
Journal of Logic, Language and Information (2021) 30:753–804
https://doi.org/10.1007/s10849-021-09343-w

Performability of Actions

Janusz Czelakowski1

Accepted: 6 September 2021 / Published online: 6 October 2021
© The Author(s) 2021

Abstract
Action theory may be regarded as a theoretical foundation of AI, because it provides
in a logically coherent way the principles of performing actions by agents. But, more
importantly, action theory offers a formal ontology mainly based on set-theoretic
constructs. This ontology isolates various types of actions as structured entities: atomic,
sequential, compound, ordered, situational actions etc., and it is a solid and non-
removable foundation of any rational activity. The paper is mainly concerned with a
bunchof issues centered around thenotionof performability of actions. It seems that the
problem of performability of actions, though of basic importance for purely practical
applications, has not been investigated in the literature in a systematic way thus far.
This work, being a companion to the book as reported (Czelakowski in Freedom and
enforcement in action. Elements of formal action theory, Springer 2015), elaborates the
theory of performability of actions based on relational models and formal constructs
borrowed from formal lingusistics. The discussion of performability of actions is
encapsulated in the form of a strict logical system |�. This system is semantically
defined in terms of its intended models in which the role of actions of various types
(atomic, sequential and compound ones) is accentuated. Since due to the nature of
compound actions the system |� is not finitary, other semantic variants of |� are
defined. The focus in on the system |� f of performability of finite compound actions.
An adequate axiom system for |� f is defined. The strong completeness theorem is the
central result. The role of the canonicalmodel in the proof of the completeness theorem
is highlighted. The relationship between performability of actions and dynamic logic
is also discussed.

Keywords Binary relation · Frame · Model · Atomic action · Sequential action ·
Compound action · Performability of actions

This research was supported by the National Science Centre of Poland (BEETHOVEN,
UMO-2014/15/G/HS1/04514).

B Janusz Czelakowski
jczel@uni.opole.pl

1 Department of Mathematics, Physics and Informatics, University of Opole, Opole, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10849-021-09343-w&domain=pdf

754 J. Czelakowski

Mathematics Subject Classification 03B50 · 03B60 · 03B80

1 Introduction

The present paper is motivated by the research in the area of action theory made
by Maria Nowakowska in her pioneering works (Nowakowska 1973a, b, 1979). She
presented there an approach to action theory based on the apparatus of formal lin-
guistcs.Actions are structured entities. Shedistinguishes atomic actions and compound
actions.Atomic actions are regarded as primitive entities not divisible into smaller parts
in the adopted model. Symbols of atomic actions are treated as letters of an alpha-
bet. Finite strings of atomic actions are words over the alphabet consisting of atomic
actions. Each string represents a sequence (of names) of consecutively performed
atomic actions usually in accordance with some instituted action plan. Compound
actions are sets of words. From the formal viewpoint each compound action is a lan-
guage over the alphabet of atomic actions. The above formal constructs define the
syntax of actions.

She wanted her theory to be close as much as possible to everyday situations in
which agents (individual or collective) performed various actions such as baking bread,
cooking a dinner, sewing a dress or manufacturing a car etc. The problem is how to
meaningfully interpret the expressions of the above language of actions in a consistent
way. There are various options available here. The simplest one, which stems from
dynamic logic, is to model atomic actions as binary relations on a set of states. Thus
each atomic action a is represented as a kind of black box with a system of inputs an
outputs. As the actions are often non-deterministic, the binary relations representing
atomic actions need not be partial functions defined on the set of states. Consequently,
one input may yield many possible outputs (results of the action). Then one has to
answer other pertinent questions: what meaning should one attach to sequences x of
letters representing atomic actions and to languages over the alphabet representing
compound actions? The idea is to employ the operation of composition of binary
relations, well known from set theory. Each sequence x of letters of atomic actions
is represented by the corresponding finite sequence of binary relations. Taking the
composition of the above associated sequence of relations, one defines the resultant
relation of the given sequence of interpreted atomic actions. The resultant relation is
also a binary relation on the set of states. It is also called the resultant action of a
sequence of atomic actions; this relation represents the way the results of a string of
instituted actions are obtained. This idea enables one to attach meanings to sets A of
strings of atomic actions as well. This paper contains a detailed elaboration of this
idea.

But this is still an oversimplified picture of action. In practice one is compelled
to take into account various constraints imposed on performability of actions. These
constraints are of different kind and weight: legal, physical, logical, computational
etc. The situational envelope of action is yet another factor which should be taken into
account. Actions are performed in a definite place and time, they involve cooperating
agents; and last but not least—actionsmay consume various resources and cost money.

123

Performability of Actions 755

Yet another issue linked with performability is purposefulness of actions. One may
argue that although such and such action is performable, its performability may not be
not rationally justified. E.g. onemaybuilt the tallest skyscraper in theworld somewhere
in Sahara, because it is logistically feasible. However no one will see any rationale for
such an action. Leaving aside the issue of purposefulness of action, we shall merely
discuss here a bunch of issues centered around the notion of performability of actions.

The semantic approach to action presented here is of the linguistic origin but it
departs from the “standard” stit semantics. Comparisons with the stit semantics are
possible if one aditionally induce semi-orders on the set of states of the pertinent
models and introduces agents on the stage. This issue is thoroughly discussed in
Czelakowski (2015) in the context of ordered situational action systems. The logical
systems presented in this work abstract from many situational and order aspects of
action. The notion of performability is limited here to simple action models. In these
models situations are reducible to states. Therefore the notion of performabilty studied
in this work is simplified and it is formulated in terms of states and not of situations
in general. A more general account of performability is outlined in the monograph
(Czelakowski 2015).

The discussion on action performability is impersonal here (the agents of actions
are omitted) and it is carried out in a simple, “bare” language of action. It should
be underlined that the conception outlined in this paper is amendable to various syn-
tactical and semantic extensions to do justice to a more complex parlance of action
involving various situational components. For example, the work (Czelakowski 2019)
incorporates agents to the above picture of action. The resulting “agential” action sys-
tems are examples of simple situational systems. They are built by applying context
free grammars in Greibach form.

It is obvious that when one describes actions, one applies various idealization
procedures—one isolates merely crucial states among those being involved in the
process of performing of the undertaken action. Let us call them nodal states, because
it is not generally feasible to grasp all states pertinent to an action. In particular, the
description of atomic actions take into account such nodes as their inputs and outputs;
anything else is irrelevant and omitted in the idealization procedure. In more exact
approximations, atomic actions may turn into compound actions operating on more
complex state spaces.

It should be added that action theory is a vibrant research area investigated from
the perspective of AI, and numerous actions languages such as STRIPS, PDDL, A, B,
BC, C+, MAD, etc. have been defined and studied. All such languages define known
concepts in AI planning such as action, compound action, (related to) possible and
realizable actions, deterministic (planning), frame models, etc. that are defined in the
paper inside the framework. Basically all such action languages come with software
tools (planners) that synthesize series of actions (plans), so they enjoy also the feature of
having being implemented. We refer to Gelfond and Lifschitz (1998), Giunchiglia and
Lifschitz (1998), Lee et al. (2013), Fikes and Nilsson (1971), Giunchiglia et al. (2004),
Lifschitz and Ren (2006) for more details. The semantics of the above languages can
be reconstructedwithin the framework of situational action systems and other concepts
studied in Czelakowski (2015).

123

756 J. Czelakowski

This paper presents companion results to the book (Czelakowski 2015) and to the
earlier papers of the author (see e.g. Czelakowski 1996). The focus is on the issue of
performability of actions from the semantic perspective. It seems that the problem of
performability of actions, though of basic importance for purely practical applications,
has not been elaborated in the literature in a systematic way thus far.

The paper is mainly concerned with a bunch of issues centered around the notion of
performability of compound actions inmodels of action. Intuitively, each of the atomic
actions forming a compound action may be individually performable in definite states,
but the whole compound action may be not.

Deontological issues are not discussed here. They are presented in a separated
work—see Czelakowski (2020).

The logic of performability, denoted by |�, occupies the central position. This
logical system is semantically defined by means of its intended models in which the
role of actions of various types (atomic, sequential and compound ones) is accentuated.
This logic should not be confused with dynamic logic (DL). The relationship between
DL and various variants of the logic of performability is thoroughly discussed in the
paper.

Since the object language of the parlance about actions contains symbols of infi-
nite compound actions, the consequence relation |� is not finitary. Therefore other
semantic variants of |� are defined. The focus in on the system |� f of performability
of finite compound actions. An adequate axiom system for |� f is defined. The strong
completeness theorem is the central result. The role of the canonical model in the
proof of the completeness theorem is underlined.

The main aspects of axiomatisation of performability are basically the following
ones:

(1) Performability of sequences of actions is closed under non-empty prefixes;
(2) The empty set cannot be performed;
(3) Performability of a set of sequences is the same as performability of at least one

sequence belonging to this set.

1.1 Outline of the Paper

Section 2 briefly recalls basic linguistic notions, which reports the syntax. Section
3 is concerned with relational models of action, which basically define fluents and
actions, and then the paper goes into details of actions and their performability. The
paper shows in this section a number of concepts and definitions, that together lead
to the goal of the paper. The focus of Sect. 4 is on logical issues. The language of
action performability is defined and the logic of performability |� in the form of a
semantically defined consequence relation is discussed there. Section 5 is devoted
to ultrasets. The role of ultrasets and the canonical model is highlighted in Sect. 6.
The subsequent section reports basic properties of the logic |�. Sections 8 and 9 deal
with the logic of finite actions and the relationship of the logic of performability with
dynamic logic. Section 10 discusses other issues pertinent to performability of actions
as e. g. degrees of performability, fuzzy performability etc. The paper presents basic

123

Performability of Actions 757

results concerning logical aspects of performability leaving detailed applications of
the presented theory for further scrutiny.

2 The Alphabet of Action

Let (�∗, •, e) be the free semigroup freely generated by a nonempty set of generators
�. Thus, the elements of �∗ are finite sequences of members of �. • is the operation
of concatenation of sequences. e stands for the empty sequence.

The elements of � are called symbols of atomic actions while the elements of
�∗ are referred to as sequences of symbols of atomic actions or simply symbols of
sequential actions. We shall simply refer to the elements of �∗ as to words.

From the linguistic viewpoint, the set � is an alphabet and the members of �∗ are
(finite) words over �. (Here the set � is allowed to be infinite.)

℘(�∗) is the power set of�∗. Thus, the elements of℘(�∗) are subsets of�∗. They
are formal languages over the alphabet �. But here we adhere to the action theory
terminology and call the elements of ℘(�∗) symbols of compound actions over �.
Accordingly, from the linguistic perspective, symbols of compound actions are the
same objects as languages over �.

The elements of � will be marked as a, b, c, d with indices if necessary. Sequen-
tial actions (words) will be denoted by x, y, z, w with indices if necessary. In turn,
compound actions will be marked by capital letters A, B, C etc.

The algebraic structure of the semigroup (�∗, •, e) is quite simple. The concatena-
tion operation • is associative (but not commutative), e is the neutral element, which
means that x • e = e • x = x . Following common practice we shall mark the word
x • y, being the concatenation of the words x and y, simply as xy, suppressing the
symbol •. Thus, if x = a1 . . . am and y = b1 . . . bn are words, their concatenation xy
is written down as a1 . . . amb1 . . . bn , as it is customary in formal linguistics.

�∗ is also endowed with the unary operation r of reflection. The operation of
reflection is not discussed in this paper in the context of action performability.

Note Formally speaking, symbols of atomic actions are not members of �∗. But for
each atomic action a ∈ �, the sequence 〈a〉 of length 1 is a word. We shall identify the
atomic action a with 〈a〉 and therefore include � to the set of words �∗ as a subset.
Consequently, all symbols atomic actions are regarded as elements of �∗.

The Boolean algebra ℘(�∗), apart from being endowed with the standard set-
theoretic operation of union (join) ∪, the intersection (meet) ∩ and complement ′
together with two constants distinguished ∅ (the empty set, the zero of ℘(�∗)) and
�∗ (the unit element of the algebra), is also furnished with further operations with
clear linguistic connotations. If A and B are subsets of �∗ then we define:

A • B := {xy : x ∈ A, y ∈ B},
Ar := {xr : x ∈ A}.

The compound action A • B is called the composition of the actions A and B and Ar

is called the reflection of A.

123

758 J. Czelakowski

Moreover, for each natural number n ≥ 0 we recursively define:

A0 := {e}
An+1 := {xy : x ∈ An, y ∈ A},

A+ :=
⋃

n≥1

An,

A∗ :=
⋃

n≥0

An .

Note that A1 = A and A∗ = A+ ∪ {e}. A∗ is called the Kleene closure of A. The set
A+ is the positive closure of A.

The so enriched Boolean algebra is denoted by ℘(�∗) and it is called the language
of compound actions.

3 Relational Models of Action

Definition 3.1 By an action model over � we shall understand a triple

M = 〈W , V , VR〉

such that:

(1) W is non-empty set called the set of states.
(2) V is a mapping defined on � assigning to each symbol a ∈ � a binary relation

V (a) defined on the set W .
(3) VR is a mapping defined on � assigning to each symbol a ∈ � a sub-relation

VR(a) of V (a).

The mapping V provides an interpretation of each symbol a ∈ �. V (a) is called
the action of a on the states of W .

Any pair 〈u, w〉 ∈ V (a) is called a possible performance of a in the model M .
Accordingly, the interpretation V (a) of an action symbol a is identified with the set
of possible performances of a in the model.

If V (a) is empty, the set of possible performances of a is empty.
Any pair 〈u, w〉 belonging to VR(a) is called a realizable performance of a in the

model. The relation VR(a) is therefore the set of realizable performances of the action
a.1

As VR(a) is a subset of V (a), every realizable performace is possible, but generally
not vice versa.

1 There does not exists a uniform and coherent terminology in the literature concerning various aspects of
performability of actions. In this paper possible and realizable performances of an action are distinguished.
In some contexts one may also speak of virtual and actual performances of actions; in other situations, e.g.,
those involving games, one may contrapose performances versus succcesful performances etc.

123

Performability of Actions 759

The relations V (a) and VR(a) are the key components of the notion of performabil-
ity of actions in the model M we shall investigate later. Here we shall merely outline
the main idea.

Let u ∈ W be a state. The action a is performable at the state u in the model M
if some possible possible performance of a instituted at u is realizable, that is, there
exists a state w such that 〈u, w〉 is an actual performance of a, i.e., 〈u, w〉 ∈ VR(a).

The distinction between possible and realizable performances is a vital part of the
theory.

Let us first give a simple example taken from everyday life. I am standing by my
car in the parking lot. My intention is to open the car door and get into the car. I am the
driver. I want to reach the state w in which the door is open. Possible performances
of this action A lead from my current state in which the door is closed to the state w.
Basically, one can isolate two initial states: the state u1 in which I have the car keys
with me and u2 in which I do not have them (the keys have been lost or stolen etc.);
other possibilities are omitted. Thus A consists of two possible performances: 〈u1, w〉
and 〈u2, w〉. Suppose that A = V (a) for some action symbol a. The door gets open by
the keys only in the state u1. Accordingly, VR(a) consists of only one pair 〈u1, w〉 and
the action A is R-performable at u1; formally, because 〈u1, w〉 ∈ VR(a). As VR(a)

represents the “civilised” way of opening the car door by means of the keys, the action
A is not performable at u2. Thus though 〈u2, w〉 is a possible performance, it is not a
realizable performance.

But now suppose that I am desperate and I decide to force the door, because some
important documents are left in the car. The action A is the same, it consists of two
possible performances 〈u1, w〉 and 〈u2, w〉. However in this case VR(a) is replaced
by another relation, viz., V ′

R(a) := {〈u1, w〉, 〈u2, w〉}. This is due to the fact that
by applying the physical force, the door can be opened in each of the states u1, u2.
Therefore, in this case A (= V ′

R(a)) is performable in both states u1 and u2. This
example explains why it is necessary to adopt various meanings of performability of
the same action a, each depending on a selection of appropriate model M .

