
HAL Id: hal-02534063
https://hal.science/hal-02534063

Submitted on 6 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Drawing Interactive Euler Diagrams from Region
Connection Calculus Specifications

François Schwarzentruber

To cite this version:
François Schwarzentruber. Drawing Interactive Euler Diagrams from Region Connection Calculus
Specifications. Journal of Logic, Language and Information, 2015. �hal-02534063�

https://hal.science/hal-02534063
https://hal.archives-ouvertes.fr

Drawing Interactive Euler Diagrams from Region

Connection Calculus Specifications

François Schwarzentruber

November 13, 2015

Abstract

This paper describes methods for generating interactive Euler dia-
grams. User interaction is needed to improve the aesthetic quality of the
drawing without writing tedious formal specifications. More precisely, the
user can modify the diagram’s layout on the fly by mouse control. We
prove that the satisfiability problem is in PSPACE and we provide two
syntactic fragments such that the corresponding restricted satisfiability
problem is already NP-hard. We describe (1) an improved local search
based approach, (2) a method inspired from the gradient method and a
hybrid method mixing both (1) and (2). A software tool was implemented
and its implementation is described. We also experimentally compare the
different methods. We first see that the improved local search and the
hybrid method outperforms the local search from the literature and the
gradient method for generating a diagram. Concerning interaction, the
local search approach is not suitable but hybrid method and gradient
method give both good results in terms of quality of drawings and stabil-
ity. Specifications are written using region connection calculus (RCC-8),
radius constraints and disjunctions. Euler diagrams are described as set
of circles.

1 Introduction

Euler diagrams are pictures to understand relations between sets representing
some concepts. In such pictures, sets (= concepts) are represented as regions
in the plane and inclusions or intersections of those regions respectively depict
inclusions or intersections of the corresponding sets. Euler diagrams are used in
a wide range of application areas: medical data, biosciences, classification [21].

For instance, Figure 1 shows an Euler diagram representing the relations
between the complexity classes P, NP, coNP, PSPACE, EXPTIME, NEXPTIME,
coNEXPTIME and decidable [16] as many computer scientists may believe they
are. For instance, P ⊆ NP is represented by the fact that the disk corresponding
to P is included in the disk corresponding to NP.

Euler diagrams can be drawn in a generic image editing software or a ded-
icated software as SketchSet [34]. Nevertheless, for some applications, it is

1

PN
P

co
N
P

PSPACE

EXPTIME

N
E
X
P
T
IM

E

co
N
E
X
P
T
IM

E

decidable

Figure 1: Euler diagram generated by our tool

convenient for the input to be an abstract specification of the Euler diagram.
The diagram is then automatically generated from an abstract specification, for
instance:

Specification

(*)

{
b included in a,
c included in a,
b and c partially overlap

}
Generation

Euler diagram

a

bc

Automated generation is valuable. First, there is no effort spent to generate
diagrams by hand and the generations can be applied to a huge quantity of di-
agrams. For instance, one may want to automatically generate Euler diagrams
for several knowledge bases, e.g., knowledge bases are expressed in description
logic ([3], [32]). Secondly the generation software itself certifies that generated
Euler diagrams respect their specifications (or pinpoints which constraints are
not satisfied in case the generated diagram does not fully satisfy to the specifi-
cation).

Nevertheless, we claim that abstract specifications are not enough for spec-
ifying nice diagrams. For instance the following three Euler diagrams (i), (ii)
and (iii) respect the same specification (*) given above.

2

a

bc

a

cb

a

cb

(i) (ii) (iii)

Indeed, there are subjective requirements that are tedious to express as part
of an abstract specification: for instance, one would prefer the Euler diagram
(iii) to (i) and (ii) for aesthetic reasons. Therefore, we want generated Euler
diagrams to be interactive, that is, we want to be able to move and resize circles
of the diagram with a pointing device (mouse, etc.). More precisely, when
interacting with a given Euler diagram, we want the initial Euler diagram to be
updated so that it respects the user interaction while continuing to satisfy the
abstract specification:

Initial Euler diagram
that respects
the specification

Specification

User interaction

Update

New Euler diagram
that takes the
user interaction
in account and
that still respects
the specification

Furthermore, the drawing should be updated as smooth as possible with
respect to the user interaction. We here refer to this feature as stability (we
here borrow the vocabulary used for differential equations [12]). Technically,
stability is measured by the distance between the initial drawing and the new
drawing.

This paper presents a new version of the proof-of-concept software tool for
drawing Euler diagrams by constraint solving with local search presented at
JELIA 2014 [26].

Beyond the JELIA 2014 version, we give a new lower bound result for a
fragment of the specification language (Proposition 3). We also significantly
improved the algorithms for generation and user interaction.

• First, we improved the definition of the objective functions (see Subsec-
tion 4.1): now the value of an objective function represents the number of
pixels in default for respecting a constraint.

• Secondly, we propose an improved version of local search (see Subsec-
tion 4.3): the more a circle is involved in unsatisfied constraints, the more
it is inclined to be modified.

3

Local search Gradient method
Speed
Few deadlocks
Stability

Table 1: Advantages of the local search and gradient method

RCC-8-relations Intuitive meanings
DC(a, b) circles a and b are disconnected
EC(a, b) circles a and b are externally connected
PO(a, b) circles a and b partially overlap
TPP (a, b) circle a is a tangential proper part of b
TPP−1(a, b) circle b is a tangential proper part of a
NTPP (a, b) circle a is a non-tangential proper part of b
NTPP−1(a, b) circle b is a non-tangential proper part of a
EQ(a, b) circles a and b are equal

Table 2: Intuitive meanings of RCC-8-relations

• We developed a new method based on the gradient method (see Section 5).

• We developed a hybrid method consisting in applying both gradient method
and the improved version of local search alternatively (see Section 6).

• We also provide an experimental comparison of the methods (see Sec-
tion 8). We claim here that the hybrid version combines the advantages
of both the gradient method and the local search. The hybrid version is
suitable for drawing Euler diagrams where interaction plays an important
role.

On the one hand, gradient method is more efficient to find (local) minima
than local search since the search is guided. On the other hand, if the new
solution is not better, the drawing is no longer improved. We here refer to these
bad behaviors as deadlocks. On the contrary, as local search neighborhoods are
bigger, we have fewer deadlocks as with the gradient method. Table 1 sums the
advantages of the two methods.

Region connection calculus [18] is a logic for reasoning about regions and
topological constraints. It provides eight binary relations over regions (see Ta-
ble 2 and Figure 2). Our proof-of-concept uses region connection
calculus (RCC-8) as a specification language and sets of circles as models1.
The reason is that semantics of RCC-8-predicates on circles are easily trans-
lated as objective functions used in the search algorithms (local search, etc.).

1The correct term should be ‘disks’ instead of ‘circles’ since a disk of radius r and center
C also contain point whose distance from C are smaller than r. But we use here the term
‘circles’ as in our JELIA paper [26] and related work [30].

4

a

b

a

b

a

b

a

b

DC(a, b) EC(a, b) PO(a, b) TPP (a, b)

a
b

a
b

b
a a

b

TPP−1(a, b) NTPP (a, b) NTPP−1(a, b) EQ(a, b)

Figure 2: The eight RCC-8-relations in pictures

Interestingly, RCC-8 provides topological features as ‘sets a and b are exter-
nally connected’. It may be used to design Euler diagrams for math courses
involving sets in a topological space2 Note that RCC-8 is less expressive than
abstract description ([22], [30]) used by some other tools for generating Euler
diagrams (see subsection 9.1).

The paper is organized as follows. In Section 2 we describe the specifica-
tion language. Section 3 addresses the complexity of the satisfiability problem.
Section 4 is dedicated to the improvement of the local search procedure. In
Section 5, we present the variant of the gradient method. Section 7 presents
the implementation of the hybrid method. Experimental results are presented
in Section 8. Section 9 reviews related work. Perspectives are provided in the
concluding Section 10.

2 Specification language

In this section, we present the language used to express constraints on circles in
order to generate an Euler diagram and maintain an Euler diagram that satisfies
the required abstract specification when the user interacts with it. It is the same
language as in the first version of the tool [26]. The language proposes the eight
predicates of Region connection calculus (RCC-8) [18].

2.1 Syntax

The syntax of the language L of constraints is defined by the following rule:

ϕ ::= R(a, b) | radius(a) = r | (ϕ ∨ ϕ)

where a and b range over a set of constant symbols, r is a rational
number and R ranges over the set of relation symbols of RCC-8

2For instance, let us consider the set of all bounded functions f : R → R+ and the
topology defined by the uniform norm. Let b be the subset of functions bounded by 1 in the
neighborhood of ±∞ and a be the subset of functions that converge to 0 in ±∞. As the
boundary of b is the set of bounded functions that converge to 1 in ±∞, we should have the
constraint NTPP (a, b).

