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1 Introduction

Geometric approaches to cognition in general and to symbolic computation in par-
ticular became increasingly popular during the last two decades. They comprise con-
ceptual spaces for sensory representations (Gärdenfors 2004), latent semantic analy-
sis for the meanings of nouns and verbs (Cederberg and Widdows 2003), and tensor
product representations for compositional semantics (Blutner 2009, Aerts 2009). Ac-
cording to the dynamical system approach to cognition (van Gelder 1998, beim Graben and Potthast
2009), mental states and their temporal evolution are represented as states and trajec-
tories in a dynamical system’s state space. This approach has been used, e.g., for mod-
eling logical inferences (Balkenius and Gärdenfors 1991,Mizraji 1992) and language
processes (beim Graben et al 2008a, Tabor 2009). Interpreting the states of a dy-
namical system as activation vectors of neural networks, includes also connectionist
approaches of cognitive modeling into geometric cognition(Gerth and beim Graben
2009, Huyck 2009, Vosse and Kempen 2009).

One particularly significant contribution in this direction is Smolensky’s Inte-
grated Connectionist/Symbolic Architecture (ICS) (Smolensky 2006, Smolensky and Legendre
2006a). This is a dual-aspect approach where subsymbolic dynamics of neural acti-
vation patterns at a lower-level description become interpreted as symbolic cognitive
computations at a higher-level description by means of filler/role bindings through
tensor product representations. Closely related to ICS is dynamic cognitive modeling
(DCM) (beim Graben and Potthast 2009; in press), which is a top-down approach for
the construction of neurodynamical systems from symbolic representations in con-
tinuous time.

So far, ICS/DCM architectures have been successfully employed for phonolog-
ical (Smolensky 2006, Smolensky and Legendre 2006a) and syntactic computations
(Smolensky 2006, Smolensky and Legendre 2006a, beim Grabenet al 2008a) in the
fields of computational linguistics and computational psycholinguistics using mainly
context-free grammars and appropriate push-down automata(Hopcroft and Ullman
1979). However, as natural languages are known to belong to the complexity class
of mildly context-sensitive languages within the Chomsky hierarchy (Shieber 1985,
Stabler 2004), more sophisticated formal grammars have been developed, including
tree-adjoining grammars (TAG) (Joshi et al 1975), multiplecontext-free grammars
(Seki et al 1991) and minimalist grammars (Stabler 1997, Stabler and Keenan 2003).
In particular, Stabler’s formalism of minimalist grammars(MG) codifies most con-
cepts of generative linguistics (e.g. from Government and Binding Theory (Chomsky
1981, Haegeman 1994) and Chomsky’s Minimalist Program (Chomsky 1995, Weinberg
2001)) in a mathematically rigorous manner. In early MG thishas been achieved by
defining minimalist trees and the necessary transformations by means of set and graph
theoretic operations. In its later development, minimalist trees have been abandoned
in favor of chain-based calculus (Harkema 2001, Stabler andKeenan 2003) due to
Harkema’s statement that “the geometry of a [minimalist] tree is a derivational arti-
fact of no relevance [...]” (Harkema 2001, p. 82). Based on these results MG could be
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recast into multiple context-free grammars for further investigation (Michaelis 2001,
Harkema 2001).

Recently, Gerth (2006) and Gerth and beim Graben (2009) revived the ideas of
early MG, by presenting two ICS/DCM studies for the processing of minimalist
grammars in geometric representation spaces, because minimalist tree representa-
tions could be of significance for psycholinguistic processing performance. In these
studies, different filler/role bindings for minimalist feature arrays and minimalist trees
have been used: one purely arithmetic representation for filler features and syntactic
roles (Gerth 2006); and another one, combining arithmetic and numerical representa-
tions into a fractal tensor product representation (Gerth and beim Graben 2009). Until
now, these studies lack proper theoretical justification bymeans of rigorous mathe-
matical treatment. The present work aims at delivering the required proofs. More-
over, based on the metric properties of representation space, we present an extension
of MG toward harmonic MG, for providing a complexity measureof minimalist trees
that might be of relevance for psycholinguistics.

The paper is structured as follows. In Sec. 2 we algebraically recapitulate Sta-
bler’s original proposals for minimalist grammars which isrequired for subsequent
dynamic cognitive modeling. We also illustrate the abstract theory by means of a par-
ticular linguistic example in Sec. 2.5. Next, we build an ICS/DCM architecture in
Sec. 3 by mapping filler/role decompositions of minimalist data structures onto ten-
sor product representations in geometric spaces. The main results of the section are
summarized in two theorems about minimalist representation theory. We also intro-
duce harmonic minimalist grammar (HMG) here, by proposing aharmony metric for
minimalist trees in representation space. In Sec. 4 we resume the linguistic example
from Sec. 2.5 and construct arithmetic and fractal tensor product representations for
our minimalist toy-grammar. The paper concludes with a discussion in Sec. 5.

2 Minimalist Grammars Revisited

In this section we rephrase derivational minimalism (Stabler 1997, Stabler and Keenan
2003, Michaelis 2001) in terms of term algebras (Kracht 2003) for feature strings
and trees which is an important prerequisite for the aim of this study, namely vector
space representation theory. Moreover, following Harkema(2001), we disregard the
original distinction between “strong” and “weak” minimalist features that allow for
“overt” vs. “covert” movement and for merge with or without head adjunction, re-
spectively. For the sake of simplicity we adopt the notations of “strict minimalism”
(Stabler 1999, Michaelis 2004), yet not taking its more restricted move operation, the
specifier island condition (Gärtner and Michaelis 2007), into account.
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2.1 Feature strings

Consider a finite set offeatures FF and its Kleene closureF∗
F . The elements ofF∗

F
can be regarded as terms over the signatureFF ∪{ε}, where the empty wordε has
arity 0 and featuresf ∈ FF are unary function symbols. Then, the term algebraTF is
inductively defined through (1)ε ∈ TF is a term. (2) Ifs∈ TF is a term andf ∈ FF ,
then f (s) ∈ TF . Thus, a string (or likewise, an array)s= f1 f2 . . . fp ∈ F∗

F , p∈ N0, of
featuresfi ∈ FF is regarded as a terms= ( f1◦ f2◦ . . .◦ fp)(ε) = f1( f2(. . . ( fp(ε)))) ∈
TF , where “◦” denotes functional composition (the setN0 contains the non-negative
integers 0,1,2, . . . ).

First, we define two string functions for preparing the subsequent introduction of
minimalist grammars.

Definition 1 Let s∈ TF be a feature string withs= f (r), f ∈ FF , r ∈ TF .

1. Thefirst featureof s is obtained by the function first :TF \ {ε} → FF , first(s) =
first( f (r)) = f .

2. In analogy to theleft-shift in symbolic dynamics (Lind and Marcus 1995) we de-
fine shift :TF \ {ε}→ TF , shift(s) = shift( f (r)) = r.

Basically, the functions first and shift correspond to the LISP functions car and cdr,
respectively.

2.2 Labeled trees

In early MG, a minimalist expression is a finite, binary, and ordered tree endowed
with the relation of (immediate) projection among siblingsand with a labeling func-
tion mapping leaves onto feature strings (Stabler 1997, Michaelis 2001). Such trees
become terms from a suitably constructed term algebraTA, as follows. As signature
of TA we choose the ranked alphabetA= TF ∪{<,>}, whereTF is the previously in-
troduced algebra of feature strings, and rankA : A→N0. Feature strings are ranked as
constants through rankA(s) = 0 for all s∈ TF . Furthermore, the minimalist projection
indicators,<,>, are regarded as binary function symbols: rankA(<) = rankA(>) = 2.
Then we define by means of induction: (1) Everys∈TF is a term,s∈TA. (2) For terms
t0, t1 ∈ TA, <(t0, t1) ∈ TA and>(t0, t1) ∈ TA. Then,<(t0, t1) denotes a minimalist tree
with root <, left subtreet0 and right subtreet1. The root label< indicates thatt0
“projects over”t1. By contrast, in the tree>(t0, t1) t1 “projects over”t0.

Definition 2 A minimalist treet ∈ TA is calledcomplexif there are termst0, t1 ∈ TA

and f => or f =< such thatt = f (t0, t1). A tree that is not complex is calledsimple.



Geometric representations for minimalist grammars 5

In correspondence to Smolensky and Legendre (2006a) and Smolensky (2006),
we define the following functions for handling minimalist trees.

Definition 3 Let t ∈ TA be given ast = f (t0, t1) with f = > or f = <, t0, t1 ∈ TA.
Then we define

1. Left subtree extraction: ex0 : TA → TA,

ex0(t) = t0 .

2. Right subtree extraction: ex1 : TA → TA,

ex1(t) = t1 .

3. Tree constructions: consf : TA×TA → TA,

consf (t0, t1) = t .

Recursion with left and right tree extraction is applied as follows:

Definition 4 Let I = {0,1}∗ be the set of binary sequences,γ = γ1γ2 . . .γn ∈ I , for
n∈ N0. Then the function exγ : TA → TA is given as the concatenation product

exε = id

exiγ = exi ◦exγ ,

where id :TA → TA denotes the identity function, id(t) = t, for all t ∈ TA. The bit
stringsγ ∈ I are callednode addressesfor minimalist trees andI is theaddress space.

Using node addresses we fetch the function symbols of terms through another
function.

Definition 5 Let t ∈ TA be given ast = f (t0, t1) with f => or f =<, t0, t1 ∈ TA, and
γ ∈ I . Then label :I ×TA → A with

label(ε, t) = f

label(iγ, t) = label(γ,exi(t)) .