In the game of snooker, the execution of a shot by striking the cue (white) ball in a
direction of a red ball is a possible performance of the action of shooting the cue ball.
But only when the cue ball hits the red ball and sinks it in a pocket, this performance
is successful (or realizable, according to the above parlance).

A model 〈W , V , VR〉 is deterministic if for every a ∈ �, the relation V (a) is a
unary total function, i.e., it is a function whose domain is W . In any deterministic
model, every relation VR(a) is a partial function, being the restriction of V (a) to a
non-empty subset of W .

Deterministicmodels play a significant role in the presented approach, because their
logical strength is the same as the class of all relational models. In other words, the
logical system |�we shall introduce is semantically defined by means of all relational
models. But in view of Adequacy Theorem (Theorem 7.1), |� is characterized by a
single model Mc, the canonical model of |�. The model Mc is deterministic.

Note 3.2 Frame-based action models Simple models of action are often defined in
the following way. Suppose W is a non-empty set and V is an interpretation of � in

123

760 J. Czelakowski

W , that is, V is a mapping assigning to each symbol a ∈ � a binary relation V (a) on
W .

Let R be a binary relation on W . R is called the global transition relation on the
set of states. We then define:

VR(a) := V (a) ∩ R,

for all a ∈ �. Thus 〈W , V , VR〉 is an action model.
The structure 〈W , R, {V (a) : a ∈ �}〉 is an atomic action system in the sense of

Czelakowski (2015).
In the above example, the pair 〈W , R〉 is called a relational frame (it is also known

as a Kripke frame) and the model 〈W , V , VR〉 is referred to as a frame-based action
model.

Frame-based models will be usually marked as

〈W , R, V 〉

to highlight the special status of the transition relation R in it. The operator VR is then
defined according to the above formulas. This assumption is tacitly assumedwhenever
frame-based models come to light in various contexts.

Frame-basedmodels are indispensable in situations when one is concerned with the
issue of concerted actions of agents, because the transition relation R, apart from other
situational aspects, enables one to express in a uniform way principles of cooperation
of agents. Constructions of models of this type are also a valuable source of examples
and counter-examples to various problems pertinent to action theory—see e.g. Sect. 8.

Definition 3.1 of an action model does not refer to a transition relation R globally
defined on the set W—each relation VR(a) is merely locally defined as a subrela-
tion of V (a). Therefore Definition 3.1 provides a larger class of action models than
Example 3.2.

Let M = 〈W , V , VR〉 be an action model over �. Formally, every word x of �∗ is
interpreted in the model M as a finite sequence of binary relations. If x = a1 . . . am is
a non-empty word, then the sequence of binary relations

Vseq(x) := 〈V (a1), . . . , V (am)〉

is called the sequential action of x = a1 . . . am in the model M .
If the length of x is 1, x = 〈a〉, then Vseq(a) = 〈V (a)〉. Following common practice,

the sequence 〈a〉 is identified with the symbol a itself. We shall therefore identify the
sequence Vseq(x) with the relation V (a).

For the empty sequence e, it is assumed that Vseq(e) is the diagonal relation 0W =
{〈w,w〉 : w ∈ W }.

If A ⊆ �∗ is a compound action, then

Vseq(A) := {Vseq(x) : x ∈ A}

123

Performability of Actions 761

is the set of all sequential actions of A in the model, or shortly, the action of A in the
model.

Definition 3.3 Let 〈W , V , VR〉 be an action model. The mapping V is inductively
extended on the set �∗ of words by means of the operation of composition of binary
relations.

For the empty word e, the relation V (e) is the diagonal of W ,

V (e) = 0W .

Hence V (e) = Vseq(e).
For any word x ∈ �∗ and any a ∈ �,

V (xa) := V (x) ◦ V (a)

where ◦ is the composition operation of relations. Thus uV (xa)w if and only if there
exists a state v such that uV (x)v and vV (a)w.

Accordingly, if x = a1 . . . am is a non-empty word, then

V (x) = V (a1) ◦ . . . ◦ V (am),

i.e., uV (x)w if and only if there exists a sequence of states u1 . . . um with um = w

such that

uV (a1)u1V (a2)u2 . . . um−1V (am)um .

The binary relation V (a1 . . . am) is called the resultant action of the sequence
Vseq(a1 . . . am) = 〈V (a1), . . . , V (am)〉 on the states of W .

In the third step, V is extended onto any subset A ⊆ �∗:

V (A) :=
⋃

{V (x) : x ∈ A}.

The binary relation V (A) is called the resultant action of the set Vseq(A) of sequen-
tial actions of A in the model.

V (A) is a binary relation on W . V (∅) is the empty set. If A = �∗, then V (�∗), the
set-theoretic union of the relations V (x), x ∈ �∗, may be a proper binary relation on
W .

It is clear that V (x) ◦ V (e) = V (e) ◦ V (x) = V (x), for all words x .
To define the notion of performability of sequential and compound actions, we shall

suitably modify the above definition. As it was said above, if a ∈ �, the pairs of states
belonging to VR(a) are called realizable performances of V (a) in the model. VR(a)

is called the realizable resultant action of V (a) in the model.

Definition 3.4 In an analogous manner the mapping VR is extended onto the words of
�∗. According to the definition of VR , the relation

VR(e)

123

762 J. Czelakowski

is as an arbitrary but fixed subset of the diagonal relation V (e).
Then, for any non-empty word x ∈ �∗ and any a ∈ �, we put:

VR(xa) := VR(x) ◦ VR(a).

Thus uVR(xa)w if and only if there exists a state v such that uVR(x)v and vVR(a)w.
It follows that if x = a1 . . . am is a non-empty word, then uVR(x)w holds if and

only if there is a sequence of states u1 . . . um with um = w such that

uVR(a1)u1VR(a2)u2 . . . um−1VR(am)um .

Note As ex = x = xe for any word x , we obviously have that VR(ex) = VR(xe) =
VR(x). But it need not be the case that VR(e)◦ VR(x) = VR(ex) and VR(x)◦ VR(e) =
VR(xe).

The binary relation VR(a1 . . . am) is therefore defined for all words x = a1 . . . am ∈
�∗. VR(x) is called the realizable resultant relation of the sequence Vseq(x) in the
model.

If uVR(x)w holds holds for x = a1 . . . am , we say that the pair 〈u, w〉
is a resultant realizable performance of the sequence of actions Vseq(x) =
〈V (a1), V (a2), . . . , V (am)〉.

For any set A ⊆ �∗ we define:

VR(A) :=
⋃

{VR(x) : x ∈ A}.

The binary relation VR(A) is called the realizable resultant action of the compound
action A. Trivially,

VR(∅) = ∅.

If uVR(A)w holds, the pair 〈u, w〉 is called a resultant realizable performance
of V (A).

Performability

The paper offers a conception of performabity of actions formulated in terms of
the above action models. It slightly differs from the one presented in the mono-
graph (Czelakowski 2015). There one can also find a justification of this conception.
But the focus of this work is on logical aspects of performability. This issue is not
thoroughly discussed in the above monograph.

We adopt the following definitions:

Definition 3.5 Let M = 〈W , V , VR〉 be a model and u ∈ W a state.

(1) Let a be in �. The atomic action V (a) is performable at u if and only of if there
exists a state w such that uVR(a)w holds.

123

Performability of Actions 763

(2) Let x be in �∗. The sequential action Vseq(x) is performable at u if and only if
there exists a state w such that uVR(x)w holds.
In particular, the action Vseq(e) (= V (e)) is performable at u if and only if it is
the case that uVR(e)u.

(3) Let A be a subset of �∗. The compound action Vseq(A) is performable at u if and
only if if there exists a state w such that uVR(A)w holds.
Thus Vseq(A) is performable at u if and only if for someword x ∈ A, the sequential
action Vseq(x) is performable at u, i.e., uVR(x)w for some state w.

The above definition provides a weak notion of performability of actions. We shall
denote it for brevity as ∃-performability. This notation is motivated by the use of the
existential quantifier “there exists” in the definienses of definitions (1)–(3). Performa-
bility of actions is thus a version of the modal possibility operator (cf. Sect. 9.)

Some comments to the above definitions. According to (1), V (a) is performable
at u in the sense of M if and only if for some state w, the pair 〈u, w〉 is a realizable
performance of V (a), i.e, 〈u, w〉 ∈ VR(a). Thus 〈u, w〉 is a possible performance of
A and the transition from u to w is admissible by VR(a). Analogously, according to
(2), if x = a1 . . . am , Vseq(x) is performable at u if and only if for some state w, the
pair 〈u, w〉 is a resultant realizable performance of Vseq(x), which means that there is
a sequence of states u1 . . . um with um = w such that uVR(a1)u1 . . . um−1VR(am)um .

It follows from the above definitions that if Vseq(xa) is performable at u, then
Vseq(x) is performable at u as well, for all non-empty words x and symbols a. Con-
sequently, if Vseq(x) is performable at u then so are all non-empty prefixes of x .

The problem of performability of compound actions is a difficult part of action
theory. How to explicate it in simple terms and present a solution in a conceptually
incontrovertible way? Definition (3) offers an approach to this problem (see also Note
below). According to (3), Vseq(A) is performable at u if merely some word x in A is
performable at u, i.e., for some word x ∈ A there is a state w such that 〈u, w〉 is a
resultant realizable action of Vseq(x).

Consequently, the action Vseq(A) is unperformable at a state u if and only if all
sequential actions Vseq(x), x ∈ A, are unperformable at u.

The compound action ∅ is never performable.

Definition 3.6 Let M = 〈W , V , VR〉 be a model over �.
For each a ∈ � we define the performability proposition Perf Vseq(a) ⊆ W :

u ∈ Perf Vseq(a) ⇔d f Vseq(a) is performable at u(26.a)

⇔ (∃w ∈ W) uVR(a)w.

This definition is extended onto arbitrary words x ∈ �∗:

u ∈ Perf Vseq(x) ⇔d f Vseq(x) is performable at u(26.b)

⇔ (∃w ∈ W) uVR(x)w.

123

764 J. Czelakowski

In particular,

u ∈ Perf Vseq(e) ⇔d f V (e) is performable at u

⇔ uVR(e)u.

It follows from the above definitions that for any non-empty word x ∈ �∗ and any
symbol a ∈ �, u ∈ Perf Vseq(xa) if and only if there exist states v and w such that
uVR(x)v and vVR(a)w.

Finally, for every set A ⊆ �∗ we put:

u ∈ Perf Vseq(A) ⇔d f Vseq(A) is performable at u(26.c)

⇔ (∃x ∈ A) Vseq(x) is performable at u

⇔ (∃x ∈ A) u ∈ Perf Vseq(x).

From the viewpoint of the theory of relations, the proposition Perf Vseq(a) coin-
cides with the domain of the relation VR(a) for every symbol a ∈ �, because the
domain of VR(a) is equal, by definition, to the set {u : (∃w ∈ W)uVR(a)w}. Like-
wise, Perf Vseq(x) is the domain of the binary relation VR(x), for all words x ∈ �∗,
and Perf Vseq(A) is the domain of the relation VR(A), for all sets A ⊆ �∗.

2.7 Comments on the notion of performability A. We shall refer to the notion
of performability of compound actions A in the sense of the above definition as ∃-
performability, due to the occurrence of the existential quantifier ∃ in the definiens.
We may mark it as Perf ∃.

We point out other options according to which one may define the operator of
performability of compound actions. E.g., one may argue that a compound action
Vseq(A), A ⊆ �∗, is performable in a state u if all sequential actions Vseq(x), x ∈ A,
are performable in u. This form of performability is referred to as the ∀-performability
due to the occurrence of the universal quantifier ∀ in the definiens. If performability
is viewed as the ∀-performability, formula (3.6.c) turns into

Perf ∀ Vseq(A) =
⋂

{Perf Vseq(x) : x ∈ A}.

Wehave therefore twonotions of performability of compound actions available.Which
option is right?

We consider the compound action A termed Doing shopping in a mall by a definite
person. The selection of the mall is crucial. (He/she lives in a big city.) This action
consists of finite sequences of simpler actions. This compound action is performed in
initial states which are conventionally named “entering a mall” and ends up in a state
in which the shopping is finished. Various scenarios of doing shopping are available.
Usually one selects a number of stores and services to visit. But these selected stores
may be visited in various orders. e.g. first going to the bookstore, then to the drugstore
and subsequently to the liquor store. In other words, instead of one selected sequential
action x in A representing a list of consecutive stores he/she plans to visit, it is possible
tomake rearrangements in the list resulting in other operational sequences, being some

123

Performability of Actions 765

permutations of the word x . This permutations of x may be also performable in a given
state at which x performable.

Here performability of shopping falls under formula (3.6.c) – it is ∃-performability,
because to perform this compound action is suffices to perform one string of atomic
actions belonging to it and, more importantly, not all conceivable scenarios of doing
shopping, i.e., not all words this compound action encompasses are realizable at a
given state.

It would be an absurdity to claim that the agent performs all physically feasible or
meaningful sequences of simple actions the shopping is composed of. It may happen
that some strings of actions may be unperformable for him. E.g. even if he decides to
do shopping consecutively in two or three deliberately chosen shopping centers, some
other malls may be excluded, because they are too expensive or too distant.

On the other hand, let a be a fixed action symbol. Let A be the Kleene closure {a}∗
of {a}, i.e., A = {a}∗ = {an : n ≥ 0}. A is a compound action. If M = 〈W , V , VR〉 is
a model, one may ask when Vseq(A) is performable. Vseq(A) = ⋃{Vseq(an) : n ≥ 0}
is the set of all iterations of the atomic action V (a). Intuitively, in this case one may
argue that the performability of Vseq(A) is tantamount to the performability of all
consecutive iterations Vseq(an). Thus it is ∀-performability.

We are thus facing a dilemma—which of the two options pertinent to performability
of compound actions to choose—theweak one, the ∃-performability, or the strong one,
the ∀-performability?

If one computes consecutive digits in the decimal expansion of number π , one per-
forms iterations of a certain atomic action represented by the symbol a. The states are
represented by the successive decimal approximations to π . Thus w0 = 3, w1 = 3.1,
w2 = 3.14 etc. W := {wn : n ≥ 0} is the set of states. The interpretation V (a) of a
is the total function throughout W given by V (a)(wn) = wn+1, for all n ≥ 0. Then
V (an)(w0) = wn for all n. VR(a) is declared to be equal to V (a). Consequently,
V (a) (= Vseq(a)) is performable in each state wn : if wn is computed, then wn+1 is
also computable. (If one assumes that VR(a) terminates at some state wn , i.e., wn

is a dead state of the relation VR(a), then the computation V (a) halts in wn .) Let
A := {an : n ≥ 0}. Then V (A) is the Kleene closure of the relation V (a), i.e.,
V (A) = ⋃{V (an) : n ≥ 0}. Hence w0V (A)w if and only if w = wn for some n ≥ 0.
Computing the exact value of π would require performing all iterations an at w0
resulting in an infinite sequence 3.14 . . ., an irrational number, which is not a state of
W . Definition 3.5.(3) may seem to do not adequately capture this situation—in view of
this definition to perform the compound action A = {an : n ≥ 0} at w0 it merely suf-
fices to perform one iteration an . But Vseq(A) is not the action of computing π—this
is the action V (a)! Note that Vseq(A) is performable at w0 in the strong sense—A is
∀-performable here, because all iterations an are performable at w0. Vseq(A) is the
action of performing any randomly selected iteration of a at w0. Although Defini-
tion 3.5.(3) does not exclude the situations in which a compound action is actually
∀-performable, we shall take care of situations when one is interested in performing
iterations of actions. The presented here definitions of performability of compound
actions—the ∃-performability and ∀-performability, though logically correct, being
the result of straightforward applications of the general or existential quantifier in the
definiens, do not deeply penetrate the structure of compound actions. Definition 3.5.(3)

123

766 J. Czelakowski

treats compound actions as unstructured sets of words, thus it abstracts from possible
interelations holding between these words.

Yet another option which appears here takes into account the algebraic structure of
compound actions in the definiens of the definitions of peformability. This option will
be discussed in Sect. 9, where it will be shown how to accomplish this task in case
of regular actions, i.e., the actions corresponding to regular expressions. But in this
and the subsequent section we shall adhere to Definition 3.5.(3) and present a uniform
theory of performabilty based on it. We shall also discuss some other consequences
this definition bears.