5

{DC,EC,PO, TPP, TPP−1, NTPP,NTPP−1, EQ}. Constant symbols de-
note circles. Intuitive meanings of RCC-8-relations are given in Table 2 and
Figure 2. The construction radius(a) = r is read as ‘the radius of the circle a
is r’ and the construction (ϕ1 ∨ ϕ2) is read as ‘ϕ1 or ϕ2’.

Example 1 A specification corresponding to the drawing shown Figure 1 is the
following set of formulas:
{NTPP (P,NP), NTPP (P, coNP), NTPP (NP,PSPACE),
NTPP (PSPACE,EXPTIME), NTPP (EXPTIME,NEXPTIME),
NTPP (EXPTIME, coNEXPTIME), NTPP (NEXPTIME, decidable),
NTPP (coNEXPTIME, decidable), PO(NP, coNP),
PO(NEXPTIME, coNEXPTIME), radius(P) = 30, radius(NP) = 50,
radius(coNP) = 50, radius(PSPACE) = 80, radius(EXPTIME) = 120,
radius(NEXPTIME) = 180, radius(coNEXPTIME) = 180,
radius(decidable) = 250}.

Example 2 Let us give two examples that illustrate the use of disjunctions:

• circle a is included in b: {TPP (a, b) ∨NTPP (a, b)};

• borders of a and b intersect in a single point:

{EC(a, b) ∨ TPP (a, b) ∨ TPP (b, a)}.

2.2 Semantics

In this subsection, we explain how drawings are considered as first order models.
Models are pairs M = 〈C, σ〉 where:

• C is a non-empty set of circles of non-zero radius in the plane (for all
c ∈ C, we respectively denote by c.x, c.y and c.r > 0 the abscissa, the
ordinate and the radius of the circle c ; we denote by c.c the center of c);

• σ is an interpretation function that assigns to each constant symbol an
element in C. σ(a) is the circle named a in the model.

Example 3 The drawing on the right is represented by the model
M = 〈C, σ〉 where

• C contains:

– a circle ca such that ca.x = 0, ca.y = 0, ca.r = 2;

– a circle cb such that cb.x = −0.5, cb.y = 0.2, cb.r = 1;

– a circle cc such that cc.x = 0.5, cc.y = −0.2, cc.r = 1.

• and σ is such that σ(a) = ca, σ(b) = cb and σ(c) = cc.

a

cb

By abuse of notation, we write a instead of σ(a) when no confusion can arise.
Now let us define the truth conditions as follows. We define a relation M |= ϕ
saying that the constraint ϕ is true in the model M. In our context, M |= ϕ
means that the Euler diagram M respects the constraint ϕ. In the following

6

definition, the number d(a.c, b.c) is the Euclidean distance between the centers
of a and b. Formally:

d(a.c, b.c) =
√

(a.x− b.x)2 + (a.y − b.y)2.

Definition 1 ()
Let M = 〈C, σ〉 be a model. We define the relation M |= ϕ by induction on
ϕ ∈ L as follows:

1. M |= DC(a, b) iff d(a.c, b.c) > a.r + b.r;
2. M |= EC(a, b) iff d(a.c, b.c) = a.r + b.r;
3. M |= PO(a, b) iff d(a.c, b.c) ∈

]
|a.r − b.r|, a.r + b.r

[
;

4. M |= TPP (a, b) iff d(a.c, b.c) = b.r − a.r (and a.r ≤ b.r);
5. M |= NTPP (a, b) iff d(a.c, b.c) < b.r − a.r (and a.r < b.r);
6. M |= TPP−1(a, b) iff d(a.c, b.c) = a.r − b.r (and b.r ≤ a.r);
7. M |= NTPP−1(a, b) iff d(a.c, b.c) < a.r − b.r (and a.r > b.r);
8. M |= EQ(a, b) iff a.c = b.c and a.r = b.r;
9. M |= radius(a) = r iff σ(a).r = r;
10. M |= (ϕ1 ∨ ϕ2) iff M |= ϕ1 or M |= ϕ2.

Figure 3 shows the intervals where the quantity d(a.c, b.c) belongs depending
on the clause. For instance, the fact that a and b partially overlap corresponds
to d(a.c, b.c) ∈

]
|a.r−b.r|, a.r+b.r

[
(clause 3). The equality d(a.c, b.c) = a.r+b.r

corresponds to the fact that a and b are externally connected (clause 2) and the
equality d(a.c, b.c) = |a.r − b.r| corresponds to the fact b is a tangential proper
part of a (clause 4) (or a is a tangential proper part of b).

Example 4 If M is the model defined in Example 3, then we have:

M |= PO(b, c), M |= NTPP (b, a), and M 6|= DC(b, a).

3 Generation and satisfiability problem

In this section, we formally define the generation problem of an Euler diagram
from a specification and the satisfiability problem which is the corresponding
decision problem. We then recall some previous results [26] and new results
concerning the lower bound complexity of the satisfiability problem.

3.1 Definitions

The problem we tackle here, called the generation problem is defined as follows:
• input: a finite set I = 〈ϕ1, . . . , ϕn〉 of constraints in L;

• output: a model M such that for all i ∈ {1, . . . , n}, M |= ϕi.
The set I is also called a specification. The corresponding decision problem,

called the satisfiability problem and noted L-SAT takes the same input and
outputs yes, if and only if there exists a modelM such that for all i ∈ {1, . . . , n},
M |= ϕi:

7

1.

a.r + b.r

2.
×

3.
×

4.
×

5.

×

|a.r − b.r|

Figure 3: Intervals for d(a.c, b.c) for clauses 1-5 of Definition 1

Specification Satisfiability problem yes/no

3.2 Upper bound

We recall the upper bound already given in [26] and we provide its proof.

Proposition 1 L-SAT is in PSPACE.

Proof.
We polynomially reduce L-SAT to the satisfiability problem of a formula

in the existential fragment of the first order theory over real numbers FO∃(R)
which is in PSPACE [4].

Reduction

L-SAT

FO∃(R)-SAT

The reduction goes as follows. Let us consider an instance I = 〈ϕ1, . . . , ϕn〉.
Let c1, . . . , cm be an enumeration of the constant symbols appearing in I. We

8

define χI to be the following FO∃(R)-formula:

∃c1.x,∃c1.y,∃c1.r, . . . ,∃cm.x,∃cm.y,∃cm.r, tr(ϕ1) ∧ · · · ∧ tr(ϕn) ∧
m∧
i=1

(ci.r > 0)

where tr is the translation of the constraints in the first order theory over real
numbers given in Definition 1. More precisely:

tr
(
DC(a, b)

)
= d(a.c, b.c)2 > (a.r + b.r)2

tr
(
EC(a, b)

)
= d(a.c, b.c)2 = (a.r + b.r)2

tr
(
PO(a, b)

)
= (a.r − b.r)2 < d(a.c, b.c)2∧

d(a.c, b.c)2 < (a.r + b.r)2

tr
(
TPP (a, b)

)
= d(a.c, b.c)2 = (b.r − a.r)2 ∧ a.r ≤ b.r

tr
(
TPP−1(a, b)

)
= d(a.c, b.c)2 = (a.r − b.r)2 ∧ b.r ≤ a.r

tr
(
NTPP (a, b)

)
= d(a.c, b.c)2 < (b.r − a.r)2 ∧ a.r < b.r

tr
(
NTPP−1(a, b)

)
= d(a.c, b.c)2 < (a.r − b.r)2 ∧ a.r > b.r

tr
(
EQ(a, b)

)
= a.x = a.x ∧ a.y = b.y ∧ a.r = b.r

tr
(
radius(a) = r

)
= a.r = r

tr
(
(ϕ1 ∨ ϕ2)

)
= tr(ϕ1) ∨ tr(ϕ2)

where d(a.c, b.c)2 stands for (a.x − b.x)2 + (a.y − b.y)2. For instance,
tr(DC(a, b) ∨ EC(a, b)) is the following first order formula

(d(a.c, b.c)2 > (a.r + b.r)2) ∨ (d(a.c, b.c)2 = (a.r + b.r)2

and if I = 〈EC(a, c), DC(a, b) ∨ EC(a, b)〉, then

χI = ∃a.x, ∃a.y,∃a.r∃b.x,∃b.y,∃b.r∃c.x,∃c.y,∃c.r
((d(a.c, c.c)2 = (a.r + c.r)2)∧(
(d(a.c, b.c)2 > (a.r + b.r)2) ∨ (d(a.c, b.c)2 = (a.r + b.r)2)

)
∧

a.r > 0 ∧ b.r > 0 ∧ c.r > 0.

For any ϕ, tr(ϕ) can be computed in polynomial time in the length of ϕ (see
definition of tr above). Thus, computing χI from I can be done in polynomial
time. Therefore, we have a procedure in polynomial space for solving L-SAT.
�

3.3 Lower bound

In [26], it was already proven that L-SAT is NP-hard. Proposition 2 restates
more precisely that result by exhibiting explicitly the syntactic fragment of L
used in the proof. Then Proposition 3 gives a new syntactic fragment of L for
which the satisfiability problem is also NP-hard.

