexy(exp((t)))) =001 headex (exp(exo((t))))) =
001; and magl00t) = 1~ max00,ex(t)) = 1.

T

P PN PN PN
000 001 010 011 100 101 110 111

Fig. 1 Labeled minimalist tre¢ with leaf addresses for illustration of head and max fumsidd01=
headt) and, e.g., mai00t) = 1.
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2.3 Minimalist grammars

Now we are prepared to define minimalist grammars in termbaije terms.

Definition 13 A minimalist grammar (MG) is a four-tuplé = (P,C,Lex,.# ) obey-
ing conditions (1) — (4).

1. Pis a finite set of non-syntactfhoneticfeatures.

2. C=BUSULUM is a finite set of syntactic features, callestegoriescompris-
ing basic categoriesB, selectorsS, licensors L, andlicenseesM. There is one
distinguished element, € B, calledcomplementizef= = PUC is then the fea-
ture set. To each selectse Sa basic categorl € B is assigned by means of a
select functionsel :S— B, b = sels). Likewise, alicense functionlic: L — M
assigns to each licensée L a corresponding licensee through= lic(¢).

3. LexC Tg is a finite set of simple terms over the term algebracalled theexi-
con, such that each terine Lex, is a feature string of the form

S (LU{e})SBM*P*.

4. .# = {mergemove} is a collection of partial functions, merg&s x Ta — Ta and
move :Tp — Ta, defined as follows: The domain of merge is given by all pafirs o
trees Dorherge= { (t1,t2) € Ta x Ta|selfeaft;)) =feaf(t>) }. The domain of move
contains all trees Dogve = {t € Talfeatt) € L and ma¥(leaveslic (featt)),t),t)
contains exactly one eleméntetts,t; € DOMpergeandt € DOMmove, then

[ cons (shift*(ty), shift#(tp)) if t; is simple
mergety,t2) = { cons. (shift*(t1), shift*(t2)) if t, is complex

move(t) = cons. (shift(eXnaxeavesiic featt)) 1) 1) (1))
shift*(replacémax(leaveslic (feaf(t)),t),t),t,£))))

The constraint on the move operation, that the set of maxsmiatrees with the
corresponding licensee may contain exactly one elemerlisdctheshortest move
condition motivated by linguistic considerations. Relaxing thisdiion yields dif-
ferent kinds of minimalist grammars that could account fartigular locality condi-
tions (Gartner and Michaelis 2007).

2.4 Processing algorithm

Minimalist grammar recognition and parsing are well untteyd (Harkema 2001,
Mainguy! 2010} Stabl2r 2011). However, for our current exjms instead of a full-
fletched minimalist parser that must be proven to be sounadtamgplete, we discuss
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a simplified processor for our particular example from §€§ b2low, just in order to
provide a proof-of-concept for our representation thedoythis end we utilize early
ideas of_Stablen (1996) as employed|by Gerth (2006)land Gedtbeim Graben
(2009). There, the structure building functions merge amderare extended to a
state descriptionor astack regarded as a finite word of termsc T;. From a graph
theoretical point of view, a state description is an uncatee collection of trees,
and therefore éorest In order to construct an algorithm that generates a sutdess
derivation we introduce the following extensions of mergd aove over forests of
minimalist trees.

Definition 14 Letw = (Wq,Ws,...,Wn) € Tx be state description. Then

1. mergé: TS — T; with mergé (w) = (W, Wo,...,Merg&Wm_1, Wm) ), When(Wm_1, Wm) €
DoMmerge
2. move : Ty — T, with move' (w) = (W1, Wo, ..., MOVEWn)), whenwm € DoMmove

are partial functions acting upon state descriptions figm

In Def.[14, merge operates on the next-to-last and the last element of the pro-
cessor’s state description, respectively, thereby implging a stack with the last
element at the top. Using this convention, canonical stHyjexb-object sentences,
[S[VO]], such as the example below and also examples useddnth G2006) and
Gerth and beim Graben (2009), can be processed straiglatfdiyy by first merg-
ing the verb V with the direct object O as its complement, amosequently merg-
ing the result with the subject noun phrase. Thereby, theqalare avoids unnec-
essary garden-path interpretations. However, since naiisilanguages cannot be
processed with simple pushdown automata, one needs aditicechanisms such
as indices and sorting in the framework of multiple contege languages for which
the crucial soundness and completeness properties of mlistrparsers have been
proven|(Mainguy 2010, Stabler 2011). In our simplified apgto however, we make
use of an oracle for rearranging stack content. This is implged through suitable
permutationst: T, — T4, acting upon the stack accordingwb= r7(w).

The processor operates in several loops: two for the donfiarenge and another
one for the domain of move. In the loops for the domain of méngdteration starts
with the tree on top of the stack which is checked againstyevtrer tree whether
they can be merged, in which case an appropriate permutatiogs both trees into
the last and next-to-last position of the stack. Then nieig@pplied and this loop
iteration is terminated. If the top tree cannot be merged the algorithm decrements
backwards until it reaches the first tree on the stack. Indbe for the domain of
move every tree is checked for being in the domain of movejimdase the move
operation is used after a permutation bringing that tree thé last position of the
stack. The rest of the lexical entries in the state desorifie passed on unchanged
to the next state of the algorithm.
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Therefore after mergeor move has been applied to the state description the
algorithm completes the current state and continues weém#xt one resulting in a
sequence of state descriptidBs Sy, ... which describes the derivation process. The
algorithm stops when no further mefger move is applicable and only one tree
remains in the state description. This final state desongtetermines the successful
derivation.

2.5 Application

We illustrate the procedure from D&f]14 by constructing aimalist grammar for
the following English sentence and by outlining a succdsdtivation of

(1)  Douglas loved deadlinds.

The minimalist lexicon is shown in Figl 2. The first item is amg@ementizer (basic
categoryc) which selects tense (indicated by the feature). The second item is
a determiner phrase “Douglas” (basic categ@yyequiring case (licenseecase).
The third item, the verb “love” (category), selecting a determiner (featured), is a
verb (featurer) and is moved into the position before “-ed” triggered-by resulting
in the inflection of the verb (i.e., “loved”). The next item wd normally include
an affix (e.g., -ven, -ing) but it is empt¥) here, it selects a verb (featurev), a
determiner phrase (featured) to which it assigns case (feature€ASE) and has the
featurev. The fifth item represents the past tense inflection “-edhutlie category
that selects a verbHv), assigns case (licens#CASE) to a determiner and contains
the licensor+1I to trigger the movement of “love”. The last item in the lexids the
object “deadlines” (catego®) which requires case-{case).

_ =V =V
. d 7v +CASE +I d
{ c } —case i =d +CASE —case
Dougla: v t deadline:
€

love
-ed

Fig. 2 Minimalist lexicon of sentende ([L).

The algorithm takes initially as input the state descriptia = (Douglas, love,
-ed, deadlines} T,.

1 Douglas Adams was quoted as saying: “I love deadlines. Itlieewhooshing sound they make as
they fly by.” in Simpson, M. J. (2003Hlitchhiker: A Biography of Douglas Adamaustin, Charles and
Co., Boston (MA).



Geometric representations for minimalist grammars 11

2.5.1 An example derivation of sentefcé (1)

Starting with the initial state descriptiom; the words “love” and “deadlines” are
merged (Fig.B) after a first permutatiom, exchanging “-ed” and “love”, by applying
mergé (rm(wy)) =(Douglas, -ed, merge(love, deadlines)) because “loved) and
“deadlines” @) are in DoMyerge

<
v —case
—i deadline!
love

Fig. 3 Step 1: merge.

In the next stegg is merged to the tree.

v —i —case
€ love deadline

Fig. 4 Step 2: merge.

The resulting tree is in the domain of move triggered by tlaues—case and
+CASE, therefore “deadlines” is moved upwards in the tree leabieigindA , a new
leaf node without label. The involved expressions are ctexed withk (Fig.[3).

t1= >
/\
[deadline$, /\
<

Fig. 5 Step 3: move.
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In step 4 the whole state descriptian = (Douglas-ed t;) is checked for being
in the domain of merge. This is the case {(@ouglast;). Therefore, “Douglas” is
merged td;.

fcase
Dougla /\

[deadlines,

Fig. 6 Step 4: merge.

Next, the past tense inflection “-ed” is merged to the tragered by.

