
A Modal Logic for Supervised Learning

Alexandru Baltag · Dazhu Li · Mina
Young Pedersen

Abstract Formal learning theory formalizes the process of inferring a gen-
eral result from examples, as in the case of inferring grammars from sentences
when learning a language. In this work, we develop a general framework—the
supervised learning game—to investigate the interaction between Teacher and
Learner. In particular, our proposal highlights several interesting features of
the agents: on the one hand, Learner may make mistakes in the learning pro-
cess, and she may also ignore the potential relation between different hypothe-
ses; on the other hand, Teacher is able to correct Learner’s mistakes, eliminate
potential mistakes and point out the facts ignored by Learner. To reason about
strategies in this game, we develop a modal logic of supervised learning and
study its properties. Broadly, this work takes a small step towards studying
the interaction between graph games, logics and formal learning theory.

Keywords Formal Learning Theory · Modal Logic · Dynamic Logic ·
Undecidability · Graph Games

1 Introduction

Formal learning theory formalizes the process of inferring a general result from
examples, as in the case of inferring grammars from sentences when learning a
language. A good way of understanding this general process is by treating it as

Alexandru Baltag
ILLC, University of Amsterdam, The Netherlands
E-mail: thealexandrubaltag@gmail.com

Dazhu Li
Institute of Philosophy, Chinese Academy of Sciences, Beijing, China
Department of Philosophy, University of Chinese Academy of Sciences, Beijing, China
E-mail: lidazhu@ucas.ac.cn

Mina Young Pedersen
Department of Information Science and Media Studies, University of Bergen, Norway
E-mail: mina.pedersen@uib.no

2 Alexandru Baltag et al.

a game played by Learner and Teacher [18]. It starts with a class of possible
worlds, where one of them is the actual one chosen by Teacher. Learner’s aim
is to get to know which one it is. Teacher inductively provides information
about the world, and whenever receiving a piece of information Learner picks a
conjecture from the class, indicating which one she thinks is the case. Different
success conditions for Learner can be defined. In this article we focus on the
case that at some finite stage of the procedure Learner decides on a correct
hypothesis. This kind of learnability is known as finite identification [27,24].

Although empirical evidence suggests that children can learn a language
without responding to the correction of linguistic mistakes [19], the impor-
tance of teachers in many other paradigms is significant. For instance, in the
paradigm of learning from queries and counterexamples [1], Teacher has a
strong influence on whether the process is successful. Moreover, results in [18]
suggest that a helpful Teacher may make learning easier. In this work, instead
of focusing only on Learner, we highlight the interactive nature of learning.

As noted in [18], a concise model for characterizing the interaction between
Learner and Teacher is the sabotage game (SG) [30]. A SG is played on a graph
with a starting node and a goal node, and it goes in rounds: Teacher first cuts
an edge, then Learner makes a step along one of the edges still available. Both
of them win if, and only if, Learner arrives at the goal node. Roughly, the
game depicts a guided learning situation. Say, a natural interpretation is the
case of theorem proving. Intuitively, the starting node is given by axioms, the
goal node stands for the theorem to be proved, other nodes represent lem-
mas conjectured by Learner, and edges capture Learner’s possible inferences
between them. Inferring is represented by moving along edges. The informa-
tion provided by Teacher can be treated as his feedback, i.e., removing edges
to eliminate wrong inferences. The success condition is given by the winning
condition: the learning process has been successful if Learner reaches the goal
node, i.e., by proving the theorem. For the general correspondence between
SG and learning models, we refer to [18].

However, we would argue that this application of SG gives a highly re-
stricted model of learning. For instance,

• Intuitively, all links in the graph are inferences conjectured by Learner,
which may include mistakes. From the perspective of Learner, the wrong
inferences cannot be distinguished from the correct ones. Although it is
reasonable to assume that Teacher is able to do so, SG does not highlight
that Learner lacks perfect information.