Proposition 2 The satisfiability problem where instances does not contain any
construction radius(a) = r and such that we allow disjunctions only on clauses
of the form:

• EC(ref, a) ∨ TPP (ref, b);

• clauses with three disjuncts of the form EC(ref, a) or TPP (ref, b)

9

where ref is a given circle symbol and a, b are arbitrary circle symbols, is NP-
hard.

Proof.
Let us polynomially reduce 3SAT (the satisfiability problem of a proposi-

tional formula in conjunction normal form where each clause has three literals)
to our restricted satisfiability problem.

Reduction

3SAT

Our restricted satisfiability problem

Let us consider an instance of 3SAT: χ =
∧k
i=1 `

i
1 ∨ `i2 ∨ `i3 where `ij are

literals, i.e., propositions or negations of a proposition. We construct an in-
stance Iχ of our restricted satisfiability problem as follows. For all propositions
p appearing in χ, we introduce a new constant symbol cp. We also introduce an
extra new constant symbol denoted by ref. Intuitively:

• p is true is encoded by EC(ref, cp);

• p is false is encoded by TPP (ref, cp).

The instance Iχ is the set that contains the following constraints:

• EC(ref, cp) ∨ TPP (ref, cp) for all propositions p;

• tr(`i1)∨ tr(`i2)∨ tr(`i3) for all i ∈ {1, . . . , k} where tr(p) = EC(ref, cp) and
tr(¬p) = TPP (ref, cp) for all propositions p.

We claim that the formula χ is satisfiable if and only if Iχ is a positive instance
of our restricted satisfiability problem.
⇒ Let ν be a valuation such that ν |= χ. LetM = 〈C, σ〉 where C contains:

• a circle cref such that cref .x = 0, cref .y = 0, cref .r = 100;

• a circle c> such that c>.x = 150, c>.y = 0, c>.r = 50;

• a circle c⊥ such that c⊥.x = 50, c⊥.y = 0, c⊥.r = 50.

and where σ is such that σ(ref) = cref and for all propositions p,

σ(cp) =

{
c> if ν makes p true
c⊥ if ν makes p true.

We have M |= Iχ.
⇐ Let M be a model such that M |= Iχ. We define a valuation ν as

follows. For all propositions p,

• ν makes true p if M |= EC(ref, cp);

• ν makes false p if M |= TPP (ref, cp).

10

The valuation ν is well-defined by definition of Iχ and because a model can
not satisfy both EC(ref, cp) and TPP (ref, cp) at the same time (recall that ref
and cp have strictly positive radius). We have ν |= χ.

Furthermore, Iχ can be computed in polynomial time in the length of χ.
Hence, as 3SAT is NP-hard, our restricted satisfiability problem is NP-hard. �

Proposition 3 We also have NP-hardness by only using the EC predicate and
the radius predicate and only one occurrence of the DC predicate.

Proof.
Similarly to the proof of Proposition 2, let us still polynomially reduce 3SAT

to L-SAT. Let us consider an instance of 3SAT: χ =
∧k
i=1 `

i
1 ∨ `i2 ∨ `i3 where `ij

are literals, i.e., propositions or negations of a proposition. We construct an in-
stance Iχ of our restricted satisfiability problem as follows. For all propositions
p appearing in χ, we introduce a new constant symbol cp. We also introduce
the following new extra constant symbols: F , T , a, b and c. Intuitively:

• p is true is encoded by EC(T, cp);

• p is false is encoded by EC(F, cp).

The instance Iχ is the set that contains the following constraints:

• radius(T) = 100, radius(F) = 100, radius(a) = 100, radius(b) = 100;

• EC(T, c), EC(a, c), EC(b, c) , EC(F, c);

• EC(T, a), EC(a, b), EC(b, F);

• DC(T, b);

• for all propositions p, radius(cp) = 50;

• for all propositions p, EC(T, cp) ∨ EC(F, cp);

• tr(`i1) ∨ tr(`i2) ∨ tr(`i3) for all i ∈ {1, . . . , k} where tr(p) = EC(T, cp) and
tr(¬p) = EC(F, cp) for all propositions p.

We claim that the formula χ is satisfiable if and only if Iχ is a positive
instance of our restricted satisfiability problem.
⇒ Let ν be a valuation such that ν |= χ. LetM = 〈C, i〉 where C contains:

• a circle cc such that cc.x = 0, cc.y = 0, cc.r = 100;

• a circle cT such that ctrue.x = 200, ctrue.y = 0, ctrue.r = 100;

• a circle cF such that cF .x = −200, cF .y = 0, cF .r = 100;

• a circle ca such that ca.x = −100, ca.y = 100
√

3, ca.r = 100;

• a circle cb such that cb.x = 100, cb.y = 100
√

3, cb.r = 100;

• a circle ctrue such that ctrue.x = −350, ctrue.y = 0, ctrue.r = 50;

11

• a circle cfalse such that cfalse.x = 350, cfalse.y = 0, cfalse.r = 50;

and where σ is such that σ(a) = ca, σ(b) = cb, σ(c) = cc, σ(T) = cT ,
σ(F) = cF and for all propositions p,

σ(cp) =

{
ctrue if ν makes p true
cfalse if ν makes p true.

We have M |= Iχ.
⇐ Let M be a model such that M |= Iχ. We define a valuation ν as

follows. For all propositions p,

• ν makes true p if M |= EC(T, cp);

• ν makes false p if M |= EC(F, cp).

The definition of ν is correct by definition of Iχ. The important argument
is that M can not make both EC(T, cp) and EC(F, cp) true at the same time.
Indeed, suppose by contradiction that EC(T, cp) and EC(F, cp) are true. Then
d(T.c, F.c) ≤ 300. But, as the model satisfy Iχ, the geometrical configuration
of T, c, F, a, b makes that triangles (T.c, a.c, c.c), (a.c, c.c, b.c), (c.c, b.c, F.c) are
equilateral and distinct. It imposes points T.c, c.c and F.c to be aligned and
d(T.c, F.c) = d(T.c, c.c) + d(c.c, F.c) = 200 + 200 = 400. This contradicts
d(T.c, F.c) ≤ 300. So, EC(T, cp) and EC(F, cp) can not be true at the same
time. And we have, ν |= χ.

Furthermore, Iχ can be computed in polynomial time in the length of χ.
Hence, as 3SAT is NP-hard, our restricted satisfiability problem is NP-hard.

For example, the instance 3SAT p ∨ q ∨ q is translated by the following
constraints (expressed here as an input of our tool):

circle("T");
circle("F");
circle("c");
circle("a");
circle("b");

addConstraint(EC("T", "c"));
addConstraint(EC("a", "c"));
addConstraint(EC("b", "c"));
addConstraint(EC("F", "c"));
addConstraint(EC("T", "a"));
addConstraint(EC("a", "b"));
addConstraint(EC("b", "F"));

addConstraint(DC("T", "b"));

addConstraint(radius("c", 100));
addConstraint(radius("T", 100));
addConstraint(radius("a", 100));
addConstraint(radius("b", 100));
addConstraint(radius("F", 100));

circle("cp");
circle("cq");

addConstraint(radius("cp", 50));
addConstraint(radius("cq", 50));

12

cT F

a b

cq
cp

Figure 4: Model for the translation in the proof of Proposition 3 of the instance
of 3SAT p ∨ q ∨ q

addConstraint(or(EC("T", "cp"), EC("F", "cp")));
addConstraint(or(EC("T", "cq"), EC("F", "cq")));

addConstraint(or(or(EC("T", "cp"), EC("T", "cq")), EC("T", "cq")));

Figure 4 shows a model for the translation in the proof of Proposition 3 of
the instance of 3SAT p ∨ q ∨ q, that is, the specification above.

�

4 Local search

Given a problem instance I = 〈ϕ1, . . . , ϕn〉, we use a local search approach to
determine an Euler diagram respecting the constraints of I. Generally speaking,
local search constitutes a simple optimization approach which improves itera-
tively the current solution based on a neighborhood relation [16]. In our case,
the local search algorithm explores the search space Ω of possible drawings M
of a set of circles with the purpose of finding a feasible drawing satisfying the
predicates (constraints) of the given formula.

In Subsection 4.1, we describe a new soft semantics used in the local search
procedure. In Subsection 4.2, we describe the algorithm and in Subsection 4.3,
we describe a new improvement not presented in [26].

4.1 Soft semantics

Usually in logic, semantics is given in terms of truth values as we saw in Sub-
section 2.2: a formula ϕ is either true or false in a given model. But, for the
local search algorithm, we need the semantics to be soft : for each constraint ϕ,
we design an objective function whose value is positive and the more its value
is close to zero, the more the constraint is satisfied. In particular, if the value
of the objective function is zero, then the constraint is fully satisfied.

