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Abstract In this paper we study AGM contraction and revision of rules using
input/output logical theories. We replace propositional formulas in the AGM frame-
work of theory change by pairs of propositional formulas, representing the rule based
character of theories, and we replace the classical consequence operator Cn by an
input/output logic. The results in this paper suggest that, in general, results from belief
base dynamics can be transferred to rule base dynamics, but that a similar transfer
of AGM theory change to rule change is much more problematic. First, we gener-
alise belief base contraction to rule base contraction, and show that two representation
results of Hansson still hold for rule base contraction. Second, we show that the six so-
called basic postulates of AGM contraction are consistent only for some input/output
logics, but not for others. In particular, we show that the notorious recovery postulate
can be satisfied only by basic output, but not by simple-minded output. Third, we show
how AGM rule revision can be defined in terms of AGM rule contraction using the
Levi identity. We highlight various topics for further research.
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1 Introduction

Consider a rule based system from which we derive too much, such that we want to
weaken it. The following example illustrates how we can use the theory of belief base
dynamics (Hansson 1993), based on a suitable notion of consistency, to select a subset
of the rules as the contraction of the rule based system.

Example 1 Consider a rule based system consisting of the following two rules:

1. If a then b
2. If b then c

Assumewe do not want to have c in context {a}, whereas c can be derived by iteratively
applying the first and the second rule. We can define rule base contraction operators
that drop either the first or the second rule, or both.

We show in this paper how to adapt the theory of belief dynamics (Hansson 1993) to
define contraction operators that select some of the rules. This enables us to incorporate
various results of belief base dynamics in the area of rule dynamics. However, the
following example illustrates that such rule contraction operatorsmay not be sufficient.

Example 2 (Continued) Assume d is an exception to c in context a. In that case, we
may want to end up with a rule base consisting of the following two rules:

1. If a ∧ ¬d then b, and
2. If b then c

or a rule base consisting of the following two rules:

1. If a then b, and
2. If b ∧ ¬d then c.

In other words, in some applications, we may need to change some of the rules. In
particular, rule contraction may assume a rule logic which informs us that the rule ‘if
a then b’ implies the rule ‘if a ∧ ¬d then b’, or that ‘if b then c’ implies the rule ‘if
b ∧ ¬d then c.’

In this paperwe takeAGMtheory change as a framework to evaluate the dynamics of
rule based systems.AGM theory change is the formal study of howa set of propositions
changes in view of a new information thatmay cause an inconsistencywith the existing
theory. Expansion, revision and contraction are the three theory change operations that
Alchourrón, Gärdenfors and Makinson identified in their approach (called AGM).
AGM theory change has two roots, one in counterfactuals by Gärdenfors (1978), and
one in the change of legal code by Alchourrón and Makinson (1981, 1982). Although
Alchourrón and Makinson aim at defining change operators for a set of norms of
some legal system, the condition they impose on a theory is that it is a non-empty and
finite set of propositions. In other words, a norm x is taken to be simply a formula in
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propositional logic. Thus, they suggest that “the same concepts and techniques may
be taken up in other areas, wherever problems akin to inconsistency and derogation
arise” (Alchourrón andMakinson 1981, p. 147). This explains how the work (together
with Gärdenfors’ analysis of counterfactuals) could ground that research area that is
now known as belief revision.

Research question. How to generalise AGM theory change to rule change?

Our research question breaks down into the following three questions:

1. How to apply the Hansson’s belief base postulates for contraction and revision to
a set of rules?

2. How to apply the AGM belief change postulates for contraction to a set of rules?
3. How to apply the AGM belief change postulates for revision to a set of rules?

As illustrated by Example 2, in general we need a theory in which a set of rules
can imply a set of rules, and that can decide whether two sets of rules are equiva-
lent. We do not consider one particular logic for rules, but we consider several of
them in the unconstrained input/output logic framework developed by Makinson and
Torre (2000). In this theory, we do not necessarily have throughput (“if p then p”)
or transitivity, and the framework can therefore be used in a wide range of applica-
tions. For example, Makinson and van der Torre observe that in several contexts, one
comes across processes resembling inference, but where input propositions are not in
general included among outputs, and the operation is not in any way reversible. Exam-
ples they give arise in contexts of conditional obligations, goals, ideals, preferences,
actions, and beliefs. Their purpose in the unconstrained input/output logic framework
is to develop a theory of such input/output operations. We focus on three operations:
simple-minded (out1), basic (out2, making intelligent use of disjunctive inputs), and
simple-minded reusable (out3, in which outputs may be recycled as inputs). Makinson
and Torre (2000) define them semantically and characterise them by derivation rules,
as well as in terms of relabeling procedures and modal operators. In this paper we
consider the contraction and revision of rules in the input/output framework.

Makinson and van der Torre’s unconstrained input/output logic has been extended
with constraints and applied to normative and legal systems (Makinson andTorre 2001;
Parent and Torre 2013). In other words, the unconstrained input/output logics we use in
this paper can be used for general input/output processes, of which normative and legal
systems are just examples. So the fact that the results hold for general input/output
processes, not just for normative or legal systems, could be seen as more general and
therefore potentially more interesting. Constrained input/output logic can be used also
to define defeasible rules, that is, rules that may have exceptions. Such defeasible rules
have been defined, for example, in logic programming using negation as failure.We do
not consider defeasible rules or norms in this paper, but we believe that the extension
of our results to these other areas is an interesting topic for further research.

The layout of this paper follows the research questions given above and is as follows.
In Sect. 2 we introduce our abstract model of normative system change, in Sect. 3 we
discuss belief base contraction, in Sect. 4 we discuss AGM contraction and revision,
and in Sect. 5 we consider AGM revision for rule based systems. Section 6 refers to
related literature and Sect. 7 concludes the paper.

123



276 G. Boella et al.

2 Abstract Model of the Dynamics of Rule Based Systems

We first introduce the input/output logic framework, then we discuss how it can be
used as a framework for logics for rules, and finally we introduce AGM theory.

2.1 The Input/Output Logic Framework

In this paper we start from a general definition of an input/output logic framework
introduced by Makinson and Torre (2000), and we discuss several of their principles
[for follow-up research in the input/output logic framework the reader is referred to
Parent and Torre (2013)].

The first input/output logic principle we adopt in this paper is that rules are repre-
sented as pairs of formulas of an arbitrary logic. Here, following most of the work on
input/output logic, we use propositional logic for this arbitrary logic, and rules are thus
represented by pairs of propositional formulas. The results in this paper hold also if
we use a first-order, temporal or action logic, but the use of propositional logic makes
the formal exposition simpler, and makes it also straightforward to relate our study to
the AGM framework of theory change. The pair of propositional formulas represents
a rule, and the two propositional formulas are called the antecedent and consequent
of the rule.

Definition 1 (Rules Makinson and Torre 2000) Let L be a propositional logic built
on a finite set of propositional atoms A. A rule based system R ⊆ L × L is a set of
pairs of L , written as R = {(a1, x1), (a2, x2), . . . , (an, xn)}.