-ed —
g
o dead@\
[€] q
{Iov } -

Fig. 7 Step 5: merge.

Now, the tree is in the domain of move triggered-by and-+1I. Therefore, the
maximal projection lovd, undergoes remnant movement to the specifier position in
Fig.[8.
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- A
[love]  Ag
+CASE ~
B
Eri I

[deadline$, m
] "

Fig. 8 Step 6: move.

The resulting tree is again in Dafgve and “Douglas” is moved upwards leaving
aA behind indexed withj (Fig.[9).

o L A
T
Aj
T

[deadline " [ol

Fig. 9 Step 7: move.

In the final step, the complementizer “c” is merged to the kea€ing to the final
minimalist tree with the unchecked featuras its head (Fid._10) that completes the
successful derivation.
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i s
/\
T

deadllne
o

[¢]

Fig. 10 Step 8: merge.

3 Integrated Symbolic/Connectionist Architectures

Connectionist models of symbolic computations are an itgmbbranch in cogni-
tive science. In order to construe compositional represimts (Fodor and Pylyshyn
1988) one has to solve the famabisiding problemknown from the neurosciences
(Engel et al 1997): How are representations from differentpptual modalities bound
together in the representation of a complex concept? The sawblem appears
for complex data structures such as lists or trees, e.ggnmpatational linguistics
(Hagoort 2005): How is a syntactic category bound to its fiomal role in a phrase
structure tree?

A solution for this binding problem has been provided by Stmeky’s Integrated
Connectionist/Symbolic Architectures (ICS) (Smolerns@@&| Smolensky and L egendre
2006¢;0). Here, complex symbolic data structures are dposed into content fillers
and functional roles that bind together in a geometric regméation by means of ten-
sor products. A closely related approach is Dynamic Cogmiklodeling (DCM)
(beim Graben and Potthast 2009; in press), where neurabrietwodels are explic-
itly constructed from geometric representations by sgiuiwerse problems (Potthast and beim Graben
2009).

In this section, we apply the concepts of ICS/DCM to our restarction of min-
imalist grammars and processor, obtained in Bec. 2.
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3.1 Filler/role bindings

Consider a set of symbolic structutgand some structuree S. A filler/role binding
of sis then a set of ordered pajfgs) of fillers bound to roles.

Definition 15 Let F be a finite set okimple fillersandR be a finite, countable, or
even measurable set afles By induction we define a family ofomplex fillersas
follows:

Fo=F
Fn+j_:D(FnXR),

wheren € Ng and(J (X) denotes the power set of some XeFurthermore we define

the collection
Fo = RU <U Fn> :
n=0

Thefiller/role bindingfor Sis a mapping3 : S— F.

In the simplest case, simple fillers are bound to roles. Tad#ler/role binding
B(s)={(f,r)|f e F,r e R} e O(F x R) = F;. Such a decomposition could act as a
complex filler f’ for another filler/role binding wher& = f(s) is bound to a role,
resulting in(s') = {(f',r)|f’ € Fi,r € R} € O(F1 x R) = F». By means of recursion
any finite structure of arbitrary complexity yields its fillole binding as an element
of R, (beim Graben et!al 2008b).

Next we construct filler/role bindings for minimalist tre&s= Ty, in a hierarchi-
cal manner. To this aim we start with feature strings.

3.1.1 Feature strings

Let S= T be the string term algebra over signatBgeJ {} from Sec[ 2. A string
s=(fiofro...0fp)(€) € Tr assumes a straightforward filler/role binding by inter-
preting F= as the filler set. Then each string positiois identified with one role,

s € Rg, such thaRe = {s|i € N} is an infinite but countable set of roles. However,
since every string € T is of finite lengthp, only roles fromR, = {s|1 <i < p} are
required.

Definition 16 An order-reverting filler/role bindin@e : T= — O (Fe x Re) for fea-
ture strings= f(r) € Tr of lengthp > 0 is given as a mapping
Br(e) =10
Br(f(r)) = {(f,sp)}UBF(r).



16 beim Graben & Gerth

As an example consider the telify o f2)(g) € Te. Its filler/role binding is then

Br (fa(f2(€))) = {(f1,2) FUBr (f2(€)) = {(f1,52) }U{(f2,81) } U B (€) = {(f1, %), (f2,31) }

3.1.2 Labeled trees

The filler/role binding for labeled binary trees has beenulised by beim Graben et al
(2008&.;b), and beim Graben and Potthast (2009). For tneestigiebrada from Sec[2.P,
we identify the signaturé = Tr U{<, >} with the set of simple fillers and introduce
rolesRa = {ro,r1,r2}, with “mother” (r), “left daughter” ¢o) and “right daughter”
(r1) of an elementary tree as indicated in Figl. 11, where theewdhave been chosen
in accordance with the extraction functiong @nd ex from Def.[3, such that ext)

is bound to rolerg and ex(t) is bound to roler; for a termt € Ta. In accordance
to Def.[15, we call the set of complex filless,. Additionally, we unify the sets of
simple fillers and roles through

F=FRU{<>} 2
R=R:URa. (3
r2
S
o ry

Fig. 11 Elementary roles of a labeled binary tree.

Definition 17 A filler/role bindingfBa : Ta — A for tree terms is given as a mapping

Balt) = { {(f,r2), (ﬁA(t%)é E{)))v (Ba(ta),r1)} :]E : Z'Itp(t.o,tl) €Ta

Consider the minimalist trete= >(f,g) € Ta in Fig.[12 where the root is labeled
with the projection indicator pointing to the head at thentigaughter and feature
string termsf = (fiofoo...0fp)(e) € Tr, pe N, g=(g10020...00q)(€) € T,

g € N, are presented as column arrays.

/\
f1 o1
fa o7}

fp 9q
Fig. 12 Minimalist tree ternt = >(f,g) € Ta with featureg;.
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The filler/role binding ot is obtained as

Ba(t) = Ba(>(f,9)) ={(>,r2), (Ba(f).r0), (Ba(9),r1)} ={(>.r2), (B (f).r0), (Br (9),r1)} =
= {(>ar2)a ({(flvsp)v (fZaSpfl)a RRE) (fpvsﬂ-)}aro)v ({(gl’s(])v (92,&]71), RRE) (g%sl)}arl)}'

A more complex expressios= >(f,<(g,h)) € Ta is shown in Fig[IB.

>
fl <
f2
. g1 h
: 92 hy
fp .

Jq hy

Fig. 13 Complex minimalist tres= >(f,<(g,h)) € Ta with featureg;.

The filler/role binding for the terrsin Fig.[13 is recursively constructed through

Ba(s) = Ba(>(f,<(g,h))) = {(>,r2),(Ba(f),r0), (Ba(<(g,h)),r1)} =
={(>,12),(Be(f),r0), ({(<,12), (Ba(9),r0), (Ba(h),r1)},r1)} =
={(>,r2),(Br(f),r0), ({(<,r2), (Br(9),r0), (Br (h),r1)},r1)} =
={(>,r2), ({(f1,8p), (f2,8p-1),- .. (fp,51) },10),
{(<,r2),({(91:%9): (92,89-1); - -+, (Yg:51) }, T0)s

({(hlvs')v (hz,s’*l)v"'a(hfvsﬂ-)}vrl)}arl)}'

3.2 Tensor product representations

Definition 18 Let .# be a vector space over the real or complex numbersand
S— F afiller/role binding for a set of symbolic structurBsor sets of fillers- and
rolesR. A mappingy : F, — % is calledtensor product representatioof S if it
obeys (1) - (3).

1. Y(F,) is a subspace of, for all n € Ny, in particular forFg = F is (y(F) = ¢
a ubspaceo?

Y(R) = YR is a subspace o7,

Y{(f,n)}) =yw(f)y(r), forfiller f € K, and roler € R (n € Np).

1

(AU B) Y(A) & Y(B), for subsetd, B C F.
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Lemma 1 .7 is theFock space

F= (@%@)VR@”) IR, )

n=0

known from quantum field theoty (Haag 1992, Smolensky anendeg 2006a).