A formula is evaluated according to an objective function obj : L → R,
defined by induction on ϕ as given in Table 3. Now, we interpret obj over a
model M and we denote the evaluation value by obj(ϕ)M. Note that in the

13

Constraints ϕ Objective functions obj(ϕ)
DC(a, b) max(0, 1+(a.r + b.r) - d(a.c, b.c))
EC(a, b) |d(a.c, b.c)− (a.r + b.r)|
PO(a, b) |d(a.c, b.c)−max(a.r, b.r)|
TPP (a, b) |d(a.c, b.c)− (b.r − a.r)|
TPP−1(a, b) |d(a.c, b.c)− (a.r − b.r)|
NTPP (a, b) max(0, d(a.c, b.c) + a.r − αNTPP × b.r)
NTPP−1(a, b) max(0, d(a.c, b.c) + b.r − αNTPP × a.r)
EQ(a, b) d(a.c, b.c) + |a.r − b.r|
radius(a) = r |a.r − r|
ϕ1 ∨ ϕ2 min(obj(ϕ1), obj(ϕ2))

where αNTPP = 0.95.

Table 3: Objective functions

constraint for NTPP (a, b), the constant αNTPP represents the ratio of radius
of the outer circle b defining the region where the inner circle a should be.

The objective functions have been designed as follows. First, objective func-
tions are designed such that its value represents the number of pixels in default.
For instance, if obj(EC(a, b)) = 2, it means that circles a and b are distant
of 2 or that circles a and b are too 2 pixel close. Secondly, when values of
the objective functions are null then the corresponding constraint is satisfied.
Formally:

Proposition 4 If obj(ϕ)M = 0, then M |= ϕ.

Proof.
By induction on ϕ. Let us consider the basic cases DC(a, b), TPP (a, b) and

NTPP (a, b). Let M be a model.

Case ϕ = DC(a, b). Suppose that obj(DC(a, b))M = 0. Thus,

max(0, 1 + (a.r + b.r)− d(a.c, b.c)) = 0.

It implies that (a.r + b.r) < d(a.c, b.c). Hence, M |= DC(a, b).

Case ϕ = TPP (a, b). If obj(TPP (a, b))M = 0, then d(a.c, b.c) = (b.r − a.r),
that is M |= TPP (a, b).

Case ϕ = NTPP (a, b). Suppose that obj(NTPP (a, b))M = 0. Both

|d(a.c, b.c) − (b.r−a.r)
2 | and max

(
0, 0001 + a.r−b.r

b.r

)
are positive thus are zero.

0001+ a.r−b.r
b.r ≤ 0 implies b.r > a.r. On the other hand, |d(a.c, b.c)− (b.r−a.r)

2 | =
0. It implies d(a.c, b.c) = (b.r−a.r)

2 < b.r − a.r. Hence M |= NTPP (a, b).

Case ϕ = ϕ1∨ϕ2. The inductive case goes as follows. Suppose the proposition
is true for ϕ1 and ϕ2. Let us prove that the proposition is true for ϕ1 ∨ ϕ2.
Suppose that obj(ϕ1 ∨ ϕ2)M = min(obj(ϕ1)M = 0, obj(ϕ2)M) = 0. It implies
that either obj(ϕ1)M = 0 or obj(ϕ2)M = 0. That is eitherM |= ϕ1 orM |= ϕ2.
To conclude, either M |= ϕ1 ∨ ϕ2. � Note that those objective functions are
established experimentally and prove to be appropriate to guide the local search
algorithm described in the next subsection.

14

4.2 Algorithm

The pseudo-code is defined as follows:

M := generate randomly a drawing
while true do

Mnew := getSolutionInNeighborhood(M)
if Mnew is better than M then

M :=Mnew

endIf
endWhile

The algorithm never stops and keeps improving the current solution M.
To represent a model M (i.e., a drawing), M is considered as a vector, where
indices are constant symbols c and each elementM[c] is a circle represented by
its center (M[c].x,M[c].y) and its radius M[c].r.

The function getSolutionInNeighborhood(M) returns a new
solution Mnew, where for all constant symbols c, Mnew[c].x, Mnew[c].y and
Mnew[c].r are respectively obtained by adding randomly chosen numbers in
an interval [−ε, ε] to M[c].x, M[c].y and M[c].r. That is, a new drawing is
obtained by moving every circle center from its current position to a new po-
sition and modifying slightly each radius (this move operator defines thus the
neighborhood relation of our local search algorithm).

Solutions are compared with the following total order.

Definition 2 ()
Given two candidate solutions (drawings) M,Mnew ∈ Ω,

Mnew is better than M
if∑n

i=1 obj(ϕi)Mnew
≤
∑n
i=1 obj(ϕi)M,

where obj(ϕi)Mnew and obj(ϕi)M are the values of the objective function obj(ϕi)
that corresponds to the ith constraint ϕi for respectively Mnew and M.

Also here is the definition of a good drawing:

Definition 3 ()
The current drawing M is said to be good when

n∑
i=1

obj(ϕi)M < 5

(the value 5 corresponds to 5 pixels of flaw in the satisfaction of constraints ϕi,
see Section 8.4).

15

4.3 Improvement

We here present an improvement of the implementation presented in the JELIA
2014 paper [26] based on the following remark: intuitively, if all constraints
involving circle a are satisfied, there are no reasons to modify circle a. Better,
suppose that circle c is involved in constraint ϕ. The more ϕ is unsatisfied, the
more we may modify circle c. Thus, now the choice of the ε is not uniform for all
circles anymore. Now, we take ε to be proportional to obj(ϕ)M. More precisely,
we take ε to be equal to obj(ϕ)M: we search for a drawing in the neighborhood
of M by moving circles by number of pixels in the same order of magnitude
than the number of pixels in default in the satisfaction of ϕ. Finally, we obtain
the following implementation of getSolutionInNeighborhood:

function getSolutionInNeighborhood(M)
Mnew :=M
for all constraints ϕ ∈ I do

for all circles c involved in ϕ do
ε := obj(ϕ)M
Mnew[c].x :=Mnew[c].x+ rand([−ε, ε])
Mnew[c].y :=Mnew[c].y + rand([−ε, ε])
Mnew[c].r :=Mnew[c].r + rand([−ε, ε])

endFor
endFor
return Mnew

endFunction

where rand([−ε, ε]) chooses uniformly a number in [−ε, ε], meaning that the
probability of picking a number in [α, β] is β−α

2ε for all α, β such that −ε ≤ α ≤
β ≤ ε.

5 Variant of the gradient descent

Contrary to local search, gradient descent [28] is an algorithm where the choice
of the next solution around the current solution is guided directly by the global
objective function. The next solution is computed from the current one by
taking the opposite direction of the derivative of the objective function. For
instance, in 1D, if the global objective function is f(x) = x3−x2 and the current
solution is 5 then, as f ′(x) = 3x2 − 2x and as f ′(5) = 25, the next candidate
solution is 5 − 25ε where ε is a positive real number. First, we describe the
algorithm and then we describe how we implement our variant of our gradient
descent.

5.1 Algorithm

The algorithm has essentially the same structure as for local search:

16

M := generate randomly a drawing
while true do

Mnew := getSolutionGradientV ariant(M)
if Mnew is better than M then

M :=Mnew

endIf
endWhile

where getSolutionGradientV ariant is a function that computes a new so-
lution (see the next subsection).

5.2 Deriving objective functions

Our global objective function to minimize is of the form
∑n
i=1 obj(ϕi) where

ϕ1, . . . , ϕn are the constraints.

Example 5 Suppose that the current drawing M is:

a b

1
0

Suppose that the specification is

〈ϕ1, ϕ2, ϕ3〉 = 〈EC(a, b), radius(a) = 50, radius(b) = 5〉.

Let us use the notation:

~∇obj
(
ϕ
)
(M) =

(
∂obj(ϕ)
∂a.x (M), ∂obj(ϕ)∂a.y (M), ∂obj(ϕ)∂a.r (M),

∂obj(ϕ)
∂b.x (M), ∂obj(ϕ)∂b.y (M), ∂obj(ϕ)∂b.r (M)

)
We have:

~∇obj
(
EC(a, b)

)
(M) = (0, 0, 0, 0, 0, 0)

~∇obj
(
radius(a) = 50

)
(M) = (0, 0, −1, 0, 0, 0)

~∇obj
(
radius(b) = 5

)
(M) = (0, 0, 0, 0, 0, 1)

If we write M = (M[a].x,M[a].y,M[a].r,M[b].x,M[b].y,M[b].r), then the
new drawing Mnew is:

Mnew :=M −α~∇obj
(
EC(a, b)

)
(M)

−β~∇obj
(
radius(a) = 50

)
(M)

−γ~∇obj
(
radius(b) = 50

)
(M)

that is, we slightly augment the radius of a and b and Mnew is:

a b

17

The global objective function initial value was∑3
i=1 obj(ϕi)M = 0 + 40 + 5 = 45.

The global objective function current value is∑n
i=1 obj(ϕi)Mnew

= |20− ((10 + β) + (10− γ))|+ 40− β + (5− δ)
= 45− β − γ + |β − γ| < 45.