The second principle of the input/output logic framework we adopt in this paper
is that the primary role of rules is the derivation of formulas, like the derivation of
obligations and prohibitions in a normative system.Which obligations and prohibitions
can be derived from a normative system depends on the factual situation, whichwe call
the context or input. We represent the context by a propositional formula. Makinson
and van der Torre use a set of propositional formulas as input, but to simplify the third
principle in the following section, we assume that the situation can be represented by
a finite set of atomic propositions, and thus by their conjunction. The function that
associateswith each context the set of formulas describes themeaning of the rule based
system, because it is a kind of ‘operational semantics’ of the rule based system. We
put the term ‘operational semantics’ in quotes, because this terminology is not used by
Makinson and van der Torre. We use this terminology because we hope it clarifies the
notion of ‘implied rule’ in Definition 6 below.We represent the set of derived formulas
as a set of propositional formulas, because that is the simplest representation and it
facilitates the comparison with the AGM framework.

Definition 2 (‘Operational semantics’ Makinson and Torre 2000) An input/output
operation out : P(L × L) × L → P(L) is a function from the set of rule based
systems and contexts to a set of sentences of L .

The following property expresses irrelevance of syntactic presentation.
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Definition 3 (Irrelevance of syntax) out satisfies irrelevance of syntax if the following
two properties hold:

IS1 If x ∈ out(R, a), a is logically equivalent to b in propositional logic, and x is
logically equivalent to y, then y ∈ out(R, b).

IS2 If x ∈ out(R ∪{(b, y)}, a), b is logically equivalent to c in propositional logic,
and y is logically equivalent to z, then x ∈ out(R ∪ {(c, z)}, a).

The simplest input/output logic defined byMakinson and van der Torre is so-called
simple-minded output.

Definition 4 (Simple-minded output Makinson and Torre 2000) x is in the simple-
minded output of R in context a, written as x ∈ out1(R, a), if there is a set of rules
(a1, x1), . . . , (an, xn) ∈ R such that ai ∈ Cn(a) and x ∈ Cn(x1 ∧ . . . ∧ xn), where
Cn(a) is the consequence set of a in L .

In this paper we use the following running example on the welfare policies of a
virtual community. This is an example from normative or legal systems, where the
rules can be read as conditional obligations. However, we do not want to suggest that
our results hold for such rules only. For example, one can construct as well exam-
ples using classification rules, default rules or rules in expert systems. Moreover, as
already mentioned in the Introduction, when using input/output logic for normative
reasoning, we need to introduce constrained output to deal with contrary-to-duty rea-
soning (Makinson and Torre 2001). As these concerns are orthogonal to the research
questions of this paper, we do not consider constrained output here.

Example 3 (Virtual community) Let the rule based system consist of two rules R =
{(poor, house), (old, healthins)}, stating that the community has to give a house with
low rent (house) to low income agents (poor), and to provide free health insurance
(healthins) to elderly agents (old). If no-income implies poor, then the community has
to provide a house to someone with no income, represented by the expression house
∈ out1(R, (no − income → poor) ∧ no − income), because we have the expressions
poor ∈ Cn((no − income → poor)∧ no − income)) and house ∈ Cn(house). More-
over, the obligations of the community for low income elderly agents are all logical
consequences of giving a house with low rent and providing a free health insurance,
because we have out1(R, poor ∧ old) = Cn(house ∧ healthins).

The operational semantics of a set of rules can be used to define the two fundamental
concepts of equivalence of rule based systems, and the redundancy of a rule in a rule
based system. For example, since rule based systems tend to grow quickly and become
difficult to understand, redundancy is a useful notion to simplify rule based systems.
For systems such as simple-minded output in Definition 4, the following definition is
uncontroversial.

Definition 5 (Equivalence and redundancy) Rule based systems R and S are equiva-
lent if and only if for all propositional formulas a, we have that out(R, a) = out(S, a).
A rule (a, x) ∈ R is redundant in rule based system R if and only if R is equivalent
to R\{(a, x)}.

For more complex rule based systems, more sophisticated notions of equivalence
can be considered as well.
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2.2 ‘Implication’ Among Rules

The third principle we adopt from the input/output logic framework is that we define a
notion of ‘implication’ among rules—again we write ‘implication’ in quotes, because
Makinson and van der Torre do not use this terminology. It is not defined as a primitive
notion, but derived from the ‘operational semantics’ of the set of rules. In a rule based
system, a set of rules ‘implies’ another rule (a, x) if and only if x is in the output in
context a. Likewise, we say that 〈a, x〉 is implied if x is not in the output in context a.
For example, the latter corresponds to a weak permission of¬x , which is derived from
regulative norms only, not from permissive norms (see Makinson and Torre 2003 for
a discussion on this distinction between weak and strong permission in the context of
input/output logic).

Definition 6 (Rule ‘implication’ Makinson and Torre 2000, 2003) Rule (a, x) is
‘implied’ by rule based system R, written as (a, x) ∈ out(R), if and only if
x ∈ out(R, a), and 〈a, x〉 is ‘implied’ by R, written as 〈a, x〉 ∈ out(R) if and only if
x /∈ out(R, a). If it is clear from content which input/output logic out is used, then we
write also R for out(R).

Makinson and van der Torre use this new representation of rule ‘implication’,
because it shortens the notation in the definitions of the proof theory, as illustrated
in the following example. In this paper we use this notation to enable the use of
AGM revision postulates to input/output logics, because we will replace the use of
the consequence operator of propositional logic by the out(R) operator. For example,
with a notion of implication defined among rules, we can define a success postulate
on rule contraction by saying that the new set of rules does not ‘imply’ the contracted
rule (see Sect. 4.4 for the formal details).

Example 4 Strengthening of the Input is represented by out (R, a) ⊆ out(R, a ∧ b),
which is equivalent to x ∈ out (R, a) implies x ∈ out(R, a ∧ b), and which therefore
can be represented by: if (a, x) ∈ out (R), then (a ∧ b, x) ∈ out(R). Visualized as
proof rules, this property can thus be represented either by the following rule on the
left using the ‘operational semantics’, or the rule with the rule ‘implication’ on the
right. If the set of rules R does not change, then the two notations are equivalent. We
abbreviate Strengthening of the Input by SI.

x ∈ out(R, a)

x ∈ out(R, a ∧ b)
SI

(a, x)

(a ∧ b, x)
SI

Yet another way to represent this principle is the contrapositive: if (a∧b, x) /∈ out(R),
then (a, x) /∈ out(R), which can be represented by the following two equivalent
representations of the Weakening of the Input or WI proof rule. It may be seen as
the inverse of the Strengthening of the Input rule, and Makinson and van der Torre
therefore write also SI −1.

x /∈ out(R, a ∧ b)

x /∈ out(R, a)
SI −1 = W I

〈a ∧ b, x〉
〈a, x〉 SI −1 = W I
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Other properties can be represented as proof rules too. For example, the first item of
irrelevance of syntax or IS1 in Definition 3 can be represented as follows, where |	
stands for logical implication in propositional logic.

x ∈ out(R, a), |	 a ↔ b, |	 x ↔ y

y ∈ out(R, b)
I S1

(a, x), |	 a ↔ b, |	 x ↔ y

(b, y)
I S1

Thus, to decide when a set of rules ‘implies’ another rule, we resort to the ‘opera-
tional semantics’ of the rules.

2.3 Closure Properties on Rules

Makinson and van der Torre observe that the relation between the ‘implication’ among
rules (a, x) ∈ out (R) and the ‘operational semantics’ x ∈ out (R, a) has an analogy
in classical logic, where the pair a |	 x is equivalent to the membership of x in the
consequence set of a, written as x ∈ Cn(a). However, it is important to see that the
notion of ‘implication’ should not be identified with the notion of implication among
conditionals in classical conditional logic see, e.g., Nute (1984). This is illustrated
by the Tarskian properties of a consequence operation, i.e. the closure operation on
the input/output pairs. Whereas these properties normally hold for a classical condi-
tional logic, they represent non-trivial principles for a logic of rules. These additional
principles may either be accepted or rejected.