Proof (by induction ovein € Np). Letn=0. Then’t ® ”f/R@O = Y£ is a subspace of
Z. Moreoveryris a subspace of. Let f € F,, r € R, such thatp(f) € @(F,) and
{(f,r)} € Fhy1 be afiller/role binding. Theg({(f,r)}) = Y(f) @ Y(r) € Y(Fni1)-
The direct sum of those subspaces is the Fock sgace

By concatenating the mags, ¢, we extend the tensor product representation
Y :S— .7 of the symbolic structures:

() =w(B(), seS. ®)

Definition 19 Let 3, ¢ be a filler/role binding and a tensor product representation
for a structure se§in Fock space# over fillersF and rolesR. A linear function
U 1 & — & is called unbinding for role if

Ur(U){qJ(f) : UZW({(f’r)})

0 . otherwise

Unbinding functions can be established in several wayspg.means of adjoint vec-
tors or through self-addressing (Smolensky and Legenddé@Emolensky 2006).
Self-addressing requires that the Fock spacés equipped with a scalar product,
turning it into a Hilbert space. However, in this paper, we asljoint vectors, i.e.
linear forms into its number field, from the dual spatg of the respective role
representation space. This requires that all filler and veldors are linearly inde-
pendent, implyindaithful tensor product representations (Smolensky and Legendre
2006a, Smolensky 2006).

Next, we define the realization of a symbolic computation.

Definition 20 LetP,Q: S— Sbe partial functions on the symbolic structusss S,
such that Cogl C Domg. Two piecewise linear functiorB,Q : % — .# are called
realizationsof the symbolic computatior? Q in Fock space”, if there is a tensor
product representatioH : S— .# such that

(PoW)(s) = (WoP)(9)
(QoW)(t) = (WoQ)(t)

for all s€ Domp, t € Domg.
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Then, the realizations constitute a semigroup homomanphigd hence a semigroup
representation in the sense of algebraic representatomnygtlivan der Waerden 2003,
beim Graben and Potthast 2009), because

(QoPoW)(s) = (¥oQoP)(s),

for all s€ Domp.

3.2.1 Feature strings

In Sec[3.111 we created filler/role bindings for the termellg T of minimalist
feature strings aBr (s) = B((f1o fro...0fp)(€)) = {(f1,Sp), (f2,5p-1),-.., (fp,51) }

in reversed order by regarding the features as filkerand the string position_r =
{s|i € N} as roles. Mapping all fillers; € F= onto filler vectorsfi = @(f;) € ¥¢
from a vector spacét, and similarly all roless € R, for a string of lengthp onto
role vectorss = (J(Sp_i+1) € ¥R from a vector spacer yields a tensor product
representation of feature strings in preserved order titrou

p
VS =) = 3 fios. (©)

However, for the sake of convenience, we extend the reptasam space to an em-
bedding space spanned by the role vectors that are requira@fdresenting the
longest feature strings. Let therefare N be the maximal length of a feature string
occuring in the minimalist lexicon, we bind the null vec@to all role vectors for

k > p for a given string of lengtlp < n. Then, all strings possess a unique represen-
tation

n
WP(s) =w(Br(s) = _Zfi ®S. (")
1=
We denote the embedding space for feature strirfgs

For this representation we have to find realizations of tHagfunctions from
Def.[1. To this end we need some preparatory conceptsu ketV(s) = @(Be(s))
be a tensor product representation for feature stringgfio foo...o fp)(€) € Tr,
fi € F. For the role vectors € ¥z we define their adjoints” € 7 in the dual space
Vg of ¥R, such that

s () = O, (8)

with the Kronecker symbofy = 0(1) for i # k (i = k), i.e. the adjoint vectors’,
acting as linear forms, and the dugl$orm a biorthogonal basis.

Lemma 2 uy(u) = (id® s/ )(u) is an unbinding function for role.s
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Proof. Letu = fy® s«. Then
u(u) = (ide@s)(u) = ([d@s) (fk@s) = fisg () = fd = T = Y(fi) -
Here, id : % — ¥& denotes the identity map &t: id(f) =f.

Sinceuy is also linear, we additionally obtain the following restetu =y ; fi®
s. Then

Uk(u) = (i[d®s)(u) = (d®s) (ifi ®S) =

ii(id@g{{)(fi@s Zf Zf i&i = fk = W(fy).

Definition 21 LetW¥ be a tensor product representation of terms of featuregstfin
in vector space”, andu = ¥(s) = 5" ;fi®s for f € F*.

1. Thefirst featureof u is obtained by an unbinding functidinst : . — .% with

first(u) = (id®s{)(u) 9
2. Afunctionshift : . — .# is obtained by

shift(u) = ni((id ®sh,)(U)®s+02% (10)

Lemma 3 first andshift are realizations of the corresponding string functidinst
andshift from Def[1.

Proof. Lets= f(r) € Tr. Then
first(W(s)) =f = () = W(first(s)).
For shift(u) we compute
n—1

shift(W(S))_Zl<|d®§+1 (%fk@)s&))@sw@&
.ZKZ“I@E(S«))®sq-+o®31
n-1n

Z Z Gr1xfk®s +00 s = Zf|+l®s +0®s, = W(shift(s)).
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3.2.2 Labeled trees

A tensor product representation of a labeled binary tredtained from the respec-
tive filler/role binding in Def[1lr.

Definition 22 Lett = f(to,t1) € Ta be a tree term withf = > or f = <, to,t1 € Ta.
Then

W(t) = (Ba(t)) = w{(f,r2),(Ba(to),r0), (Balts),r1)}) =f@ra@W(to)@rooW(t)@r,

where the projection indicators; and > are mapped onto corresponding filler vec-
torsf. = (<), f~ = Y(>), and the three tree roles “mother”, “left daughter”, and
“right daughter” are represented by three role vectgrs Y(rp),r1 = @(r1),ro =
Y(r2) € k. Moreover, we also consider their adjoings r{,r3 € ¥3 from the dual
space¥ for the required unbinding operations.

Using Def[22 together with the unified sets of fillers and sdtem Eqgs.[(R)[(B)
we can compute tensor product representations of minintediss, as those from the
examples of SeE.2.2. The tensor product representatitie dfcte ternt = >(f,g) €
Ta in Fig.[12 is given as

W) = Y(Ba(>(f,9))) = Y({(>.r2),(Ba(f),r0), (Ba(9).r1)}) =
=Y{{(>,r2), (Be(),r0), (Br(9),r1)}) =f> @ra@ Y({(f1,5p), (f2,5p-1),- .., (fp,51)}) @rod
@Y (91:%): (92:%9-1): -+ (Gg,S1) }) @T1 =
=f. 2o 1090090 Bfp@S)Rrid (1RSI RELE - DY@ S) @1

which can be simplified using tensor algebra to

Pt)=f.noheosrneheeero: - ofh@spRri® @S ®rnoReReMN e -G r.
(11)

Correspondingly, we obtain for the tree tesm >(f,<(g,h)) € Ta depicted in
Fig.[I3 the tensor product representation

W) =f.eneheserneheeere - afpes@re®
Bf . RENMeEnININORRILINAI G By SYRroRr1d
OhiRseMNeNeheerierid---eohesrier;.

Interestingly, leaf addressgs= y1y»... yp €|, p€ N, correspond to role multi-indices
by means of the following convention

My =Ty @@ @y (12)
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Using role multi-indices, we can introduce further generalized unbinding functions
below.

Now we are prepared to define the Fock space realizationsdfel functions
from Sec[2. Before we start with the counterparts from Defvnotice an interest-
ing observation.

Lemma 4 Let Ta be the term algebra of minimalist trees aktlits tensor product
representation in Fock spacg, as above. Fou € .# the functiorfirst distinguishes
between simple and complex trees.

1. u=Y¥(t) witht € Te is a simple tree (i.e. a feature string). Then
first(u) #0.
2. u=WY(t) witht= f(to,t1) € Ta is a complex tree. Then
first(u) =0.
Proof. Consider the first caser = W(t) for simplet, henceu = ' ;fi ® 5. Then

first(u) = f1 # 0. For the second case, we have- ¥(t) =fQr,®W(ty) ro®
W(t1) ®ry. Therefore

first(u) = (id@ s )(u) = (idos) ) fereW(ty) @red¥(ty) ®ry) =
fs (r2) & W(to)s; (ro) ® W(ta) sy (r1) =0,
where id denotes the Fock space identity applied to the cﬁspeubspac&.
Definition 23 Let Tp be the term algebra of minimalist trees dHdts tensor product

representation in Fock spacg, as above. Moreover, lete .# with first(u) =0, i.e.
the tensor product representation of a complex tree. Fidatlug,u; € .#.