If t is a constant inTA, however (i.e.t ∈ TF ), then

label(γ, t) = t ,

for everyγ ∈ I .
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Corollary 1 As a collorary of definitions 3 and 5 we state

t = conslabel(ε,t)(ex0(t),ex1(t)) , (1)

if rankA(label(ε, t)) = 2 for t ∈ TA.

Definition 6 Theheadof a minimalist treet ∈ TA is a unique leaf that projects over
all other nodes of the tree. We findt ’s head address by recursively following the
projection labels. Therefore, head :TA → I is defined through

head(< (t0, t1)) = 0⌢head(t0)

head(> (t0, t1)) = 1⌢head(t1) ,

where string concatention is indicated by “⌢”, and

head(t) = ε ,

for t ∈ TF

Definition 7 The featureof a treet is defined as the first feature oft ’s head label.
Thus feat :TA → FF ,

feat(t) = first(label(head(t), t)) ,

where we appropriately extended domain and codomain of first: A\{ε}→ FF ∪{ε},
by setting first(<) = first(>) = ε.

A node in a minimalist treet is known to be amaximal projectionif it is either
t ’s root, or if its sister projects over that node. We exploit this property in order to
recursively determine the address of a maximal subtree for agiven node address.

Definition 8 Let t ∈ TA andγ ∈ I . Then, max :I ×TA → I ,

max(γ, t) =







ε : γ = head(t)
i⌢ max(δ ,exi(t)) : γ = iδ andγ 6= head(t)

undefined : otherwise

is a partial function.

We also need a variant thereof with wider scope. Thus we additionally define:

Definition 9 Let P⊂ I be a set of node addresses, then max# :℘(I)×TA →℘(I),

max#(P, t) =
⋃

γ∈P

{max(γ, t)} .

If P is a singleton set,P= {γ}, we identify the actions of max and max#. Here,℘(I)
denotes the power set of node addressesI .
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Moreover, we define a function that returns the leaf addresses of a treet possess-
ing the same featuref ∈ FF .

Definition 10 Let t ∈ TA and f ∈ FF . Then, leaves :FF ×TA →℘(I), with

leaves( f , t) = {γ ∈ I |first(label(γ, t)) = f} .

whereγ varies over the address space oft.

Next, we introduce a term replacement function.

Definition 11 Let t, t ′ ∈ TA andγ ∈ I . Then replace :I ×TA×TA → TA with

replace(ε, t, t ′) = t ′

replace(0γ, t, t ′) = conslabel(ε,t)(replace(γ,ex0(t), t
′),ex1(t))

replace(1γ, t, t ′) = conslabel(ε,t)(ex0(t), replace(γ,ex1(t), t
′)) .

Using replace we extend the domain of the shift function (1) from the string algebra
TF to the tree algebraTA.

Definition 12 Let t ∈ TA. Then, shift# : TA → TA with

shift#(t) = replace(head(t), t,shift(label(head(t), t))) ,

deletes the first feature oft ’s head.

The effect of the tree functions head and max are illustratedin Fig. 1. The head
of the treet is obtained by following the projection indicators recursively through the
tree: head(t)= 0⌢head(ex0(t))= 00⌢head(ex0(ex0((t))))= 001⌢head(ex1(ex0(ex0((t)))))=
001; and max(100, t) = 1⌢ max(00,ex1(t)) = 1.

<

<

>

000 001

<

010 011

<

<

100 101

>

110 111

Fig. 1 Labeled minimalist treet with leaf addresses for illustration of head and max functions: 001=
head(t) and, e.g., max(100,t) = 1.
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2.3 Minimalist grammars

Now we are prepared to define minimalist grammars in term algebraic terms.

Definition 13 A minimalist grammar (MG) is a four-tupleG= (P,C,Lex,M ) obey-
ing conditions (1) – (4).

1. P is a finite set of non-syntacticphoneticfeatures.
2. C= B∪S∪L∪M is a finite set of syntactic features, calledcategories, compris-

ing basic categories, B, selectors, S, licensors, L, andlicensees, M. There is one
distinguished element,c ∈ B, calledcomplementizer. FF = P∪C is then the fea-
ture set. To each selectors∈ Sa basic categoryb∈ B is assigned by means of a
select function, sel :S→ B, b= sel(s). Likewise, alicense function, lic : L → M
assigns to each licensorℓ ∈ L a corresponding licensee throughm= lic(ℓ).

3. Lex⊂ TF is a finite set of simple terms over the term algebraTF , called thelexi-
con, such that each termt ∈ Lex, is a feature string of the form

S∗(L∪{ε})S∗BM∗P∗ .

4. M = {merge,move} is a collection of partial functions, merge :TA×TA →TA and
move :TA → TA, defined as follows: The domain of merge is given by all pairs of
trees Dommerge= {(t1, t2)∈TA×TA|sel(feat(t1)) = feat(t2)}. The domain of move
contains all trees Dommove= {t ∈TA|feat(t)∈L and max#(leaves(lic(feat(t)), t), t)
contains exactly one element}. Let t1, t2 ∈ Dommergeandt ∈ Dommove, then

merge(t1, t2) =

{

cons<(shift#(t1),shift#(t2)) if t1 is simple
cons>(shift#(t1),shift#(t2)) if t1 is complex

move(t) = cons>(shift#(exmax(leaves(lic(feat(t)),t),t)(t)),

shift#(replace(max(leaves(lic(feat(t)), t), t), t,ε))))

The constraint on the move operation, that the set of maximalsubtrees with the
corresponding licensee may contain exactly one element is called theshortest move
condition, motivated by linguistic considerations. Relaxing this condition yields dif-
ferent kinds of minimalist grammars that could account for particular locality condi-
tions (Gärtner and Michaelis 2007).

2.4 Processing algorithm

Minimalist grammar recognition and parsing are well understood (Harkema 2001,
Mainguy 2010, Stabler 2011). However, for our current exposition, instead of a full-
fletched minimalist parser that must be proven to be sound andcomplete, we discuss
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a simplified processor for our particular example from Sec. 2.5 below, just in order to
provide a proof-of-concept for our representation theory.To this end we utilize early
ideas of Stabler (1996) as employed by Gerth (2006) and Gerthand beim Graben
(2009). There, the structure building functions merge and move are extended to a
state description, or astack, regarded as a finite word of termsw∈ T∗

A . From a graph
theoretical point of view, a state description is an unconnected collection of trees,
and therefore aforest. In order to construct an algorithm that generates a successful
derivation we introduce the following extensions of merge and move over forests of
minimalist trees.

Definition 14 Let w= (w1,w2, . . . ,wm) ∈ T∗
A be state description. Then

1. merge∗ : T∗
A →T∗

A with merge∗(w)= (w1,w2, . . . ,merge(wm−1,wm)), when(wm−1,wm)∈
Dommerge.

2. move∗ : T∗
A →T∗

A with move∗(w)= (w1,w2, . . . ,move(wm)), whenwm∈Dommove.

are partial functions acting upon state descriptions fromT∗
A .

In Def. 14, merge∗ operates on the next-to-last and the last element of the pro-
cessor’s state description, respectively, thereby implementing a stack with the last
element at the top. Using this convention, canonical subject-verb-object sentences,
[S[VO]], such as the example below and also examples used by Gerth (2006) and
Gerth and beim Graben (2009), can be processed straightforwardly, by first merg-
ing the verb V with the direct object O as its complement, and subsequently merg-
ing the result with the subject noun phrase. Thereby, the procedure avoids unnec-
essary garden-path interpretations. However, since minimalist languages cannot be
processed with simple pushdown automata, one needs additional mechanisms such
as indices and sorting in the framework of multiple context-free languages for which
the crucial soundness and completeness properties of minimalist parsers have been
proven (Mainguy 2010, Stabler 2011). In our simplified approach, however, we make
use of an oracle for rearranging stack content. This is implemented through suitable
permutationsπ : T∗

A → T∗
A , acting upon the stack according tow′ = π(w).

The processor operates in several loops: two for the domain of merge and another
one for the domain of move. In the loops for the domain of mergethe iteration starts
with the tree on top of the stack which is checked against every other tree whether
they can be merged, in which case an appropriate permutationbrings both trees into
the last and next-to-last position of the stack. Then merge∗ is applied and this loop
iteration is terminated. If the top tree cannot be merged then the algorithm decrements
backwards until it reaches the first tree on the stack. In the loop for the domain of
move every tree is checked for being in the domain of move, in this case the move∗

operation is used after a permutation bringing that tree into the last position of the
stack. The rest of the lexical entries in the state description are passed on unchanged
to the next state of the algorithm.
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Therefore after merge∗ or move∗ has been applied to the state description the
algorithm completes the current state and continues with the next one resulting in a
sequence of state descriptionsS0,S1, ... which describes the derivation process. The
algorithm stops when no further merge∗ or move∗ is applicable and only one tree
remains in the state description. This final state description determines the successful
derivation.

2.5 Application

We illustrate the procedure from Def. 14 by constructing a minimalist grammar for
the following English sentence and by outlining a successful derivation of

(1) Douglas loved deadlines.1

The minimalist lexicon is shown in Fig. 2. The first item is a complementizer (basic
categoryc) which selects tense (indicated by the feature= t). The second item is
a determiner phrase “Douglas” (basic categoryd) requiring case (licensee−case).
The third item, the verb “love” (categoryv), selecting a determiner (feature= d), is a
verb (featurev) and is moved into the position before “-ed” triggered by−i resulting
in the inflection of the verb (i.e., “loved”). The next item would normally include
an affix (e.g., -ven, -ing) but it is empty (ε) here, it selects a verb (feature= v), a
determiner phrase (feature= d) to which it assigns case (feature+CASE) and has the
featurev. The fifth item represents the past tense inflection “-ed” with the categoryt
that selects a verb (= v), assigns case (licensor+CASE) to a determiner and contains
the licensor+I to trigger the movement of “love”. The last item in the lexicon is the
object “deadlines” (categoryd) which requires case (−case).