Formally, the computation of the new drawing is inspired
from Subsection 4.3:

function getSolutionGradientV ariant(M)
Mnew :=M
for all constraints ϕ ∈ I do

ε := obj(ϕ)M
Mnew :=Mnew − rand([−ε, ε])× ~∇obj

(
ϕ
)
(M)

endFor
return Mnew;

endFunction

where rand([−ε, ε]) chooses uniformly a number in [−ε, ε].

Let us finish this subsection with an example where the gradient method does
not work properly especially when the gradient directions are contradictory.

Example 6 Suppose that the current drawing M is:

a b

1
0

Suppose that the specification is

〈ϕ1, ϕ2, ϕ3〉 = 〈EC(a, b), radius(a) = 50, radius(b) = 50〉.

We have:

~∇obj
(
EC(a, b)

)
(M) = (0, 0, 0, 0, 0, 0)

~∇obj
(
radius(a) = 50

)
(M) = (0, 0, −1, 0, 0, 0)

~∇obj
(
radius(b) = 50

)
(M) = (0, 0, 0, 0, 0, −1)

If we write M = (M[a].x,M[a].y,M[a].r,M[b].x,M[b].y,M[b].r), then the
new drawing Mnew is:

Mnew :=M −α~∇obj
(
EC(a, b)

)
(M)

−β~∇obj
(
radius(a) = 50

)
(M)

−γ~∇obj
(
radius(b) = 50

)
(M)

that is, we slightly augment the radius of a and b and Mnew is:

18

a b

The global objective function initial value was∑3
i=1 obj(ϕi)M = 0 + 40 + 40 = 80.

The global objective function current value is∑n
i=1 obj(ϕi)Mnew

= |20 − ((10 + β) + (10 + γ))| + 40 − β + 40 − δ = 80
and the quality of the drawing has not been improved by one step of our gradient
method.

To avoid the drawback of our gradient method, we will design a method that
combines local search and gradient method in the next section.

6 Hybrid method

The hybrid method consists in alternating between applying local search (see
Section 4 including the improvement described in Subsection 4.3) and applying
our variant of gradient descent (see Section 5). As long as the current drawing is
better than the previous one, we keep the current method and we switch when
one method is not improving the current drawing, as explained in the following
automaton:

Local search Gradient descent

(start)
if the new drawing is
not better

if the new drawing is
not better

if the new drawing is
better

if the new drawing is
better

It is designed to take advantage of both local search and gradient descent.

• In local search, the neighborhood is bigger than for gradient method (see
Figure 5 (a)). When the neighborhood is big enough, we decrease the risk
to reach a low-quality local minimum ([5], p. 298-299). Therefore, local
search is by far much suitable for improving the quality of the solution
than the gradient method.

• On the contrary, in the gradient method (see Figure 5 (b)), the neigh-
borhood is more restricted therefore the method guides more the search
process. Unfortunately we easily reach non global minimums.

As our hybrid method always switches between the two methods, we may
expect that the method is faster than local search while reaching better solutions
that gradient method. Figure 5 (c) tries to explain this fact.

19

(a) local search (b) gradient method (c) hybrid method

Figure 5: Search executions

7 Implementation

Our algorithm is implemented as a web application written in JavaScript.
Figure 6 shows the graphical user interface of our tool.

7.1 Syntax used in the software

In the left part of the screen, the user adds a circle by writing circle(name);

where name is a string for the name of the circle. Constraints are created
with functions. For instance TPP(name1, name2) creates a TPP constraint be-
tween the circle named name1 and the circle named name2. The construction
or(constraint1, constraint2) returns a constraint that represents the dis-
junction of constraint1 and constraint2. The construction
addConstraint(constraint) adds constraint in the set of constraints.
Figure 7 shows the specification of the Euler diagram shown in Figure 1. The
user can add circles and constraints by clicking on the appropriate buttons in
the palette.

7.2 Interaction

The user may assist the search algorithms (local search, gradient method or
hybrid method). During the search, the user can move the circles by drag and
drop and modify the radius of each circle. When the user makes a modification
in the drawing, she directly modifies the current modelM. Those modifications
are directly taken in account in real-time by the search algorithm.

Furthermore, the system guesses new potential constraints to add to the
specification. For all pairs of circles (a, b), for all RCC-8-predicates R, it
proposes the constraint R(a, b) to be added to the guessed constraints when
obj(R(a, b))M < 5 where 5 is a the threshold (see Definition 3).

7.3 Energy consumption

The implementation of algorithms given in Sections 4, 5 and 6 requires a high
amount of computations and thus of energy. It just makes sure that your bat-
tery runs dry right before you can plug it in. To face this issue, the core of the
while true loop is now temporized as follows:

20

1

2 3

4

5

6

7

Figure 6: Graphical user interface. (1) the palette to add constraints. (2)
controls to change the current example. (3) the guessed constraints from the
interaction with the drawing. When the user moves/resizes a circle, the system
guesses new constraints. For instance, if the user moves circle b so that circle
b is outside circle a but touches circle a on the border, the system guesses the
constraint EC(a, b). (4) the current specification. (5) On the bottom left, the
reader may reproduce experiments of Section 8. (6) controls to resume/pause
the algorithm and to change the current strategy (gradient/local search/hybrid).
(7) the drawing itself.

21

circle("P"); circle("NP");
circle("coNP"); circle("PSPACE");
circle("EXPTIME"); circle("NEXPTIME");
circle("coNEXPTIME"); circle("decidable");
addConstraint(NTPP("P", "NP"));
addConstraint(NTPP("P", "coNP"));
addConstraint(NTPP("NP", "PSPACE"));
addConstraint(NTPP("coNP", "PSPACE"));
addConstraint(NTPP("PSPACE", "EXPTIME"));
addConstraint(NTPP("EXPTIME", "NEXPTIME"));
addConstraint(NTPP("EXPTIME", "coNEXPTIME"));
addConstraint(NTPP("NEXPTIME", "decidable"));
addConstraint(NTPP("coNEXPTIME", "decidable"));
addConstraint(PO("NP", "coNP"));
addConstraint(PO("NEXPTIME", "coNEXPTIME"));
addConstraint(radius("P", 30));
addConstraint(radius("NP", 50));
addConstraint(radius("coNP", 50));
addConstraint(radius("PSPACE", 80));
addConstraint(radius("EXPTIME", 120));
addConstraint(radius("NEXPTIME", 180));
addConstraint(radius("coNEXPTIME", 180));
addConstraint(radius("decidable", 250));

Figure 7: Example of a specification

• if the drawing is not good (see Definition 3), the core of the while true
loop is executed every milliseconds;

• if the drawing is good, the core of the while true loop is executed every
seconds.

8 Experiments

In this section, we experiment both the generation of an Euler diagram from a
specification and the interaction of the user. First, we describe how we generate
benchmarks of Euler diagram specifications in Subsection 8.1. Then, we address
the generation and the interaction in respectively Subsections 8.2 and 8.3. Note
that experiments are fully reproducible in the software. We evaluate the hybrid
method (Section 6), the original JELIA 2014 local search described in [26] (but
with the new objective functions described in Table 3, see Section 4), the local
search version including the improvement described in Subsection 4.3 (simply
called local search) and the gradient method (Section 5).

8.1 Specification benchmark

Our generator function has two parameters: the number of circles taken as 6
and the number of constraints taken as 11.

• We generate 6 circles;

22

• We impose radius of circles to be between 20 and 150 (we do not impose
exact constraints radius(a) = r but conditions α ≤ radius(a) ≤ β where
α, β are randomly uniformly chosen such that 20 ≤ α ≤ β ≤ 150);

• We randomly select 11 tuples of circles (a, b) among the 6 circles and for
each of these tuples (a, b), we add a constraint among DC(a, b), EC(a, b),
PO(a, b), TPP (a, b), NTPP (a, b) chosen uniformly;

• We then launch 3000 iterations of the hybrid method. If the final drawing
is good (see Definition 3), we record the specification and the associated
drawing in the benchmark.

The reader may think that 6 circles is not enough. Actually, we limit the
number of circles and we specify a huge range for the radius so that many
specifications are satisfiable. But, as we are interested in small specifications
anyway, we believe that our benchmark is suitable for our purpose. We gener-
ated 1000 specifications (and drawings) as explained above and we stored them
in benchmark.js available online.

8.2 Generation

For example for the specification of Figure 7, a good drawing (see Definition 3)
is produced in approximately less than 0.5 seconds on a Pentium Dual-Core
CPU 2.10 Ghz.

Algorithms for finding a drawing are not complete. We can find examples
where the algorithm is stuck in a local minimum, for instance, example given in
Figure 8. It shows a local minimum for the specification for the hybrid method.
Nevertheless, when the user assists the algorithm, that is, when she moves some
circles that obviously appear to be at wrong positions, the algorithm finds the
global solution.

Now, let us evaluate the generation process, that is, we evaluate how many
iterations we need to obtain a suitable drawing.