Due to computational limitations it is not possible to compute all successive digits
in the expansion ofπ . Thus not all iterations of Vseq(an) are feasible atw0; one stops at
some step n and computes only iterations resulting in the rational approximation of π

up to 10−n . Although the action of determining all digits in the expansion of π may be
regarded as∀-performable from the logical viewpoint, it ismerely∃-performable (up to
sufficiently large n-th iteration) if one takes the above limitations.Wemay accordingly
modify the definition of VR(a) requiring e.g. that VR(a) is a proper subrelation of V (a)

such that wn is a dead state of VR(a) for a sufficiently large n. Thus there there is no
way of leaving wn—the computation terminates at wn .

This and similar issues concerning unbounded iterations give rise to questions about
the role of infinity in performing compound actions. There are several ways of tackling
this problem. One may introduce ordered action systems in which the sets of states are
ordered, satisfying a form of order completeness, and actions are order-continuous.
One may then apply the methods of fixed-point theory The results of unbounded
iterations of an action V (a) result in reflexive points of the relation VR(a). The other
option is to apply the methods of algebraic posets and domain theory, and approximate
compound actions by their compact subactions. Some of these problems are discussed
in Czelakowski (2015).

The two definitions of performability of compound actions—the ∃-performability,
adopted in the paper, and the strong one—the ∀-performability, are based on a straight-
forward applications of the general or existential quantifier. They constitute, from the
logical viewpoint, two extreme solutions of the problem of performability. One may
argue that these solutions are incapable to express in a satisfactory way the issue of
approximating a compound action A by finite or, more generally, compact subactions
of A. This issue is vitalwhen one is concernedwith the necessity of halting a potentially
infinite computing after a finite number of steps. In the simplest case, when a is an
atomic action symbol, and A is the positive Kleene closure of {a}, A = {an : n ≥ 1},
then the compound action A is ∃-performable in a model at some state u if and only if
merely some word an , n ≥ 1, is performable in the model at u, which may seem to be
a too weak form of performability of A when one is concerned with a more accurate
computation linked with A.

In turn, the ∀-performability of A at u is tantamount to performablity of all words
an at u, which seems to be a too strong form of performability of A in the above
context.

Suppose however that a is interpreted in a model M as a serial relation V (a) on the
set of states W . Moreover it is assumed that V (a) = VR(a). Then all words x = an ,
n ≥ 1, are performable at any state u ∈ W . It then follows that for any state u ∈ W ,

123

Performability of Actions 767

the compound action A = {an : n ≥ 1} is ∃-performable at u in M if and only
if there is m ≥ 1 such that all sequential actions an , n ≥ m, are performable at u
in M . This equivalence shows that the compound action A is approximated at any
state u in the model by all sequential actions an of a sufficiently large length n. This
shows that the notion of ∃-performability of compound actions is applicable in the
problem of approximating various algorithms corresponding to a by finite sequences
of computations with an arbitrary accuracy.

Wemay saymore—in somemodels,∃-performability coincideswith∀-performability.
The following example illustrates this situation and sheds more light on the problem
of performability.

Let r = (rn) be an arbitrary infinte sequence or rational numberswhose exact values
are unknown. (We may assume that the sequence r is convergent to a real number.)
Let W0 be the set of all finite non-empty initial segments of r, i.e.,

W0 := {〈r1, . . . , rn〉 : n = 1, 2, . . .}.

For u, w ∈ W0 we put:

u ≤0 w ⇔d f u is a prefix of w.

(W0,≤0) is a linear poset with 0 := 〈r1〉 being the least element.
By adjoining to W0 the sequence r as the supremum of the poset (W0,≤0), one

obtains an algebraic poset with W0 being the set of compact elements and r as the top
element. The elements of W0 are also called compact approximations of r.

Suppose that an algorithm a is available enabling to recursively compute the number
r1 and, for every n ≥ 1, given the sequence of values 〈r1, . . . , rn〉, establish the value
of rn+1.

V (a) is the atomic action on the set W0 of states being the interpretation of a. Let
wn := 〈r1, . . . , rn〉 for n = 1, 2, V (a) is the total unary function defined on W0
by the formula:

V (a)(wn) := wn+1, for n = 1, 2, . . .

We also put VR(a) := V (a). The triple M = 〈W0, V (a), VR(a)〉 is a deterministic
action model over the alphabet � = {a} consisting of the symbol a—the name of
this algorithm. The atomic action V (a) corresponding to a is performable at every
state wn , because VR(a) = V (a). (In practice, due to computational limitations, the
function VR(a) is “trimmed” for large values of n and replaced by the partial function
V ∗

R(a) which agrees with VR(a) on the initial states w1, . . . , wn and is undefined for
larger states wn+1 etc. This implies that in such a “trimmed” model the action V (a)

is performable merely in the states w1, . . . , wn and it halts at wn+1.)
Let A := {an : n ≥ 1} be the positive Kleene closure of the language {a}. Each

word an is interpreted in the model as the sequence Vseq(an) := 〈V (a), . . . , V (a)〉
with V (a) repeated n times. The compound action A interpreted in the model M as

123

768 J. Czelakowski

the set of sequential actions Vseq(an):

Vseq(A) := {Vseq(an) : n ≥ 1}.

It follows from the definition of M , that every sequential action Vseq(an) is per-
formable at any state u ∈ W0, because VR(an)(wk) = wk+n , for all k, n ≥ 1.
Consequently, the compound action Vseq(A) is ∀-performable at any state u ∈ W0,
because ∀-performability of Vseq(A) at u means that all sequential actions Vseq(an),
n ≥ 1, are performable at u. Hence Vseq(A) is ∃-performable in any state u ∈ W0.
Thus the definitions of ∀-performability of A and ∃-performability of A coincide in
this model.

As VR(an)(0) = wn+1, for all n, the sequence r is approximated in M by way of
iterating the action V (a) an arbitrary number of times (commencing with the state
0). Hence the limit of r is approximated with an arbitrary degree of accuracy. As
mentioned, in practice onemust stop calculation after some number of steps by passing
to the above “trimmed” model endowed with the partial function V ∗

R(a).
In amore abstract setting, the above situation is typical formodels M = 〈W , V , VR〉

in which V (a) is a serial relation for all all words a ∈ � and V (a) and VR(a) coincide
on all words a ∈ � and on the empty word e. This is due to the fact that every
sequential action x is performable in M in all possible states of W . It follows that the
∀-performability coincides with the ∃-performability for any non-empty compound
action A in each such a model.

Themodels of the above type arefirst-order definable and the consequenceoperation
determined by the class of such models validates the formulas Perf (a) and, more
generally, it validates all fomulas Perf (x) for any sequential action x (cf. Sect. 7.1).

Yet another option is to assume that in realistic models of action the relations VR(a)

are all inversely well-founded, which means that there do not exist infinite sequences
of states w0, w1, . . . , wn, wn+1, . . . such that wn VR(a)wn+1 for all n. This option
excludes reflexive points of VR(a) and, more generally, finite cycles of states.

The presence of unbounded iterations of actions exercises an impact on the logic of
performabilitywe shall define in the next section, resulting in the non-finitary character
of this logic. The logic of performability of actions will be semantically defined in
terms of action systems.
B. Apart from the propositions Perf Vseq(x) and Perf Vseq(A), x ∈ �∗, A ⊆ �∗,
one may also define their “reversed” counterparts, marked as Perf ← Vseq(x) and
Perf ← Vseq(A), respectively. We put:

w ∈ Perf ← Vseq(x) ⇔d f (∃u ∈ W) uVR(x)w,

w ∈ Perf ← Vseq(A) ⇔d f (∃x ∈ A) w ∈ Perf ← Vseq(x).

w ∈ Perf ← Vseq(x) is read “x has been performed in some state so that the state
w is achieved”.

Analogously, w ∈ Perf ← Vseq(A) is read “A has been performed in some state so
that the state w is achieved”.

123

Performability of Actions 769

Example 2.8 R
n is the linear space consisting of all n-tuples of real numbers. The

vectors u of Rn are states. L(Rn) is the algebra of all square n × n-matrices over
R

n . Each matrix A = [ai j] is a unary operation from R
n to R

n and therefore it is a
deterministic action on the set of states Rn . Let R = [ri j] be a distinguished square
matrix called the transition matrix onRn . Let V be a mapping assigning to each action
symbol a ∈ � a matrix V (a) ∈ L(Rn). V (e) is the identity operation. The triple

〈Rn, R, V 〉

is a frame-based action model.
We define, for each a ∈ �, the subspace X(a) of Rn :

X(a) := {u ∈ R
n : V (a)(u) = R(u)}.

VR(a) is, by definition, the set of all pairs of vectors 〈u, w〉 such w = V (a)(u) =
R(u). Thus VR(a) is the matrix being the restriction of V (a) to X(a), i.e., VR(a) :
X(a) → R

n and

VR(a)(u) = V (a)(u), for all u ∈ X(a).

It is assumed that VR(e) is the restriction of the identity matrix to the subspace
X(e) := {u ∈ R

n : u = R(u)}.
M = 〈Rn, V , VR〉 is a model in the sense of Definition 3.1. M is deterministic,

because all its actions V (a) are total functions defined throughout the set W . (R is
also a total function.) Each VR(a) is a partial function, the restriction of V (a) to the
subspace X(a).

The mapping V is extended onto arbitrary words x ∈ �∗ in accordance with
Definition 3.3 by applying the operation of multiplication of matrices. It follows that
for anywords x and y,V (xy) = V (x)◦V (y), where ◦ is the operation ofmultiplication
of matrices. (The convention that (F ◦ G)(x) = G(F(x)) for the composition F ◦ G
of functions is applied here.) In a similar manner, applying Definition 3.4, one extends
VR onto arbitrary words x .

The action V (a) is performable (in the sense of M) exactly in the states u ∈ X(a).
A sequential action Vseq(a1 . . . am) = 〈V (a1), . . . , V (am)〉, m ≥ 1, is performable at
u if and only if V (a1 . . . am)(u) = VR(a1 . . . am)(u). The action V (e) is performable
at u if and only if u = R(u), i.e., the vector u is a fixed point of R.

Suppose that the matrix R is symmetric (i.e., R is equal to its transpose) and
convertible. R is then represented in the diagonal form so that the eigenvectors ui ,
i = 1, . . . , n, of R form a basis ofRn with λi being the corresponding real eigenvalue,
i.e., R(ui) = λi ui , for i = 1, . . . , n. Then V (a) is performable at ui if and only if
V (a)(ui) = λi ui , for i = 1, . . . , n.

Example 2.9 More general, as compared with Example 2.8, deterministic models of
action are defined in terms of linear and bounded operations on normed spaces.

Let 〈X , ‖ · ‖〉 be a normed linear space. The vectors of X are treated as states. Thus
X is the set of states. Let V be a mapping assigning to each action symbol a ∈ �

123

770 J. Czelakowski

a bounded linear operation V (a) ∈ L(X). V (e) is the identity operation. Let R be
a distinguished bounded linear operation called the transition operation on X . The
triple

〈X , R, V 〉

is a frame-based, deterministic action model.
We define, for each a ∈ �, the closed subspace X(a) of X :

X(a) := {u ∈ X : V (a)(u) = R(u)}.

VR(a) is the linear operation being the restriction of V (a) to X(a):

VR(a)(u) := V (a)(u) (= R(u)), for all u ∈ X(a).

VR(a) maps X(a) to X .
The triple

M = 〈X , V , VR〉

is an action model in the sense of Definition 3.1.
The mapping V is extended onto arbitrary words x ∈ �∗ in accordance with Defi-

nition 3.3 by applying the operation of composition of linear operations and assuming
that V (e) is the identity operation. Thus, for anywords x and y, V (xy) = V (x)◦V (y),
where ◦ marks the composition.

In a similar manner, applying Definition 3.4, one extends VR onto arbitrary words
x . It is assumed that VR(e) is the restriction of the identity matrix to the subspace
X(e) := {u ∈ X : u = R(u)}. Note that the domain of the linear operator VR(ab) is
equal to {u ∈ X : V (a)(u) = R(u) and V (b)(V (a)(u)) = R(V (a)(u))} (= {u ∈ X :
V (a)(u) = R(u) and V (b)(R(u)) = R(R(u))}.) This formula extends onto arbitrary
words x = a1 . . . am in a straightforward way.

The action V (a) is performable (in the sense of M) exactly in the states u ∈ X(a).
A nonempty sequential action Vseq(a1. . .am) = 〈V (a1), . . . , V (am)〉, m ≥ 1, is
performable at u if and only if V (a1 . . . am)(u) = VR(a1 . . . am)(u). The action V (e)
is performable at u if and only if u = R(u).

4 The Language of Performability of Actions and its Semantics

We first define the language L of action performability. We touch here a delicate
syntactical issue. Firstly, the syntax of the language we shall define is as close as
possible to the language of formal linguistics that is employed in automata theory.
The syntax of L departs from the standard grammatical rules of forming terms and
formulas adopted in contemporary logic. It is a propositional language (and thus
quantifier free) but it based on atomic propositional formulas of two sorts.

123

Performability of Actions 771

Atomic formulas are expressions of the form:

Perf (x), x ∈ �∗,
Perf (A), A is a subset of �∗.

As each symbol a ∈ � is identified with a word of length 1, all formulas of the
form Perf (a), a ∈ �, are included in the set of formulas {Perf (x) : x ∈ �∗}. The
formula Perf (e) is also atomic.

� is a finite or countably infinite set of variables representing atomic actions. (� is
the alphabet of actions.)�∗ is the set of all finite sequences of atomic actions variables.
The elements of �∗ are called sequences or words of atomic action variables. As the
set�∗ is countably infinite, there are uncountably many formulas of the form Perf (A)

with A ⊆ �∗.
Compound formulas are built from the above atomic formulas (of any sort) by

means of applying the Boolean connectives → and ¬. The other Boolean connectives
are defined in the standard way.

Note that there are no propositional variables. Thus the above language defines
Boolean interrelations holding between action performability formulas only. L is
incapable of expressing conditionals like: If it the case that �, then the action A
is performable. L does not take into account situational components of action like
time, space locations, agents and their interrelations etc. Though L is simple, it makes
it possible to conduct a discourse on actions that involve phrases of type: If the action
A is performable, then B is unperformable etc.

4.1 The Semantics for L

The meanings attached to the formulas of L are defined in terms of the above action
models. We define the notion of truth of formulas.

Let M = 〈W , V , VR〉 be a model and u a state in W . The notation

M, u |� σ

means that σ is true in the model M at u.

Definition 4.1 Let x be in �∗. Then

M, u |� Perf (x) ⇔d f u ∈ Perf Vseq(x),

i.e., the sequential action Vseq(x) is performable at u in M . (In particular, if a ∈ �,
then

M, u |� Perf (a) ⇔d f u ∈ Perf V (a).)

Let A be a subset of �∗. Then

M, u |� Perf (A) ⇔d f u ∈ Perf Vseq(A),

i.e., the compound action Vseq(A) is performable at u in M .

123

772 J. Czelakowski

The definition of M, u |� is extended onto compound formulas as in classical logic.
Thus

M, u |� φ → ψ if and only if it is not the case that M, u |� φ or M, u |� ψ;

and

M, u |� ¬φ if and only if it is not the case that M, u |� φ.

It should be noted that the language L is too poor so that it could recursively
express the definition of Perf (x) in terms of the constituents Perf (a), where a occurs
in x . E.g. it is not possible to define Perf (xa) in terms of Perf (x) and Perf (a) without
resorting to the external operationof compositionof relations. The symbol representing
composition is absent in the vocabulary of L.

Perf may be treated as the alethic operator of possibility due to meaning attached
to the formulas Perf (x) in Definitions 3.5–3.6, for all x ∈ �∗. The structure of the
language L departs, however, from the standard constructions adopted in multi-modal
or dynamic logics.

A formula σ is true in in the model M = 〈W , V , VR〉, in symbols:

M |� σ,

if and only if M, u |� σ for all u ∈ W ; we then also say that σ is valid in M .
σ is logically valid if it is valid in every model.