[

= t

c

]





d

−case
Douglas













= d

v

−i
love



















= v

+CASE
= d

v

ε





















= v

+I
+CASE

t

-ed















d

−case
deadlines





Fig. 2 Minimalist lexicon of sentence (1).

The algorithm takes initially as input the state description w1 = (Douglas, love,
-ed, deadlines)∈ T∗

A .

1 Douglas Adams was quoted as saying: “I love deadlines. I likethe whooshing sound they make as
they fly by.” in Simpson, M. J. (2003).Hitchhiker: A Biography of Douglas Adams.Justin, Charles and
Co., Boston (MA).
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2.5.1 An example derivation of sentence (1)

Starting with the initial state descriptionw1 the words “love” and “deadlines” are
merged (Fig. 3) after a first permutationπ1, exchanging “-ed” and “love”, by applying
merge∗(π1(w1)) =(Douglas, -ed, merge(love, deadlines)) because “love” (= d) and
“deadlines” (d) are in Dommerge.

<





v

−i
love





[

−case
deadlines

]

Fig. 3 Step 1: merge.

In the next stepε is merged to the tree.

<









+CASE
= d

v

ε









<

[

−i
love

] [

−case
deadlines

]

Fig. 4 Step 2: merge.

The resulting tree is in the domain of move triggered by the features−case and
+CASE, therefore “deadlines” is moved upwards in the tree leavingbehindλ , a new
leaf node without label. The involved expressions are co-indexed withk (Fig. 5).

t1 = >

[

deadlines
]

k

<





= d

v

ε





<

[

−i
love

]

λk

Fig. 5 Step 3: move.
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In step 4 the whole state descriptionw2 = (Douglas, -ed, t1) is checked for being
in the domain of merge. This is the case for(Douglas, t1). Therefore, “Douglas” is
merged tot1.

>

[

−case
Douglas

]
>

[

deadlines
]

k

<

[

v

ε

]
<

[

−i
love

]

λk

Fig. 6 Step 4: merge.

Next, the past tense inflection “-ed” is merged to the tree triggered byv.

<









+I
+CASE

t

-ed









>

[

−case
Douglas

]
>

[

deadlines
]

k

<

[

ε
]

<

[

−i
love

]

λk

Fig. 7 Step 5: merge.

Now, the tree is in the domain of move triggered by−i and+I. Therefore, the
maximal projection loveλk undergoes remnant movement to the specifier position in
Fig. 8.
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>

<i

[

love
]

λk

<





+CASE
t

-ed





>

[

−case
Douglas

]
>

[

deadlines
]

k

<

[

ε
]

λi

Fig. 8 Step 6: move.

The resulting tree is again in Dommove and “Douglas” is moved upwards leaving
a λ behind indexed withj (Fig. 9).

>

[

Douglas
]

j

>

<i

[

love
]

λk

<

[

t

-ed

]
>

λ j

>

[

deadlines
]

k

<

[

ε
]

λi

Fig. 9 Step 7: move.

In the final step, the complementizer “c” is merged to the treeleading to the final
minimalist tree with the unchecked featurec as its head (Fig. 10) that completes the
successful derivation.
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<

[

c
]

>

[

Douglas
]

j

>

<i

[

love
]

λk

<

[

-ed
]

>

λ j

>

[

deadlines
]

k

<

[

ε
]

λi

Fig. 10 Step 8: merge.

3 Integrated Symbolic/Connectionist Architectures

Connectionist models of symbolic computations are an important branch in cogni-
tive science. In order to construe compositional representations (Fodor and Pylyshyn
1988) one has to solve the famousbinding problemknown from the neurosciences
(Engel et al 1997): How are representations from different perceptual modalities bound
together in the representation of a complex concept? The same problem appears
for complex data structures such as lists or trees, e.g., in computational linguistics
(Hagoort 2005): How is a syntactic category bound to its functional role in a phrase
structure tree?

A solution for this binding problem has been provided by Smolensky’s Integrated
Connectionist/Symbolic Architectures (ICS) (Smolensky 2006, Smolensky and Legendre
2006a;b). Here, complex symbolic data structures are decomposed into content fillers
and functional roles that bind together in a geometric representation by means of ten-
sor products. A closely related approach is Dynamic Cognitive Modeling (DCM)
(beim Graben and Potthast 2009; in press), where neural network models are explic-
itly constructed from geometric representations by solving inverse problems (Potthast and beim Graben
2009).

In this section, we apply the concepts of ICS/DCM to our reconstruction of min-
imalist grammars and processor, obtained in Sec. 2.
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3.1 Filler/role bindings

Consider a set of symbolic structuresSand some structures∈ S. A filler/role binding
of s is then a set of ordered pairsβ (s) of fillers bound to roles.

Definition 15 Let F be a finite set ofsimple fillersandR be a finite, countable, or
even measurable set ofroles. By induction we define a family ofcomplex fillersas
follows:

F0 = F

Fn+1 = ℘(Fn×R) ,

wheren∈N0 and℘(X) denotes the power set of some setX. Furthermore we define
the collection

F∞ = R∪
(

∞
⋃

n=0

Fn

)

.

Thefiller/role bindingfor S is a mappingβ : S→ F∞.

In the simplest case, simple fillers are bound to roles. Thus,a filler/role binding
β (s) = {( f , r)| f ∈ F, r ∈ R} ∈℘(F ×R) = F1. Such a decomposition could act as a
complex filler f ′ for another filler/role binding wheref ′ = β (s) is bound to a roler,
resulting inβ (s′) = {( f ′, r)| f ′ ∈ F1, r ∈ R} ∈℘(F1×R) = F2. By means of recursion
any finite structure of arbitrary complexity yields its filler/role binding as an element
of F∞ (beim Graben et al 2008b).

Next we construct filler/role bindings for minimalist trees, S= TA, in a hierarchi-
cal manner. To this aim we start with feature strings.

3.1.1 Feature strings

Let S= TF be the string term algebra over signatureFF ∪{ε} from Sec. 2.1. A string
s= ( f1 ◦ f2 ◦ . . .◦ fp)(ε) ∈ TF assumes a straightforward filler/role binding by inter-
pretingFF as the filler set. Then each string positioni is identified with one role,
si ∈ RF , such thatRF = {si |i ∈ N} is an infinite but countable set of roles. However,
since every strings∈ TF is of finite lengthp, only roles fromRp = {si |1≤ i ≤ p} are
required.

Definition 16 An order-reverting filler/role bindingβF : TF →℘(FF ×RF) for fea-
ture strings= f (r) ∈ TF of lengthp> 0 is given as a mapping

βF(ε) = /0

βF( f (r)) = {( f ,sp)}∪βF(r) .
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As an example consider the term( f1 ◦ f2)(ε) ∈ TF . Its filler/role binding is then

βF( f1( f2(ε)))= {( f1,s2)}∪βF( f2(ε))= {( f1,s2)}∪{( f2,s1)}∪βF(ε)= {( f1,s2),( f2,s1)} .

3.1.2 Labeled trees

The filler/role binding for labeled binary trees has been discussed by beim Graben et al
(2008a;b), and beim Graben and Potthast (2009). For tree term algebrasTA from Sec. 2.2,
we identify the signatureA= TF ∪{<,>} with the set of simple fillers and introduce
rolesRA = {r0, r1, r2}, with “mother” (r2), “left daughter” (r0) and “right daughter”
(r1) of an elementary tree as indicated in Fig. 11, where the indices have been chosen
in accordance with the extraction functions ex0 and ex1 from Def. 3, such that ex0(t)
is bound to roler0 and ex1(t) is bound to roler1 for a termt ∈ TA. In accordance
to Def. 15, we call the set of complex fillersA∞. Additionally, we unify the sets of
simple fillers and roles through

F = FF ∪{<,>} (2)

R= RF ∪RA . (3)

r2

r0 r1

Fig. 11 Elementary roles of a labeled binary tree.

Definition 17 A filler/role bindingβA : TA →A∞ for tree terms is given as a mapping

βA(t) =

{

{( f , r2),(βA(t0), r0),(βA(t1), r1)} if t = f (t0, t1) ∈ TA

βF(t) if t ∈ TF .

Consider the minimalist treet =>( f ,g) ∈ TA in Fig. 12 where the root is labeled
with the projection indicator pointing to the head at the right daughter and feature
string termsf = ( f1 ◦ f2 ◦ . . . ◦ fp)(ε) ∈ TF , p ∈ N, g = (g1 ◦ g2 ◦ . . . ◦ gq)(ε) ∈ TF ,
q∈ N, are presented as column arrays.

>











f1
f2
...
fp





















g1
g2

...
gq











Fig. 12 Minimalist tree termt =>( f ,g) ∈ TA with featureg1.
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The filler/role binding oft is obtained as

βA(t)= βA(>( f ,g))= {(>, r2),(βA( f ), r0),(βA(g), r1)}= {(>, r2),(βF( f ), r0),(βF(g), r1)}=
= {(>, r2),({( f1,sp),( f2,sp−1), . . . ,( fp,s1)}, r0),({(g1,sq),(g2,sq−1), . . . ,(gq,s1)}, r1)} .

A more complex expressions=>( f ,<(g,h)) ∈ TA is shown in Fig. 13.

>











f1
f2
...
fp











<











g1
g2

...
gq





















h1
h2

...
hr











Fig. 13 Complex minimalist trees=>( f ,<(g,h)) ∈ TA with featureg1.