1. Left subtree extractiorx, : % — %,
exo(u) = (id®rg)(u).
2. Right subtree extractioex, : % — %,

ex(u) = (id@r])(u).

2 Note that the Fock space identity id can be expressed as et dinen of the respective sub-

space identities iek 5 . id«. Applying that to an arbitrary Fock space vectot= 5 u, yields idu) =

Sk Iaidg(uy) =u, suchthat id(uy) = 0 for k # A. Hence, the identities for different subspaces behave
like orthogonal projectors, annihilating vectors fromitlethocomplements. This observation applies also
below.
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3. Tree constructiongons : .% x % — %,
cons (Ug,U1) =UgRTo® U @r1dfr@r;.

Lemma5 ex, ex; andcons are realizations of the corresponding string functions
exg, €x1 andconsg from Def[3.

Proof. Suppose = f(to,t1),t0,t1 € Ta. Then
exo(W(t) = (idarg ) (W(f(to,n))) = (idrg) (fora& Y(Balto)) @ro® Y(Ba(t)) ®r1) =
frg(r2) @ W(Balto))rg (ro) @ W(Ba(tr))rg (r1) = Y(Balto)) = W(to) = ¥(exo(t)).

The proof forex; works similarly. Furthermore,
cons (W(to),W(t1)) = W(to) @ro@ W(t1) @r1 & fr @ ro = W(cons (to,t1)) .
Next, we extend those functions to node addresses as iftlDef. 4
Definition 24 Let| = {0,1}* be the set of binary sequencess yiy2... s € I, for
n € No. Then the functiomx, : # — # is given as the concatenation product
ex. = id
eXy = ex oexy.

Then, we get the following corollary from Lemrih 5.

Corollary 2 Functionsex, are realizations of the corresponding string functions
from Def[4.

Next, we realize the symbolic label function in Fock space.

Definition 25 Let Tp be the term algebra of minimalist trees dHdts tensor product
representation in Fock spacg, as above. Moreover, let € # andy € |. Then
label: | x # — % with

label(e,u) = (i[d®rJ)(u)
label(iy,u) = label(y,ex (u)),

whenfirst (u) = 0. If first(u) # 0, then

label(y,u) =u.
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Lemma 6 labelis a Fock space realization of the term algebra functiaipel from
Def.[8.

Proof. First assumdirst (u) # 0, thenu € .% is the tensor product representation of
a string ternt € T labeling a leaf node in a tree. Therefore

label(y,W(t)) = W(t) = WY(labely,t)).

Next, supposérst (u) = 0, in which cases € .% is the tensor product representation
of a proper tree term= f(to,t1) € Ta. By means of induction over, we have first

label(e, W(t)) = (id@ 1) (f @@ W(to) @ 1o W(ty) @11) = = W(labele, 1))

and second

label(iy,¥(t)) =label(y,ex (¥ (t))) =label(y, W (ex(t))) = W(labely,ex(t))) = W(labeliy,t)).

The following function does not provide a Fock space retitirebut rather a kind
of Fock space isometry.

Definition 26 The head of the tensor product representation of a minitrtedist <
Ta is obtained by a functiohead: .% — I,

€ if first(u) #£0
headu) = { 0" headexp(u)) if u=cons:(exo(u),exi(u))
1" headex (u)) if u=cons. (exp(u),exi(u)).

Lemma 7 Lette Ta. Then

head¥(t)) = headt)

with headgiven in Def[®.

Proof (by induction). First assume théitst(u) #£ 0, i.e.t € T with u=W¥(t) is a
head. Then
head¥(t)) = € = headt).

Next supposé = f(tg,t1) € Ta with eitherf = < or f = > . In the first case we have
u = cons:(exy(u),ex (u)) and therefore

headW(t)) = 0" headexy(u)) = 0" headex(t)),
in the second case we hawe-= cons. (exy(u),ex (u)) and thus

headW(t)) = 1" headex(u)) = 1" headex(t)).
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Definition 27 The feature of the tensor product representatien ¥ (t) of a mini-
malist treet is retained as the first featurettd head label. Thuteat: . — ¥¢,

feat(u) = first (label(head(u),u)) .

Lemma 8 Lette Ta. Then
feat(W(t)) = W(featt))

with featgiven in Def[V.

Proof. Follows immediately from previous lemmata and definitions

Also the maximal projection becomes an analogue to a Foatesgametry.

Definition 28 Letu € .# andy e |. Thenmax:| x.% — 1,

€ : y=headu)
max(y,u) =< i"max(d,ex(u)) : y=idandy# headu)
undefined . otherwise

Lemma9 Lette Taandy e l. Then

maX(Vv L’U(t)) = ma)<y7t)

with maxgiven in Def[8.

Proof (by induction overy). Lety = head ¥(t)). Then
max(y, W(t)) = & = maxy,t),
if y+#headW(t)), by contrast, we find < | such thaly = i5, hence

max(y,¥(t)) =i~ max(d,ex(¥(t))) =i~ maxd,ex(t)) = maxy,t).

The functionmax is naturally extended to sets of node addresses.

Definition 29 Letu € . andP C |. Thenmax? : [ (1) x # — (1),

max*(P,u) = (_J {max(y,u)}.
yeP
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Next we have to adapt the definition of the symbolic leavestion from Def[10.
The corresponding realizatid®aves ¥ x % — (1) is obtained from a generalized
unbinding function

ubfeat(y,f,u) = (f* @ sf @r;)(u), (13)

for given filler vectorf € ¥+ and leaf addresg € I, applied to the tensor product
representation of a treec Ta, because all first features of the tree’s leaves built
partial sums of the form

m
X

as they are bound to the first radgin the feature lists. Here,, denote the multiple
tensor products of roles according to Oefl 12.

Applying Eq. [I3) to this expression yields

m
ubfeat(y,f,u) = (f* ®sf @ry) (Zfi ®Sl®rm> - Zf*(fi)sf(sﬂrmm) =0y,
£ .
for all f; =f.
Therefore we get

Definition 30 Letf € ¥ andu € .# . Then,leaves. ¥& x # — [(l),

leavegf,u) = {y € | |ubfeat(y,f,u) = 1} .

Lemma 10 Lette Ta and fe F+. Then
leavegW(f),W(t)) = leavesf,t).

Proof. The lemma follows from the above calculation.
Next, we modify the replacement function.

Definition 31 Letu,u’ € & andy € |. Thenreplace: | x . x % — % with

/ /

replace(e,u,u’)
replace(0y, u,u’)
)

u

CONSapel(e,u) (rEplace(y, exp(u), u'),exy(u))
/
C

ONSabel(e,u) (exo(u),replace(y,exy(u),u’)).

replace(1ly,u,u

Lemma 11 Lett,t’ € Taandy e l. Then

replace(y, W(t), W(t')) = W(replacgy,t,t'))
with replacefrom Def[11.
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Proof (by means of induction ovey). First lety = €. Then
replace(e, W(t), W(t')) = W(t) = W(replacge,t,t’)) .

Next assume that Lemnialll has already been proven for alessidtringsy of
lengthp € Ng. Theniywithi =0 ori =1 is of lengthp+ 1 and it holds either

replace(Oy, W(t), ¥(t')) = consapeie,w(1)) (replace(y, exo(W (1)), W(t)), ex (W(t))) =
CONSy (1apeie,1)) (W (replacey, exo(t),t')), W(ex(t))) = W(congapere 1) (replacey, t,t’), ex(t))) =
Y(replacéy,t,t’))

or

replace(1y, W(t), W(t')) = consapei(e w(t)) (€X0(¥ (1)), replace(y,exs (W(1)), W (t'))) =
CONS labele.)) (¥ (€Xo(t)), W(replacey, ex (t),t'))) =
W(congaperz 1) (€X0(t), replacéy, ex(t),t'))) = W(replacgy,t,t’)) .

Using the Fock space realization of replace we also extemddmain of the shift
function [21) from string vectors it to tree vectors in.

Definition 32 Letu € .Z. Then,shift” : . Z — .Z with

shift*(u) = replace(headu), u, shift(label(head(u), u))) .

Lemma 12 Lette Ta. Then
shift(Y(t)) = W(shift*(t))

with shift* from Def[12.

Proof. The Lemma follows from previous observations.