Reflexivity expresses that if the input is precisely the antecedent of one of the
rules, then the output contains the consequent of the rule. Monotony expresses that the
application of one rule cannot block another rule, as in most rule based non-monotonic
logics like, for example, Reiter’s default logic. Idempotence expresses that if we have
x in the output of a, then we can add (a, x) as a rule without changing the output.

Definition 7 (Closure) out is a closure operation when the following three conditions
hold:

Reflexivity. x ∈ out (R∪{(a, x)}, a) (in otherwords, R ⊆ out(R)), if the context is
precisely the antecedent of one of the rules, then the output contains the consequent
of that rule.
Monotony. x ∈ out (R1, a) implies x ∈ out(R1 ∪ R2, a) (in other words,
out(R1) ⊆ out(R1 ∪ R2)), if the set of rules increases, then no conclusions are
lost.
Idempotence. if x ∈ out(R, a), then for all b, we have out(R, b) = out(R ∪
{(a, x)}, b) (in other words, out(R) = out(out((R))), if x is obligatory in context
a, then (a, x) can be added to the rule based system without changing the output.

Makinson and van der Torre show that their seven input/output logics satisfy
the Tarskian properties, and their notion of ‘implication’ among rules is therefore
a Tarskian consequence relation. In this paper we consider only the first six of their
logics.
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Definition 8 (Makinson andTorre 2000)Let R(a) = {x | (a, x) ∈ R}, and a complete
formula v is a conjunction of a maxiconsistent set of literals, or the conjunction of all
literals of L . Simple-minded, basic and reusable output are defined as follows.

out1(R, a) = Cn(R(Cn(a)))

out2(R, a) = ∩{out1(R, v) | a ∈ Cn(v), v complete}
out3(R, a) = ∩{out1(R, b) | a ∈ Cn(b), out1(R, b) ⊆ Cn(b)}

Moreover, for each input/output logic a corresponding throughput operator is defined
by:

out+i (R, a) = outi (R ∪ {(b, b) | b ∈ L}, a)

The following property shows the axiomatisation of the six logics, and implies
that none of out1, out2 and out3 satisfies identity ((a, a) for all a) or contraposition.
The throughput operations satisfy identity. Basic output handles reasoning by cases,
and reusable output handles iterated detachment. See (Makinson and Torre 2000) for
examples and additional properties.

Proposition 1 (Makinson and Torre 2000) out1(R) is the minimal set that contains
R ∪ {(�,�)}, is closed under replacement of logical equivalents in antecedent and
consequent, and the following inference rules strengthening of the input (S I ), weak-
ening of the output (W O), and conjunction of output (AN D).

(a, x)

(a ∧ b, x)
SI

(a, x ∧ y)

(a, x)
W O

(a, x), (a, y)

(a, x ∧ y)
AN D

out2 is closed in addition under the inference rule disjunction (O R), and out3 under
the inference rule cumulative transitivity (CT ). Moreover, out+i is closed under the
same inference rules as outi together with Identity (Id).

(a, x), (b, x)

(a ∨ b, x)
O R

(a, x), (a ∧ x, y)

(a, y)
CT

−
(a, a)

I d

To prove Proposition 7 below, it will be useful to use the following observation of
Makinson and van der Torre.

Lemma 1 (Makinson and Torre 2003, Observation 3) The non-repetition property
says that if there is a derivation of (a, x) from a set of rules R, then there is another
derivation of (a, x) from R, where each rule of R is used at most once. The non-
repetition property holds for:

– out1 with SI, WO, AND
– out2 with SI, WO, AND, OR
– out3 with SI, WO, CTA
– out+i with rules of outi together with Id

where CTA derives (a, x ∧ y) from (a, x) and (a ∧ x, y).
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2.4 AGM Rule Change

The AGM framework (Alchourrón et al. 1985) for theory revision is the formal study
of how a set of propositions should change in view of a new information thatmay cause
an inconsistency with the existing ones. Expansion, revision and contraction are the
three theory change operations that Alchourrón, Gärdenfors and Makinson identified
in their AGM approach. The initial inspiration was a formal analysis of the dynamics
of a legal code. How can a rule be removed or added to a code? What happens when
the addition of a new law conflicts with some of the existing ones?

They observed that these operations are more general and can be defined on any
deductively closed set K of propositional formulas. In particular, the expansion of K
by a formula x is a set that accepts the unproblematic x and it is denoted by K + x . A
contraction of K by x results in a set K − x from which x does not follow anymore.
Finally, the revision of K by x yields to a set K ∗ x which contains x and from which
parts of K that were conflicting with x have been removed.

AGM theory is a well established formal theory. Here, we want to take back its
original inspiration and use AGM postulates for rule change. Therefore, we define
rule expansion, rule revision, and rule contraction. To generalize the AGM postulates
for our framework, we define a rule set as a set of rules closed under an input/output
logic, denoted by R. Since we do not want to restrict ourselves to one particular logic,
we use out to refer to any input/output logic. We write R ⊕ (a, x) to indicate the
expansion of a rule based system R by a new rule, R � (a, x) for the contraction of a
rule (a, x) from R, and R � (a, x) for the revision of R by the new rule (a, x).

Like AGM expansion, the definition of rule expansion is straightforward. The new
rule that the legislator wants to enforce does not cause any conflict with the existing
legal code. Hence, (a, x) is added to R together with all the rules that can be derived
from the union of R and (a, x) (similarly to theory revision, we assume R to be closed
under input/output logic): R ⊕ (a, x) = R ∪ {(a, x)}.
Example 5 {(poor, house)} ⊕ (old, healthins) = {(poor, house), (old, healthins)}

Theory contraction and revision are the more complex and interesting types of
change. The Levi and Harper identities highlight that revision and contraction are
interdefinable. More specifically, the Levi identity defines the revision of a set by x as
the expansion of the contracted set by ¬x . Because of the simplicity of this definition,
the contraction is often considered as the basic type of change in revision. For this
reason, we also start from rule contraction.

Does revision really offer a satisfactory framework for rule revision?Whenwe con-
sider a set of conditional rules, the AGMprinciples may prove to be too general to deal
with the revision of a rule based system. In order to have a closer look to these ques-
tions, we now need to turn to Hansson’s postulates for belief base dynamics (Hansson
1993) as well as AGM theory contraction and revision and to the corresponding rule
contraction and revision.
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3 Belief Base Dynamics

In this section we show that two of Hansson’s representation theorems for belief
base contraction (Hansson 1993) still hold for rule base contraction, and we discuss
topics for further research on rule base dynamics. In this section we repeat several
definitions from Hansson’s paper, because we want to make it very clear and explicit
that the generalisation of two Hansson’s representation theorems is straightforward,
and where the problems are in generalising some of his other results.

3.1 Hansson’s Representation Theorems for Belief Base Contraction

In this section we give an overview of some of the definitions and results of Hansson’s
belief base contraction. We adopt the definitions of Hansson (1993), because in that
paper the operators are phrased in terms of a general consequence operator, which can
be exchanged with an input/output operator. See the paper of Hansson (1993) for a
further discussion and examples.