The filler/role binding for the terms in Fig. 13 is recursively constructed through

βA(s) = βA(>( f ,<(g,h))) = {(>, r2),(βA( f ), r0),(βA(<(g,h)), r1)}=
= {(>, r2),(βF( f ), r0),({(<, r2),(βA(g), r0),(βA(h), r1)}, r1)} =
= {(>, r2),(βF( f ), r0),({(<, r2),(βF(g), r0),(βF(h), r1)}, r1)}=

= {(>, r2),({( f1,sp),( f2,sp−1), . . . ,( fp,s1)}, r0),

({(<, r2),({(g1,sq),(g2,sq−1), . . . ,(gq,s1)}, r0),

({(h1,sr),(h2,sr−1), . . . ,(hr ,s1)}, r1)}, r1)} .

3.2 Tensor product representations

Definition 18 Let F be a vector space over the real or complex numbers, andβ :
S→ F∞ a filler/role binding for a set of symbolic structuresS for sets of fillersF and
rolesR. A mappingψ : F∞ → F is calledtensor product representationof S if it
obeys (1) – (3).

1. ψ(Fn) is a subspace ofF , for all n∈ N0, in particular forF0 = F is ψ(F) = VF

a subspace ofF ,
2. ψ(R) = VR is a subspace ofF ,
3. ψ({( f , r)}) = ψ( f )⊗ψ(r), for filler f ∈ Fn and roler ∈ R (n∈ N0).
4. ψ(A∪B) = ψ(A)⊕ψ(B), for subsetsA,B⊂ F∞.
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Lemma 1 F is theFock space

F =

(

∞
⊕

n=0

VF ⊗V
⊗n

R

)

⊕VR , (4)

known from quantum field theory (Haag 1992, Smolensky and Legendre 2006a).

Proof (by induction overn∈ N0). Let n= 0. ThenVF ⊗V
⊗0

R = VF is a subspace of
F . MoreoverVR is a subspace ofF . Let f ∈ Fn, r ∈ R, such thatψ( f ) ∈ ψ(Fn) and
{( f , r)} ∈ Fn+1 be a filler/role binding. Thenψ({( f , r)}) = ψ( f )⊗ψ(r) ∈ ψ(Fn+1).
The direct sum of those subspaces is the Fock spaceF .

By concatenating the mapsβ ,ψ , we extend the tensor product representation
Ψ : S→ F of the symbolic structures:

Ψ(s) = ψ(β (s)) , s∈ S. (5)

Definition 19 Let β ,ψ be a filler/role binding and a tensor product representation
for a structure setS in Fock spaceF over fillersF and rolesR. A linear function
υr : F → F is called unbinding for roler if

υr(u) =
{

ψ( f ) : u = ψ({( f , r)})
0 : otherwise.

Unbinding functions can be established in several ways, e.g. by means of adjoint vec-
tors or through self-addressing (Smolensky and Legendre 2006a, Smolensky 2006).
Self-addressing requires that the Fock spaceF is equipped with a scalar product,
turning it into a Hilbert space. However, in this paper, we use adjoint vectors, i.e.
linear forms into its number field, from the dual spaceV ∗

R of the respective role
representation space. This requires that all filler and rolevectors are linearly inde-
pendent, implyingfaithful tensor product representations (Smolensky and Legendre
2006a, Smolensky 2006).

Next, we define the realization of a symbolic computation.

Definition 20 Let P,Q : S→ Sbe partial functions on the symbolic structuress∈ S,
such that CodP ⊆ DomQ. Two piecewise linear functionsP,Q : F → F are called
realizationsof the symbolic computationsP,Q in Fock spaceF , if there is a tensor
product representationΨ : S→ F such that

(P◦Ψ)(s) = (Ψ ◦P)(s)

(Q◦Ψ)(t) = (Ψ ◦Q)(t)

for all s∈ DomP, t ∈ DomQ.
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Then, the realizations constitute a semigroup homomorphism and hence a semigroup
representation in the sense of algebraic representation theory (van der Waerden 2003,
beim Graben and Potthast 2009), because

(Q◦P◦Ψ)(s) = (Ψ ◦Q◦P)(s) ,

for all s∈ DomP.

3.2.1 Feature strings

In Sec. 3.1.1 we created filler/role bindings for the term algebraTF of minimalist
feature strings asβF(s) = β (( f1◦ f2◦ . . .◦ fp)(ε)) = {( f1,sp),( f2,sp−1), . . . ,( fp,s1)}
in reversed order by regarding the features as fillersFF and the string positionsRF =
{si |i ∈ N} as roles. Mapping all fillersfi ∈ FF onto filler vectorsf i = ψ( fi) ∈ VF

from a vector spaceVF , and similarly all rolessi ∈ Rp for a string of lengthp onto
role vectorssi = ψ(sp−i+1) ∈ VR from a vector spaceVR yields a tensor product
representation of feature strings in preserved order through

Ψ (s) = ψ(βF(s)) =
p

∑
i=1

f i ⊗ si . (6)

However, for the sake of convenience, we extend the representation space to an em-
bedding space spanned by the role vectors that are required for representing the
longest feature strings. Let thereforen∈ N be the maximal length of a feature string
occuring in the minimalist lexicon, we bind the null vector0 to all role vectorssk for
k> p for a given string of lengthp< n. Then, all strings possess a unique represen-
tation

Ψ (s) = ψ(βF(s)) =
n

∑
i=1

f i ⊗ si . (7)

We denote the embedding space for feature stringsS .

For this representation we have to find realizations of the string functions from
Def. 1. To this end we need some preparatory concepts. Letu = Ψ(s) = ψ(βF(s))
be a tensor product representation for feature stringss= ( f1 ◦ f2 ◦ . . .◦ fp)(ε) ∈ TF ,
fi ∈ F . For the role vectorssi ∈ VR we define their adjointss+i ∈ V ∗

R in the dual space
V ∗

R of VR, such that

s+i (sk) = δik , (8)

with the Kronecker symbolδik = 0(1) for i 6= k (i = k), i.e. the adjoint vectorss+i ,
acting as linear forms, and the dualssi form a biorthogonal basis.

Lemma 2 υk(u) = (id⊗ s+k )(u) is an unbinding function for role sk.
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Proof. Let u = fk⊗ sk. Then

υk(u) = (id ⊗ s+k )(u) = (id ⊗ s+k )(fk⊗ sk) = fks
+
k (sk) = fkδkk = fk = ψ( fk) .

Here, id :VF → VF denotes the identity map atVF : id(f) = f.

Sinceυk is also linear, we additionally obtain the following result: Letu=∑n
i=1 f i⊗

si . Then

υk(u) = (id⊗ s+k )(u) = (id⊗ s+k )

(

n

∑
i=1

f i ⊗ si

)

=

=
n

∑
i=1

(id⊗ s+k )(f i ⊗ si) =
n

∑
i=1

fis+k (si) =
n

∑
i=1

f iδki = fk = ψ( fk) .

Definition 21 LetΨ be a tensor product representation of terms of feature stringsTF

in vector spaceS , andu =Ψ(s) = ∑n
i=1 f i ⊗ si for f ∈ F∗.

1. Thefirst featureof u is obtained by an unbinding functionfirst : S → S with

first(u) = (id⊗ s+1 )(u) (9)

2. A functionshift : S → S is obtained by

shift(u) =
n−1

∑
i=1

((id⊗ s+i+1)(u))⊗ si +0⊗ sn (10)

Lemma 3 first andshift are realizations of the corresponding string functionsfirst
andshift from Def. 1.

Proof. Let s= f (r) ∈ TF . Then

first(Ψ (s)) = f = ψ( f ) =Ψ(first(s)) .

Forshift(u) we compute

shift(Ψ(s)) =
n−1

∑
i=1

(

(id⊗ s+i+1)

(

n

∑
k=1

fk⊗ sk

))

⊗ si +0⊗ sn =

=
n−1

∑
i=1

(

n

∑
k=1

fks
+
i+1(sk)

)

⊗ si +0⊗ sn =

n−1

∑
i=1

n

∑
k=1

δi+1,kfk⊗ si +0⊗ sn =
n−1

∑
i=1

f i+1⊗ si +0⊗ sn =Ψ(shift(s)) .
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3.2.2 Labeled trees

A tensor product representation of a labeled binary tree is obtained from the respec-
tive filler/role binding in Def. 17.

Definition 22 Let t = f (t0, t1) ∈ TA be a tree term withf = > or f = <, t0, t1 ∈ TA.
Then

Ψ(t)=ψ(βA(t))=ψ({( f , r2),(βA(t0), r0),(βA(t1), r1)})= f⊗r2⊕Ψ(t0)⊗r0⊕Ψ(t1)⊗r1 ,

where the projection indicators,< and> are mapped onto corresponding filler vec-
tors f< = ψ(<), f> = ψ(>), and the three tree roles “mother”, “left daughter”, and
“right daughter” are represented by three role vectorsr0 = ψ(r0), r1 = ψ(r1), r2 =
ψ(r2) ∈ VR. Moreover, we also consider their adjointsr+0 , r

+
1 , r

+
2 ∈ V ∗

R from the dual
spaceV ∗

R for the required unbinding operations.

Using Def. 22 together with the unified sets of fillers and roles from Eqs. (2), (3)
we can compute tensor product representations of minimalist trees, as those from the
examples of Sec. 2.2. The tensor product representation of the tree termt =>( f ,g) ∈
TA in Fig. 12 is given as

Ψ(t) = ψ(βA(>( f ,g))) = ψ({(>, r2),(βA( f ), r0),(βA(g), r1)}) =
=ψ({(>, r2),(βF( f ), r0),(βF(g), r1)})= f>⊗r2⊕ψ({( f1,sp),( f2,sp−1), . . . ,( fp,s1)})⊗r0⊕

⊕ψ({(g1,sq),(g2,sq−1), . . . ,(gq,s1)})⊗ r1 =

= f>⊗r2⊕(f1⊗s1⊕ f2⊗s2⊕·· ·⊕ fp⊗sp)⊗r0⊕(g1⊗s1⊕g2⊗s2⊕·· ·⊕gq⊗sq)⊗r1

which can be simplified using tensor algebra to

Ψ(t)= f>⊗r2⊕ f1⊗s1⊗r0⊕ f2⊗s2⊗r0⊕·· ·⊕ fp⊗sp⊗r0⊕g1⊗s1⊗r1⊕g2⊗s2⊗r1⊕·· ·⊕gq⊗sq⊗r1 .