4.2 The Logical Consequence |�
The logical consequence pertinent to the issue of performability is semantically defined
as a consequence relation |� operating on the set of all formulas of L in the following
way. Let X be a set of formulas of L and σ a formula. We say that σ logically follows
from X , in symbols:

X |� σ

if for every model M = 〈W , V , VR〉 and every state u ∈ W , if M, u |� φ holds for all
φ ∈ X , then M, u |� σ . (The “big” symbol |� should not be confused with the “small”
symbol |�, because they bear different meanings.)

It is clear that |� satisfies the standard conditions imposed on consequence relations
(see e.g. Wójcicki 1988).

|� validates the Deduction Theorem (DT): for any set X of formulas and any
formulas φ,ψ :

X |�φ → ψ if and only if X ∪ {φ} |�ψ.(DT)

123

Performability of Actions 773

Moreover |� validates the tautologies of classical logic expressed in L in the fol-
lowing sense. Let φ(p1, . . . , pm) be a tautology of classical propositional logic and
σ1, . . . , σm atomic formulas ofL. Then, the formulaφ(σ1, . . . , σm) ofL obtained from
φ(p1, . . . , pm) by the uniform substitution of σi for pi , i = 1, . . . , n, is |�-valid. It
is also easy to see that for any non-empty word x and any symbol a ∈ �, the formula
Perf (xa) → Perf (x) is a tautology of |�.

If A is a non-empty set of words, then for every x ∈ A, the formula

Perf (x) → Perf (A)

is validated by the semantic consequence |�.
If A is a non-empty finite set of words, A = {x1, . . . , xn}, the formula

Perf (A) ↔ Perf (x1) ∨ . . . ∨ Perf (xn)

is |�-valid. Moreover for any subsets A, B of �∗, the formula

Perf (A ∪ B) ↔ Perf (A) ∨ Perf (B)

is also a tautology of |�. The formula ¬ Perf (∅) is also validated by |�.
A set X of formulas of L is inconsistent in the sense of |� if and only if X |�φ for

all formulas φ, equivalently: X |�φ ∧ ¬φ for some (for all) φ; otherwise X is called
consistent. A formula σ is inconsistent (resp. consistent) if the set {σ } is inconsistent
(consistent).

It is easy to see that σ is |�-inconsistent if and only if M, u |� σ for no model M
and no state u of M .

A set of formulas X is closed in the sense of |�, shortly: X is |�-closed, if X |� σ

implies σ ∈ X , for every formula σ . The |�-closed sets are also called theories of |�.
They collectively form a closure system on L, denoted by T h(|�).

5 Ultrasets

A Lindenbaum set of |� is a maximal consistent set Δ in the sense of |�.
Every Lindenbaum set Δ contains all instances of tautologies of classical propo-

sitional calculus (CPC) as well as specific action formulas. In particular, Δ contains
the formulas displayed at the end of the previous section. By maximality, σ ∨ τ ∈ Δ

if and only if σ ∈ Δ or τ ∈ Δ, for all formulas σ, τ . Moreover, also by maximality,
each Lindenbaum set Δ is |�-closed.

Definition 5.1 A set Δ of formulas of L is called an ultraset of |� if and only if Δ is
a Lindenbaum set of |� with the additional property holding for all sets A ⊆ �∗:

(ultra) Perf (A) ∈ Δ ⇔ Perf (x) ∈ Δ for some word x ∈ A.

Since the implications Perf (x) → Perf (A) are valid in the sense of |�, for all
x ∈ A, we see that in the condition (ultra) only the implication (⇒) matters.

123

774 J. Czelakowski

Every ultraset, being maximal consistent, is logically closed.
The following fact follows from the above definition:

Corollary 5.2 A subset Δ ⊆ L is an ultraset for |� if and only if it is consistent and
satisfies the following conditions for any formulas σ, τ ∈ L and any non-empty sets
A ⊆ �∗:

(a) σ ∧ τ ⇔ σ ∈ Δ and τ ∈ Δ.

(b) ¬σ ∈ Δ ⇔ σ /∈ Δ,

(c) Perf (A) ∈ Δ ⇒ Perf (x) ∈ Δ for some word x ∈ A.

(d) ¬ Perf (∅) ∈ Δ.

Ultrasets exist. This fact follows from the following observation:

Proposition 5.3 Let M = 〈W , V , VR〉 be a model and u a state in W . Define

Δu := {σ ∈ L : M, u |� σ }.

Then Δu is an ultraset.

Proof Straightforward.

In fact, every Lindenbaum set of |� is an ultraset:

Theorem 5.4 For any set of formulas Δ, the following conditions are equivalent:

(i) Δ is a Lindenbaum set of |�;
(ii) Δ is an ultraset set of |�;
(iii) There is a model 〈W , V , VR〉 and a state u in W such that Δ = Δu.

Proof The implications (iii) ⇒ (ii) and (ii) ⇒ (i) are obvious.
(i) ⇒ (iii). We need some facts from the theory of deductive systems.
By a base for T h(|�) we shall understand any family B ⊆ T h(|�) such that every

theory of |� is the intersection of some subfamily of B. It follows from the definition
of |� that the sets Δu defined as in Proposition 5.3 (with u ranging over all states of
arbitrary models M) form a base for T h(|�).

Now let Δ be a Lindenbaum set of |�. Since Δ is |�-consistent and closed, it is
the intersection of a non-empty family of sets of the form Δu . But inasmuch as Δ is
maximal, Δ is equal to exactly one set of the form Δu . This shows that (iii) holds.

It follows from the above theorem that the family of ultrasets forms a basis for the
closure system T h(|�) of all closed theories of |�, i.e., for every theory X ∈ T h(|�)

there exists a family {Δi : i ∈ I } of ultrasets such that X = ⋂
i∈I Δi . Another

corollary is that ultrasets are the only maximal consistent sets of the consequence
relation |�.

Each ultraset is fully determined by the set of atomic formulas of the form Perf (x),
x ∈ �∗, it contains. This follows from the following fact:

Proposition 5.5 For any ultrasets Δ and Δ′,

123

Performability of Actions 775

(1) Δ = Δ′ ⇔ (∀x ∈ �∗)(Perf (x) ∈ Δ ⇔ Perf (x) ∈ Δ′).

Proof The implication (⇒) is immediate. To prove the reverse implication (⇐),
assume RHS of (1). Then prove by induction on complexity of formulas that for
any formula σ ∈ L, σ ∈ Δ ⇔ σ ∈ Δ′. (This proof requires Corollary 5.2)

Ultrasets denotes the family of all ultrasets of |�.
The set Ultrasets is endowed with the following order relation ≤:

Δ ≤ Δ′ ⇔d f (∀x ∈ �∗)(Perf (x) ∈ Δ ⇒ Perf (x) ∈ Δ′).

Let Δ0 be the (unique) ultraset such that ¬ Perf (x) ∈ Δ0 for all words x ∈ �∗.
Δ0 is the least element in the poset 〈Ultrasets,≤〉 while the ultraset Δ1 containing all
formulas Perf (x), x ∈ �∗ (including Perf (e)) is the top element.

As eachultrasetΔ is unambiguously determinedby the set {x ∈ �∗ : Perf (x) ∈ Δ},
we define the mapping h : Ultrasets → ℘(�∗):

h(Δ) := {x ∈ �∗ : Perf (x) ∈ Δ}, for all Δ ∈ Ultrasets .

h is an order isomorphism from the poset 〈Ultrasets,≤〉 onto the power set
〈℘(�∗),⊆〉.

We also define, for each Δ ∈ Ultrasets, the complement Δc of Δ to be the unique
ultraset determined by the formulas Perf (x) such that ¬ Perf (x) ∈ Δ.

It follows that

h(Δc) = {x ∈ �∗ : Perf (x) ∈ Δc} = �∗ − h(Δ),

for all Δ ∈ Ultrasets.
Δ � Δc is a well-defined unary operation on Ultrasets; it is marked by the symbol

‘c’. We then get:

Theorem 5.6 The structure 〈Ultrasets,≤,c 〉 is a complete Boolean algebra isomor-
phic with the Boolean algebra of all subsets of �∗ and the mapping h establishes this
isomorphism.

If x and y are words in �∗, then the notation

y � x

means that y is a prefix of x , i.e., there exists a word z such that yz = x .
We shall need some other properties of ultrasets. If y � x , where y �= e, and Δ is

an ultraset, then

Perf (x) ∈ Δ implies that Perf (y) ∈ Δ.

This is due to the fact that Perf (x) → Perf (y) is a tautology of |� whenever y � x
and y �= e.

123

776 J. Czelakowski

A function f : �∗ → {0, 1} is said to be antitone on �∗ if f (x) = 1 implies
f (y) = 1 whenever y � x and y �= e. In other words, f is antitone if f (y) = 0
implies that f (x) = 0 for all words x prefixed by a non-empty word y.

Let h be an antitone function defined on the set �∗ of words with values in {0, 1}.
For each word x we define the formula h(x) Perf (x):

h(x)Per f (x) :=
{

Perf (x) if h(x) = 1

¬ Perf (x) if h(x) = 0.

Let H be the set of antitone functions on �∗. For each h ∈ H , we define

�(h) := {h(x) Perf (x) : x ∈ �∗}.

According to the above definition, for every formula of the form Perf (x), either
Perf (x) ∈ �(h) or ¬ Perf (x) ∈ �(h). Moreover, due to antitonity of h, Perf (x) ∈
�(h) implies that Perf (y) ∈ �(h) whenever y � x and y �= e.

The set�(h) is called a complete set of atomic or negated atomic formulas.Weclaim
that each set �(h), and therefore each function h ∈ H , detemines a unique ultraset,
denoted by Δ(h). By definition, Δ(h) is the ultraset that contains the formulas of
�(h).

5.1 Consistency of Complete Sets

The critical point is |�-consistency of�(h), for all h ∈ H . This subsection is devoted
to this issue.

We shall show that for every h ∈ H , the set�(h) is consistent in the sense of |�. To
this end, we shall construct an appropriate model which will validate each set �(h).
This will imply that the definition of the ultraset Δ(h) is correct—Δ(h) is thus the
unique ultraset that extends �(h), for all h.

Let

W =d f {�(h) : h ∈ H}

be the family of complete sets of atomic or negated atomic formulas defined as above.
For each word x ∈ �∗, we define the total unary operation A(x) on the set W as

follows. For each set � ∈ W , we put:

A(x)(�) := {Perf (z) : z ∈ �∗ and Perf (xz) ∈ �}.(2)

A(x) is well-defined, because A(x)(�) ∈ W whenever � is in W . Thus each A(x) is
a mapping from W to W .

In particular,

A(a)(�) := {Perf (z) : z ∈ �∗ and Perf (az) ∈ �},(3)

123

Performability of Actions 777

for all a ∈ �.
It follows from the above definition and Proposition 5.5 that for the empty word e:

A(e) is the identity mapping in W .

Proposition 5.7 For any words x, y ∈ �∗, A(xy) coincides with the composition of
the functions A(x) and A(y), i.e.,

A(xy) = A(x) ◦ A(y).

Proof. We claim that for any � ∈ W

A(xy)(�) = A(y)(A(x)(�)).

We have

A(xy)(�) := {Perf (z) : z ∈ �∗ and Perf (xyz) ∈ �}.

As A(x)(�) := {Perf (u) : u ∈ �∗ and Perf (xu) ∈ �}, we obtain that

A(y)(A(x)(�))

= {Perf (z) : z ∈ �∗andPerf (yz) ∈ A(x)(�)}
= {Perf (z) : z ∈ �∗andPerf (yz) ∈ {Perf (w) : w ∈ �∗andPerf (xw) ∈ �}}
= {Perf (z) : z ∈ �∗andPerf (xyz) ∈ �} = A(xy)(�).

It follows from the above proposition that for any word x = a1 . . . am , it is the case
that

A(a1 . . . am) = A(a1) ◦ . . . ◦ A(am). (1)

The unary ‘action’ operations A(x), x ∈ �∗, form a semigroup with respect of
the operation of composition. Moreover the diagonal A(e) is the unit element of this
semigroup. But we can say more:

Theorem 5.8 The mapping A is an isomorphism between the free semigroup (�∗, ◦, e)
of words over � and the semigroup 〈{A(x) : x ∈ �∗}, ◦, A(e)〉.
Proof As A is a surjective homomorphism, it suffices to show that it is one-to-one.

Let x and y be different words and let� be a complete set such that the equivalence

(∗) Perf (x) ∈ � ⇔ Perf (y) ∈ � does not hold.

Working with various possible configurations between two words x and y, one can
find a set � which validates (∗). E.g. if x is a proper prefix of y, i.e., y = xu for
some u �= e, there is an complete set � such that Perf (x) /∈ � and Perf (y) ∈ �. The
remaining cases can be similarly handled.

(∗) and the definitions of A(x) and A(y) imply that the equivalence

123

778 J. Czelakowski

(∗∗) Perf (e) ∈ A(x)(�) ⇔ Perf (e) ∈ A(y)(�) does not hold.

Hence A(x) �= A(y).

We set about defining a model M for L.
The set of states of M is equal to W , the family of all complete sets {�(h) : h ∈ H .}

We assume that the interpretation V (a) of each symbol a ∈ � is equal to the unary
operation A(a) defined as above, i.e., V (a) := A(a).

All atomic actions V (a), a ∈ �, are therefore unary functions defined on W . Each
function V (a) is extended onto arbitrary words x in accordance with Definition 3.3.
Thus V (e) is the diagonal of W and V (xa) =d f V (x) ◦ V (a), for all words x ∈ �∗
and all a ∈ �.

It follows from Proposition 5.7 that the mapping V coincides with A, i.e.,

V (x) = A(x),

for all words x ∈ �∗. In particular, V (e) = A(e).
We then define partial functions VR(a), a ∈ �. Each VR(a) is the restriction of

V (a) to the set {� ∈ W : Perf (a) ∈ �}. The last set is therefore the domain of VR(a).
It should be noted that {� ∈ W : Perf (a) ∈ �} is a proper subset of W , for any a ∈ �.
(This follows from the definition of complete sets.) Therefore VR(a), being a proper
subset of V (a), does not coincide with V (a).

We also assume that VR(e) is a partial function being the restriction of the identity
mapping V (e) to the set {� ∈ W : Perf (e) ∈ �}.

Possible performances of V (a) are therefore ordered pairs 〈�, V (a)(�)〉 with �

ranging over W . Not all possible performances 〈�, V (a)(�)〉 of V (a) are realizable
but only those for which Perf (a) ∈ �.

We recursively extend the partial functions VR(a) onto arbitrary non-empty words
x in accordance with Definition 3.4. Thus

VR(xa) := VR(x) ◦ VR(a),

for all non-zero words x ∈ �∗ and all a ∈ �.
It follows that

VR(xy) = VR(x) ◦ VR(y),

for all non-zero words x, y ∈ �∗.

Theorem 5.9 For any word x ∈ �∗, VR(x) is a partial function being the restriction
of V (x) to the set {� ∈ W : Perf (x) ∈ �}.
Proof We shall apply the graph-style notation for unary functions. The symbol ‘x Fy’
means that ‘y = F(x)’.

The theorem will be proved once we show the following auxiliary lemma:

Lemma For any word x ∈ �∗ and any complete set � the following conditions are
equivalent:

123

Performability of Actions 779

(i) Perf (x) ∈ �,
(ii) There exists a complete set �′ such that �VR(x)�′.

Proof Fix a complete set�. We shall prove the equivalence of (i) and (ii) by induction
on the length of the words x of �∗.
Induction base In view of the definitions of VR(e) and VR(a), the conditions (i) and
(ii) are equivalent for the empty word e as well as for the symbols a of �.

Induction step We assume that (i) and (ii) are equivalent for a non-empty word x in
�∗. We claim that this equivalence continues to hold for the word xa, for all a ∈ �.

We first assume (ii) holds for xa. Hence that there exist complete sets Γ ,�′ such
that

(a) �VR(x)Γ VR(a)�′.
We want to show that Perf (xa) ∈ �.

Γ VR(a)�′ in (a) means that

(b) Γ V (a)�′ and Perf (a) ∈ Γ .