3.3 Minimalist grammars

In this section we introduce geometric minimalist struetbuilding functions and
prove that they are indeed Fock space realizations of time &égebraic functions
from Sec[2.B.
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Definition 33 Let G = (P,C,Lex,.#) be a minimalist grammar (MG) with phonetic
featuresP, categorielC = BUSUL UM, lexicon Lexc Ta, and structure-building
functions.# = {mergemove} as defined in Def_13. Let seS— B be the select
function and lic L — M be the license function. Moreover, t= o 35 be a tensor
product representation of the term algefkaof G on Fock space”. We introduce
realizationssel: .# — % andlic : # — % by demanding

W(sels)) = sel(¥(s))
W(lic()) = lic(W(0))

for se Sand/ € L. The domain ofnergeis given by all pairs of vectors Dogarge =
{(u1,u2) € 7 x F|selfeat(uy)) = feat(up)}. The domain ofnovecontains all vec-
tors Donmove = {U € F|feat(u) € W(L) andmax”(leaveslic(feat(u)),u),u) contains
exactly one elemeht Letus, Uy € DOMyerge andu € DOMmove then

[ cons. (shift*(uy), shift*(u,)) if first (uy) ;é
merge(us, uz) = {cons>(sh|ft #(uy), shift*(uy)) if first(uy) =
move(u) = cons. (Shlft (exmax(leavessllc feat(u)),u),u) (u )s
sh|ft#(replace(max(leave:éhc(feat(u)),u),u £)))

Theorem 1 Let Ta be the minimalist tree term algebra ar#l its tensor product
representation in Fock spac#, as above. Letitty € DOMmerge and t € DOMmove
then

merge(W(t1), ¥ (t2) = W(mergéty,ty))
move(W¥(t)) = Y(movet))

with mergemovefrom Def[I3.

Proof. The Theorem follows from the Lemmata in Sec] 3.2.

Taken together, we have proven that derivational minima(Stabler 1997, Stabler and Keenan
2003/ Michaelis 2001) can be realized by tensor producessprtations as a starting
point for integrated connectionist/symbolic architeesifSmolensky and Legendre
20064a, Smolensky 2006).

3.4 Processing Algorithm

In order to realize a minimalist bottom-up processor asudised in Se€. 2.4 in Fock
space, we have to represent the processor’s state demesiffitabler 1996). This can
be achieved through another filler/role binding by intradgamew rolespy, p2,--- €



Geometric representations for minimalist grammars 29

Rfor stack positions binding minimalist trees. Then the ¢emsoduct representation
of a state descriptiow of lengthm assumes the form

m
W=y W®p, (15)
K=1
wherewy are tensor product representations of minimalist trees.

The minimalist algorithm as defined in DEf]14 becomes thalized by corre-
sponding Fock space functiongerge* andmove.

Definition 34 Let Ta be the minimalist tree term algebra aftits tensor product
representation in Fock spacg, as above. Furthermore, |€f be augmented by the
role vectors of a minimalist state description. We define

1. merg€e' : % — F with
merge’(w) = r:zlz(id@pk+ ) (W) @ px&merge((id@py, 1) (W), (id@pr) (W) ©Pm-1.-
2. move' :.¥ — ,% with
move (w) = :zllad@ Py ) (W) © Py move((id & pf) (W) & .

In Def.[34 the adjoint vectons, applied to the tensor product representatioyield
the corresponding expressiomgfrom Eq. [15). Clearly, this definition entails a min-
imalist processor as stated by the next theorem.

Theorem 2 Let Ta be the set of minimalist expressions aHdthe tensor product
representation of its state descriptions in Fock spa€gas above. The functions
merge* and move* given in Def[(3# realize a minimalist bottom-up processor in
Fock space.

The proof of Theoreri]2 requires the realizability of perniotaoperatordT :
F — Z in Fock space. Such general permutations can be assembtackfemen-
tary transpositions;j, exchanging items and j in an m-tuple. The corresponding
realizationT;j is then obtained in the following way. Let

m
W= % Wk®Ppk
&1

be the state description in Fock space Bpjde the projector on the orthocomplement
spanned by; andp; . Then
Tij(w) = Pij(w) + (id@ pi" ) (w) @ pj + (id @ pj" ) (W) @ pi (16)

realizes the transpositiar in Fock space# by means of unbinding functions. Then
entries in the state description can be the rearrangememtisatmerge* andmove*
as defined in Def_34 become applicable.
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3.5 Harmonic minimalist grammars

A crucial component of ICS iearmony theoryAt the symbolic level of description,
harmony assesses the well-formedness of a structure bysmésaift-constraintse-
warding the minimization of markedness. It can be gaugedaéh s way, that totally
well-formed output assumes harmody= 0. By contrast, at the subsymbolic level
of description, harmony provided gapunov functioguiding the computational dy-
namics by means ajradient ascentln a neural network realization harmony of an
activation vectow is given by a quadratic form

H(V) =vT-W(V)-v,

wherev?t denotes the transposed wfand W (v) is the synaptic weight matrix in
statev corresponding to the computational function applied {&molensky 2006,
Smolensky and Legendre 2006a;b).

We owe a first indication of weighted or harmonic minimalisimmars (HMG)
tolStablerl(19297) who speculated about “additional ‘ecoppnnciples, acting as a
kind of filter on derivations” (see also Harkema (2001)). dH&006) made the first
attempt to implement this idea by constructing probalilisontext-free grammars
from minimalist derivation trees. Therefore we suggestdfiewing definition.

Definition 35 A harmonic minimalist grammar (HMG) is a minimalist gramntar
(Def.[13) augmented with:

1. A weight function for feature term& : Te — @71 RP, such thatV(s) is a p-
tuple(x1,xo,...,Xp) € RP of real weights assigned to a feature texm (f1 0 fo0
...ofp)(€) of lengthp € N. In particularW assigns weights to the features in the
minimalist lexicon Lex.

2. A harmony function for treeld : To — R, given by

H(t) = x; (W(labelheadt),t))),

with the adjoint vectovqr of the direction of the<1-axis:xf (X1,%2,...,Xp) = X1,
returns the weight afs head.

3. A collection of partial functions hmergeR x Ta x Ta — R x Ta and hmove :
R x Ta — R x Ty, defined as follows:

hmergéh,t;,to) = (h+H(t1) + H(tz2), mergéts, ty))
hmoveh,t) = (h+H(t) + H(Xnaxleavesiic (featt)) t).1) (1)), MOVEL)) ,
forhe R.

4. Theharmony filter A minimalist treet € Ta is harmonically well-formedf it is
MG well-formed and additionally

h(t) > 0,

whereh(t) is the cumulative harmony ofafter application of hmerge and hmove
during the derivation of, starting with initial conditiorhg € R.
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Next, we suggest a metric for geometric representatiorictrathe regarded as
a measure of harmony. For that aim we assume that the Fock spag equipped
with a norm||-|| : # — R{ assigning a lengthu|| to vectoru € .#. Such a norm
could be supplied by a scalar product, wh&ris a Hilbert space.

Definition 36 Let (w1, wa,...,wt),wy € .%#,1<k<T,T €N be a (finite) trajectory

in Fock space of duration, representing a minimalist derivation with initial state
and final statevt. We defineharmonythrough the distance of an intermediate step
wy from the well-formed parse goalr, i.e.

H(wk) = —||wi — wr]|.

Lemma 13 The harmony function from Ddf. 136 is non-positive for all ggssing
steps and increases towards-HO when approaching the final state () = 0.

Proof. The Lemma follows immediately from Déf.136.

Eventually we combine Deff._B5 and DEf]36 by looking at harnndifferences
AH = H(wy;1) — H(wy) between successive parse steps. These differences can be
distributed among the features triggering the transitiomfwy to wy 1, as will be
demonstrated in Sec. 4.3. HMG could then possibly accoumgrdience effects in
language processing.

4 Applications

In this section we present two example applications whiehtls tensor product rep-
resentations of Selc, 3.2 in different ways. Both represiemisiare given here, since it
is the aim of this paper to give theoretical justificationsldoth at the same time. The
representations are using two different encodings. At fistshow arithmetic rep-
resentations implemented by Gerth (2006), then, we destdistal representations
outlined by Gerth and beim Graben (2009). For computing bagnwe use Euclid-
ian norm in both cases.

4.1 Arithmetic Representation
In a first step, we map the fillefs for the features of the lexical items onto 12 filler
vectors as shown in Taldl 1.