8.2.1 Experiments with our benchmark

We evaluate all the methods (hybrid, local search from JELIA 2014, local
search and gradient) on the benchmark described in Subsection 8.1. The bench-
mark algorithm was just to produce specifications such that there exists a good
drawing for it. Now for a fixed specification, we launch 3000 iterations of the
method we want to test (hybrid, local search and gradient). Figure 9 shows an
average (over 1000 specifications) of evolution of the energy, that is, the quan-
tity

∑n
i=1 obj(ϕi)Mt

where t is the number of iterations andMt is the drawing
at step t.

Clearly, the gradient method is out of scope because it converges to non-
global local minimums. On the contrary, local search, local search from JELIA

23

circle("A"); circle("B"); circle("C");
circle("D"); circle("E"); circle("F");
addConstraint(EC("A", "B")); addConstraint(EC("B", "C"));
addConstraint(EC("C", "D")); addConstraint(EC("D", "E"));
addConstraint(EC("E", "F")); addConstraint(EC("F", "A"));
addConstraint(DC("A", "C")); addConstraint(DC("B", "D"));
addConstraint(DC("B", "E")); addConstraint(DC("A", "D"));
addConstraint(DC("C", "E")); addConstraint(DC("A", "E"));
addConstraint(DC("B", "F")); addConstraint(DC("C", "F"));
addConstraint(DC("D", "F"));
addConstraint(radius("A" ,30)); addConstraint(radius("B" ,30));
addConstraint(radius("C" ,30)); addConstraint(radius("D" ,30));
addConstraint(radius("E" ,30)); addConstraint(radius("F" ,30));

A

B

C
D

E
F

A

B
C

D

E
F

Figure 8: A specification, a non global local minimum (left) and global minimum
(right)

0 500 1,000 1,500 2,000 2,500 3,000

0

500

1,000

1,500

2,000

number of iterations t

E
n

er
gy

Hybrid
Local search

Local search (JELIA 2014)
Gradient

Figure 9: Average of evolution of the energy with the number of iterations for
examples generated by the benchmark procedure

24

for t = 1 to 1000 do

A.y := A.y + 1
one iteration of of the evaluated
method

endFor

Figure 10: Algorithm for evaluating interaction with a drawing

2014 and hybrid method are all suitable because they converge to better mini-
mums in average. Figure 9 also shows that the improved local search searches
gives a slightly better final drawing than the hybrid method and the JELIA
2014 local search in general. The following table reports the precise values of
the energy at iteration t = 3000 in average for the four methods:

Gradient Local search Local Hybrid
(JELIA 2014) search

Energy at iteration 383.02 80.13 26.25 56.55
t = 3000 (in average)

Note that according to Figure 9 the hybrid method is faster at the beginning
to give a suitable drawing. For instance, the following table gives how much
iterations it requires for building a drawing whose energy is less that 200 in
average:

Gradient Local search Local Hybrid
(JELIA 2014) search

Number of iterations (never) 594 308 259
for generating a drawing
of energy ≤ 200

8.3 Interaction

Concerning interaction, we evaluate the methods on the benchmark described
in Subsection 8.1. Our experiment consists in simulating the use of the mouse
on drawings. More precisely, depending on the method we test (local search,
gradient method, hybrid method) we execute one of the following loops described
in Figure 10.

In Figure 10, the instruction A.y := A.y + 1 simulates a move of circle A to
the bottom. It simulates a drag and drop of circle A with a uniform speed to the
bottom. After each move, we perform an iteration of local search (see Section
4) or the hybrid method (see Section 6). We note M0 the initial drawing and
Mt is the drawing obtained after the execution of the tth iteration of the for
loop.

We are now interested in two aspects.

25

8.3.1 Respect of the constraints

The first aspect is the respect of the constraints ϕi. This is measured by
the global measure

∑n
i=1 obj(ϕi). More, precisely, for each iteration t, we are

interested in the quantity
∑n
i=1 obj(ϕi)Mt

.

8.3.2 Stability of the drawing

The second aspect is the stability of the drawing, that is the tendency of the
drawing Mt to be close to the initial picture M0. To measure it, we propose
to compute the square of the Euclidean norm between M0 and Mt, noted
d2(M0,Mt).

Definition 4 ()
Given two drawingsM0 andMt, we define d2(M0,Mt) as the following quan-
tity:

∑
circles c appearing
in a constraint ϕi

(σ0(c).x−σt(c).x)2 +(σ0(c).y−σt(c).y)2 +(σ0(c).r−σt(c).r)2

where σ0 and σt are respectively the interpretation functions ofM0 andMt.

8.3.3 Experimental results

We use the 1000 specifications generated by the procedure described in Sub-
section 8.1 as a benchmark. We also start with good drawings that are obtained
from the same procedure described in Subsection 8.1. We then, for all methods
(hybrid, local search and gradient) we run 1000 iterations where we moved the
circle A as described in Figure 10 (1000 has the order of magnitude than the
size of the drawing, so it corresponds to a typical interaction). Figure 11 reports
an average over 1000 generated executions of the evolution

∑n
i=1 obj(ϕi)Mt

(y-
axis) with respect to the number of the iteration t (x-axis). We experimentally
observe that both gradient method and hybrid method correct the drawing more
easily than local search. We see that the hybrid method is slightly better that
the gradient method (see the graph on the bottom in Figure 11).

Figure 12 reports an average over 1000 executions of the evolution of
d2(M0,Mt) (y-axis) with respect to the number of the iteration t (x-axis). The
measurements were made when we perform gradient method, local search itera-
tions and hybrid method iterations. We experimentally observe that interaction
gives drawing that are closer to the initial picture via gradient method/hybrid
method than via local search. The gradient method is slightly better.

In conclusion, local search methods are clearly not suitable concerning in-
teraction. But, the gradient method and the hybrid method are both suitable.

26

0 200 400 600 800 1,000

0

500

1,000

1,500

number of iterations t

E
n

er
gy

Hybrid
Local search

Local search (JELIA2014)
Gradient

0 200 400 600 800 1,000

50

100

150

200

number of iterations t

E
n

er
gy

Hybrid
Gradient

Figure 11: Average of the evolution of the global energy

27

0 200 400 600 800 1,000

0

200,000

400,000

600,000

number of iterations t

D
is

ta
n

ce

Hybrid
Local search

Local search (JELIA2014)
Gradient

0 200 400 600 800 1,000

0

50,000

100,000

150,000

number of iterations t

D
is

ta
n

ce

Hybrid
Gradient

Figure 12: Average of the evolution of the distance to the initial drawing

28

Hybrid method is slightly more suitable concerning the global energy where the
gradient method is more suitable when interested in stability.

8.4 User study

In order to evaluate the tool, we started a preliminary user study available
online. In the graphical user interface, the respect of a constraint is represented
with colors varying from red (the objective function value is greater than 5) to
green (its value is 0). For most of the people, the feedback of the software is
correct. It validates the definition of the objective functions (Table 3) and the
definition of a good drawing.

In general, users prefer gradient method for generating diagrams. This con-
tradicts Figure 9. It may be explained because the specifications users built by
hand are easier to satisfy than specifications in the benchmark. The benchmark
intentionally contains specifications difficult to satisfy.

Concerning interaction, the drawing correctly updates for most of the users.
In general users prefer hybrid method. This confirms Figure 11.

9 Related work

9.1 Specification languages

9.1.1 Region connection calculus

Contrary to the concrete version of RCC-8 we adopt in the present article (and
in the JELIA 2014 paper [26]), variables are originally interpreted by non-empty
regular closed regions of an abstract topological space [18] (a region X is said
to be regular closed if X is equal to the closure of the interior of X). The
satisfiability problem of a first order formula given in RCC-8 is undecidable,
more precisely not recursively enumerable [13].

An interesting fragment is the quantifier-free fragment of RCC-8. The cor-
responding satisfiability problem has been proven to be NP-complete [20]. Let
F be a collection of non-empty regular closed regions of R2. We define the
corresponding satisfiability problem F-RSAT:

• input: a formula ϕ of the form ∃x1, . . .∃xn,
∧
i,j∈{1,...n}

∨
R∈C(i,j)R(xi, xj)

where n is a positive integer, C(i, j) a subset of RELRCC-8;

• output: yes iff there exists a model M where variables are interpreted as
regions of F such that M |= ϕ.

Interestingly, F-RSAT is NP-complete when F is the set of disc-homeomorph
regions of R2 ([23, 24]). In the current article, we proved that F-RSAT is NP-
hard and in PSPACE (see Propositions 1 and 2) when F is the set of closed
disks of R2.

An extension of RCC-8 with Boolean operations over sets has been studied
in [11]. Soft semantics for RCC-8 are also given in ([25, 29]).

29

9.1.2 Abstract description

In some articles concerning the generation of Euler diagrams ([22], [30]), the
language for the specification is called abstract description and is defined as
follows.