�VR(x)Γ in (a) implies that �V (x)Γ . Hence, by the definition of V (x),

(∀z ∈ �∗)(Perf (xz) ∈ � ⇔ Perf (z) ∈ Γ).

Putting z = a and applying the second conjunct of (b), we obtain that Perf (xa) ∈ �.
So (i) holds.

Conversely, assume (i) holds, that is, Perf (xa) ∈ �. We claim that there exists a
complete set �′ such that �VR(xa)�′.

If x = e we are done, by the definition of VR(a).
Assume that x is non-empty. The assumption Perf (xa) ∈ � implies that Perf (x) ∈

�, due to antitonicity of �. As Perf (x) ∈ �, IH gives that there exists a complete
set Γ such that �VR(x)Γ . We claim that there exists a complete set �′ such that
Γ VR(a)�′.

�′ := {Perf (z) : Perf (az) ∈ Γ } ∪ {¬ Perf (z) : ¬ Perf (az) ∈ Γ }.

�′ is a complete set.
It follows from the definition of �′ that

(∀z ∈ �∗)(Perf (az) ∈ Γ ⇔ Perf (z) ∈ �′).

So Γ V (a)�′ holds, i.e., �′ is the value of V (a) at Γ . But we must also prove that
Γ VR(a)�′, that is, we must show that Perf (a) ∈ Γ .

The proof that Perf (a) ∈ Γ runs as follows. Since �VR(x)Γ , we also have that
�V (x)Γ .AsΓ V (a)�′,we therefore obtain that�V (xa)�′.ApplyingProposition5.7
we therefore get that

(∀z ∈ �∗)(Perf (xaz) ∈ � ⇔ Perf (z) ∈ �′).

In particular, for z = e,

123

780 J. Czelakowski

(c) Perf (xa) ∈ � ⇔ Perf (e) ∈ �′.
But, by the assumption, Perf (xa) ∈ �. It follows from (c) that Perf (e) ∈ �′.

As Γ V (a)�′ holds, we have that

(∀z ∈ �∗)(Perf (az) ∈ Γ ⇔ Perf (z) ∈ �′).

In particular, for z = e, we get that

Perf (a) ∈ Γ ⇔ Perf (e) ∈ �′.

Since Perf (e) ∈ �′, the above equivalence gives that Perf (a) ∈ Γ .
This concludes the proof that Γ VR(a)�′ holds, showing at the same time that

�VR(xa)�′.
The proof of the lemma is completed.

Proposition 5.10 Let � be an arbitrary complete set in W . Then for every word x ∈
�∗,

M,� |� Perf (x) ⇔ Perf (x) ∈ �.

Proof. Suppose x ∈ �∗. We have:

Mc,� |� Perf (x) ⇔ (by Definition 3.1)

� ∈ Perf Vseq(x) in M ⇔ (by the definition of Perf Vseq(x))

Vseq(x) is performable at � in M ⇔ (by Definition 3.5.(2))

VR(x) is defined at � ⇔ (by the above lemma)

Perf (x) ∈ �.

Corollary 5.11 For each h ∈ H, the complete set �(h) is consistent.

Proof Fix h ∈ H . In view of the above proposition, the set of all formulas σof L that
are validated in the above model M at the state �(h) encompasses all formulas of
�(h). Hence �(h) is consistent.

Let Δ(h) be the set of all formulas σof L validated at the state �(h) in the above
model;

Δ(h) = {σ ∈ L : Mc,�(h) |� σ }.

In view of Proposition 5.3, Δ(h) is an ultraset. In virtue of Proposition 5.10, Δ(h)

includes �(h). It follows from Proposition 5.5 that Δ(h) is the unique ultraset that
includes �(h).

It is also clear that for each ultraset Δ there is a unique function h ∈ H such that
Δ = Δ(h).

As the set �∗ is countably infinite, it follows that H is of cardinality of the contin-
uum. Consequently, the cardinality of the family of ultrasets is equal to the continuum.

123

Performability of Actions 781

The definition of an ultraset does not imply that Perf (e) belongs to any ultraset. In
fact, Ultrasets is the union of the following two disjoint sets:

Ultrasets+ := {Δ ∈ Ultrasets : Perf (e) ∈ Δ},
Ultrasets− := {Δ ∈ Ultrasets : ¬ Perf (e) ∈ Δ}.

We shall return to these sets later.

6 Operations on Ultrasets and the Canonical Model

In a fully analogous way to the definitions presented in the previous paragraph, we
define for each word x ∈ �∗, the unary operation V (x) on the set Ultrasets as follows.
For each Δ ∈ Ultrasets, we put:

(1) V (x)(Δ) := {Perf (z) : z ∈ �∗ and Perf (xz) ∈ Δ}.
V (x) is well-defined, because V (x)(Δ) is an ultraset whenever Δ∈Ultrasets.
V (e) is the identity map on the set Ultrasets.
Suitably modifying the proofs of the results presented in the previous paragraph we

immediately obtain the following results analogous the the ones holding for the sets
�(h), h ∈ H .

Proposition 6.1 For any words x, y ∈ �∗, V (xy) coincides with the composition of
the functions V (x) and V (y), i.e.,

V (xy) = V (x) ◦ V (y).

Theorem 6.2 The mapping V is an isomorphism between the free semigroup (�∗, ◦, e)
of words over � and the semigroup 〈{V (x) : x ∈ �∗}, ◦, V (e)〉.

6.1 The Canonical Model

We define a model Mc = 〈W , V , VR〉 for L.
The set of states W of Mc is equal to Ultrasets.
For each Δ ∈ Ultrasets and a ∈ �, V (a) is the operation defined as above, i.e.,

(2) V (a)(Δ) := {Perf (z) : z ∈ �∗ and Perf (az) ∈ Δ}.
V (e) is the identity map on the set Ultrasets.
Mc is a deterministic model, because each V (a) : W → W is a total function

defined throughout W .
Each function V (a) is extended onto arbitrary words x in accordance with Defi-

nition 3.3. But it follows from Proposition 6.1 that the extension of V onto arbitrary
word x coincides with the mapping V (x) defined according to formula (1) of Sect. 6.

In the next stepwe define themappings VR(a), a ∈ �. It is assumed that each VR(a)

is the partial function being the restriction of V (a) to the set {Δ ∈ W : Perf (a) ∈ Δ}.
The last set is the domain of VR(a). It should be noted that {Δ ∈ W : Perf (a) ∈ Δ}

123

782 J. Czelakowski

is a proper subset of W , for all a ∈ �. Therefore the partial function VR(a), being a
proper subset of V (a), does not coincide with V (a).

Speakingfiguratively,VR(a) is a counterpart of the green traffic light—oncePerf (a)

is in Δ, V (a) is performable at Δ.
We also assume that VR(e) is a partial function being the restriction of the identity

mapping V (e) to the set {Δ ∈ W : Perf (e) ∈ Δ}.
The above model Mc is called the canonical model for L. Possible performances

of V (a) are ordered pairs 〈Δ, V (a)(Δ)〉 with Δ ranging over Ultrasets. But accord-
ing to the definition of VR(a), realizable performances of V (a) are ordered pairs
〈Δ, V (a)(Δ)〉, where Perf (a) ∈ Δ, that is, all pairs 〈Δ, VR(a)(Δ)〉.

The canonicalmodel is isomorphicwith themodel defined in Sect. 5. The difference
between the two models consists in the fact that the set of states of the former is equal
to the set of ultrasets, while the sets of states of the latter coincides with the set of all
complete sets.

The partial functions VR(a) are recursively extended onto arbitrary non-empty
words x in accordance with Definition 3.4. Thus

VR(xa) := VR(x) ◦ VR(a),

for all non-zero words x ∈ �∗ and all a ∈ �.
It follows from the above definition that

VR(xy) = VR(x) ◦ VR(y),

for all non-zero words x, y ∈ �∗.
The following theorem is crucial. It is an analogue of Theorem 5.9:

Theorem 6.3 For any word x ∈ �∗, VR(x) is a partial function being the restriction
of V (x) to the set {Δ ∈ W : Perf (x) ∈ Δ}.
The proof is a straightforward modification of the proof of Theorem 5.9.

Theorem 6.3 can be paraphrased in terms of action performability as follows:
Theorem 5.3* For any word x ∈ �∗ and any ultraset Δ the following conditions

are equivalent:

(i) Perf (x) ∈ Δ.
(ii) The sequential action Vseq(x) is performable at Δ, i.e., there exists an ultraset Δ′

such that ΔVR(x)Δ′.
Let Δ be an ultraset such that Perf (a) ∈ Δ for some symbol a. Then taking

Δ′ := V (a)(Δ), we see that ΔVR(a)Δ′. Thus Δ is not a terminal state.
On the other hand, let Δ0 be the ultraset defined as above (that is, ¬ Perf (x) ∈ Δ0

for all words x). Then Δ0 is a terminal state, that is, Δ0VR(x)Δ′ for no ultraset Δ′
and no word x . In fact, Δ0 is the only terminal state and it is isolated in the following
sense: there is no state Δ and no word x such that ΔVR(x)Δ0. In other word, there is
no way of reaching Δ0 from any state. This follows from the following observation:

Proposition 6.4 For any ultraset Δ and any word x, Perf (e) ∈ VR(x)(Δ).

123

Performability of Actions 783

Proof Define Δ′ := ΔVR(x). Then Perf (x) ∈ Δ. It follows that

(∀z ∈ �∗)(Perf (xz) ∈ Δ ⇔ Perf (z) ∈ Δ′).

In particular, for z = e,

Perf (x) ∈ Δ ⇔ Perf (e) ∈ Δ′.

As Perf (x) ∈ Δ, the lemma follows.

If Perf (e) ∈ Δ, then obviously Δ is a reflexive point of VR(e), that is, ΔVR(e)Δ.
The following property of the canonical model is crucial:

Lemma 6.5 (Truth Lemma) Let Δ be an arbitrary ultraset in the canonical model Mc.
Then for any formula φ,

(1) Mc,Δ |� φ if and only if φ ∈ Δ.

The proof is by induction on complexity of formulas. We first prove:

Claim 1 For every word x ∈ �∗,

Mc,Δ |� Perf (x) ⇔ Perf (x) ∈ Δ.

Proof of the claim Suppose x ∈ �∗. We have:

Mc,Δ |� Perf (x) ⇔ (by Definition 4.1)

Δ ∈ Perf Vseq(x) in Mc ⇔ (by the definition of Perf Vseq(x))

Vseq(x) is performable at Δ in Mc ⇔ (by Definition 3.5)

ΔVR(x)Δ′ for some state Δ′ ⇔ (by Theorem 6.3∗)

Perf (x) ∈ Δ.

This proves the claim.

Claim 2 For every set A ⊆ �∗,

Mc,Δ |� Perf (A) ⇔ Perf (A) ∈ Δ.

Proof of the claim Suppose A is a subset of �∗. Then:

Mc,Δ |� Perf (A) ⇔
For some word x ∈ A, Mc,Δ |� Perf (x) ⇔ (by Claim 1)

For some word x ∈ A, Perf (x) ∈ Δ ⇔
Perf (A) ∈ Δ.

(The last equivalence is due to the fact that Δ is an ultraset).

It follows from the above claims andCorollary 5.2 that the equivalence (1) continues
to hold for arbitrary Boolean combinations of atomic formulas. This concludes the
proof of the lemma.

123

784 J. Czelakowski

7 Other Properties of the Consequence Relation |�
The consequence relation determined by the canonical model Mc = 〈W , V , VR〉 on
L agrees with |�. More specifically, we define the consequence relation |�c on L as
follows. For any set X ⊆ L and any formula σ ∈ L we put:

X |�c σ ⇔d f (∀Δ ∈ W)(Mc,Δ |� X ⇒ Mc,Δ |� σ).

(The symbol “Mc,Δ |� X” means that Mc,Δ |� φ holds for all φ ∈ X .) |�c is the
consequence relation determined by Mc.

Theorem 7.1 (The Adequacy Theorem) |� = |�c.

Proof The inequality |� ≤ |�c is immediate, because |� is semantically defined by
the class of all models that includes the canonical model.

To prove the opposite inequality, suppose that for some set X ⊆ L and a formula
σ ∈ L it is not the case that X |� σ . We show that X |�c σ does not hold.

According to the definition of |�, there exists then a model N = 〈W , V , VR〉 and
a state u ∈ W such that N , u |� X and N , u �|� σ . (N need not be the canonical model.)
We then define: Δu := {φ ∈ L : N , u |� φ}. Δu is an ultraset, X ⊆ Δu and σ /∈ Δu .
Passing to the canonical model Mc we obtain, by the Truth Lemma, that Mc,Δu |� X
and Mc,Δu �|� σ . Consequently, X |�c σ does not hold.

The canonical model Mc = 〈W , V , VR〉 is deterministic: each V (a) is a total
function on W and VR(a) is a partial subfunction of V (a). Hence V (a) is performable
at u if and only if u is in the domain of VR(a).

The fact of adequacy of the canonical model for the logic of action |� has an impact
on reach of the notion of perfomability. It follows from Theorem 7.1 that |� is fully
determined by deterministic action models. Thus the logical strength of the notion of
performability of atomic actions, encapsulated in Definition 3.5.(1), is reducible to
performability of atomic actions in deterministic action models. The phenomenon of
unperfomabilty of an atomic action a in a given state u in a deterministic model is
tantamount to the fact that u is not in the domain of the partial subfunction VR(a) of
the unary funtion V (a)—this action simply halts at some state.

As to performabilty of actions in situational action systems—the problem is more
involved there (see Czelakowski 2015).

We shall establish some other facts concerning |�.

Proposition 7.2 If � is an infinite set, the consequence |� is not finitary.

Proof Assume � = {an : n ∈ N}. We put A := �.

Claim (1) {¬ Perf (an) : n ∈ N} |�¬ Perf (A);
(2) For every finite subset N f ⊂ N, it is not the case that

{¬ Perf (an) : n ∈ N f } |�¬ Perf (A).

123

Performability of Actions 785

Proof of the claim As to the first statement, suppose M = 〈W , V , VR〉 is a model
for L and u ∈ W is a state such that M, u |� ¬ Perf (an) for all n ∈ N. This means
that u /∈ Perf V (an) for all n ∈ N in M . It follows that u /∈ Perf V (A). Hence
M, u |� ¬ Perf (A).

To prove the other statement, it suffices to show that for every positive integer m it
is not the case that {¬ Perf (an) : n ≤ m} |�¬ Perf (A). To this end we take a frame-
based normalized model model M = 〈W , R, V 〉 and a state u ∈ W with the property
that for each an , n ≤ m, there is no state v such that uV (an)v but there exists a state
w for which uV (am+1)w holds. Such a model M can be easily defined. It follows that
each action V (an), n ≤ m, is unperformable at u but V (am+1) is performable at u.
Consequently, M, u |� ¬ Perf (an) for all n ≤ m. On the other hand, M, u |� Perf (A),
because M, u |� Perf (am+1). Thus {¬ Perf (an) : n ≤ m} |�¬ Perf (A) does not hold.

This proves the claim and concludes the proof of the proposition.

But we can say even more:

Theorem 7.3 If � has at least two elements, then the consequence |� is not finitary.

Proof We shall suitably accommodate the Proof of Proposition 7.2 to the above
assumption. Let a and b be different symbols in �. We define:

A := {abna : n ≥ 1}.

Claim (1) {¬ Perf (abna) : n ∈ N} |�¬ Perf (A);
(2) For every finite subset N f ⊂ N, it is not the case that

{¬ Perf (abna) : n ∈ N f } |�¬ Perf (A).

Proof of the claim As to the first statement, suppose M = 〈W , V , VR〉 is a model for
L and u ∈ W is a state such that M, u |� ¬ Perf (abna) for all n ∈ N. This means that
u /∈ Perf Vseq(abna) for all n ∈ N in M . AsPerf Vseq(A) = ⋃

n∈N Perf Vseq(abna),
it follows that u /∈ Perf Vseq(A). Hence M, u |� ¬ Perf (A).