Definition 9 (Hansson 1993) Let L (the language) be a set of expressions that is
closed under truth-functional operations. A consequence operation on L is a function
Cn from P(L) to P(L) such that, for all subsets A and B of L:

1. A ⊆ Cn(A) (inclusion)
2. If A ⊆ B, then Cn(A) ⊆ Cn(B) (monotony)
3. Cn(A) = Cn(Cn(A)) (iteration)

A subset A of L is consistent if and only if there is no x ∈ L such that both x ∈ Cn(A)

and ¬x ∈ Cn(A).

Hansson assumes that the consequence operator includes classical truth-functional
logic and satisfies the properties of deduction and compactness. The input/output
logics in Definition 8 also satisfy compactness, but in input/output logic there are no
analogues for supraclassicality and deduction. We therefore have to check all proofs
of Hansson to find out which of his results still hold when we replace propositional
sentences by pairs of such sentences.

Postulate 1 (Hansson 1993) Cn satisfies the following three properties:

4. If x can be derived from A by classical truth-functional logic, then x ∈ Cn(A)

(supraclassicality)
5. If y ∈ Cn(A ∪ {x}), then (x → y) ∈ Cn(A) (deduction)
6. If x ∈ Cn(A), then x ∈ Cn(A′) for some finite subset A′ of A (compactness).

Hansson adopts the following notation from the AGM literature. K⊥A is the set
of inclusion-maximal subsets of K that do not imply any of the elements of A.

Definition 10 (Alchourrón and Makinson 1981; Hansson 1993) Let K and A be sub-
sets of L . Then K⊥A is the set of all subsets K ′ of K such that A ∩ Cn(K ′) = ∅ and
that there is no set K ′′ such that K ′ ⊂ K ′′ ⊆ K and A ∩ Cn(K ′′) = ∅.
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We consider here two of Hansson’s representation results. The first takes subsets
of the knowledge base, using the inclusion-maximal subsets. In what follows, “∼”
denotes the partial meet contraction determined by a specified selection function γ ,
whereas “÷” denotes contraction operators in general. Partial meet contraction selects
the intersection of some of the maximal subsets of the belief set not implying the
contracted formula.

Definition 11 (Hansson 1993) γ is a one-place selection function for the subset K of
L iff γ is a function fromPP(K ) toPP(K ), such that for all subsets A of L , γ (K⊥A)

is a nonempty subset of K⊥A, unless K⊥A is empty, in which case γ (K⊥A) = {K }.
Let γ be a one-place selection function for the subset K of L . Then∼γ , the operator

of partialmeet contraction for K generated byγ , is the operator such that, for all subsets
A of L:

K ∼γ A = ∩γ (K⊥A).

Hansson’s first representation theorem shows that partial meet contraction oper-
ators are characterised by four properties, called inclusion, relevance, success and
uniformity.

Theorem 1 (Hansson 1993) Let ÷ be an operator for a subset K of L. Then ÷ is an
operator of partial meet contraction generated by some one-place selection function
for K iff it satisfies the following conditions.

(÷1) K ÷ A ⊆ K (inclusion)
(÷2) If x ∈ K\(K ÷ A), then there is some K ′ with K ÷ A ⊆ K ′ ⊆ K , such that:

A ∩ Cn(K ′) = ∅ and A ∩ Cn(K ′ ∪ {x}) �= ∅ (relevance)
(÷3) If A ∩ Cn(∅) = ∅, then A ∩ Cn(K ÷ A) = ∅ (success)
(÷4) If it holds for all subsets K ′ of K that A ∩ Cn(K ′) = ∅ iff B ∩ Cn(K ′) = ∅,

then: K ÷ A = K ÷ B (uniformity)

For the second representation theorem, Hansson defines more general two-place
selection functions, which he requires to be unified.

Definition 12 (Hansson 1993) A two-place selection function is a function γ such
that for each subset K of L , γ (K , ) = γK () is a one-place selection function for K .
A two-place selection function γ is unified if and only if for all subsets K1 and K2 of
L: if K1⊥A1 = K2⊥A2 �= ∅, then ∩γK1(K1⊥A1) = ∩γK2(K2⊥A2).

The first argument of a unified two-place selection function can be omitted. Thus
∩γ (K⊥A) is an abbreviation of ∩γK (K⊥A).

An operator ∼γ is the operator of partial meet contraction generated by the two-
place selection function γ iff, for all subsets K and A of L: K ∼γ A = ∩γK (K⊥A).

∼γ is unified iff γ is unified.

Hansson’s second representation theorem shows that such unified partial meet con-
traction operators are characterised by one additional property, called redundancy.

Theorem 2 (Hansson 1993) An operator ÷ is an operator of unified partial meet
contraction iff it satisfies conditions (÷1) − (÷4) and in addition the following:

(÷5) If A ∩ Cn(∅) = ∅, and each element of Z implies an element of A, then:
K ÷ A = (K ∪ Z) ÷ A (redundancy)
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3.2 Rule Base Contraction

The definitions of rule base contraction are straightforward: we simply replace the
knowledge base by a rule base, and we replace Cn by out. R⊥A is the set of inclusion-
maximal subsets of R that do not imply any of the elements of A. “∼” denotes the
partial meet contraction determined by a specified selection function γ , whereas “÷”
denotes contraction operators in general.

Definition 13 Let A, R be sets of pairs of L . Then R⊥A is the set of all subsets R′
of R such that A ∩ out(R′) = ∅ and that there is no set R′′ such that R′ ⊂ R′′ ⊆ R
and R ∩ out(R′′) = ∅.
Definition 14 γ is a one-place selection function for the set R of pairs of L iff γ is
a function from PP(R) to PP(R), such that for all subsets A of L , γ (R⊥A) is a
nonempty subset of R⊥A, unless R⊥A is empty, in which case γ (R⊥A) = {R}.

Let γ be a one-place selection function for the set R of pairs of L . Then ∼γ , the
operator of partial meet contraction for R generated by γ , is the operator such that,
for all sets A of pairs of L:

R ∼γ A = ∩γ (R⊥A).

Theorem 3 Let ÷ be an operator for a subset R of L. Then ÷ is an operator of partial
meet contraction generated by some one-place selection function for R iff it satisfies
the following conditions.

(÷1) R ÷ A ⊆ R (inclusion)
(÷2) If x ∈ R\(R ÷ A), then there is some R′ with R ÷ A ⊆ R′ ⊆ R, such that:

A ∩ Cn(R′) = ∅ and A ∩ Cn(R′ ∪ {x}) �= ∅ (relevance)
(÷3) If A ∩ Cn(∅) = ∅, then A ∩ out(R ÷ A) = ∅ (success)
(÷4) If it holds for all subsets R′ of R that A ∩ out(R′) = ∅ iff B ∩ out(R′) = ∅,

then: R ÷ A = R ÷ B (uniformity)

Proof The proof is analogous to Hansson (1993)’s proof of Theorem 1, replacing K
by R and replacing Cn by out.

Likewise, the definitions for unified contraction can directly be taken fromHansson.

Definition 15 A two-place selection function is a function γ such that for each subset
R of L , γ (R, ) = γR() is a one-place selection function for R. A two-place selection
function γ is unified if and only if for all subsets R1 and R2 of L: if R1⊥A1 =
R2⊥A2 �= ∅, then ∩γR1(R1⊥A1) = ∩γR2(R2⊥A2).

The first argument of a unified two-place selection function can be omitted. Thus
∩γ (R⊥A) is an abbreviation of ∩γR(R⊥A).