In order to ensure a faithful representation, filler vectaged to be linearly inde-
pendent, i.e., they form a basis of 12-dimensional vectacspTrying to implement
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Table 1 Fillers for the minimalist lexicon outlined in Fifl 2.

this requirement, leads to an explosion of dimensions (rttae 5 millions) which
was beyond the limits of memory on the used workstation. &loee, we refrained
from linear independence and used a linearly dependemrtipdi®d, representation
of filler vectors in a 4-dimensional vector spdce R4, (1 <i < 12) instead.

The actual filler vectors are:

1 0 0 0
0 1 0 0
fl_ 0 ;f2: 0 7f3_ 1 7f4_ 0 3
0 0 0 1
1 1 1 1
A A T R ey (U
5 3 1 ,6 ‘\/g 1 77 \/§ 1 78 \/§ _1 b
1 1 1 1
1 1 1 1
IS BCHN IS R I PR I BF NN
1 1 1 1

Similarly, the tree roles from Fif._11 are represented bgakiimensional basis
vectors as achieved in previous wark (beim Grabenlet al 2@B&dh and beim Graben
2009). Further, we need to map the list positign€l < i < 4) of the features onto
role vectors. Therefore, a total 0f{34 = 7 role vectors is required. Again we have
to use a linearly dependent representation for role vettrause of an explosion of
dimensions and a restriction on available workstation nmgmo

In particular, we make the following assignment for treeesofleft-daughter”
ro = ey; “right-daughter’r, = e; “mother” r, = e3, wheregg (k = 1, 2, 3) are the
canonical basis vectors of three-dimensional sfigteThe roles of list positions in
the feature arrays of the minimalist lexicon, =s (1 <i < 4) are indicated in
Fig.[14.
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—drs =v I3 =v I3
—trs d rs v 4 +CASE rg +I Iy4 d rs
{ c } —case I4 “ire =d r5| |[+CASE rs —case rg
Douglas love v o Ig t rg| |deadlines
€ -ed

Fig. 14 Roles for the Minimalist lexicon outlined in Figl 2.

The vectors for the list positions are distributed on the sphere irR3:

rfliri_llri—llrii
37\/:—))174\/:—))175*\/51;6\/3_1

The following example shows a tensor product represematiche lexical item
for “love”™

=d f; =dr3

v f3 v org|

“1 10 Sirg =fer;ofs@ra®fio®rs
love love

Fig. 15 Tensor product representation of the lexical item “love”.
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In our arithmetic tensor product representation, tensodypcets are then given as
Kronecker productgMizraji1992) of filler and role vectors; @ ry, by:

firo
fira
firz
firs

lo f1r4
fy rn f1r5
: fire
re fgro
ro fgrl
fl o rq fgrg
f2 ry fal . fors
. : f2l’4

l'e fors
f2r5

f12 I'e

lo :
r froro
frors
f1oro
fiors
f1ors
fiors
fiore

f1o

e

In order to construct an appropriate embedding space, weedihe largest tree
appearing in the minimalist state description. The tensodyct representation of
every tree € Tp is then embedded into that space by left-multiplicationhaf tree-
roles with sufficient tensor powers

P =r@rne--or

(ptimes) of the mother role, where the exponprt Ny is different for every tree.

Finally, we have to construct the tensor product represientéor the state de-
scriptions of a minimalist bottom-up processor as desdiib&ec[ 34. Here, we bind
all minimalist expressions to only one rabg for the state description. For the ten-
sor product representation, we simply chopge= 1, i.e. the scalar unit. As a result,
all tree representing vectors become linearly superinggs¢he state description
(Smolensky and Legendre 2006a).
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4.2 Fractal Tensor Product Representation

Gerth and beim Graben (2009) introduced a different engpdailedfractal ten-
sor product representatiowhich is a combination of the arithmetic description in
the previous section and scalar Gddel encodihgs (beimeBrabd Potthast 2009,
Gerth and beim Graben 2009). For a fractal representatioengede the three tree
rolesrg,ry,ro localistically by the canonical basis vectors of three-glirsional vec-
tor space as above. However, fillers for minimalist feataresepresented by integer
numbersg(fi) from a Godel encoding. The Godel codes used in our exantple a
shown in Tab 2.

Filler fi

%
o
o
[0)

c <l
<

©CoOo~NOUA_WNE OO

> 10
< 11

Table 2 Fractal encoding for minimalist lexicon in Figl. 2.

The role vectors of the tree positions are mapped onto tiiirensional vectors
in the same way as described in 9ec] 4.1. The only differenttesiencoding of the
positions of the lexical items in the feature array. Here, biess, are encoded by
fractional powerdN—K of the total number of fillers, which isl = 12 andk denotes
thek-th list position. The following example shows the lexicatry for “love” and
its fillers represented as Godel numbers:

=d
v

O N -

Liove= i

love

It becomes described by the sum of (tensor) products of Qidabers for the
fillers and fractions for the list positions:

O(Liove) =1x 12714+ 2x 12724+ 9%x 1273 =0.1024.

The next example illustrates the encoding of a subtree jdenthe tree:
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<

N
H Pl

love

Its encoding is given through

g(<)@r2@g(L)ro@g(Lr) ®r1

0 1 0
=11x12°1[ 0| +(2x12149x12) | 0| +7x127 1
1 0 0
0.229
=10583|, (17
0.917

whereL, andL, denote the feature arrays of the left and right leaf. Comirksss are
again represented by Kronecker products (see[Sdc. 4.1thils)e

The state description of the algorithm is mapped step by atép the fractal
tensor product representation. At first, each leaf in the isencoded in an enumer-
ation of fractals. In the second step the encoding of the @/Btdte description is
achieved by recursively binding minimalist trees as comfileers to 3-dimensional
role vectors. Finally the representation of all trees indtate description is linearly
superimposed in a suitable embedding space.

4.3 Results

In this section we present the results of the applicatiortained in the previous

sections (Se€. 4.1, Séc. 1.2).

The final derivation of the minimalist algorithm (Séc.12.8sults in a matrix
which is the state space trajectory. Each column standsrferderivational step in
form of a vector in a high-dimensional embedding space. Timedsions of the final
embedding space atk= 78732 for the arithmetic representation ahd 6561 for
the fractal tensor product representation.

For visualization purposes the data have to be compresssaimfon technique
in multivariate statistics is the principal component gsa (PCA), which has been

used as an observable model previously (beim Graben et 882@@rth and beim Graben

2009). Before applying the PCA the trajectories are statidad using-transformation
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to obtain a transformed distribution with zero mean andwanitance. Then the great-
est variance in the data is in the direction of the first ppattomponent, the second
greatest variance is in the direction of the second prin@paponent and so on.
Plotting the first, PC#1, and the second, PC#2, principalpmmant as observables
against each other, entails a two-dimensiqialse portraitas an appropriate visual-
ization of the processing geometry.

First, we present the phase portrait and the harmony timiessttom Def[36 of
the arithmetic representation for sentepcé (1) in Set r2fig.[16.

Figure[I16(a) shows the phase portrait in principal compbspace. Each parse
step is subsequently numbered. Figurk 16(b) presents rigotal development of
the harmony function.

The derivation unfolds as described in Secl 2.5. The irstite description (step
1) represents the lexicon and starts in coordifatk 72, —1.43) in Fig.[16(a) with a
harmony value oH = —6.49 [Fig [18(b)]. As the parse continues the harmony trajec-
tory climbs steadily upwards. In parse step 3 merged to the tree [Fig.1L6(a)]: co-
ordinate(—3.83, —7.3)). Interestingly the graph of the harmony reaches a local min
imum inH = —6.08 here and continues again upwards until parse step §6g)]1
coordinatg —5.05,15.70); Fig.[18(b):H = —4.76. In this step the subject “Douglas”
is moved upwards leading to the final phonetic, but not ydy Byntactically parsed,
representation of the sentence. In the end the graphs flegicfimal states in coordi-
nate(—2.51,—0.71)[Fig.[18(a)] and irtH = 0 [Fig.[I8(b)].

2nd Principal Component
Harmony

5 10
1st Principal Component

(@) (b)

Fig. 16 Results for the arithmetic representation ($ed 4.1). k@sP portrait of the first principal com-
ponent, PC#1, versus the second principal component, RB¢armony time series from DL, 136.