To prove the other statement, it suffices to show that for every positive integerm it is
not the case that {¬ Perf (abna) : n ≤ m} |�¬ Perf (A). To this end we take a normal-
ized frame-based model M = 〈W , R, V 〉, a state u ∈ W and a sequence of different
states u0, u1, . . . , um, um+1 and wm+1 such that u Ru0Ru1R . . . um Rum+1Rwm+1 is
the only terminated R-path that originates from u. Moreover, it is assumed that

uV (a)u0V (b)u1V (b)u2 . . . um V (b)um+1V (a)wm+1

and for each n, 1 ≤ n ≤ m, there is no state wn such that un V (a)wn .
Such a model M can be easily defined. It follows that the action V (a) is unper-

formable at each state un , 1 ≤ n ≤ m, but it is performable at um+1. Consequently, by
the uniqueness of the above sequence of states, we have that M, u |� ¬ Perf (abna) for

123

786 J. Czelakowski

all n ≤ m. On the other hand, M, u |� Perf (A), because M, u |� Perf (abn+1a). Thus
it is not the case that {¬ Perf (abna) : n ≤ m} |�¬ Perf (A).

This proves the claim and concludes the Proof of the Theorem.

It is clear that the unbounded “pumping” the symbol b in the words of the set
A accounts for the fact that |� is not finitary. Such “pumping” features of formal
languages are well known in automata theory. They result in various ω-type rules of
inference as e.g. the rule (1) from the above claim.

The following fact sharply contrasts with the above one:

Theorem 7.4 If � has one element only, then the consequence |� is finitary.

Proof Let us assume that� = {a}. The proof of the theorem is based on the following
lemma:

Lemma If � is a singleton, then for each non-empty set A ⊆ �∗ not containing the
empty word e there is a word x ∈ A such that |� Perf (A) ↔ Perf (x).

Proof of the lemma Let A be a non-empty subset of �∗. Let x = an be the shortest
word in A. x is non-empty. As x ∈ A, we have that |� Perf (x) → Perf (A). We claim
that |� Perf (A) → Perf (x).

Let M = 〈W , V , VR〉 be amodel forL and u ∈ W a state such that M, u |� Perf (A).
Then M, u |� Perf (y) for some word y ∈ A. But by the definition of x , the word
x is a prefix of y. As M, u |� Perf (y), we also have that M, u |� Perf (x), because
performability of V (y) at u entails performability of V (z) at u for all non-zero prefixes
z of y. Consequently, M, u |� Perf (x).

The above lemma states that all formulas of the form Perf (A) are eliminable on
the basis of |�, because each such a formula is |�-equivalent to a formula of the form
Perf (x). Then a straightforward argument shows that |� is finitary. Details are left to
the reader.

7.1 A Finitary Strengthening of the Consequence |�
The question arises if there are finitary and non-trivial strengthenings of the above
consequence |�. We shall shed some light on this issue.

Let � be an alphabet. The infinitary consequence |�, defined in Sect. 4, is deter-
mined by all action models over �. We define a narrower class of models. Let K be
the class of action models M = 〈W , V , VR〉 over � such that, for every a ∈ �, V (a)

is serial relation on the set of states W and moreover VR(a) = V (a), for all a. Thus
every atomic action V (a) is performable in all states u ∈ W .

It is easy to see that the class K is first-order definable and therefore it is closed
under the formation of ultraproducts.

|�K is the consequence relation in the language L determined by the models ofK.
|�K is stronger than |�.

All formulas Perf (a), a ∈ �, are tautologies of the consequence |�K. It follows
that every formula Perf (x), x ∈ �∗, is also a tautology of |�K. Consequently, for any

123

Performability of Actions 787

non-empty compound action A ⊆ �∗, the formula Perf (A) is a tautology of |�K as
well. In other words, in any model M ∈ K, the action Vseq(A) is performable in all
states of M .

In fact, for any non-empty A ⊆ �∗, Perf (x) → Perf (A) and Perf (A) → Perf (x)

are tautologies of |�K, for all x ∈ A. Thus the logic |�K trivializes the problem of
performability.

If Mi = 〈Wi , Vi , Vi,R〉, i ∈ I , is an indexed, nonempty family of models in K,
and U is an ultrafilter over I , then in the standard way one defines the ultraproduct
M = ΠU Mi of this family modulo U . The model M also belongs to K.

We have the following counterpart of Łoś’s Theorem for the formulas of L in
ultraproducts of models of K:

Let M = ΠU Mi be an ultraproduct of a family Mi = 〈Wi , Vi , Vi,R〉, i ∈ I , of
K-models and let wi ∈ Wi be a state, i ∈ I . Then for any formula φ ∈ L,
(∗) M, 〈wi : i ∈ I 〉U |� φ ⇔ {i ∈ I : Mi , wi |� φ} ∈ U .

(∗) is recursively proved by the degree of complexity of φ. The only non-trivial case
is when φ is of the form Perf (A), where A is a non-empty, possibly infinite compound
action. We apply the fact that Perf (A) is a tautology of |�K. Hence M, 〈wi : i ∈
I 〉U |� Perf (A) and Mi , wi |� Perf (A) for all i ∈ I , because all these models are inK.
Hence {i ∈ I : Mi , wi |� Perf (A)} ∈ U . Thus both sides of (∗) are true for φ equal to
Perf (A) and (∗) follows.

By applying (∗) and a standard ultraproduct argument one proves:

Theorem 7.5 The consequence relation |�K is finitary.

Here is a brief outline of the proof. Assume X ⊆ L, φ ∈ L and X |�K φ. We claim
that X f |�K φ for some finite set X f ⊆ X . We argue by contraposition. Let I be the
family of all finite non-empty subsets of X . Suppose that i �|�K φ for all i ∈ I . For each
i we find a model Mi = 〈Wi , Vi , Vi,R〉 in K and a state wi ∈ Wi such that Mi , wi |� i
(i.e., all formulas α ∈ i are validated by wi in Mi) but φ is not, i.e., Mi , wi �|� φ. Let
U be an ultrafilter over I which includes the sets i∗ := { j ∈ I : i ⊆ j}, i ∈ I , and
let M = ΠU Mi be the ultraproduct of the models Mi , i ∈ I , modulo U . Then by (∗),
the state w := 〈wi : i ∈ I 〉U belonging to ΠU Wi does validates all formulas X but it
does not validate φ. As M is in K, it follows that X �|�K φ. Hence the consequence
|�K is finitary.

By using a similar argument one can define other finitary consequence relations of
actions.

8 The Logic of Finite Actions

The fact that the consequence operation |� is not finitary poses the problem of its
finitarization. In metalogic one sometimes applies various methods of finitarization to
infinitistic propositional calculi to obtain a finitary version of the calculi. The infinite-
valued Łukasiewicz consequence defined by the matrix (Ac, {1}) may serve as an
example—see the last section below. The consequence determined by this matrix is
infinitistic; but in the theory of Łukasiewicz logics one usually works with the finitary

123

788 J. Czelakowski

version of this consequence. At the semantic level, one may also apply techniques
based on ultraproducts to yield finitary consequences. But these methods are not
applicable to |�.

In this section the discourse on performability of compound actions is restricted to
the special case when all compound formal actions in question are finite. They thus
form a countably infinite subfamily of the power set of �∗.

We define the sublanguage L f of L as follows. Atomic formulas of L f are expres-
sions of the form:

Perf (x), x ∈ �∗,
Perf (A), A is a finite subset of �∗.

As the set �∗ is countably infinite, the above set of atomic formulas is countably
infinite as well.

Compound formulas are built from the above atomic formulas bymeans of applying
the Boolean connectives → and ¬. The other Boolean connectives are defined in the
standard way.

Models for L f are defined as for the language L. Satisfaction in models is also
defined as for L.

|� f is the semantic consequence relation in L f defined in the same way as for |�.
It follows that |� f is the restriction of |� to L f . (Note that the symbol |� f has here
different meaning from that in the above section.)

8.1 The Logic�
We want to syntactically characterize the above semantically defined consequence
relation |� f in terms of logical axioms and rules of inference. (In fact, only one
primitive rule of inference is needed here—the rule of detachment.) To this end we
first define an inferentially defined consequence relation in L f , denoted by �. The
consequence � is an extension of classical propositional logic (CPC).

Every formula of L f which is an instance of a tautology of CPC is logically valid.
But there are also logically valid formulas specific to action performability.

As an axiom system of classical logic we adopt the following laws:

(a1) φ → (ψ → φ) (simplification)

(a2) φ → (ψ → χ) → ((φ → ψ) → (φ → χ)) (Frege’s Syllogism)

(a3) ¬φ → (φ → ψ) (Duns Scotus’ Law)

(a4) (¬φ → φ) → φ (Clavius’ Law)

where φ,ψ, χ are arbitrary formulas.
We have the following specific action axioms:

(d1) Perf (xa) → Perf (x),

where x is a non-empty word and a ∈ �;

123

Performability of Actions 789

(d2) ¬ Perf (∅).

Moreover, for each non-empty finite set A = {x1, . . . , xn} ⊂ �∗ we adopt:

(d3) Perf (A) ↔ Perf (x1) ∨ . . . ∨ Perf (xn).

The detachment rule given by the scheme φ, φ → ψ/ψ is the only primitive rule
of inference.

We define

�
to be the consequence relation in L determined by the above specific action axioms
(d1)–(d3), the above axiom system (a1)–(a4) for CPC and the detachment rule. Thus
X � σ means that there is proof of σ from X carried out by means of the above logical
axioms and the detachment rule.� is called the inferential performability consequence
in L.

� is finitary. Since � is based on classical logic and the detachment as the only
primitive rule of inference, � obeys the Deduction Theorem, which means that for
any set X of formulas and any formulas φ,ψ :

X �φ → ψ if and only if X ∪ {φ}�ψ.

The axioms (d3) de facto assure eliminability of atomic formulas of the form
Perf (A) from L f , because each such formula with A = {x1, . . . , xn} can be replaced
by the deductively equivalent disjunction Perf (x1) ∨ . . . ∨ Perf (xn).

For every finite non-empty set A the formula Perf (x) → Perf (A) is a thesis of �,
for allwords x ∈ A.Moreover, for any non-emptywords x, y, the formulaPerf (xy) →
Perf (x) is a thesis too. This can be shown by iterating the axioms (d1).

We also note that for any finite subsets A, B of �∗, the formula

Perf (A ∪ B) ↔ Perf (A) ∨ Perf (B).

is a thesis of �.
A set X is inconsistent if all formulas are �-consequences of X , equivalently, if a

formula of the form φ ∧¬φ is derivable from X ; otherwise X is consistent. A formula
σ is inconsistent if the set {σ } is inconsistent. Analogously one defines consistency of
a formula.

Since the above axioms are validated in all models, we see that� ≤ |� f , i.e., |� f
is stronger than �.

� is a variant of CPC. Therefore the (algebraic) closure system T h(�) has a base
consisting of all Lindenbaum sets of �, i.e., maximal consistent subsets of L f .

Due to the axioms (d3), each Lindenbaum set Δ is an ultraset in the sense that
for any non-empty finite set A ⊂ �∗, Perf (A) ∈ Δ implies that Perf (x) ∈ Δ for
some x ∈ A. Moreover, for any non-empty words x and y, Perf (xy) ∈ Δ implies
Perf (x) ∈ Δ.

123

790 J. Czelakowski

Every Lindenbaum set of � is therefore characterized as in Corollary 5.2 (under
the condition that A ranges over finite sets). The �-counterparts of Proposition 5.3
and Theorem 5.4 also hold (but restricted to the language L f).

The models for � as well as the canonical model model Mc = 〈W , V , VR〉 for �
are defined in a fully analogous way as for |�. (The only difference is that the system
� is syntactically defined by means of logical axioms and the detachment rule, and
not through models. But the axioms of � enable us to define all components of Mc in
the same way as in the case of the system |�.)

As to the canonical model, its set of states W is equal to the family of Lindenbaum
sets of �, and hence ultrasets in the above sense. The unary functions V (a), a ∈ �,
acting on the set W are defined as in Sect. 6. In an analogous way one defines the
partial functions VR(a), a ∈ �, and VR(e). Proposition 6.1 and Theorem 6.3 then
continue to hold for Lindenbaum sets of the system�. The interpretation V is defined
as Sect. 6, that is, V (a) := A(a), a ∈ �, and V (e) := A(e) = the identity map on W .

Lemma6.5 also continues to hold for the above canonicalmodel (without significant
modifications in its proof; the only restriction is that A ranges over finite subsets of
�∗):

Lemma 8.1 (Truth Lemma) Let Δ be an arbitrary Lindenbaum set in the above canon-
ical model Mc. Then for any formula φ of L f :

(1) Mc,Δ |� φ if and only if φ ∈ Δ.

The following fact is the main result of this part of the paper.

Theorem 8.2 (The Extended Completeness Theorem) � = |� f .

Proof The inclusion � ⊆ |� f is immediate, because the axioms of � are logically
valid and Modus Ponens is a rule of |� f .

To prove the reverse inclusion, let us assume that X is a set of formulas of L f and
σ is a formula such that it is not the case that X � σ . We shall show that σ does not
logically follows from X .

There is a Lindenbaum set Δ0 of � such that X ⊆ Δ0 and σ /∈ Δ0. Let Mc =
〈W , V , VR〉 be the canonical model for L f defined as above. Hence Δ0 ∈ W .

As X ⊆ Δ0 and σ /∈ Δ0 we obtain, by Lemma 8.1, that every formula of X is true
in Mc at Δ0. Since σ /∈ Δ0, we have that σ is not true in Mc at Δ0. Consequently, it
is not the case that X |� f σ .

This shows the inclusion |� f ⊆ �.

It follows from the above theorems that the finitary consequence relation � is
semantically defined by deterministic models.2

We note that for any finite subsets A, B of �∗, the formula

Perf (A ∪ B) ↔ Perf (A) ∨ Perf (B)

is a thesis of �, because it is validated by |� f .

2 This resembles a situation in automata theory where all regular languages are determined by finite
deterministic automata.

123

Performability of Actions 791

9 Regular Actions: Comparisons with Dynamic Logic

To enlarge the expressive power of L, one may extend the above vocabulary of L by
incorporating propositional variables. In fact, one may also make another step and
define more nuanced forms of performabilty of actions by combining the propositions
Perf (x), x ∈ �∗, and Perf (A), A ⊆ �∗, with propositional variables. These forms
reflect local aspects of action performabilty, not on the entire set of states but on its
subsets. Accordingly, for any propositional variable p, we define the formulas

Perf (x) ∧ p and Perf (A) ∧ p.

They are read: “x is performable in p” and “A is performable in p”, respectively. In
the semantic rendition, if M = 〈W , V , VR〉 is an action model, and � ⊆ W is the
interpretation of p, then Perf (x) ∧ p is interpreted as

� ∩ Perf Vseq(x) := {u ∈ � : (∃w ∈ W) uVR(x)w}.

Analogously, Perf(A) ∧ p is interpreted as

� ∩ Perf Vseq(A) := {u ∈ � : (∃x ∈ A)(∃w ∈ W) uVR(x)w}.

But, more interestingly, we may also define local counterparts of the “reversed
performability” (see Notes 2.7.B) as the following unary operations:

w ∈ Perf ← Vseq(x)(�) ⇔d f (∃u ∈ �) uVR(x)w,

w ∈ Perf ← Vseq(A)(�) ⇔d f (∃x ∈ A) w ∈ Perf ← Vseq(x)(�),

for all subsets � ⊆ W .
Thus Perf ← Vseq(x)(�) is the set of states attainable from � by realizable perfor-

mances of Vseq(x). Analogously one can read the proposition Perf ← Vseq(A)(�).
The above issues, though important, are not discussed in this paper.
Dynamic logic (DL) is concerned with the logic of action but it perceives actions

from a different perspective than the one articulated in this work. DL steams from
the theory of programs. It is well known that “DL is an extension of modal logic
originally intended for reasoning about computer programs and later applied to more
general complexbehaviors arising in linguistics, philosophy,AI, andotherfields” (after
Wikipedia). Although any action variable a is interpreted in DL as a binary relation
on a set of states, thus as an atomic action, DL examines the actions corresponding to
action variables from the modal logic perspective (see e.g. Parikh (1978), Segerberg
(1980, 1982)). The action variables are viewed there as modal operator makers. More
specifically, a gives rise to the modal connective [a],which, in the syntactic rendition,
is a kind of the modal necessity connective. If p is a sentential variable, then [a]p is
read as follows: “After performing the action a it is necessarily the case that p”, that
is, a must bring about p. The dual modal connective 〈a〉 is interpreted as a possibility
connective. 〈a〉p is therefore read: “After performing a, it is possible that p holds”,
that is, a might bring about p. DL also contains more complicated modal connectives

123

792 J. Czelakowski

that correspond to regular compound actions. DL abstracts from the issue of whether
the action represented by a is performable in a given circumstances or not, but is
interested in results the action brings about whenever it is performed.