Definition 5 ()
[30] An abstract description D is a pair (L,Z) where

• L is a finite subset of constant symbols;

• Z ⊆ 2L such that ∅ ∈ Z and for all c ∈ L there is Γ ∈ Z where c ∈ Γ.

The set L is a set of circle names and Z represents the zones in the diagram.
Namely, if Γ ∈ Z, Γ represents the set of points that are exactly in the disks of
all elements in Γ. ∅ ∈ Z represents the outside zone contained by no contours.

Example 7 ({a, b, c}, {∅, {c}, {c, a}, {a}, {a, b}}) is the ab-
stract description corresponding to the drawing on the right.

b

a

c

Note that not all abstract descriptions can be drawn with circles (without
using repeated labels). For instance ({a, b, c, d}, 2{a,b,c,d}) can not.

9.1.3 Comparing expressivity of RCC-8 and abstract descriptions

There are properties that can be expressed with an abstract description but not
with RCC-8-constraints. Indeed, for instance, the abstract description (L,Z)
where

• L = {a, b, c};

• Z = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}.

has M1 as a model but not M′1 (see Figure 13). Note that M′1 is not a model
for (L,Z) because {a, b, c} 6∈ Z. But there is no formula ϕ of the language L
that is equivalent to the abstract description (L,Z). Indeed, by contradiction,
suppose there exists such a formula ϕ. Then,M1 is a model for ϕ. But, by the
truth conditions (see Definition 1), M′1 is also a model for ϕ.

On the contrary, our language L is strictly more expressive since M2 and
M′2 respect the same abstract description (that is, D = (L,Z) where L = {a, b}
and Z = {∅, {a}, {a, b}}) whereas NTPP (b, a) is true in M2 but not in M′2.

9.2 Interactive drawing

In this subsection, we sum up applications where users can interact with the
drawing.

30

b

a

c
b

a

c

b

a

b

a

M1 M′1 M2 M′2

Figure 13: Models for comparing expressivity

9.2.1 Geometric software

In drawing software like Geogebra, one may state, for example, that ∆1 contains
point A and is orthogonal to line ∆2 [10]. There are no interdependence between
constraints and the positions of constrained objects to draw can be computed in
polynomial time. The user can then move point A so that line ∆1 still contains
the point A.

9.2.2 Graphical interface

Similarly, in a graphical user interface library, the layout is computed from easily
solvable constraints as ‘the window is horizontally separated in two parts. The
first part is a textbox. The second contains three buttons displayed vertically’.
For these systems, various layout algorithms have been studied [2, 14]. In the
same way, the user can resize windows etc.

9.2.3 Graph layout

Constraints have long been used for graph drawing. Finally, there exist tools
to compute nice graphical representations of graphs [1, 6]. Displaying graphs
consists in solving constraints such as two connected nodes are close and two
different edges do not cross.

9.2.4 Interactive Visualization

The terminology ‘interactive’ is also used in interactive visualization. In that
domain, it consists in displaying and querying huge database represented graph-
ically. In particular, it consists in finding the best way to represent specific data
([7], [17]). As far as we know, the issue is not about displaying with respect
to a set of constraints. On the contrary, in our work the adjective ‘interactive’
means that we can modify the drawing while respecting some constraints.

9.3 Bottom-up approach for drawing Euler diagrams

The visualization tool Tulip integrates a functionality for Euler diagrams [27].
The input of this system is given by an extensive description of the elements of

31

sets. For instance, the following can be a possible input:

P := {path, linearprog}
NP := {path, linearprog, intlinearprog, sat}
coNP := {path, linearprog, intlinearprog, valid}

Tulip is a bottom-up approach. It considers the elements (in the example,
elements are path, linearprog, etc.) as nodes in a graph constrained by the set-
theoretical relations (in the example, P ⊆ NP, etc.). Tulip displays the graph
and extracts an Euler diagram from it. The shape of a region corresponding to
a set (for instance P) is delimited by the positions of the elements in that set
(for instance, path and linearprog). Thus, the shape can be arbitrary and the
diagram may be difficult to read. A similar approach can be found in [33].

On the contrary, our approach is top-down and deals with circles representing
shapes of regions. We do not specify elements that are in sets. Furthermore,
contrary to Tulip, our framework is suitable to capture constraints as ‘the radius
of the disc representing NP is 10cm’.

9.4 Other top-down approaches for Euler diagrams

For generating Euler diagrams from abstract descriptions (see Subsection 9.1),
one approach consists in generating a graph and find a planar layout of it ([8],
[22]). Another approach for generating Euler diagrams with circles ([30], [31])
is based on the theory of piercings and enables to generate Euler diagrams
in polynomial time. Very recently, another interesting tool is presented in [15]
which is able to draw not only circles, but also ellipses. Yet, these approaches do
not capture topological constraints as TPP (circle a is a tangential proper part
of b) and the size of circles are not easily adjustable. Compared to these tools,
our approach distinguishes itself by some interesting features. First, our tool is
based on the RCC-8 language. For instance, our tool allows the specification
of topological constraints. Second, one can specify the radius of circles, and
our system can then adjust dynamically these radii for a better visualization.
Last but not least, in our approach, the user can always modify the drawing by
moving and resizing circles and the system will adjust the drawing to respect
the specification. The system will also guess and propose new constraints to
add to the specification.

10 Conclusion

10.1 Summary

This study makes the bridge between logical framework RCC-8, generation
of Euler diagrams (and more generally drawings under constraints), as well as
heuristic search. We provide PSPACE membership of the satisfiability problem
when regions are circles and some fragments that are NP-hard. We improved the
local search algorithm presented in [26]. We also propose a stochastic version of

32

the gradient method. We created a hybrid method that combines the gradient
method and the local search. Concerning the generation, gradient method is
not suitable but both hybrid method and local search are suitable. Both the
gradient method and the hybrid method offer good results for interaction with
Euler diagrams but not local search. To sum up:

Tasks Bad method(s) Efficient method(s)
Generation Gradient method Local search ∼ Hybrid method
Interaction Local search Hybrid method ∼ Gradient method

More than Euler diagrams, this work could lead to the improvement of draw-
ing tools (e.g. LibreOffice.draw) for architectures, scientists, artists.

10.2 Future work

A first extension is to add a large collection of elements in addition of circles
(ellipses, rectangles, splines, etc.). It consists in extending the set of objective
functions in Table 3. For instance, if a and b are rectangles (and rectangle a is
described by a.x1, a.y1, a.x2, a.x2, etc.), then the semantics of DC(a, b) is

a.x2 < b.x1 or b.x2 < a.x1 or a.y2 < b.y1 or b.y2 < a.y1

and a possible objective function for DC(a, b) is

min(a.x2− b.x1, b.x2− a.x1, a.y2− b.y1, b.y2− a.y1, 0).

If a is a circle and b is a rectangle, we can still define an objective function for
constraints. Now, a challenge will be to handle elements where the number of
parameters is unbounded, for instance splines where the number of key points
is not known in advance. In particular, there may be a hidden constraint:
minimize the number of key points in splines. It implicitely corresponds to the
fact that the user may want to have simpliest geometrical shapes. The reader
may imagine also constraints over shapes as ‘a is circle or a is a rectangle’.

Then an interesting perspective is to combine constraints that do not require
search (for instance constraints of Geogebra, or tractable fragments of RCC-8
[20]) and constraints that require search. That is, the tool should be able to
choose how to solve the constraints by detecting which method to apply and on
which part of the drawing. This may impact both generation and interaction
processes. In particular, it would be interesting to obtain a tight complexity re-
sult for the satisfiability problem of RCC-8 over circles and to exhibit tractable
fragments.

Another perspective is to improve the graphical interface. According to some
few users (see Section 8.4), it is difficult to add constraints to a current drawing.
We may imagine a graphical language that overlaps the drawing.

Finally, it would be interesting to add typical artificial intelligence features
such as default reasoning [19]. For instance the sole constraint TPP (P,NP)
(tangential proper part) should avoid the radius of P to be too small. This may
be solved by using default reasoning: by default, TPP (P,NP) implies that the

33

radius of P is approximately the half of the radius of NP. Nevertheless, this
extra constraint is relaxed as soon as it would provide inconsistency.

Concerning the generation, we may use complete algorithms, for instance we
may use SMT (satisfiability modulo theories) solver [9] instead of heuristic search
methods. We may also develop more efficient complete methods. For instance,
complete algorithms such as those for generating Euler diagrams with circles
([30], [31]) based on the theory of piercings may be generalized to topological
constraints or to other shapes.

But there are two main drawbacks of using complete algorithms. As far
as we know, the generation will always fail if the specification is inconsistent
whereas heuristic search may find a drawing that fits the constraint as much
as possible. Secondly, interaction can not be implemented by exact methods
since it is difficult to express that the new solution should both satisfy the
specification and the constraint due to the interaction while be a close solution
to the current previous one.

Another interesting research problem concerns the axiomatization. Is there
an axiomatization of RCC-8 where objects are circles? Having an axiomatiza-
tion may help us to improve the software so that it could give explanations for
the generated drawings. We may then imagine that the user can discuss with
the system for designing a drawing.