An operator ∼γ is the operator of partial meet contraction generated by the two-
place selection function γ iff, for all sets R and A of pairs of L: ∼γ A = ∩γR(R⊥A).

∼γ is unified iff γ is unified.

Moreover, the proof of the second theorem goes through as well.

Theorem 4 An operator ÷ is an operator of unified partial meet contraction iff it
satisfies conditions (÷1) − (÷4) and in addition the following:
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(÷5) If A ∩ out(∅) = ∅, and each element of Z implies an element of A, then:
R ÷ A = (R ∪ Z) ÷ A (redundancy)

Proof The proof is analogous to Hansson (1993)’s proof of Theorem 2, replacing K
by R and replacing Cn by out.

3.3 Further Research: Rule Base Revision

The positive results do not imply that all ofHansson’s results can directly be transferred
to rule base dynamics. For example, the following third result of Hansson refers to a
conjunction of formulas, which is not defined for input/output logics (see his paper for
the definitions of maximizingly transitively relational partial meet contraction). This
issue is analogous to the problem of representing the seventh and eight postulate of
AGM contraction in rule contraction, which we discuss in the following section.

Theorem 5 (Hansson 1993) The following condition

(K ÷ {p}) ∩ (K ÷ {q}) ⊆ K ÷ {p&q} (intersection)

(1) holds for all operators of maximizingly, transitively relational partial meet con-
traction, but (2) does not hold in general for operators of transitively relational partial
meet contraction.

Moreover, Hansson distinguishes internal from external revision, which he defines
using the following function.

Definition 16 (Hansson 1993) Let A be a finite subset of L . Then n(A) is defined as
follows:

1. n(∅) = ⊥, where ⊥ is a contradiction.
2. If A = {p1, p2, . . . , pm} for some m ≤ 1, then: n(A) = ¬p1 ∨ . . . ∨ ¬pm

Let γ be a one-place selection function for the subset K of L . Then the operator ∗γ

is the operator of internal partial meet revision for K generated by γ iff for all finite
subsets A of L:

K ∗γ A = ∩γ (K⊥{n(A)}) ∪ A.

Let γ be a two-place selection function. The operator of external partial meet revision
generated by γ is the operator ± such that for all subsets K of L and all finite subsets
A of L:

K ± A = ∩γK∪A((K ∪ A)⊥{n(A)}).

Thus, to define the corresponding rule revision operators, we need to define the
negation n(R) of a set of rules R (see, e.g., Governatori and Rotolo 2010; Governatori
et al. 2013). In some other papers on belief base dynamics, see for example the survey
by Gärdenfors and Rott (1995), belief base revision is defined for contraction and
revision by a single formula only. For the corresponding rule revision we need to
define at least the negation of a rule. We do not further pursue these questions here,
but turn now to AGM contraction operators.
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4 AGM Rule Contraction

We start by reminding the AGM contraction postulates.

Definition 17 (Alchourrón et al. 1985) Let K be a deductively closed set of proposi-
tional formulas. An AGM contraction operation − satisfies the following postulates.

K-1: K − x is a deductively closed set (closure or type)
K-2: K − x ⊆ K (inclusion or contraction)
K-3: If x /∈ K then K = K − x (vacuity or min. action)
K-4: If � x then x /∈ (K − x) (success)
K-5: If x ∈ K then K ⊆ (K − x) + x (recovery)
K-6: If � x ↔ y then K − x = K − y (extensionality)
K-7: ((K − x) ∩ (K − y)) ⊆ K − (x ∧ y) (min-conjunction)
K-8: If x /∈ (K − (x ∧ y)) then K − (x ∧ y) ⊆ K − x (max-conjunction)

The first problem we encounter is that the last two postulates refer to conjunctions,
which are not defined for rules. This is not amajor problem, since the first six postulates
of AGM theory are known as the basic postulates, whereas the latter two are optional.
So we restrict ourselves to the basic postulates.1

Definition 18 Let out be an input/output logic. A rule contraction operator� satisfies
the following postulates.

R-1: R � (a, x) is closed under out (closure or type)
R-2: R � (a, x) ⊆ R (inclusion or contraction)
R-3: If (a, x) /∈ R then R = R � (a, x) (vacuity or min. action)
R-4: If (a, x) /∈ out(∅) then (a, x) /∈ R � (a, x) (success)
R-5: If (a, x) ∈ R then R ⊆ (R � (a, x)) ⊕ (a, x) (recovery)
R-6: If out({(a, x)}) = out({(b, y)}) then R � (a, x) = R � (b, y) (extensionality)

In the remainder of this section, we are going to study these postulates.We approach
them by translating the ‘implied rule’ representation back to the ‘operational seman-
tics’.

4.1 R-1: Closure

K-1: K − x is a deductively closed set (closure or type)
R-1: R � (a, x) is closed under out (closure or type)

The first postulate for theory change requires that the result of the contraction
is a deductively closed set. Expansion, contraction and revision operators are indeed
defined as functions from a deductively closed set and a formula x to a new deductively
closed set.

The corresponding closure (type) postulate for rule contraction says that R � (a, x)

is closed underout. In otherwords, if (b, y) ∈ out(R�(a, x)), then (b, y) ∈ R�(a, x).
Therefore, if y ∈ out(R � (a, x), b), then (b, y) ∈ R � (a, x).

1 K-7 and K-8 can be formulated on contraction with a set of formulas, so, the contraction of a ∧ b can be
understood as the contraction of {a, b} see, e.g., Billington and Antoniou (1999).
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4.2 R-2: Inclusion

K-2: K − x ⊆ K (inclusion or contraction)
R-2: R � (a, x) ⊆ R (inclusion or contraction)

K-2 states that, because K − x is obtained from K by giving up x , it is required
that no new formulas occur in K − x .

The corresponding inclusion (contraction) postulate for rule contraction says that
R � (a, x) ⊆ R. Together with R-1, this property says that if y ∈ out(R � (a, x), b),
then y ∈ out(R, b). In other words, for any context b, if something is obligatory after
rule contraction, then it was already obligatory before the contraction.

4.3 R-3: Vacuity

K-3: If x /∈ K then K = K − x (vacuity or min. action)
R-3: If (a, x) /∈ R then R = R � (a, x) (vacuity or min. action)

If x /∈ K , the criterion of minimal change requires that nothing is retracted from K .
The corresponding vacuity (min. action) postulate for rule contraction says that

if (a, x) /∈ R then R = R � (a, x). Together with R-1, this property says that if
x /∈ out(R, a), then R = R � (a, x). In other words, if we contract a rule (a, x), but
x is not obligatory in context a, then the contraction does not have any effect.

4.4 R-4: Success

K-4: If � x then x /∈ (K − x) (success)
R-4: If (a, x) /∈ out(∅) then (a, x) /∈ R � (a, x) (success)

K-4 says that, unless x is logically valid (in which case it can never be retracted),
if we remove x from K , the resulting set will not contain x .

The corresponding success postulate for rule contraction says that if (a, x) /∈ out(∅)

then (a, x) /∈ R �(a, x). In other words, if x /∈ out(∅, a), then x /∈ out(R �(a, x), a).
The following example illustrates the success postulate.

Example 6 Assume out1, R = {(poor, house ∧ healthins)} and four possible rule
based systems R� (poor ∧ old, house) visualized in Fig. 1. This figure must be read
as follows. Each column represents one possible way in which (poor ∧ old, house)
can be contracted from R. The short notation is on top, and the output of the set of
rules for each input on the left is written below it.