Consequently, DL assumes a quite different linguistic perspective of action as
compared with the one presented in this work. The sentential language of DL is a
multimodal language. This language is an extension of the standard Boolean language
of CPC. In turn, the language L of action defined in this paper has an entirely differ-
ent syntax. There are no sentential variables at all. Atomic formulas are of the form
Perf (x), where x is a word over an alphabet �, or of the form Perf (A), where A is a
subset of �∗.

One may expand the language L of action performability and add propositonal
variables as well as modal connectives [a], a ∈ �, to the vocabulary ofL together with
other specific connectives of DL. This fact, due to the presence of Boolean connectives
in L, enables one to incorporate the language of dynamic logic to L. But one may even
go farther and augment the language of L with the modal necessity connectives [x],
x ∈ �∗, and [A], A ⊆ �∗. There are altogether uncountably many such necessity
connectives. (But of course, the set {[x] : x ∈ �∗} is countably infinite.)

[x]p is read as follows: “After performing the sequence of actions x it is necessarily
the case that p” while [A]p is read “After performing the compound action A it is
necessarily the case that p”.

Although from the purely formal viewpoint, it is easy to combine the syntax of L
with the syntax of dynamic logic, as described above, as well as to extend the relational
semantics of L so that it captures the semantic principles of DL, some serious logical
problems remain. Dynamic logic, being a variant of multimodal logic, is finitary. DL is
axiomatically defined. The completeness theorem for DLwith respect to the relational
semantics is crucial. DL is even an equivalential logic in the well-known hierarchy
of protoalgebraic logics—see e.g. (Czelakowski 2001, §3.6). In turn, the logic of
performability is inherently infinitary, as this paper shows. It is easy to see that the
logic which combines the logic of performability with DL is infinitary as well. And
this infinitistic aspect of such an extended logic is not easily removable in general.

The family REG(�) of regular languages over � possesses the well known alge-
braic properties. The purpose of this section is to present a modified definition of
performabilty of compound actions as compared with the options Definition 3.5.(3)
offers. This new definition is strictly tailored for regular actions and only for them.
The definition of performability of regular actions we shall present directly refers to
the algebraic structure of REG(�) and it takes into account this structure.

Given an action model M = 〈W , V , VR〉 over � and a ∈ � we define the unary
modal operations 〈VR(a)〉 and [VR(a)] on the subsets of W as follows. For � ⊆ W
and u ∈ W ,

u ∈ 〈V (a)〉� ⇔d f (∃w)(uV (a)w ∧ w ∈ �).(1)

u ∈ [V (a)]� ⇔d f (∀w)(uV (a)w ⇒ w ∈ �).(2)

u ∈ 〈VR(a)〉� ⇔d f (∃w)(uVR(a)w ∧ w ∈ �).(3)

u ∈ [VR(a)]� ⇔d f (∀w)(uVR(a)w ⇒ w ∈ �).(4)

123

Performability of Actions 793

〈V (a)〉� is the V -preimage of the set � and 〈VR(a)〉� is the VR-preimage of �. It
is clear that the operations 〈V (a)〉 and [V (a)] are mutually interdefinable in the well-
known way and similarly the operations 〈VR(a)〉 and [VR(a)]. As VR(a) ⊆ V (a), we
have the inclusions: 〈VR(a)〉 ⊆ 〈V (a)〉 and [VR(a)] ⊆ [V (a)], for all a.

The relation “u ∈ 〈V (a)〉�” is read “some possible performance of V (a) at u yields
a result in �” while “u ∈ 〈VR(a)〉�” is read “some actual (or realizable) performance
of V (a) at u yields a result in �”. These phrases bear different meanings.

In turn, u ∈ [V (a)]� and [VR(a)]� are read “every possible performance of V (a)

at u yields a result in �” and “every actual (or realizable) performance of V (a) at u
yields a result in �”, respectively.

The above definitions are extended onto the words x ∈ �∗ and the subsets A of
�∗. Thus

u ∈ 〈V (x)〉� ⇔d f (∃w)(uV (x)w ∧ w ∈ �).(5)

u ∈ [V (x)]� ⇔d f (∀w)(uV (x)w ⇒ w ∈ �).(6)

u ∈ 〈V (A)〉� ⇔d f (∃w)(uV (A)w ∧ w ∈ �).(7)

u ∈ [V (A)]� ⇔d f (∀w)(uV (A)w ⇒ w ∈ �).(8)

Similarly,

u ∈ 〈VR(x)〉� ⇔d f (∃w)(uVR(x)w ∧ w ∈ �).(9)

u ∈ [VR(x)]� ⇔d f (∀w)(uVR(x)w ⇒ w ∈ �).(10)

u ∈ 〈VR(A)〉� ⇔d f (∃w)(uVR(A)w ∧ w ∈ �).(11)

u ∈ [VR(A)]� ⇔d f (∀w)(uVR(A)w ⇒ w ∈ �).(12)

It is easy to see that x = a1 . . . am , then

〈V (a1 . . . am)〉 = 〈V (a1)〉 . . . 〈V (am)〉.(13)

[V (a1 . . . am)] = [V (a1)] . . . [V (am)],(14)

where on the right-hand side the composition of the above unary operations occurs.
Similar identities hold for 〈VR(a1 . . . am)〉 and [VR(a1 . . . am)].

It follows from Definition 3.6 that

〈VR(x)〉� ⊆ Perf (Vseq(x)), for all � ⊆ W .(15)

Moreover

Perf (Vseq(x)) = 〈VR(x)〉W .(16)

123

794 J. Czelakowski

and

Perf (Vseq(A)) = 〈VR(A)〉W .(17)

Thus the performability operators Perf (Vseq(x)) and Perf (Vseq(A)) are definable in
terms of the abovemodal operators 〈VR(x)〉 and 〈VR(A)〉 and the constant representing
truth, respectively.

The identities (16) and (17) show that (a version of) DL employing the above modal
operators is capable of expressing the main definitions of performability of actions.

But we are concerned with Kleene’s closure of the relations V (x), x ∈ �∗. We
therefore restrict compound actions only to those of the form V (A), where A is a
regular subset of �∗.

Definition 9.1 Let� be an alphabet. The regular expressions over� and the languages
they denote are defined recursively as follows (after Hopcroft and Ullman 1979).

If r is a regular expression, A(r) ⊆ �∗ is the language r denotes. We assume:

1. ∅ is a regular expression and it denotes the empty set, A(∅) = ∅.
2. e is a regular expression and it denotes the set A(e) = {e}.
3. For every a ∈ �, a is a regular expression denoting the set A(a) = {a}.
4. If r and s are regular expressions denoting the languages A(r) and A(s), respec-

tively, then (r + s), (rs), and (r∗) are regular expressions that denote the sets
A(r) ∪ A(s), A(r)A(s), and A(r)∗, respectively.

The regular expressions defined in 1.–3. are called atomic.
Reg(�) is the set of regular expressions over �.

A(r) is a set of words over �, i.e., it is a compound action, for all r. The discussion
in this section is restricted to compound actions of the form A(r) for regular r.

REG(�) is the set of regular languages over �. Thus REG(�) = {A(r) : r ∈
Reg(�)}. Following the terminology adopted in this work, the set A(r) is called the
formal action corresponding to r.

It is well known that REG(�) forms a field of subsets of�∗. Thus it makes sense to
introduce two secondary operations on regular sets, viz., the meet and the complement
(to �∗). One may accordingly enrich the above vocabulary of regular expressions by
two more clauses:

5. If r and s are regular expressions denoting the languages A(r) and A(s), respec-
tively, then (r∩ s) and (r′) are regular expressions that denote the sets A(r)∩ A(s),
and �∗ − A(r), respectively.

Reg(�) validates some equations holding for regular expressions. r = smeans that
A(r) = A(s). Then it is easy to see that e.g. (p + q) = (q + p), ((p + q) + r) =
((p + (q + r)), (p + q)r = (pr + qr), etc. (Some parentheses are omitted.)

Models for formal regular actions are defined similarly as in Sect. 3.

Definition 9.2 Let M = 〈W , V , VR〉 be an actionmodel over�. Each non-emptyword
x = a1 . . . am ∈ �∗ is interpreted as the sequence of binary relations Vseq(x) :=
〈V (a1), . . . , V (am)〉, the sequential action of x = a1 . . . am . The empty word e is

123

Performability of Actions 795

interpreted as the diagonal relation of W . In turn, every compound action A ⊆ �∗ is
interpreted as Vseq(A) = {Vseq(x) : x ∈ A}.

In the standard way (see Definitions 3.3 and 3.4), we define the binary relations
V (x) and V (A), being the resultant actions of x and A in the model, as well as the
relations VR(x) and VR(A), the realizable resultant relations of x and A.

In what follows, the focus is only on the compound actions of the form A(r), where
r is a regular expression, and the sequential interpretation Vseq(A(r)) in the model.
Other compound actions are disregarded. The set Vseq(A(r)) is defined by induction
on complexity of regular expressions. Thus for every a ∈ �,

Vseq(A(a)) = V (a) (= 〈V (a)〉),
Vseq(A(∅)) = ∅,

Vseq(A(e)) = V (e),

Vseq(A(r + s)) = Vseq(A(r)) ∪ Vseq(A(s)),

Vseq(A(rs)) = Vseq(A(r))Vseq(A(s)) (= the set of all

concatenations of strings of relations of Vseq(A(r))

and the strings of relations of Vseq(A(s)));
Vseq(A(r∗)) = (Vseq(A(r))∗ (= the Kleene closure of the set of all

sequences of relations belonging to Vseq(A(r))).

The sets of the form Vseq(A(r)) are called compound regular actions in the model M .
In a similar manner, for every regular r one defines the binary resultant relation

V (A(r)) of Vseq(A(r)). Thus

V (A(r + s)) := V (A(r)) ∪ V (A(s)),

V (A(rs)) := V (A(r)) ◦ V (A(s)) (= the composition

of the relations V (A(r)) and V (A(s))),

and

V (A(r∗)) := V (A(r))∗ (= the Kleene closure of the

binary relation V (A(r))).

Moreover V (e) is the diagonal 0W of W and V (∅) is the empty set.
In turn, VR is the mapping assigning to each atomic regular expression r a sub-

relation VR(A(r)) of V (A(r)), the realizable resultant relation of Vseq(A(r)). The
definition of VR is inductively extended onto arbitrary regular expressions r ∈ Reg(�).

Following Definition 3.4, V (A(r)) is called the resultant relation of Vseq(A(r)) on
the set of states of W . Likewise, VR(A(r)) is called the realizable (or actual) resultant
relation of Vseq(A(r)) on W .

Given a model M = 〈W , V , VR〉 and a regular expression r we want to define
the proposition Perf Vseq(A(r)) ⊆ W , for all r ∈ Reg(�). If u ∈ W , then “u ∈

123

796 J. Czelakowski

Perf Vseq(A(r))” is read:

“The action Vseq(A(r)) is performable at u.”

Let M = 〈W , V , VR〉 be a model and u ∈ W a state. Following the general pattern
of performability introduced in Sect. 3, we accept the following two clauses:

(1) Let r be an atomic regular expression. Vseq(A(r)) is performable at u ⇔ there
exists a state w such that uVR(A(r))w holds.

(2) Vseq(A(r+s)) is performable at u ⇔ Vseq(A(r)) is performable at u or Vseq(A(s))
is performable at u.

(3) Vseq(A(r∗)) is performable at u ⇔ Vseq(A(rn)) is performable at u for some
n ≥ 0.

Now, if we take the regular expression (rs), then it is natural to postulate:

(4) Vseq(A(rs)) is performable at u ⇔ Vseq(A(r)) is performable at u and moreover,
after performing Vseq(A(r)) at u, a state w has been reached such that Vseq(A(s))
is performable at w.

(4) implies than for any action symbols a, b, the sequential action Vseq(A(ab)) is
performable at u ⇔ the atomic actionVseq(A(a)) is performable at u and after perform-
ing Vseq(A(a)) at u, a state w has been reached such that Vseq(A(b)) is performable
at w.

(4) offers a stronger notion of performbilty of sequential actions in comparison with
Definition 3.5.(2). The reason is that we want to combine the notion of performability
of regular actions with their algebraic structure encapsulated in Definition 9.1. (4)
directly refers to the algebraic structure of regular actions. Moreover, the notion of
performability should preserve the algebraic structure of Reg(�) in the following
sense: if r = s, then in any model M and any state u, Vseq(A(r)) is performable at u
if and only if Vseq(A(s)) is performable at u.

To achieve this, some care is needed when in action models M = 〈W , V , VR〉 one
operates with themapping VR assigning to each symbol a ∈ � a subrelation VR(A(a))
of V (A(a)), the realizable resultant relation of Vseq(A(a)). The same concerns the
relationsVR(A(r))defined for all r ∈ Reg(�).Wepostulate thatVR(A(e)) = V (A(e))
(= 0W). In other words, the diagonal action V (A(e)) is performable in any state
u ∈ W . This guarantees that VR(A(re)) = VR(A(e)) ◦ VR(A(r)) = VR(A(r)) ◦
VR(A(e)) = VR(A(er)).

For any regular expression r, the proposition Perf Vseq(A(r)) ⊆ W is defined as
follows:

u ∈ Perf Vseq(A(r)) ⇔ Vseq(A(r)) is performable at u.

The language L for action performabilty defined in Sect. 4 can be suitably accom-
modated to regular languages. Lreg is the language of performabilty of regular actions
over �. Atomic formulas of Lreg are expressions of the form:

Perf (r), r ∈ Reg(�).

123

Performability of Actions 797

Compound formulas are formed from the atomic ones by applying the Boolean
connectives→ and¬. The other Boolean connectives are defined in the standard way.
The language Lreg is poor. It contain neither propositional variables nor the modal
connectives [r], 〈r〉, r ∈ Reg(�).

The above semantics validates some specific formulas for regular actions. Some of
them are consequences of the above identities, as e.g.,

Perf (ep) ↔ Perf (pe)

Perf (ep) ↔ Perf (p)

Perf (p + q) ↔ Perf (q + p)

Perf (p + q)r ↔ Perf (pr + qr),

Perf (r∗) → Perf (rn),

for all n ≥ 0, and many others. Specific action tautologies are, for example,

Perf (p + q) ↔ Perf (p) ∨ Perf (q),

Perf (pq) → Perf (p).

But more importantly, the above semantics for regular actions validates the ω-Rule:

{Perf (rn) : n ≥ 0}/ Perf (r∗).

The ω-Rule is generally not eliminable and cannot be replaced by a set of finitary
rules. This fact makes the logic based on the above semantics infinitary. There is
however a class of models for regular actions that make it possible to eliminate the
ω-Rule in the logic of action determined by this class.

Kreg is the class consisting of models M = 〈W , V , VR〉 over � such that, for every
a ∈ �, V (a) is a unary total function from the set of states W to W and moreover
VR(a) = V (a), for all a. Thus every atomic action V (a) is performable in all states
u ∈ W . It is also postulated that VR(e) = V (e) = 0W . It then follows by induction on
complexity of regular expressions r that every action Vseq(A(r)), r �= ∅, is performable
at any state u ∈ W .

|�reg is the consequence relation in the language Lreg determined by the models
of Kreg.

In the light of the above remark, |�reg validates all formulas Perf (r), for any non-
zero regular expression r. This logic trivializes the problem of performabilty of regular
actions.