Figure[1Y shows the observables for the processing mappedafractal repre-
sentation. Figure_17(a) displays the phase portrait incjpad component space. Be-
sides the apparent nonlinearity, one realizes anotheestiag property of the fractal
representation: While the minimalist processing unfolds,feature arrays contract.
This is reflected by the increasing phase space volume biaila the geometric
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dynamics. As above, Fig.1L7(b) illustrates the temporaétiggment of the harmony
function. Again, the initial state description represeaitentries in the lexicon which
starts in coordinaté—0.03,0.07) in Fig.[I7(a) with a harmony value ¢f = —2.63
in Fig.[I4(b). In comparison to Fi§. 1L6(a) the representetiof the first seven parse
steps stay close to each other before deviating to coorljrd1.25,6.09) in step 8.
The harmony curve in figure Fig.117(b) exhibits a downwarelsdr Like in Fig[16(b)
the graph of the harmony reaches a local minimum in parse3sfdp= —3.4) when

€ is merged to the tree [Fi§. 1L7(a)]: coordingte7.3,—5,8). Finally the end states
are reached in coordinat6.8, —0.94) [Fig.[I7(a)] and in a harmony value bf = 0
[Fig.[I7A(b)].

@) (b)

Fig. 17 Results for the fractal representation ($edl 4.2). (a) @pagrait of the first principal component,
PC#1, versus the second principal component, PC#2. (b) étartime series from Def_36.

Table[3 summarizes the evolution of harmonies for both seprEtions.

Representation ~ Step: 1 2 3 4 5 6 7 8 9
arithmetic (Sed.4]1) -6.49 596 608 -53 -536 -508 -494 476 O
fractal (Sed4PR) -263 -297 -34 -333 -36 -38 -374 -371 0

Table 3 Harmony time series for both tensor product represention

Finally, we construct HMGs from these data by assigning loemynrdifferences
to the features of the minimalist lexicon as follows: Firgg compute harmony dif-
ferencesAHx = H (wy 1) — H(wy) between successive processing steps fromTab. 3.
Then, the differencAHy is assigned to either a selector or a licensor that trigdpers t
transition fromwy to wy, 1 while the corresponding basic categories or licensees are
weighted with zero.

Figure[I18 depicts the resulting HMG lexicon for the arithimeepresentation
(Sec[4.1).



Geometric representations for minimalist grammars 39
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476 d 0 :do‘g4 +CASE 0.77 +I 013 d 0
{_C ) } —case 0 _Vi 0 =d —0.06| |+CASE 0.18| | —case O
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Fig. 18 Harmonic minimalist lexicon of sentenge(1) obtained fraithanetic representation (Séc. #.1).

Moreover, FiglIB shows the HMG lexicon for the fractal reygrtation (Se€.4.2).

=v -0.43 =v -01

e 371 a 0 :d7%34 +CASE 0.0712| | +I  0.05 a 0
{7(: ' } —case 0 l’i 0 =d -0.27| |+CASE 0.03 —case 0

Douglas | v 0 t 0 deadlines
ove
£ -ed

Fig. 19 Harmonic minimalist lexicon of sentenge(1) obtained froacfal representation (S€c.14.2).

5 Discussion

In this paper we developed a geometric representationyfeominimalist gram-
mars (MG). We resumed minimalist grammars in terms of plafidiiactions acting
on term algebras of trees and feature arrays. Those complexstructures were
mapped onto vectors in a geometric space (known as the Fade gblaag 1992,
Smolensky and Legendre 2006a)) using filler/role bindingktansor product repre-
sentations (Smolensky and Legeridre 2006a, Smolensky/Béié Graben and Potthast
2009). We were able to prove that the minimalist structwrigding functions merge
and move can be realized as piecewise linear maps upon géowestor spaces. In
order to present a proof-of-concept, we generalized thgesmnd move functions to-
wards state descriptions of a simple derivation procedureninimalist trees which
also found a suitable realization in representation splacaddition, we suggested
a harmony function measuring the distance of an intermegiaicessing state from
a well-formed final state in representation space that gseeto an extension of
MG towards harmonic MG (HMG). This harmony observable cdiddegarded as a
metric for processing complexity. While our proofs essahtirelied on faithful rep-
resentations, we used two different kinds of non-faithdiigtributed representations
in our numerical applications. Firstly, we employed arittim vector space encod-
ings of minimalist features, roles and trees. Secondly, sesldractal tensor product
representations that combine arithmetic vector spacds mimeric Godel encod-
ings. For both cases, we presented phase portraits in painmdmponent space and
harmony time series of the resulting minimalist derivasioRinally, we derived the
corresponding HMGs from simulated harmony differences.
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Our theory proves that sophisticated grammar formalisrob a8 MG can be re-
alized in a geometric representation. This would be a fiegt &r dynamic cognitive
modeling of an integrated connectionist/symbolic (ICSKDGarchitecture for pro-
cessing minimalist grammars. Since natural languageattesly belong to the same
complexity class of mildly context-sensitive languagdsiéBer 1985, Stabler 2004),
ICS/DCM architectures are principally able to process ratianguage. However,
the simple processing algorithm used in the present stulyquillustrating the rep-
resentation theory, is not a sound and complete minimadistqgy |(Harkema 2001,
Mainguy|2010| Stabler 2011). Therefore, future work towgpdycholinguistically
more plausible processing models, would comprise the dpuetnt of a geomet-
ric representation theory for chain-based minimalism awdhultiple context-free
parsingl(Harkemia 2001, Stabler and Kee€nan 2003).

Moreover, processing minimalist grammars by ICS/DCM dettiures straight-
forwardly provides a notion of harmony. However, a propeatment of HMG would
require further investigations to be carried out: Our d&éiniof harmony in Defl_36
combines a particular metric (e.g. Euclidian) with one wetimed reference state
wy for minimalist processing, while harmony in ICS is definedageneral quadratic
form only depending on the synaptic weight matrix. Therefame has to examine
how these expressions would transform into each other. bl@reHMG lexicons in
the sense of Def._35 could also be trained from large textarese.g., in order to
explain gradience effects. Then one has to check how suliigtarmony would
be related to soft-constraint harmony obtained from cogpudies.

The requirements of our theory for tensor product consoostto be faithful
representations of minimalist processing lead to extrgigh-dimensional embed-
ding spaces. These spaces contain extremely few symbyplioaganingful states.
Therefore, numerical application on common workstatianserily feasible by us-
ing compressed and thus non-faithful representations.ndet-faithful representa-
tions are also interesting for more principal reasons, ag #llow for memory ca-
pacity constraints, e.g. by means of graceful saturationeiaral network models
(Smolensky and Legendre 2006a, Smolensky 2006). Sevesallp® compression
techniques have been suggested in the literature, e.gactioh (i.e. outtraceing),
circular convolution, holographic reduced representetior geometric algebra (Coecke ét al
2011] Aerts et al 2009, Pléte 2003, Smolensky and Legen®@2@molensky 2006,
beim Graben and Potthast 2009). It would therefore be nape$s generalize our
current theory to compressed representations, includiraggsessment of the entailed
representation errors. We leave this issue for future work.

Another important aspect of our work concerns the relatignbetween mini-
malist grammar and compositional semantics. On the one, litaedtraightforward
to include semantic features into minimalist lexicons, agtype-logical expressions
(Niyogi and Berwick 2005). On the other hand, this is somawbdundant because
the very same information is already encoded in the minshdéiatures|(Kobele
2006). Vector space semantics appears as a very powerfibtammbining corpus-
driven latent semantic analysis (Cederberg and Widdow§)?@@th compositional
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semantics based on compressed tensor product represesi@lutner 2009, Aelts
2009/ Coecke etlal 2011). In our geometric representatieoryh syntactic roles and
thereby also semantic functions are encoded by node addrigshigh-dimensional
tensor products of role vectors for tree positions. Theeefone should seek for ap-
propriate unbinding maps that could be combined with thenantic counterparts
(Coecke et &l 2011). Also this promising enterprise is leftffiture work.

Acknowledgements

This research was supported by a DFG Heisenberg grant asvar®eG (GR 3711/1-
1). We thank Peter Baumann, Reinhard Blutner, Hans-Maréirir@r and two refer-
ees for constructive suggestions.