(11)

Correspondingly, we obtain for the tree terms= >( f ,<(g,h)) ∈ TA depicted in
Fig. 13 the tensor product representation

Ψ(s) = f>⊗ r2⊕ f1⊗ s1⊗ r0⊕ f2⊗ s2⊗ r0⊕·· ·⊕ fp⊗ sp⊗ r0⊕
⊕ f<⊗ r2⊗ r1⊕g1⊗ s1⊗ r0⊗ r1⊕g2⊗ s2⊗ r0⊗ r1⊕·· ·⊕gq⊗ sq⊗ r0⊗ r1⊕

⊕h1⊗ s1⊗ r1⊗ r1⊕h2⊗ s2⊗ r1⊗ r1⊕·· ·⊕hr ⊗ sr ⊗ r1⊗ r1 .

Interestingly, leaf addressesγ = γ1γ2 . . .γp ∈ I , p∈N, correspond to role multi-indices
by means of the following convention

r γ = r γ1 ⊗ r γ2 ⊗·· ·⊗ r γp . (12)
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Using role multi-indicesr γ , we can introduce further generalized unbinding functions
below.

Now we are prepared to define the Fock space realizations of the tree functions
from Sec. 2. Before we start with the counterparts from Def. 3, we notice an interest-
ing observation.

Lemma 4 Let TA be the term algebra of minimalist trees andΨ its tensor product
representation in Fock spaceF , as above. Foru ∈F the functionfirst distinguishes
between simple and complex trees.

1. u =Ψ(t) with t ∈ TF is a simple tree (i.e. a feature string). Then

first(u) 6= 0 .

2. u =Ψ(t) with t = f (t0, t1) ∈ TA is a complex tree. Then

first(u) = 0 .

Proof. Consider the first case:u = Ψ(t) for simple t, henceu = ∑n
i=1 f i ⊗ si . Then

first(u) = f1 6= 0. For the second case, we haveu = Ψ(t) = f ⊗ r2 ⊕Ψ(t0)⊗ r0 ⊕
Ψ(t1)⊗ r1. Therefore

first(u) = (id⊗ s+1 )(u) = (id⊗ s+1 )(f ⊗ r2⊕Ψ(t0)⊗ r0⊕Ψ(t1)⊗ r1) =

fs+1 (r2)⊕Ψ(t0)s+1 (r0)⊕Ψ(t1)s+1 (r1) = 0 ,

where id denotes the Fock space identity applied to the respective subspaces.2

Definition 23 Let TA be the term algebra of minimalist trees andΨ its tensor product
representation in Fock spaceF , as above. Moreover, letu ∈F with first(u) = 0, i.e.
the tensor product representation of a complex tree. Finally, let u0,u1 ∈ F .

1. Left subtree extraction:ex0 : F → F ,

ex0(u) = (id⊗ r+0 )(u) .

2. Right subtree extraction:ex1 : F → F ,

ex1(u) = (id⊗ r+1 )(u) .

2 Note that the Fock space identity id can be expressed as a direct sum of the respective sub-
space identities id= ∑κ idκ . Applying that to an arbitrary Fock space vectoru = ∑λ uλ yields id(u) =
∑κ ∑λ idκ (uλ ) = u, such that idκ (uλ ) = 0 for κ 6= λ . Hence, the identities for different subspaces behave
like orthogonal projectors, annihilating vectors from their orthocomplements. This observation applies also
below.
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3. Tree constructions:consf : F ×F → F ,

consf (u0,u1) = u0⊗ r0⊕u1⊗ r1⊕ f f ⊗ r2 .

Lemma 5 ex0, ex1 andconsf are realizations of the corresponding string functions
ex0, ex1 andconsf from Def. 3.

Proof. Supposet = f (t0, t1), t0, t1 ∈ TA. Then

ex0(Ψ (t))= (id⊗r+0 )(Ψ ( f (t0, t1)))= (id⊗r+0 )(f⊗r2⊕ψ(βA(t0))⊗r0⊕ψ(βA(t1))⊗r1)=

f r +0 (r2)⊕ψ(βA(t0)) r+0 (r0)⊕ψ(βA(t1)) r+0 (r1)=ψ(βA(t0))=Ψ(t0)=Ψ(ex0(t)).

The proof forex1 works similarly. Furthermore,

consf (Ψ (t0),Ψ(t1)) = Ψ(t0)⊗ r0 ⊕Ψ(t1)⊗ r1 ⊕ f f ⊗ r2 = Ψ(consf (t0, t1)) .

Next, we extend those functions to node addresses as in Def. 4.

Definition 24 Let I = {0,1}∗ be the set of binary sequences,γ = γ1γ2 . . .γn ∈ I , for
n∈ N0. Then the functionexγ : F → F is given as the concatenation product

exε = id

exiγ = exi ◦exγ .

Then, we get the following corollary from Lemma 5.

Corollary 2 Functionsexγ are realizations of the corresponding string functions
from Def. 4.

Next, we realize the symbolic label function in Fock space.

Definition 25 Let TA be the term algebra of minimalist trees andΨ its tensor product
representation in Fock spaceF , as above. Moreover, letu ∈ F and γ ∈ I . Then
label : I ×F → F with

label(ε,u) = (id⊗ r+2 )(u)

label(iγ,u) = label(γ,exi(u)) ,

whenfirst(u) = 0. If first(u) 6= 0, then

label(γ,u) = u .
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Lemma 6 label is a Fock space realization of the term algebra functionlabel from
Def. 5.

Proof. First assumefirst(u) 6= 0, thenu ∈ F is the tensor product representation of
a string termt ∈ TF labeling a leaf node in a tree. Therefore

label(γ,Ψ (t)) =Ψ (t) =Ψ(label(γ, t)) .

Next, supposefirst(u) = 0, in which caseu ∈ F is the tensor product representation
of a proper tree termt = f (t0, t1) ∈ TA. By means of induction overγ, we have first

label(ε,Ψ (t)) = (id⊗ r+2 )(f⊗ r2⊕Ψ(t0)⊗ r0⊕Ψ(t1)⊗ r1) = f =Ψ (label(ε, t))

and second

label(iγ,Ψ(t))= label(γ,exi(Ψ(t)))= label(γ,Ψ (exi(t)))=Ψ(label(γ,exi(t)))=Ψ(label(iγ, t)).

The following function does not provide a Fock space realization but rather a kind
of Fock space isometry.

Definition 26 The head of the tensor product representation of a minimalist treet ∈
TA is obtained by a functionhead: F → I ,

head(u) =







ε if first(u) 6= 0
0⌢head(ex0(u)) if u = cons<(ex0(u),ex1(u))
1⌢head(ex1(u)) if u = cons>(ex0(u),ex1(u)) .

Lemma 7 Let t∈ TA. Then

head(Ψ (t)) = head(t)

with headgiven in Def. 6.

Proof (by induction). First assume thatfirst(u) 6= 0, i.e. t ∈ TF with u =Ψ(t) is a
head. Then

head(Ψ(t)) = ε = head(t) .

Next supposet = f (t0, t1) ∈ TA with either f =< or f => . In the first case we have
u = cons<(ex0(u),ex1(u)) and therefore

head(Ψ(t)) = 0⌢head(ex0(u)) = 0⌢head(ex0(t)) ,

in the second case we haveu = cons>(ex0(u),ex1(u)) and thus

head(Ψ(t)) = 1⌢head(ex1(u)) = 1⌢head(ex1(t)) .
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Definition 27 The feature of the tensor product representationu =Ψ(t) of a mini-
malist treet is retained as the first feature oft ’s head label. Thusfeat : F → VF ,

feat(u) = first(label(head(u),u)) .

Lemma 8 Let t∈ TA. Then

feat(Ψ (t)) =Ψ (feat(t))

with featgiven in Def. 7.

Proof. Follows immediately from previous lemmata and definitions.

Also the maximal projection becomes an analogue to a Fock space isometry.

Definition 28 Let u ∈ F andγ ∈ I . Then,max : I ×F → I ,

max(γ,u) =







ε : γ = head(u)
i⌢max(δ ,exi(u)) : γ = iδ andγ 6= head(u)

undefined : otherwise.

Lemma 9 Let t∈ TA andγ ∈ I. Then

max(γ,Ψ (t)) = max(γ, t)

with maxgiven in Def. 8.

Proof (by induction overγ). Let γ = head(Ψ(t)). Then

max(γ,Ψ (t)) = ε = max(γ, t) ,

if γ 6= head(Ψ(t)), by contrast, we findδ ∈ I such thatγ = iδ , hence

max(γ,Ψ(t)) = i⌢max(δ ,exi(Ψ(t))) = i⌢ max(δ ,exi(t)) = max(γ, t) .

The functionmax is naturally extended to sets of node addresses.