Great, where can I find the tool? The tool, a video, a preliminary user
study, experimental data and source files are available at

http://people.irisa.fr/Francois.Schwarzentruber/constrainteddrawing/

Acknowledgments. We still wish to thank the three JELIA reviewers for
their critical comments and pointers to relevant studies. We also thank the
reviewers of this journal version. We thank users who accepted to perform the
user study. We thank also Benjamin Boutin for the example in footnote 2.

34

http://people.irisa.fr/Francois.Schwarzentruber/constrainteddrawing/

References

[1] David Auber. Tulip—a huge graph visualization framework. In Graph
Drawing Software, pages 105–126. Springer, 2004.

[2] Alan Borning, Kim Marriott, Peter J. Stuckey, and Yi Xiao. Solving linear
arithmetic constraints for user interface applications. In ACM Symposium
on User Interface Software and Technology, pages 87–96, 1997.

[3] Jim Burton, Gem Stapleton, John Howse, and Peter Chapman. Visual-
izing concepts with Euler diagrams. In Tim Dwyer, Helen C. Purchase,
and Aidan Delaney, editors, Diagrammatic Representation and Inference -
8th International Conference, Diagrams 2014, Melbourne, VIC, Australia,
July 28 - August 1, 2014. Proceedings, volume 8578 of Lecture Notes in
Computer Science, pages 54–56. Springer, 2014.

[4] John Canny. Some algebraic and geometric computations in pspace. In
Proceedings of the Twentieth Annual ACM Symposium on Theory of Com-
puting, pages 460–467. ACM, 1988.

[5] Sanjoy Dasgupta, Christos H Papadimitriou, and Umesh Vazirani. Algo-
rithms. McGraw-Hill, Inc., 2006.

[6] John Ellson, Emden R Gansner, Eleftherios Koutsofios, Stephen C North,
and Gordon Woodhull. Graphviz and dynagraph—static and dynamic
graph drawing tools. In Graph Drawing Software, pages 127–148. Springer,
2004.

[7] Jean-Daniel Fekete and Catherine Plaisant. Interactive information visu-
alization of a million items. In Information Visualization, 2002. INFOVIS
2002. IEEE Symposium on, pages 117–124. IEEE, 2002.

[8] Jean Flower and John Howse. Generating Euler diagrams. In Mary Hegarty,
Bernd Meyer, and N. Hari Narayanan, editors, Diagrams, volume 2317 of
Lecture Notes in Computer Science, pages 61–75. Springer, 2002.

[9] John Harrison. Handbook of practical logic and automated reasoning. Cam-
bridge University Press, 2009.

[10] Markus Hohenwarter and Judith Preiner. Dynamic mathematics with ge-
ogebra. Journal of Online Mathematics and its Applications, 7, 2007.

[11] Roman Kontchakov, Yavor Nenov, Ian Pratt-Hartmann, and Michael Za-
kharyaschev. On the decidability of connectedness constraints in 2d and
3d euclidean spaces. In IJCAI Proceedings-International Joint Conference
on Artificial Intelligence, volume 22, page 957, 2011.

[12] JP LaSalle. Stability theory for ordinary differential equations. Journal of
Differential Equations, 4(1):57–65, 1968.

35

[13] Carsten Lutz and Frank Wolter. Modal logics of topological relations.
Logical Methods in Computer Science, 2:1–14, 2006.

[14] Kim Marriott, Peter Moulder, Peter J. Stuckey, and Alan Borning. Solv-
ing disjunctive constraints for interactive graphical applications. In Toby
Walsh, editor, CP, volume 2239 of Lecture Notes in Computer Science,
pages 361–376. Springer, 2001.

[15] Luana Micallef and Peter Rodgers. eulerape: Drawing area-proportional
3-Venn diagrams using ellipses. PLoS ONE, 9(7):e101717, 07 2014.

[16] Christos H Papadimitriou. Computational complexity. John Wiley and
Sons Ltd., 2003.

[17] Catherine Plaisant, Megan Monroe, Tamra Meyer, and Ben Shneiderman.
Interactive visualization. Big Data and Health Analytics, page 243, 2014.

[18] David A. Randell, Zhan Cui, and Anthony G. Cohn. A spatial logic based
on regions and connection. KR, 92:165–176, 1992.

[19] Raymond Reiter. A logic for default reasoning. Artificial intelligence,
13(1):81–132, 1980.

[20] Jochen Renz and Bernhard Nebel. On the complexity of qualitative spatial
reasoning: A maximal tractable fragment of the region connection calculus.
Artificial Intelligence, 108(1):69–123, 1999.

[21] Peter Rodgers. A survey of Euler diagrams. J. Vis. Lang. Comput.,
25(3):134–155, 2014.

[22] Peter Rodgers, Leishi Zhang, and Andrew Fish. General Euler diagram gen-
eration. In Diagrammatic Representation and Inference, 5th International
Conference, Diagrams 2008, Herrsching, Germany, September 19-21, 2008.
Proceedings, pages 13–27.

[23] Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič. Recognizing
string graphs in np. Journal of Computer and System Sciences, 67(2):365–
380, 2003.

[24] Marcus Schaefer and Daniel Stefankovic. Decidability of string graphs.
In Proceedings of the thirty-third annual ACM symposium on Theory of
computing, pages 241–246. ACM, 2001.

[25] Steven Schockaert, Martine De Cock, and Etienne E Kerre. Spatial reason-
ing in a fuzzy region connection calculus. Artificial Intelligence, 173(2):258–
298, 2009.

[26] François Schwarzentruber and Jin-Kao Hao. Drawing Euler diagrams from
region connection calculus specifications with local search. In Eduardo
Fermé and João Leite, editors, Logics in Artificial Intelligence - 14th Eu-
ropean Conference, JELIA 2014, Funchal, Madeira, Portugal, September

36

24-26, 2014. Proceedings, volume 8761 of Lecture Notes in Computer Sci-
ence, pages 582–590. Springer, 2014.

[27] Paolo Simonetto, David Auber, and Daniel Archambault. Fully automatic
visualisation of overlapping sets. In Computer Graphics Forum, volume 28,
pages 967–974. Wiley Online Library, 2009.

[28] Jan Snyman. Practical mathematical optimization: an introduction to ba-
sic optimization theory and classical and new gradient-based algorithms,
volume 97. Springer, 2005.

[29] Muralikrishna Sridhar, Anthony G Cohn, and David C Hogg. From video to
rcc8: exploiting a distance based semantics to stabilise the interpretation of
mereotopological relations. In Spatial Information Theory, pages 110–125.
Springer, 2011.

[30] Gem Stapleton, Leishi Zhang, John Howse, and Peter Rodgers. Drawing
Euler diagrams with circles. In Diagrammatic Representation and Infer-
ence, 6th International Conference, Diagrams 2010, Portland, OR, USA,
August 9-11, 2010. Proceedings, pages 23–38.

[31] Gem Stapleton, Leishi Zhang, John Howse, and Peter Rodgers. Drawing
Euler diagrams with circles: The theory of piercings. IEEE Trans. Vis.
Comput. Graph., 17(7):1020–1032, 2011.

[32] Frank Van Harmelen, Vladimir Lifschitz, and Bruce Porter. Handbook of
knowledge representation, volume 1. Elsevier, 2008.

[33] Anne Verroust and Marie-Luce Viaud. Ensuring the drawability of ex-
tended Euler diagrams for up to 8 sets. In Alan F. Blackwell, Kim Marriott,
and Atsushi Shimojima, editors, Diagrams, volume 2980 of Lecture Notes
in Computer Science, pages 128–141. Springer, 2004.

[34] Mengdi Wang, Beryl Plimmer, Paul Schmieder, Gem Stapleton, Peter
Rodgers, and Aidan Delaney. Sketchset: Creating Euler diagrams using
pen or mouse. In 2011 IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC 2011, Pittsburgh, PA, USA, September 18-
22, 2011, pages 75–82.

37

	Introduction
	Specification language
	Syntax
	Semantics

	Generation and satisfiability problem
	Definitions
	Upper bound
	Lower bound

	Local search
	Soft semantics
	Algorithm
	Improvement

	Variant of the gradient descent
	Algorithm
	Deriving objective functions

	Hybrid method
	Implementation
	Syntax used in the software
	Interaction
	Energy consumption

	Experiments
	Specification benchmark
	Generation
	Experiments with our benchmark

	Interaction
	Respect of the constraints
	Stability of the drawing
	Experimental results

	User study

	Related work
	Specification languages
	Region connection calculus
	Abstract description
	Comparing expressivity of RCC-8 and abstract descriptions

	Interactive drawing
	Geometric software
	Graphical interface
	Graph layout
	Interactive Visualization

	Bottom-up approach for drawing Euler diagrams
	Other top-down approaches for Euler diagrams

	Conclusion
	Summary
	Future work