The success condition says that house /∈ out(R
′
, poor ∧ old), which is not satisfied

by R1, but it is satisfied by R2, R3 and R4. Thus, there are several ways in which a
set of rules can be contracted. The purpose of the postulates is precisely to distinguish
the admissible solutions from the inadmissible ones.

However, unlike in AGM theory revision, the question here is not only what and
how much to contract, but also for which inputs to contract. This is what distinguishes
the different solutions in the example. All the possible Ri prescribe that a free health
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Fig. 1 Four alternatives for R � (pr ∧ old, hse), R2, R3 and R4 satisfy the success postulate. In the figure
we use the following abbreviations: low rent (hse), low income agents (pr), free health insurance (hi),
elderly agents (old), and young agents (yng)

insurance must be given to the poor. Independently of whether the input is the poor
people only, or the poor and old or, again, the poor and the not old, we obtain the same
Ri . Hence, in order to obtain a rule based system that performs a contraction for all
poor people (also the not old ones), Ri should contain an additional rule as in R3 and
R4.

We now consider the question of characterising the minimal rule contraction oper-
ators, in other words, how to keep as much of possible of R in R � (a, x). Though
this construction is considered to have implausible properties, it illustrates some of the
challenges in rule contraction. In AGM, the minimal contraction of x from K selects
one of the maximal subsets of K consistent with x , which can be characterised as
Cn({x → y | y ∈ K }), where y is a consistent complete formula (i.e., a conjunction
of a maxiconsistent set of literals) not implying x . However, no such simple syntactic
characterisation seems to be available for minimal rule contraction.

The source of the problem can be illustrated as follows. In AGM, if y /∈ (K − x),
then we also have x ∧ y /∈ (K − x). This follows directly from the closure postulate
K-1, i.e. from the fact that belief sets are closed under consequence. Likewise, if
(a, x) /∈ R � (a, x), then also (a, x ∧ y) /∈ R � (a, x). However, this is not the
only consequence of the success postulate for rule contraction. For example, for all
six input/output logics we consider in this paper, if (a, x) /∈ R � (a, x), then also
(a ∨ b, x) /∈ R � (a, x).

Other logical relations depend on the input/output logic used. For example, for
basic output out2, if (a, x) /∈ R � (a, x), then we have either (a ∧ b, x) /∈ R � (a, x)

or (a ∧ ¬b, x) /∈ R � (a, x). In other words, if (a, x) /∈ R � (a, x) and (a ∧ b, x) ∈
R � (a, x), then (a ∧ ¬b, x) /∈ R � (a, x). These relations do not hold for simple-
minded output out1. Likewise, a similar property based on the inverse of CTA holds
for reusable output out3.

Example 7 Consider a finite set of propositional atoms. In AGM, a minimal con-
traction operator K − x is the set of formulas Cn({z ∨ y) | z ∈ K }), where y is a
consistent complete formula not implying x . Likewise, for out1, the minimal contrac-
tion operators gives for R � (a, x) the set of rules out({(b, z ∨ y) | a |	 b, (b, z) ∈
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R}) ∪ out({(b, z) | b �|	 a, (b, z) ∈ R}), where y is a consistent complete formula not
implying x . This follows from non-repetition property in Lemma 1.

In Definition 6 we mentioned that we also write 〈a, x〉 ∈ R for (a, x) /∈ R. Thus,
we can also write the success postulate as:

R-4: If 〈a, x〉 ∈ out(∅) then 〈a, x〉 ∈ R � (a, x) (success)

4.5 R-5: Recovery

K-5: If x ∈ K then K ⊆ (K − x) + x (recovery)
R-5: If (a, x) ∈ R then R ⊆ (R � (a, x)) ⊕ (a, x) (recovery)

K-5 requires that expanding K − x by x should give the same set as before the
contraction, that is K .

The corresponding recovery postulate for rule contraction says that, if (a, x) ∈ R,
then R ⊆ (R � (a, x)) ⊕ (a, x). In other words, contracting a rule based system by
(a, x) and then expanding by the same (a, x) should leave R unchanged.

Example 8 Assume R = {( poor, house ∧ healthins), ( old, house ∧ healthins)}
and R

′ = R � (poor, house). Suppose that R
′
is calculated by the obviously too

strong principle that house is contracted from the consequent of each rule, such that
R

′ = out({(poor, healthins), (old, healthins)}). This does not satisfy recovery since
for all reasonable input/output logics, adding (poor, house) to R

′
does not give us R

again.

The following result shows that the five postulates considered thus far are consistent
only for some input/output logics, but not for others. In particular, if we adopt out1 or
out3 then there is no single rule contraction operator satisfying the postulates.

Proposition 2 R-1 until R-5 cannot hold together for out1 or out3, but they can hold
together for out2.

Proof A counterexample for out1 and out3 is given by rule based system R =
{(poor, house)}. Now contract (poor, house) from R. The recovery postulate requires
(poor, house) /∈ ({(poor, house)}�(poor∧old, house))⊕(poor∧old, house). (poor,
house) is not part of {(poor, house)}� ( poor ∧old, house), and there is no way to
derive it when ( poor ∧old, house) is added again. The same counterexample also
works for out3. It is visualized in Fig. 2.

Consider a propositional language built from a finite set of propositional atoms,
such that all sets of propositions are equivalent to a single formula. A contraction
operator for out2 can be defined as follows.

R � (a, x) = out2({(b, y) ∈ R | b complete, if b ≡ V (a) then y ∈ out2(R, V (a)) − x})

where V (a) is a function giving a complete formula implying a, and − is an AGM
contraction function.
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Fig. 2 Recovery. (R � (pr ∧ old, hse)) ⊕ (pr ∧ old, hse). We recall the abbreviations used in the figures:
low rent (hse), low income agents (pr), free health insurance (hi), elderly agents (old), and young agents
(yng)

4.6 R-6: Extensionality

K-6: If � x ↔ y then K − x = K − y (extensionality)
R-6: If out({(a, x)}) = out({(b, y)}) then R � (a, x) = R � (b, y) (extensionality)

It is the content of x rather than its particular linguistic formulation that determines
the contraction of K by x . This means that logically equivalent sentences should lead
to identical revisions.

The extensionality postulate for rule contraction says that if out({(a, x)}) =
out({(b, y)}) then R � (a, x) = R � (b, y). In other words, if for all c, we have
out({(a, x)}, c) = out({(b, y)}, c), then we have for all c:

out({(a, x)} � (b, y), c) = out({(b, y)} � (b, y), c)

5 Rule Revision

In this section we discuss rule revision. We start by recalling the AGM postulates for
revision, and we then introduce the corresponding postulates for rule revision.

5.1 Postulates for Rule Revision

Definition 19 (Alchourrón et al. 1985) Let K be a deductively closed set. An AGM
revision operation ∗ satisfies the following postulates.

K ∗ 1: K ∗ x is a deductively closed set (closure or type)
K ∗ 2: x ∈ (K ∗ x) (success)
K ∗ 3: K ∗ x ⊆ K + x (inclusion)
K ∗ 4: If ¬x /∈ K then K + x = K ∗ x (vacuity)
K ∗ 5: K ∗ x = K⊥ iff � ¬x (triviality)
K ∗ 6: If � x ↔ y then K ∗ x = K ∗ y (extensionality)
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K ∗ 7: K ∗ (x ∧ y) ⊆ (K ∗ x) + y (iterated K∗ 3)
K ∗ 8: If ¬y /∈ K ∗ x then (K ∗ x) + y ⊆ K ∗ (x ∧ y) (iterated K ∗ 4)

The same argument as for contraction applies to the last two revision postulates.
Hence, we restrict ourselves to the first six postulates. The corresponding postulates
for rule revision are the following.