Definition 29 Let u ∈ F andP⊂ I . Then,max# :℘(I)×F →℘(I),

max#(P,u) =
⋃

γ∈P

{max(γ,u)} .
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Next we have to adapt the definition of the symbolic leaves function from Def. 10.
The corresponding realizationleaves: VF ×F →℘(I) is obtained from a generalized
unbinding function

ubfeat(γ, f,u) = (f+⊗ s+1 ⊗ r+γ )(u) , (13)

for given filler vectorf ∈ VF and leaf addressγ ∈ I , applied to the tensor product
representation of a treet ∈ TA, because all first features of the tree’s leaves built
partial sums of the form

m

∑
i=1

f i ⊗ s1⊗ rηi , (14)

as they are bound to the first roles1 in the feature lists. Here,rηi denote the multiple
tensor products of roles according to Def. 12.

Applying Eq. (13) to this expression yields

ubfeat(γ, f,u)= (f+⊗s+1 ⊗r+γ )

(

m

∑
i=1

f i ⊗ s1⊗ rηi

)

=
m

∑
i=1

f+(f i)s+1 (s1) r+γ (rηi )= δγ,ηi

for all f i = f.

Therefore we get

Definition 30 Let f ∈ VF andu ∈ F . Then,leaves: VF ×F →℘(I),

leaves(f,u) = {γ ∈ I |ubfeat(γ, f,u) = 1} .

Lemma 10 Let t∈ TA and f ∈ FF . Then

leaves(Ψ ( f ),Ψ (t)) = leaves( f , t) .

Proof. The lemma follows from the above calculation.

Next, we modify the replacement function.

Definition 31 Let u,u′ ∈ F andγ ∈ I . Thenreplace: I ×F ×F → F with

replace(ε,u,u′) = u′

replace(0γ,u,u′) = conslabel(ε,u)(replace(γ,ex0(u),u
′),ex1(u))

replace(1γ,u,u′) = conslabel(ε,u)(ex0(u), replace(γ,ex1(u),u
′)) .

Lemma 11 Let t, t ′ ∈ TA andγ ∈ I. Then

replace(γ,Ψ (t),Ψ(t ′)) =Ψ(replace(γ, t, t ′))

with replacefrom Def. 11.
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Proof (by means of induction overγ). First letγ = ε. Then

replace(ε,Ψ (t),Ψ(t ′)) =Ψ(t) =Ψ(replace(ε, t, t ′)) .

Next assume that Lemma 11 has already been proven for all address stringsγ of
lengthp∈ N0. Theniγ with i = 0 or i = 1 is of lengthp+1 and it holds either

replace(0γ,Ψ(t),Ψ(t ′))= conslabel(ε,Ψ(t))(replace(γ,ex0(Ψ (t)),Ψ(t ′)),ex1(Ψ (t)))=

consΨ (label(ε,t))(Ψ(replace(γ,ex0(t), t
′)),Ψ(ex1(t)))=Ψ(conslabel(ε,t)(replace(γ, t, t ′),ex1(t)))=

Ψ(replace(γ, t, t ′))

or

replace(1γ,Ψ(t),Ψ(t ′))= conslabel(ε,Ψ(t))(ex0(Ψ (t)), replace(γ,ex1(Ψ (t)),Ψ (t ′)))=

consΨ (label(ε,t))(Ψ(ex0(t)),Ψ (replace(γ,ex1(t), t
′))) =

Ψ(conslabel(ε,t)(ex0(t), replace(γ,ex1(t), t
′))) =Ψ(replace(γ, t, t ′)) .

Using the Fock space realization of replace we also extend the domain of the shift
function (21) from string vectors inS to tree vectors inF .

Definition 32 Let u ∈ F . Then,shift# : F → F with

shift#(u) = replace(head(u),u,shift(label(head(u),u))) .

Lemma 12 Let t∈ TA. Then

shift#(Ψ (t)) =Ψ (shift#(t))

with shift# from Def. 12.

Proof. The Lemma follows from previous observations.

3.3 Minimalist grammars

In this section we introduce geometric minimalist structure-building functions and
prove that they are indeed Fock space realizations of the term algebraic functions
from Sec. 2.3.
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Definition 33 Let G= (P,C,Lex,M ) be a minimalist grammar (MG) with phonetic
featuresP, categoriesC = B∪S∪ L∪M, lexicon Lex⊂ TA, and structure-building
functionsM = {merge,move} as defined in Def. 13. Let sel :S→ B be the select
function and lic :L→M be the license function. Moreover, letΨ =ψ ◦βA be a tensor
product representation of the term algebraTA of G on Fock spaceF . We introduce
realizationssel: F → F andlic : F → F by demanding

Ψ (sel(s)) = sel(Ψ (s))

Ψ (lic(ℓ)) = lic(Ψ (ℓ))

for s∈ Sandℓ∈ L. The domain ofmergeis given by all pairs of vectors Dommerge=
{(u1,u2) ∈F ×F |sel(feat(u1)) = feat(u2)}. The domain ofmovecontains all vec-
tors Dommove= {u∈F |feat(u)∈Ψ(L) andmax#(leaves(lic(feat(u)),u),u) contains
exactly one element}. Let u1,u2 ∈ Dommerge andu ∈ Dommove, then

merge(u1,u2) =

{

cons<(shift#(u1),shift#(u2)) if first(u1) 6= 0
cons>(shift#(u1),shift#(u2)) if first(u1) = 0

move(u) = cons>(shift#(exmax(leaves(lic(feat(u)),u),u)(u)),

shift#(replace(max(leaves(lic(feat(u)),u),u),u,ε)))

Theorem 1 Let TA be the minimalist tree term algebra andΨ its tensor product
representation in Fock spaceF , as above. Let t1, t2 ∈ Dommerge and t∈ Dommove,
then

merge(Ψ (t1),Ψ (t2) = Ψ(merge(t1, t2))

move(Ψ (t)) = Ψ(move(t))

with merge,movefrom Def. 13.

Proof. The Theorem follows from the Lemmata in Sec. 3.2.

Taken together, we have proven that derivational minimalism (Stabler 1997, Stabler and Keenan
2003, Michaelis 2001) can be realized by tensor product representations as a starting
point for integrated connectionist/symbolic architectures (Smolensky and Legendre
2006a, Smolensky 2006).

3.4 Processing Algorithm

In order to realize a minimalist bottom-up processor as discussed in Sec. 2.4 in Fock
space, we have to represent the processor’s state descriptions (Stabler 1996). This can
be achieved through another filler/role binding by introducing new rolesp1, p2, · · · ∈
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R for stack positions binding minimalist trees. Then the tensor product representation
of a state descriptionw of lengthmassumes the form

w =
m

∑
k=1

wk⊗pk , (15)

wherewk are tensor product representations of minimalist trees.

The minimalist algorithm as defined in Def. 14 becomes then realized by corre-
sponding Fock space functionsmerge∗ andmove∗.

Definition 34 Let TA be the minimalist tree term algebra andΨ its tensor product
representation in Fock spaceF , as above. Furthermore, letF be augmented by the
role vectors of a minimalist state description. We define

1. merge∗ : F → F with

merge∗(w)=
m−2

∑
k=1

(id⊗p+
k )(w)⊗pk⊕merge((id⊗p+

m−1)(w),(id⊗p+
m)(w))⊗pm−1 .

2. move∗ : F → F with

move∗(w) =
m−1

∑
k=1

(id⊗p+
k )(w)⊗pk⊕move((id⊗p+

m)(w))⊗pm .

In Def. 34 the adjoint vectorsp+
k applied to the tensor product representationw yield

the corresponding expressionswk from Eq. (15). Clearly, this definition entails a min-
imalist processor as stated by the next theorem.

Theorem 2 Let TA be the set of minimalist expressions andΨ the tensor product
representation of its state descriptions in Fock spaceF , as above. The functions
merge∗ and move∗ given in Def. 34 realize a minimalist bottom-up processor in
Fock space.

The proof of Theorem 2 requires the realizability of permutation operatorsΠ :
F → F in Fock space. Such general permutations can be assembled from elemen-
tary transpositionsτi j , exchanging itemsi and j in an m-tuple. The corresponding
realizationT i j is then obtained in the following way. Let

w =
m

∑
k=1

wk⊗pk

be the state description in Fock space andPi j be the projector on the orthocomplement
spanned bypi andp j . Then

T i j (w) = Pi j (w)+ (id⊗p+
i )(w)⊗p j +(id⊗p+

j )(w)⊗pi (16)

realizes the transpositionτi j in Fock spaceF by means of unbinding functions. Then
entries in the state description can be the rearrangement such thatmerge∗ andmove∗

as defined in Def. 34 become applicable.
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3.5 Harmonic minimalist grammars

A crucial component of ICS isharmony theory. At the symbolic level of description,
harmony assesses the well-formedness of a structure by means ofsoft-constraintsre-
warding the minimization of markedness. It can be gauged in such a way, that totally
well-formed output assumes harmonyH = 0. By contrast, at the subsymbolic level
of description, harmony provides aLyapunov functionguiding the computational dy-
namics by means ofgradient ascent. In a neural network realization harmony of an
activation vectorv is given by a quadratic form

H(v) = v+ ·W(v) ·v ,
wherev+ denotes the transposed ofv and W(v) is the synaptic weight matrix in
statev corresponding to the computational function applied tov (Smolensky 2006,
Smolensky and Legendre 2006a;b).

We owe a first indication of weighted or harmonic minimalist grammars (HMG)
to Stabler (1997) who speculated about “additional ‘economy principles,’ acting as a
kind of filter on derivations” (see also Harkema (2001)). Hale (2006) made the first
attempt to implement this idea by constructing probabilistic context-free grammars
from minimalist derivation trees. Therefore we suggest thefollowing definition.

Definition 35 A harmonic minimalist grammar (HMG) is a minimalist grammarG
(Def. 13) augmented with:

1. A weight function for feature termsW : TF →⊕∞
p=1R

p, such thatW(s) is a p-
tuple(x1,x2, . . . ,xp) ∈R

p of real weights assigned to a feature terms= ( f1 ◦ f2◦
. . .◦ fp)(ε) of lengthp∈N. In particular,W assigns weights to the features in the
minimalist lexicon Lex.