The fact that every fomula Perf (A(r)), r �= ∅, is a tautology of |�reg should not be
confused with the problem of acceptability of regular languages by finite deterministic
automata. The issue of acceptance of words by a FDA differs from the problem of its
performability. If one treats such automata as action systems with the initial state and
the final states discarded, one obtains models in the above sense over a finite �. In
any finite deterministic automaton the atomic actions corresponding to the symbols
of � are performable in all possible states. (This is not the case in non-deterministic
automata.) Finite DAs are designed as devices in which transitions between states are

123

798 J. Czelakowski

total functions labeled by the symbols of �. Thus acceptance of a word x and its
performabilty are different problems!

Suitably modifying the proof of Theorem 7.5 one arrives at the following fact:

Theorem 9.3 The consequence relation |�reg is finitary.

10 Final Remarks

10.1 Fuzzy Performabilty and ukasiewicz Logics

This work expounds the zero-one conception of performability—a given action is
either performbable in a state or it is not. A more refined and nuanced notion involv-
ing various grades of performability as e.g. in the system of school grades, would
require introducing a modest amount of fuzzy sets theory (or—and this is yet another
interesting option—many-valued logics) to action theory.

LetA be a complete lattice and W a non-empty set. Any mapping P : W ×W → A
is called an A-valued binary relation on W . If P and Q are A-valued relations on W ,
then P ◦ Q is the A-valued relation on W defined as follows:

(P ◦ Q)(u, w) := sup{min(P(u, v), Q(v,w)) : v ∈ W },
for all pairs 〈u, w〉 ∈ W × W . P ◦ Q is called the composition of the relations P and
Q with respect to A.

If A is the two-element lattice, then A-valued binary relations on W are ordinary
binary relations on W . Moreover, the composition P ◦ Q of A-valued relations coin-
cides with the standard definition of composition.

To simplify matters, we chose the unit interval I as a fixed complete lattice we shall
work with. By definition, I := {r ∈ R : 0 ≤ r ≤ 1}.

Onewayof facing the problemofmany-valuedness in action theory is in introducing
real-valued models. According to this standpoint, a real-valued model (an I -based
model, for short) is a triple 〈W , V , VR〉 consisting of the set W of states, a mapping V
assigning to each symbol a ∈ � a function V (a) : W × W → I , and a mapping VR

assigning to each a ∈ � a function VR(a) : W × W → I such that VR(a) ≤ V (a),
that is,

VR(a)(u, w) ≤ V (a)(u, w),

for all 〈u, w〉 ∈ W × W .
V (a) and VR(a) are thus I -valued relations on the set W .
Each function V (a), a ∈ �, is referred to as an I -valued atomic action on the

set W . {V (a) : a ∈ �} is the family of I -valued atomic actions.
For each pair 〈u, w〉 ∈ W × W , the value V (a)(u, w) ∈ I measures the grade the

pair 〈u, w〉 is a possible performance of V (a).
However, if one takes into account various forms of performability of actions, it is

also necessary to introduce an I -valued transition relation between states. This relation
is represented by the mapping VR .

123

Performability of Actions 799

VR(a)(u, w) measures the degree of performability of V (a) for the input u and the
output w. Thus if VR(a)(u, w) = 1/3, then we shall say that 1/3 is the grade assigned
to V (a) on passing from u to w. Given states u, w1 and w2, if VR(a)(u, w1) <

VR(a)(u, w2), then we say that at the input u, the output w2 of V (a) receives higher
degree of performability than the output w1 of V (a).

Following the general pattern discussed in Sect. 3, every non-empty word x =
a1 . . . am is interpreted in the model as the following sequence of I -valued functions

Vseq(x) := 〈V (a1), . . . , V (am)〉.

As to the interpretation of the empty word e, we first define the zero-one discrimi-
nator mapping 0W on W × W :

0W (u, w) :=
{
1 if u = w

0 otherwise.

We then put:

Vseq(e) := 〈0W 〉.

In what follows we shall identify Vseq(e) with 0W .
Every compound action A ⊆ �∗ is interpreted as the set of sequences of functions:

Vseq(A) := {Vseq(x) : x ∈ A}.

The mapping V is inductively extended onto arbitrary words x ∈ �∗ as follows:

V (e) := 0W ,

V (xa) is the I -composition of the I -valued relations V (x) and V (a):

V (xa) = V (x) ◦ V (y),

that is,

V (xa)(u, w) := sup{min(V (x)(u, v), V (a)(v,w)) : v ∈ W },

for all pairs 〈u, w〉 ∈ W × W .
Note that then V (x) = V (xe) = V (ex), for all words x ∈ �∗.
The above definitions imply that

V (xy)(u, w) := sup{min(V (x)(u, v), V (y)(v,w)) : v ∈ W },

for all words x, y and all pairs 〈u, w〉 ∈ W × W . This means that V (xy) is the I -
composition of the I -valued sequential actions V (x) and V (y), i.e., V (xy) = V (x) ◦
V (y).

123

800 J. Czelakowski

In the next step V is extended onto the power set of �∗. For the empty set ∅, it is
declared that V (∅) is the zero mapping, that is,

V (∅)(u, w) := 0,

for all 〈u, w〉 ∈ W × W .
If A is a non-empty subset of �∗, then it is declared that

V (A)(u, w) := sup{V (x)(u, w) : x ∈ A},

for all pairs 〈u, w〉 ∈ W × W .
In an analogous way VR is extended onto words of �∗ and the subsets of �∗. For

the empty word e, it is assumed that

VR(e)(u, w) ≤ V (e)(u, w),

for all 〈u, w〉 ∈ W × W . Then, for any non-empty word x ∈ �∗ and any a ∈ �:

VR(xa) := VR(x) ◦ VR(a),

that is,

VR(xa)(u, w) := sup{min(VR(x)(u, v), VR(a)(v,w) : v ∈ W },

for all 〈u, w〉 ∈ W × W .
We declare that

VR(A)(u, w) := sup{VR(x)(u, w) : x ∈ A},

for all 〈u, w〉 ∈ W ×W . (Thus VR(A) is the supremumof the functions VR(x), x ∈ A.)
Let M = 〈W , V , VR〉 be an I -based model. In the next step, to each I -valued

action V (a) and each state u ∈ W an element Perf R(V (a), u) ∈ I is assigned which
measures the degree of performability of V (a) (= Vseq(a)) at u with respect to VR .
We may also say that Perf R(V (a), u) is the degree of VR-performability of V (a) at
u in the model M . We put:

Perf R(V (a), u) := sup{VR(a)(u, w) : w ∈ W },

for all a ∈ �. This definition is extended onto sequential actions Vseq(x) in the
following way.

For the empty word e:

Perf R(Vseq(e), u) := sup{VR(e)(u, w) : w ∈ W },
Perf R(Vseq(x), u) := sup{VR(x)(u, w) : w ∈ W },

for any non-empty word x .

123

Performability of Actions 801

Perf R(Vseq(x), u) measures the degree of performability of the sequence Vseq(x)

at u.
If A ⊆ �∗, it is declared that:

Perf R(Vseq(A), u) := sup{Perf R(Vseq(x), u) : x ∈ A}.

In particular, Perf R(Vseq(∅), u) = 0.
To simplify the further discussion, we shall assume that the pertinent models M =

〈W , V , VR〉 are normalized, which means that V = VR . The predicate Perf R is
therefore simply marked as Perf .

The above remarks does not preclude classical logic from the parlance about degrees
of performability of actions. (By analogy, classical logic is not rejected when one
speaks of school grades.) But then the language L of action performability should be
essentially remodeled. According to this option, in the simplest case atomic formulas
take the form of equations

Perf (a) ≈ d,

Perf (x) ≈ d,

Perf (A) ≈ d,

where apart from action variables a ∈ �, x ∈ �∗ and A ranging over subsets of �∗,
we also have variables d (with indices, if necessary) ranging over the elements of I .

Perf (a) ≈ d is read “The degree of performability of a is equal to d”. Analogously
one reads the other equations. They are classically evaluated: truth values (truth or
falsity) of such formulas depend then on two parameters: particular states u of W
and particular values assigned to the variable d in I . Accordingly, Perf (a) ≈ d is
true at u for the degree r in an I -based model 〈W , V 〉 if and only if Perf (V (a), u)

is equal to the degree r assigned to the variable d in I . Analogously one defines the
truth conditions for the remaining formulas. It is then clear how to extend the above
truth-conditions on compound formulas within the framework of classical logic.

Yet another option is to employ many-valued logics. The best candidate is the
infinitely-valued Łukasiewicz logic. According to this approach, the elements of I
are treated as logical values. But this approach requires introducing the following
additional assumption:

For every I -based normalized model 〈W , V , VR〉 and any a ∈ �, u ∈ W , the
degree of performability Perf (V (a), u) is identified with the logical value the
atomic formula Perf (a) receives at u.

Analogously one interpretes the degrees Perf (Vseq(x),u) and Perf (Vseq(A),u).
Here is a bunch of simple remarks on the problem.

123

802 J. Czelakowski

The unit interval I = [0, 1] is endowed with the operations →,∧,∨,⊗,⊕,¬
defined as follows:

a → b := min(1, 1 − a + b),(→)Ł

a ∧ b := min(a, b),(∧)Ł

a ∨ b := max(a, b),(∨)Ł

a ⊗ b := max(0, a + b − 1),(⊗)Ł

a ⊕ b := min(1, a + b),(⊕)Ł

¬a := 1 − a,(¬)Ł

for all a, b ∈ I . They are called the Łukasiewicz operations. The operations →, ∧
and∨ are successively called implication, conjunction and disjunction.⊗ is called the
strong conjunction and ⊕ is the weak disjunction. ¬ is the negation operation.

The systemAc := 〈I ,→,∧,∨,⊕,⊗,¬〉 is called the infinite Łukasiewicz algebra
(Wójcicki 1988). All the displayed operations are treated here as primitive operations
of Ac but they are definable in terms of the operations → and ¬ in the well-known
manner. (Onemay also take⊕ and¬ as primitive operations, becausea → b = ¬a⊕b,
a ∨b = ¬(¬a ⊕b)⊕b, a ∧b = ¬(a ∨¬b), and a ⊗b = ¬(a ⊕¬b), for all a, b ∈ I .)
We shall therefore choose the operations → and ¬ as primitive and assume that the
remaining operations are termwise definable. The algebra 〈I ,→,¬〉, also denoted by
Ac, is therefore similar to the language L of action performability defined in Sect. 4.

Let 〈W , V , VR〉 be an I -based normalized model. We extend the mapping V onto
the set of formulas of L by making use of the primitive operations →,¬ of Ac. The
mapping V enables one to assigns an element of I to each formula σ of L and each
state u ∈ W .

To this end we recursively define a mapping HV : L × W → I called the truth
assignment. If σ is a formula and u a state, then HV (σ, u) is the logical value assigned
to σ at the state u. HV is defined as follows:

HV (Perf (a), u) := Perf (V (a), u),

for all a ∈ �.

HV (Perf (x), u) := Perf (Vseq(x), u),

for all words x ∈ �∗.

HV (Perf (A), u) := Perf (Vseq(A), u),

for all sets A ⊆ �∗. (Thus HV (Perf (∅), u) = 0.)
HV (Perf (a), u) defines the degree of truth of the formula Perf (a) at u. A similar

remark applies to the remaining atomic formulas.

123

Performability of Actions 803

HV is recursively extend HV onto compound formulas of L according to the defi-
nitions of the operations → and ¬ of the algebra of Ac. Thus

HV (φ → ψ, u) := HV (φ, u) → HV (ψ, u),

HV (¬φ, u) := ¬HV (φ, u),

for all formulas φ and ψ . (The symbols of operations of the algebra Ac that occur
on the RHS of the above equations are the same as the symbols of the corresponding
connectives of L; but this fact should not lead to confusion.)

The abovemany-valued semantics of actionperformability basedon theunit interval
I gives rise to a consequence relation |�I operating on the set of all formulas of L in
the following way. Let X be a set of formulas of L and σ a formula. We say that σ

logically follows from X , in symbols:

X |�I σ

if for every I -based model M = 〈W , V 〉 and every state u ∈ W ,

inf{HV (φ, u) : φ ∈ X} ≤ HV (σ, u).

(Here ≤ marks the standard order in the interval I .)
The above definition is meaningful because the linear order (I ,≤) is a complete

lattice.
It is easy to see that |�I is a consequence relation on the set L of formulas. One

can prove that |�I is not finitary.
According to the above formula, |�I is a logic that is defined semantically as a

system preserving degrees of truth. Systems of this type are investigated in many-
valued logic sensu largo.

The above many-valued option of action performability is left open for further
scrutiny.

Acknowledgements The author would like to thank for the support from the Beethoven 2016 German-
Polish research Project “Permissions, Information and Institutional Dynamics, Obligations, and Rights”.
Grant from the National Science Centre of Poland (BEETHOVEN, UMO-2014/15/G/HS1/04514).

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Czelakowski, J. (2019). Deontic logic, context free-grammars, and agency. To appear.

123

http://creativecommons.org/licenses/by/4.0/

804 J. Czelakowski

Czelakowski, J. (1996). Elements of formal action theory. Essays on Logic and Artificial Intelligence. In
Andre Fuhrmann & Hans Rott (Eds.), Logic, action and information (pp. 3–62). Walter de Gruyter.

Czelakowski, J. (2001). Protoalgebraic logics. Trends in Logic (Vol. 10). Kluwer.
Czelakowski, J. (2015). Freedom and enforcement in action. Elements of formal action theory. Trends in

Logic (Vol. 42). Springer.
Czelakowski, J. (2020). Deontology of compound actions. Studia Logica, 108(1), 5–47.
Fikes, R. N., &Nilsson, J. (1971). STRIPS: a new approach to the application of theorem proving to problem

solving. Artificial Intelligence, 2(3/4), 189–208.
Gelfond, M., & Lifschitz, V. (1998). Action languages. Electronic Transactions on Artificial Intelligence,

2, 193–210.
Giunchiglia, E., & Lifschitz, V. (1998). An action language based on causal explanation: preliminary report.

Proc. AAAI-98/ Innovative Applications of Artificial Intelligence, 623–630.
Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., & Turner, H. (2004). Nonmonotonic causal theories.

Artificial Intelligence, 153(1–2), 49–104.
Hopcroft, J. E., & Ullman, J. D. (1979). Introduction to automata theory, languages, and computation.

Addison-Wesley.
Lee, J., Lifschitz, V., & Yang, F. (2013). Action Language BC: Preliminary Report. In International joint

conference on artificial intelligence (IJCAI), 983–989.
Lifschitz, V., & Ren W. (2006). A modular action description language. In Proceedings of national confer-

ence on artificial intelligence (AAAI-06), 853–859
Nowakowska, M. (1979). Teoria działania (Action Theory). In Polish. PWN, Warszawa
Nowakowska, M. (1973). Language of motivation and language of actions. Mouton.
Nowakowska, M. (1973a). Formal theory of actions. Behavioral Science, 18, 393–413.
Parikh, R. (1978). The completeness of propositional dynamic logic.Mathematical foundations of computer

science 1978, (Lecture Notes in Computer Science 64) (pp. 403–415). Springer Verlag.
Segerberg, K. (1980). Applying modal logic. Studia Logica, 39, 275–295.
Segerberg, K. (1982). The logic of deliberate action. Journal of Philosophical Logic, 11, 233–254.
Wójcicki, R. (1988). Theory of logical calculi. Basic Theory of Consequence Operations. Kluwer.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Performability of Actions
	Abstract
	1 Introduction
	1.1 Outline of the Paper

	2 The Alphabet of Action
	3 Relational Models of Action
	Performability

	4 The Language of Performability of Actions and its Semantics
	4.1 The Semantics for L
	4.2 The Logical Consequence

	5 Ultrasets
	5.1 Consistency of Complete Sets

	6 Operations on Ultrasets and the Canonical Model
	6.1 The Canonical Model

	7 Other Properties of the Consequence Relation
	7.1 A Finitary Strengthening of the Consequence

	8 The Logic of Finite Actions
	8.1 The Logic

	9 Regular Actions: Comparisons with Dynamic Logic
	10 Final Remarks
	10.1 Fuzzy Performabilty and Łukasiewicz Logics

	Acknowledgements
	References