Definition 20 (provisional) Let out be an input/output logic, and R a set of rules
closed under out. A rule revision operator � satisfies the following postulates.

R � 1: R � (a, x) is closed under out (closure or type)
R � 2: (a, x) ∈ (R � (a, x)) (success)
R � 3: R � (a, x) ⊆ R ⊕ (a, x) (inclusion)
R � 4: If ¬(a, x) /∈ R then R ⊕ (a, x) = R � (a, x) (vacuity)
R � 5: R � (a, x) = R⊥ iff ¬(a, x) ∈ out(∅) (triviality)
R � 6: If out({(a, x)}) = out({(b, y)}) then R�(a, x) = R�(b, y) (extensionality)

Closure, success and extensionality state for revision the homonymous conditions
we have seen for theory and rule contraction. R � 3 and R � 4 define the relation
between revision and expansion:When¬(a, x) /∈ R, revision and expansion coincide,
i.e. R � (a, x) = R ⊕ (a, x). More generally, the result of revising R by (a, x) should
contain the new rule together with all those rules that have not been excluded from R
in order to accommodate (a, x), hence R � (a, x) should be a subset of R ⊕ (a, x),
as the inclusion condition states. Finally, R � 5 says that the revision of a normative
system should be coherent if the new rule is not contradictory.

However,¬(a, x) and R⊥ are not defined in input/output logic thus far. We propose
to render postulates R � 4 and R � 5 as shown below (for completeness we rewrite
the complete set of postulates for rule revision):

Definition 21 Let out be an input/output logic, and R a set of rules closed under out.
A rule revision operator � satisfies the following postulates.

R � 1: R � (a, x) is closed under out (closure or type)
R � 2: (a, x) ∈ (R � (a, x)) (success)
R � 3: R � (a, x) ⊆ R ⊕ (a, x) (inclusion)
R � 4: If (a,¬x) /∈ R ∪ (a, x) then R ⊕ (a, x) = R � (a, x) (vacuity)
R � 5: (a,¬x) ∈ R � (a, x) iff (a,¬x) ∈ out(∅) (triviality)
R � 6: If out({(a, x)}) = out({(b, y)}) then R�(a, x) = R�(b, y) (extensionality)

5.2 From Revision to Contraction (and back)

Postulates for (belief and rule) revision and (belief and rule) contraction are inde-
pendent. No reference to contraction is made in the revision postulates, and also the
revision operator does not appear in the postulates for contraction. The question of
whether belief revision (resp. contraction) could be defined in terms of belief con-
traction (resp. revision) was addressed in the AGM literature, leading to two positive
answers. The Levi identity defines the revision K ∗ A as a sequence of contraction and
expansion:
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K ∗ A = (K − ¬A) + A

The correctness of this definition was proven by the theorem below, where R(−)

is the revision function obtained from a contraction function with the help of the Levi
identity.

Theorem 6 (Gärdenfors and Rott 1995) If a contraction function − satisfies (K − 1)
to (K − 4) and (K − 6), then R(−) satisfies (K ∗ 1) − (K ∗ 6).

It is worth mentioning that the controversial recovery postulate (K − 5) was not
used in the theorem on contraction belief function above, and the fact that it is missing
is not due to the problems mentioned earlier for norm contraction. We now show that
the same can be done for rule change.

Theorem 7 Given a rule contraction operator, we can define a rule revision operator
via the Levi identity, R(�) : R�(a, x) = (R�(a,¬x))⊕(a, x), and when � satisfies
(R-1) to (R-4) and (R-6), then R(�) satisfies (R*1)–(R*6).

We first need to show some lemmas:

Lemma 2 out({(a, x)}) = out({(b, y)}) iff out({(a,¬x)}) = out({(b,¬y)}), when
out is out1 − out+3 .

Proof (sketch) In out1-out3 it follows from the fact that out({(a, x)}) = out({(b, y)})
iff Cn(a) = Cn(b)and Cn(x) = Cn(y). In out+1 -out+3 (throughput), it follows from
the fact that out({(a, x)}) = out({(b, y)}) iff Cn(a) = Cn(b) and Cn(a ∧ x) =
Cn(b ∧ y).

Lemma 3

a. If (a,¬x) /∈ out(R) then (a,¬x) /∈ out(R ∪ (a, x)).
b. If (a, x) /∈ out(R) then (a, x) /∈ out(R ∪ (a,¬x)).

Proof The two cases are analogous. We only give the first one.
Proof by contradiction. Let us suppose that (a,¬x) ∈ out(R ∪ (a, x)). Then both

the following hold: (a,¬x) ∈ out(R ∪ (a, x)) and (a, x) ∈ out(R ∪ (a, x)). This
would make the set out(R, a) inconsistent. Unless x is inconsistent, ¬x could not be
obtained from out(R ∪ (a, x), a). Thus (a,¬x) had to be already in out(R) which
contradicts the hypothesis.

We can now prove Theorem 7.

Proof (R � 1) By definition, ⊕ leads to the closure under out.
(R � 2) By definition of ⊕, (a, x) ∈ (R � (a, x)).
(R � 3) By (R �2) we have that R � (a, x) ⊆ R. We therefore have the following:

R � (a, x) = (R � (a,¬x)) ⊕ (a, x) ⊆ R ⊕ (a, x).
(R � 4) Assume that (a,¬x) /∈ R ∪ (a, x). By (R � 3) we have R � (a,¬x) = R

and so R � (a, x) = R ⊕ (a, x).
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(R � 5) Direction ⇐. Suppose that (a,¬x) /∈ out (∅). By (R � 4) we have that
(a,¬x) /∈ R � (a,¬x), and by Lemma 3.a: (a,¬x) /∈ (R � (a,¬x) ⊕ (a, x)) =
R � (a, x). Thus: (a,¬x) /∈ R � (a, x).

Direction ⇒. out is monotonous in R,2 so if (a,¬x) /∈ (R � (a, x)), then it is also
(a,¬x) /∈ out (∅).

(R � 6) Assume that out ({(a, x)}) = out ({(b, y)}). By Lemma 2, out ({(a, x)}) =
out ({(b, y)}) iff out ({(a,¬x)}) = out ({(b,¬y)}), when out is out1 − out4. Then by
(R � 6) we have that: R � (a,¬x) = R � (b,¬y). So: (R � (a,¬x)) ⊕ (a, x) =
(R � (b,¬y)) ⊕ (b, y), which is: R � (a, x) = R � (b, y).

Not only belief revision can be defined in terms of belief contraction operators, but
also belief contractions can be defined in terms of belief revisions. In the belief change
literature, this was expressed by the Harper identity:

K − A = K ∩ K ∗ ¬A.

Let C(∗) be the contraction function obtained from a revision function ∗ with the
help of the Harper identity. As for the Levi identity, that this definition is correct rests
upon the following theorem.

Theorem 8 (Gärdenfors and Rott 1995) If a revision function ∗ satisfies (K ∗ 1) to
(K ∗ 6), then C(∗) satisfies (K − 1) to (K − 6).