References

Aerts D (2009) Quantum structure in cognition. Journal otiManatical Psychology 53(5):314 — 348

Aerts D, Czachor M, Moor BD (2009) Geometric analogue of badghic reduced representation. Journal
of Mathematical Psychology 53(5):389 — 398

Balkenius C, Gardenfors P (1991) Nonmonotonic inferericageural networks. In: Allan JA, Fikes R,
Sandewall E (eds) Principles of Knowledge RepresentatimhReasoning, Morgan Kaufmann, San
Mateo (CA), pp 32 -39

Blutner R (2009) Concepts and bounded rationality: An aafilbn of Niestegge’s approach to conditional
quantum probabilities. AIP Conference Proceedings 1832 — 310

Cederberg S, Widdows D (2003) Using LSA and noun coordindtiformation to improve the precision
and recall of automatic hyponymy extraction. In: Procegsliof the seventh conference on Natu-
ral language learning at HLT-NAACL, Association for Comaitinal Linguistics, Morristown (NJ),
CONLL '03, vol 4, pp 111 — 118

Chomsky N (1981) Lectures on Goverment and Binding. Foris

Chomsky N (1995) The Minimalist Program. No. 28 in Currenidis in Linguistics, MIT Press, Cam-
bridge (MA)

Coecke B, Sadrzadeh M, Clark S (2011) Mathematical fouadatifor a compositional distributional
model of meaning. Linguistic Analysis 36:345 — 384

Engel AK, Roelfsema PR, Fries P, Brecht M, Singer W (1997 eRilthe temporal domain for response
selection and perceptual binding. Cerebral Cortex 7:5782- 5

Fodor J, Pylyshyn ZW (1988) Connectionism and cognitivehiggcture: A critical analysis. Cognition
28:3-71

Gardenfors P (2004) Conceptual spaces as a framework ovlikdge representations. Mind and Matter
2(2):9-27

Gartner HM, Michaelis J (2007) Some remarks on localityditons and minimalist grammars. In: Sauer-
land U, Gartner HM (eds) Interfaces + Recursion = Langudgfedmsky’s Minimalism and the View
from Syntax-Semantics, de Gruyter, Berlin, pp 161 — 195

van Gelder T (1998) The dynamical hypothesis in cognitiviersze. Behavioral and Brain Sciences
21(05):615 — 628

Gerth S (2006) Parsing mit minimalistischen, gewichtetean@natiken und deren Zustandsraumdarstel-
lung. Unpublished Master’s thesis, Universitat Potsdam

Gerth S, beim Graben P (2009) Unifying syntactic theory agntence processing difficulty through a
connectionist minimalist parser. Cognitive Neurodyna8(4):297 — 316

beim Graben P, Potthast R (2009) Inverse problems in dyneogisitive modeling. Chaos 19(1):015103



42 beim Graben & Gerth

beim Graben P, Potthast R (in press) A dynamic field accoufdartguage-related brain potentials. In:
Rabinovich M, Friston K, Varona P (eds) Principles of Braignamics: Global State Interactions,
MIT Press, Cambridge (MA)

beim Graben P, Gerth S, Vasishth S (2008a) Towards dynasys&m models of language-related brain
potentials. Cognitive Neurodynamics 2(3):229 — 255

beim Graben P, Pinotsis D, Saddy D, Potthast R (2008b) Laymgpeocessing with dynamic fields. Cog-
nitive Neurodynamics 2(2):79 — 88

Haag R (1992) Local Quantum Physics: Fields, Particleseidas. Springer, Berlin

Haegeman L (1994) Introduction to Goverment & Binding Tlye&lackwell Publishers, Oxford

Hagoort P (2005) On Broca, brain, and binding: a new framkwirends in Cognitve Science 9(9):416 —
423

Hale JT (2006) Uncertainty about the rest of the sentencgnifiee Science 30(4):643 — 672

Harkema H (2001) Parsing minimalist languages. PhD thesisersity of California, Los Angeles

Hopcroft JE, Ullman JD (1979) Introduction to Automata Thedanguages, and Computation. Addison—
Wesley, Menlo Park, California

Huyck CR (2009) A psycholinguistic model of natural langeggarsing implemented in simulated neu-
rons. Cognitive Neurodynamics 3(4):317 — 330

Joshi AK, Levy LS, Takahashi M (1975) Tree adjunct grammaosirnal of Computer and System Sci-
ences 10(1):136 — 163

Kobele GM (2006) Generating copies: An investigation irttactural identity in language and grammar.
PhD thesis, University of California, Los Angeles

Kracht M (2003) The Mathematics of Language. Mouton de Gagerlin

Lind D, Marcus B (1995) An Introduction to Symbolic Dynamiasad Coding. Cambridge University
Press, Cambridge (UK)

Mainguy T (2010) A probabilistic top-down parser for minilisagrammars. ArXiv ¢s.CL 1010.1826

Michaelis J (2001) Derivational minimalism is mildly cortesensitive. In: Moortgat M (ed) Logical
Aspects of Computational Linguistics, Springer, Berlicture Notes in Atrtificial Intelligence, vol
2014, pp 179 — 198

Michaelis J (2004) Observations on strict derivational imadism. Electronic Notes in Theoretical Com-
puter Science 53:192 — 209

Mizraji E (1992) Vector logics: The matrix-vector repretaion of logical calculus. Fuzzy Sets and Sys-
tems 50:179 — 185

Niyogi S, Berwick RC (2005) A minimalist implementation ofal¢-Keyser incorporation theory. In:
Sciullo AMD (ed) UG and External Systems Language, Brain @uodnputation, Linguistik Ak-
tuell/Linguistics Today, vol 75, John Benjamins, Amsterdgp 269 — 288

Plate T (2003) Holographic Reduced Representations. C8tiure Notes Number 150, CSLI Publica-
tions, Stanford, CA

Potthast R, beim Graben P (2009) Inverse problems in neetdltfieory. SIAM Jounal on Applied Dy-
namical Systems 8(4):1405 — 1433

Seki H, Matsumura T, Fujii M, Kasami T (1991) On multiple cexttfree grammars. Theoretical Com-
puter Science 88(2):191 — 229

Shieber SM (1985) Evidence against the context-freenesatafal language. Linguistics and Philosophy
8:333-343

Smolensky P (2006) Harmony in linguistic cognition. CoyeitScience 30:779 — 801

Smolensky P, Legendre G (2006a) The Harmonic Mind. From &leGomputation to Optimality-
Theoretic Grammar, vol 1: Cognitive Architecture. MIT Pse€ambridge (MA)
Smolensky P, Legendre G (2006b) The Harmonic Mind. From &le@omputation to Optimality-
Theoretic Grammar, vol 2: Linguistic and Philsophic Imptions. MIT Press, Cambridge (MA)
Stabler E (2011) Top-down recognizers for MCFGs and MGsPhaceedings of the 2nd Workshop on
Cognitive Modeling and Computational Linguistics, Assdicin for Computational Linguistics, Port-
land, pp 39 — 48

Stabler EP (1996) Parsing and generation for grammars witvement. In: Berwick R (ed) Principle-
based Parsing: From Theory to Practice, Kluwer, Dordrecht

Stabler EP (1997) Derivational minimalism. In: Retoré @)(eogical Aspects of Computational Linguis-
tics, Lecture Notes in Computer Science, vol 1328, Sprirdew York, pp 68 — 95

Stabler EP (1999) Remnant movement and complexity. In: Bo@nHinrichs E, Kruijff GIM, Oehrle
RT (eds) Constraints and Resources in Natural Languages$gntd Semantics, CSLI Publications,
Stanford (CA), pp 299 — 326



Geometric representations for minimalist grammars 43

Stabler EP (2004) Varieties of crossing dependenciesctstiel dependence and mild context sensitivity.
Cognitive Science 28:699 — 720

Stabler EP, Keenan EL (2003) Structural similarity withimdeamong languages. Theoretical Computer
Science 293:345 — 363

Tabor W (2009) A dynamical systems perspective on the oglskiip between symbolic and non-symbolic
computation. Cognitive Neurodynamics 3(4):415 — 427

Vosse T, Kempen G (2009) The Unification Space implementeallasalist neural net: Predictions and
error-tolerance in a constraint-based parser. Cognitimerblynamics 3(4):331 — 346

van der Waerden BL (2003) Algebra, vol 2. Springer, New York

Weinberg A (2001) A minimalist theory of human sentence pssing. In: Epstein SD, Hornstein N (eds)
Working Minimalism, MIT Press, Cambridge (MA)



	1 Introduction
	2 Minimalist Grammars Revisited
	3 Integrated Symbolic/Connectionist Architectures
	4 Applications
	5 Discussion