2. A harmony function for treesH : TA → R, given by

H(t) = x+1 (W(label(head(t), t))) ,

with the adjoint vectorx+1 of the direction of thex1-axis:x+1 (x1,x2, . . . ,xp) = x1,
returns the weight oft ’s head.

3. A collection of partial functions hmerge :R× TA ×TA → R× TA and hmove :
R×TA → R×TA, defined as follows:

hmerge(h, t1, t2) = (h+H(t1)+H(t2),merge(t1, t2))

hmove(h, t) = (h+H(t)+H(exmax(leaves(lic(feat(t)),t),t)(t)),move(t)) ,

for h∈ R.
4. Theharmony filter: A minimalist treet ∈ TA is harmonically well-formedif it is

MG well-formed and additionally

h(t)≥ 0 ,

whereh(t) is the cumulative harmony oft after application of hmerge and hmove
during the derivation oft, starting with initial conditionh0 ∈R.
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Next, we suggest a metric for geometric representations that can the regarded as
a measure of harmony. For that aim we assume that the Fock space F is equipped
with a norm|| · || : F → R

+
0 assigning a length||u|| to vectoru ∈ F . Such a norm

could be supplied by a scalar product, whenF is a Hilbert space.

Definition 36 Let (w1,w2, . . . ,wT), wk ∈F , 1≤ k≤T, T ∈N be a (finite) trajectory
in Fock space of durationT, representing a minimalist derivation with initial statew1

and final statewT . We defineharmonythrough the distance of an intermediate step
wk from the well-formed parse goalwT , i.e.

H(wk) =−||wk−wT || .

Lemma 13 The harmony function from Def. 36 is non-positive for all processing
steps and increases towards H= 0 when approaching the final state, H(wT) = 0.

Proof. The Lemma follows immediately from Def. 36.

Eventually we combine Def. 35 and Def. 36 by looking at harmony differences
∆Hk = H(wk+1)−H(wk) between successive parse steps. These differences can be
distributed among the features triggering the transition from wk to wk+1, as will be
demonstrated in Sec. 4.3. HMG could then possibly account for gradience effects in
language processing.

4 Applications

In this section we present two example applications which use the tensor product rep-
resentations of Sec. 3.2 in different ways. Both representations are given here, since it
is the aim of this paper to give theoretical justifications for both at the same time. The
representations are using two different encodings. At firstwe show arithmetic rep-
resentations implemented by Gerth (2006), then, we describe fractal representations
outlined by Gerth and beim Graben (2009). For computing harmony we use Euclid-
ian norm in both cases.

4.1 Arithmetic Representation

In a first step, we map the fillersF for the features of the lexical items onto 12 filler
vectors as shown in Tab. 1.

In order to ensure a faithful representation, filler vectorsneed to be linearly inde-
pendent, i.e., they form a basis of 12-dimensional vector space. Trying to implement
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d f1
= d f2
v f3
= v f4
t f5
= t f6
+CASE f7
−case f8
+I f9
−i f10
> f11
< f12

Table 1 Fillers for the minimalist lexicon outlined in Fig. 2.

this requirement, leads to an explosion of dimensions (morethan 5 millions) which
was beyond the limits of memory on the used workstation. Therefore, we refrained
from linear independence and used a linearly dependent, distributed, representation
of filler vectors in a 4-dimensional vector spacefi ∈ R

4, (1≤ i ≤ 12) instead.

The actual filler vectors are:

f1 =









1
0
0
0









, f2 =









0
1
0
0









, f3 =









0
0
1
0









, f4 =









0
0
0
1









,

f5 =
1√
3









1
1
1
1









, f6 =
1√
3









−1
1
1
1









, f7 =
1√
3









1
−1
1
1









, f8 =
1√
3









1
1
−1
1









,

f9 =
1√
3









1
1
1
−1









, f10 =
1√
3









−1
−1
1
1









, f11 =
1√
3









1
−1
−1
1









, f12 =
1√
3









1
1
−1
−1









.

Similarly, the tree roles from Fig. 11 are represented by three-dimensional basis
vectors as achieved in previous work (beim Graben et al 2008a, Gerth and beim Graben
2009). Further, we need to map the list positionssi (1≤ i ≤ 4) of the features onto
role vectors. Therefore, a total of 3+4= 7 role vectors is required. Again we have
to use a linearly dependent representation for role vectorsbecause of an explosion of
dimensions and a restriction on available workstation memory.

In particular, we make the following assignment for tree roles “left-daughter”
r0 = e1; “right-daughter”r1 = e2; “mother” r2 = e3, whereek (k = 1, 2, 3) are the
canonical basis vectors of three-dimensional spaceR

3. The roles of list positions in
the feature arrays of the minimalist lexiconr i+2 = si (1 ≤ i ≤ 4) are indicated in
Fig. 14.
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[

= t r3
c

]





d r3
−case r4
Douglas













= d r3
v r4
−i r5
love



















= v r3
+CASE r4
= d r5
v r6
ε





















= v r3
+I r4

+CASE r5
t r6

-ed















d r3
−case r4

deadlines





Fig. 14 Roles for the Minimalist lexicon outlined in Fig. 2.

The vectors for the list positions are distributed on the unit sphere inR3:

r3 =
1√
3





1
1
1



 , r4 =
1√
3





−1
1
1



 , r5 =
1√
3





1
−1
1



 , r6 =
1√
3





1
1
−1



 .

The following example shows a tensor product representation of the lexical item
for “love”:









= d f2
v f3
−i f10
love









⊗









= d r3
v r4
−i r5
love









= f2⊗ r3⊕ f3⊗ r4⊕ f10⊗ r5

Fig. 15 Tensor product representation of the lexical item “love”.
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In our arithmetic tensor product representation, tensor products are then given as
Kronecker products(Mizraji 1992) of filler and role vectors,fi ⊗ rk, by:











f1
f2
...

f12











⊗











r0

r1
...

r6











=





















































f1











r0

r1
...
r6











f2











r0

r1
...
r6











...

f12











r0

r1
...
r6































































=



















































































f1r0

f1r1

f1r2

f1r3

f1r4

f1r5

f1r6

f2r0

f2r1

f2r2

f2r3

f2r4

f2r5

f2r6
...

f12r0

f12r1

f12r2

f12r3

f12r4

f12r5

f12r6



















































































.

In order to construct an appropriate embedding space, we chose the largest tree
appearing in the minimalist state description. The tensor product representation of
every treet ∈ TA is then embedded into that space by left-multiplication of the tree-
roles with sufficient tensor powers

r⊗p
2 = r2⊗ r2⊗·· ·⊗ r2

(p times) of the mother role, where the exponentp∈ N0 is different for every tree.

Finally, we have to construct the tensor product representation for the state de-
scriptions of a minimalist bottom-up processor as described in Sec. 3.4. Here, we bind
all minimalist expressions to only one rolep0 for the state description. For the ten-
sor product representation, we simply choosep0 = 1, i.e. the scalar unit. As a result,
all tree representing vectors become linearly superimposed in the state description
(Smolensky and Legendre 2006a).
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4.2 Fractal Tensor Product Representation

Gerth and beim Graben (2009) introduced a different encoding called fractal ten-
sor product representationwhich is a combination of the arithmetic description in
the previous section and scalar Gödel encodings (beim Graben and Potthast 2009,
Gerth and beim Graben 2009). For a fractal representation weencode the three tree
rolesr0, r1, r2 localistically by the canonical basis vectors of three-dimensional vec-
tor space as above. However, fillers for minimalist featuresare represented by integer
numbersg( fi) from a Gödel encoding. The Gödel codes used in our example are
shown in Tab. 2.

Filler fi Code
d 0
= d 1
v 2
= v 3
t 4
= t 5
+CASE 6
−case 7
+I 8
−i 9
> 10
< 11

Table 2 Fractal encoding for minimalist lexicon in Fig. 2.

The role vectors of the tree positions are mapped onto three-dimensional vectors
in the same way as described in Sec. 4.1. The only difference is the encoding of the
positions of the lexical items in the feature array. Here, the rolessk are encoded by
fractional powersN−k of the total number of fillers, which isN = 12 andk denotes
thek-th list position. The following example shows the lexical entry for “love” and
its fillers represented as Gödel numbers:

Llove=









= d 1
v 2
−i 9
love









,

It becomes described by the sum of (tensor) products of Gödel numbers for the
fillers and fractions for the list positions:

g(Llove) = 1×12−1+2×12−2+9×12−3 = 0.1024.

The next example illustrates the encoding of a subtree, consider the tree:
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<





v

−i
love





[

−case
deadlines

]

Its encoding is given through

g(<)⊗ r2⊕g(Ll )r0⊕g(Lr)⊗ r1

= 11×12−1





0
0
1



+(2×12−1+9×12−2)





1
0
0



+7×12−1





0
1
0





=





0.229
0.583
0.917



 , (17)

whereLl andLr denote the feature arrays of the left and right leaf. Complextrees are
again represented by Kronecker products (see Sec. 4.1 for details).

The state description of the algorithm is mapped step by steponto the fractal
tensor product representation. At first, each leaf in the tree is encoded in an enumer-
ation of fractals. In the second step the encoding of the whole state description is
achieved by recursively binding minimalist trees as complex fillers to 3-dimensional
role vectors. Finally the representation of all trees in thestate description is linearly
superimposed in a suitable embedding space.

4.3 Results

In this section we present the results of the applications obtained in the previous
sections (Sec. 4.1, Sec. 4.2).