In general a similar relation does not hold for rule change, because we have shown
that sometimes (for out1 and out3) the revision postulates are consistent and the con-
traction postulates are not.3

The natural question now is how these two identities are combined. In the context
of AGM theory, Gärdenfors and Rott well explained this point:

The two theorems show that the defined revision and contraction functions have
the right properties. But we also want the two definitions to be interchangeable
in the sense that if we start with one definition to construct a new contraction
(or revision) function and after that use the other definition to obtain a revi-
sion (or contraction) function, then we ought to get the original function back.
[(Gärdenfors and Rott 1995, p. 57)]

The Levi and the Harper identities have been shown to be interchangeable for AGM
theory:

K ∗ A = (K ∩ K ∗ A) + A

K − A = K ∩ ((K − A) + ¬A).

Hence, transposing the same line of argument for the revision and contraction of
rules, and even though there is no theorem corresponding to Theorem 8 in the general

2 This follows directly from Proposition 1, see also Makinson and Torre (2000).
3 However, there may be special cases where it holds, for example for out2.
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case, we can ask whether similar identities hold for rule change. In other words: can
we replace (R � (a,¬x)) in the Levi identity by R ∩ ((R � (a, x)) thanks to the
Harper identity? And, viceversa, can we substitute R � (a,¬x)) in the Harper identity
by (R � (a, x)) ⊕ (a,¬x)) thanks to the Levi identity?

We thus want to check whether R � (a, x) = (R ∩ R � (a, x)) ⊕ (a, x) is a
consequence of the basic postulates for rule revisions, and if R � (a, x) = R ∩ ((R �
(a, x)) ⊕ (a,¬x)) can be proved from the basic set of postulates for rule contractions
(including the recovery postulate). The answer to the first question is positive:

Proposition 3 R � (a, x) = (R ∩ R � (a, x)) ⊕ (a, x)

Proof We show that the following two hold:

– Case 1. (R � (a, x)) ⊆ (R ∩ (R � (a, x)) ⊕ (a, x)). Clearly, (R ∩ (R � (a, x)) ⊆
(R � (a, x)). When we add (a, x) to the left part, we obtain a set that (like the
right part) includes at least (a, x) as out is a consequence operator, as in the right
part. The inclusion relation is therefore not reversed. We have that (R ∩ (R �
(a, x))⊕ (a, x)) ⊆ (R � (a, x)). In the last case we show that (R ∩ (R � (a, x))⊕
(a, x)) ⊂| (R � (a, x)). So, the two sets must be identical.

– Case 2. (R∩(R�(a, x))⊕(a, x)) ⊆ (R�(a, x)). This follows from the inclusion
postulate (R � 3), and the fact that out is a consequence operator.

However, R � (a, x) = R ∩ ((R � (a, x)) ⊕ (a,¬x)) does not hold in general, i.e.
it cannot hold for out1 or out3.

6 Related Work

Even thoughMakinson and van der Torre’s input/output logic allows to model general
input/output processes (as in this paper), so far it has been applied mainly to norma-
tive and legal systems. So, the use of input/output logic to AGM theory to capture
norm dynamics has been independently pursued by Boella et al. (2009) and Stolpe
(2010). Stolpe (2010) analysed derogation and amendment in terms respectively of
contractions and revision on a set of norms.When the new norm is incoherent with the
existing ones, we have an amendment of the code: in order to coherently add the new
regulation, we need to reject those norms that conflict with the new norm. Derogation,
on the other hand, is the elimination of a norm together with whatever part of the code
that implies that norm. The derogation operation is characterised as an AGM partial
meet contraction by defining a selection function for a set of norms in input/output
logic. Amendment on the other hand, is defined as a norm revision obtained via the
Levi identity. So defined, Stolpe shows that derogation and amendment operators are
in one-to-one correspondence with the Harper and Levi identities as inverse bijective
maps.

Makinson and van der Torre define their ‘operational semantics’ of input/output
logic (Definition 2 of this paper) out : P(L × L) × P(L) → P(L), i.e. a context
is a (possibly infinite) set of sentences of L . In contrast to Makinson and van der
Torre and as already discussed in Sect. 2.1, in this paper we are primarily interested
in the proof theory of input/output logic, which we use to define what we call here
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rule ‘implication.’ For this reason we do not consider contexts which may contain
infinite sets, and the relation between the semantics and the proof theory is simplified.
Likewise, in contrast to Makinson and van der Torre we assume that the language is
based on a finite set of propositions, such that the semantics of out2 can be based on
maxiconsistent formulas rather than maxiconsistent sets.

Governatori and DiGiusto (1999) consider finite base revision (the revision of not
deductively closed sets) where facts are distinguished from rules. They study a pro-
cedure which defines the revision of a base by a new fact as a change of the rules part
of the base: new rules are found in order to accommodate the new information.

Not directly related to norm change is the approach in Corapi et al. (2011), which
uses inductive logic programming in order to revise rules and synthesise new ones.
The idea is to have a set of use cases defined by the designer’s, providing the desired
outcome, and thus suchdefining a semi-automatic process to detect incompleteness and
errors. Among the possible extensions mentioned by the authors is also the possibility
to adapt such approach to compute revisions of normative frameworks.

In Delgrande et al. 2008; Delgrande 2010 belief revision has been reformulated to
capture the change of (non monotonic) logic programs under answer set semantics. A
logic program P (i.e. a finite set of rules) is taken to give an agent’s epistemic state,
whereas the answer sets of P correspond to a belief set in the AGM tradition. Belief
revision turns out to be an intuitive approach that can be well suited to capture the
revision of logic programs under the answer set semantics, even though the authors
do not claim this to be the only possible (or best) approach.

7 Summary and Outlook

To apply the AGM theory to rule change, we use input/output logics to define a notion
of implication between rules. This notion of implication between rules is based on an
‘operational semantics’ of a set of rules to derive formulas.

In the tradition of theory change, we have taken contraction to be the more elemen-
tary kind of change. For rule base contraction, we show that two existing representation
results carry over to rule contraction. However, in this framework, a contraction comes
down to a selection of a set of rules, whereas we also like to consider change of the
rules. This motivates the study of AGM rule contraction.We also show that for internal
and external rule revision we need to adapt Hansson’s definitions, as they make use
of a disjunction of rules, and negation of rules.

For AGM contraction, we show that the basic postulates can easily carry over to
the rule case, but the two additional postulates do not seem to have a straightforward
counterpart in rule change. We illustrate that the success postulate may be interpreted
as a set of success conditions on outputs. Then we show the surprising result that
for two common systems for rules, called simple-minded and reusable output, the
postulates do not allow for any rule change operation. On the positive side, we show
that rule change operations exist for basic output.We also show that the proof theory of
rule change is closely related to the proof theory of permissions from an input/output
perspective.
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Finallywe consider rule revision,whereweonly give a partial answer to the question
how rule revision methods can be classified. The translation of the AGM postulates is
much more difficult than for the contraction case, because we have to define when a
set of rules is “consistent”, which in the area of normative systems is usually called
coherent. We therefore define rule revision in terms of rule contraction using the Levi
identity, and we show the the operator thus defined satisfies the AGM rule postulates.

Rules may also be interpreted as orders of ideality, thus introducing preferences
over the set of rules. A rule (a, x) would then mean that in context a, x is the most
ideal situation. In the literature on belief revision, several proposals forminimal change
approaches have been put forward (see, for example, Grove’s systems of sphere Grove
1988). We leave the exploration of such connections for future work.
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