The final derivation of the minimalist algorithm (Sec. 2.5) results in a matrix
which is the state space trajectory. Each column stands for one derivational step in
form of a vector in a high-dimensional embedding space. The dimensions of the final
embedding space ared = 78732 for the arithmetic representation andd = 6561 for
the fractal tensor product representation.

For visualization purposes the data have to be compressed. Acommon technique
in multivariate statistics is the principal component analysis (PCA), which has been
used as an observable model previously (beim Graben et al 2008a, Gerth and beim Graben
2009). Before applying the PCA the trajectories are standardized usingz-transformation
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to obtain a transformed distribution with zero mean and unitvariance. Then the great-
est variance in the data is in the direction of the first principal component, the second
greatest variance is in the direction of the second principal component and so on.
Plotting the first, PC#1, and the second, PC#2, principal component as observables
against each other, entails a two-dimensionalphase portraitas an appropriate visual-
ization of the processing geometry.

First, we present the phase portrait and the harmony time series from Def. 36 of
the arithmetic representation for sentence (1) in Sec. 2.5 in Fig. 16.

Figure 16(a) shows the phase portrait in principal component space. Each parse
step is subsequently numbered. Figure 16(b) presents the temporal development of
the harmony function.

The derivation unfolds as described in Sec. 2.5. The initialstate description (step
1) represents the lexicon and starts in coordinate(−1.72,−1.43) in Fig. 16(a) with a
harmony value ofH =−6.49 [Fig. 16(b)]. As the parse continues the harmony trajec-
tory climbs steadily upwards. In parse step 3ε is merged to the tree [Fig. 16(a)]: co-
ordinate(−3.83,−7.3)). Interestingly the graph of the harmony reaches a local min-
imum inH =−6.08 here and continues again upwards until parse step 8 [Fig. 16(a)]:
coordinate(−5.05,15.70); Fig. 16(b):H =−4.76. In this step the subject “Douglas”
is moved upwards leading to the final phonetic, but not yet fully syntactically parsed,
representation of the sentence. In the end the graphs reach their final states in coordi-
nate(−2.51,−0.71)[Fig. 16(a)] and inH = 0 [Fig. 16(b)].
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Fig. 16 Results for the arithmetic representation (Sec. 4.1). (a) Phase portrait of the first principal com-
ponent, PC#1, versus the second principal component, PC#2.(b) Harmony time series from Def. 36.

Figure 17 shows the observables for the processing mapped onto the fractal repre-
sentation. Figure 17(a) displays the phase portrait in principal component space. Be-
sides the apparent nonlinearity, one realizes another interesting property of the fractal
representation: While the minimalist processing unfolds,the feature arrays contract.
This is reflected by the increasing phase space volume available to the geometric
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dynamics. As above, Fig. 17(b) illustrates the temporal development of the harmony
function. Again, the initial state description representsall entries in the lexicon which
starts in coordinate(−0.03,0.07) in Fig. 17(a) with a harmony value ofH = −2.63
in Fig. 17(b). In comparison to Fig. 16(a) the representations of the first seven parse
steps stay close to each other before deviating to coordinate (−0.25,6.09) in step 8.
The harmony curve in figure Fig. 17(b) exhibits a downwards trend. Like in Fig. 16(b)
the graph of the harmony reaches a local minimum in parse step3 (H =−3.4) when
ε is merged to the tree [Fig. 17(a)]: coordinate(−7.3,−5,8). Finally the end states
are reached in coordinate(6.8,−0.94) [Fig. 17(a)] and in a harmony value ofH = 0
[Fig. 17(b)].
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Fig. 17 Results for the fractal representation (Sec. 4.2). (a) Phase portrait of the first principal component,
PC#1, versus the second principal component, PC#2. (b) Harmony time series from Def. 36.

Table 3 summarizes the evolution of harmonies for both representations.

Representation Step: 1 2 3 4 5 6 7 8 9
arithmetic (Sec. 4.1) −6.49 −5.96 −6.08 −5.3 −5.36 −5.08 −4.94 −4.76 0

fractal (Sec. 4.2) −2.63 −2.97 −3.4 −3.33 −3.6 −3.8 −3.74 −3.71 0

Table 3 Harmony time series for both tensor product representations.

Finally, we construct HMGs from these data by assigning harmony differences
to the features of the minimalist lexicon as follows: First,we compute harmony dif-
ferences∆Hk = H(wk+1)−H(wk) between successive processing steps from Tab. 3.
Then, the difference∆Hk is assigned to either a selector or a licensor that triggers the
transition fromwk to wk+1 while the corresponding basic categories or licensees are
weighted with zero.

Figure 18 depicts the resulting HMG lexicon for the arithmetic representation
(Sec. 4.1).
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Fig. 18 Harmonic minimalist lexicon of sentence (1) obtained from arithmetic representation (Sec. 4.1).

Moreover, Fig. 19 shows the HMG lexicon for the fractal representation (Sec. 4.2).
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Fig. 19 Harmonic minimalist lexicon of sentence (1) obtained from fractal representation (Sec. 4.2).

5 Discussion

In this paper we developed a geometric representation theory for minimalist gram-
mars (MG). We resumed minimalist grammars in terms of partial functions acting
on term algebras of trees and feature arrays. Those complex data structures were
mapped onto vectors in a geometric space (known as the Fock space (Haag 1992,
Smolensky and Legendre 2006a)) using filler/role bindings and tensor product repre-
sentations (Smolensky and Legendre 2006a, Smolensky 2006,beim Graben and Potthast
2009). We were able to prove that the minimalist structure-building functions merge
and move can be realized as piecewise linear maps upon geometric vector spaces. In
order to present a proof-of-concept, we generalized the merge and move functions to-
wards state descriptions of a simple derivation procedure for minimalist trees which
also found a suitable realization in representation space.In addition, we suggested
a harmony function measuring the distance of an intermediate processing state from
a well-formed final state in representation space that gave rise to an extension of
MG towards harmonic MG (HMG). This harmony observable couldbe regarded as a
metric for processing complexity. While our proofs essentially relied on faithful rep-
resentations, we used two different kinds of non-faithful,distributed representations
in our numerical applications. Firstly, we employed arithmetic vector space encod-
ings of minimalist features, roles and trees. Secondly, we used fractal tensor product
representations that combine arithmetic vector spaces with numeric Gödel encod-
ings. For both cases, we presented phase portraits in principal component space and
harmony time series of the resulting minimalist derivations. Finally, we derived the
corresponding HMGs from simulated harmony differences.
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Our theory proves that sophisticated grammar formalisms such as MG can be re-
alized in a geometric representation. This would be a first step for dynamic cognitive
modeling of an integrated connectionist/symbolic (ICS/DCM) architecture for pro-
cessing minimalist grammars. Since natural languages tentatively belong to the same
complexity class of mildly context-sensitive languages (Shieber 1985, Stabler 2004),
ICS/DCM architectures are principally able to process natural language. However,
the simple processing algorithm used in the present study just for illustrating the rep-
resentation theory, is not a sound and complete minimalist parser (Harkema 2001,
Mainguy 2010, Stabler 2011). Therefore, future work towards psycholinguistically
more plausible processing models, would comprise the development of a geomet-
ric representation theory for chain-based minimalism and for multiple context-free
parsing (Harkema 2001, Stabler and Keenan 2003).

Moreover, processing minimalist grammars by ICS/DCM architectures straight-
forwardly provides a notion of harmony. However, a proper treatment of HMG would
require further investigations to be carried out: Our definition of harmony in Def. 36
combines a particular metric (e.g. Euclidian) with one well-formed reference state
wT for minimalist processing, while harmony in ICS is defined asa general quadratic
form only depending on the synaptic weight matrix. Therefore, one has to examine
how these expressions would transform into each other. Moreover, HMG lexicons in
the sense of Def. 35 could also be trained from large text corpora, e.g., in order to
explain gradience effects. Then one has to check how subsymbolic harmony would
be related to soft-constraint harmony obtained from corpusstudies.

The requirements of our theory for tensor product constructions to be faithful
representations of minimalist processing lead to extremely high-dimensional embed-
ding spaces. These spaces contain extremely few symbolically meaningful states.
Therefore, numerical application on common workstations is only feasible by us-
ing compressed and thus non-faithful representations. Yet, non-faithful representa-
tions are also interesting for more principal reasons, as they allow for memory ca-
pacity constraints, e.g. by means of graceful saturation inneural network models
(Smolensky and Legendre 2006a, Smolensky 2006). Several possible compression
techniques have been suggested in the literature, e.g. contraction (i.e. outtraceing),
circular convolution, holographic reduced representations, or geometric algebra (Coecke et al
2011, Aerts et al 2009, Plate 2003, Smolensky and Legendre 2006a, Smolensky 2006,
beim Graben and Potthast 2009). It would therefore be necessary to generalize our
current theory to compressed representations, including an assessment of the entailed
representation errors. We leave this issue for future work.

Another important aspect of our work concerns the relationship between mini-
malist grammar and compositional semantics. On the one hand, it is straightforward
to include semantic features into minimalist lexicons, e.g. as type-logical expressions
(Niyogi and Berwick 2005). On the other hand, this is somewhat redundant because
the very same information is already encoded in the minimalist features (Kobele
2006). Vector space semantics appears as a very powerful tool for combining corpus-
driven latent semantic analysis (Cederberg and Widdows 2003) with compositional
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semantics based on compressed tensor product representations (Blutner 2009, Aerts
2009, Coecke et al 2011). In our geometric representation theory, syntactic roles and
thereby also semantic functions are encoded by node addresses in high-dimensional
tensor products of role vectors for tree positions. Therefore, one should seek for ap-
propriate unbinding maps that could be combined with their semantic counterparts
(Coecke et al 2011). Also this promising enterprise is left for future work.
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