• In sabotage games, Teacher has to remove a link in each round, which looks
overly restrictive and may lead to undesired outcomes. Also, Teacher can
only delete links to decide what Learner will not learn, and thus he only
teaches what Learner has already conjectured. However, during the process
of learning, ‘possibilities may also be ignored due to the more questionable
practice if assuming that one of the theories under consideration must be
true. And complexity can come to be ignored through convention or habit’

A Modal Logic for Supervised Learning 3

([22], pp. 260). Hence, it is natural to assume that Learner may ignore the
correct relation between different hypotheses.

• Links removed represent wrong inferences between lemmas. So, whether or
not a link deleted occurs in Learner’s current proof (i.e., the current pro-
cess) is important. If the proof includes a mistake, any inference after the
mistake should not make sense. However, if a potential transition having
not occurred in the proof is wrong, Learner can continue with her current
proof. Clearly, SG cannot distinguish between these two cases.

• The game does not distinguish between all the various ways Learner can
reach the goal. That is, as long as Learner has come to the right conclusion,
the game cannot tell us whether Learner has come to this conclusion in
a coherent way. Reaching the correct hypothesis by wrong transitions is
not reliable. The well-known Gettier cases [14] where one has justified true
belief, but not knowledge are also examples of situations in which one
wrongly reaches the right conclusion. Thus, the theory developed in [18] is
subject to the Gettier problems.

In this paper, we therefore propose a new framework, called supervised
learning games. It differs from SG on several accounts, motivated by the men-
tioned restrictions. Unlike in SG, Teacher in SLG now has four actions to
choose from: (a) do nothing, (b) add an edge, (c) delete an edge that is not
currently in Learner’s path or (d) delete an edge in Learner’s path and thereby
move Learner back to the node before that edge. Before its definition, let us
define some auxiliary notions.

Let S = ⟨w0, w1, · · · , wn⟩ be a non-empty, finite sequence. We use e(S)
to denote its last element, and S; v the sequence extending S with v. De-
fine Set(S) := {⟨w0, w1⟩, ⟨w1, w2⟩, · · · , ⟨wn−1, wn⟩}. When S is a singleton,
Set(S) := ∅. Also, for any ⟨wi, wi+1⟩ ∈ Set(S), S|⟨wi,wi+1⟩ := ⟨w0, w1, · · · , wu⟩,
where ⟨wu, wu+1⟩ = ⟨wi, wi+1⟩ and ⟨wu, wu+1⟩ ≠ ⟨wj , wj+1⟩ for any j < i. In-
tuitively, S|⟨wi,wi+1⟩ is obtained by deleting all elements occurring after wu

from S, where ⟨wu, wu+1⟩ is the first occurrence of ⟨wi, wi+1⟩ in S. Say, when
S = ⟨a, b, c, a, b⟩, we have S|⟨a,b⟩ = ⟨a⟩. Now let us introduce SLG.

Definition 1 A supervised learning game (SLG) ⟨W,RL, RT , ⟨s⟩, g⟩ is
given by a graph ⟨W,RL, RT ⟩, the starting node s and the goal node g. A
position of the game is a tuple ⟨Ri

L, S
i⟩. The initial position ⟨R0

L, S
0⟩ is given

by ⟨RL, ⟨s⟩⟩. Round n + 1 from position ⟨Rn
L, S

n⟩ is as follows: first, Learner
moves from e(Sn) to any of its RL-successors s

′; then Teacher does nothing
or acts out one of the following three choices:

(a). Extend Rn
L with some ⟨v, v′⟩ ∈ RT ;

(b). Transfer Sn; s′ to (Sn; s′)|⟨v,v′⟩ by deleting ⟨v, v′⟩ from Set(Sn; s′)\RT ;
(c). Delete some ⟨v, v′⟩ ∈ (Rn

L \RT) \ Set(Sn; s′) from Rn
L.

The new position, denoted ⟨Rn+1
L , Sn+1⟩, is ⟨Rn

L, S
n⟩ (when Teacher does noth-

ing), ⟨Rn
L∪{⟨v, v′⟩}, Sn; s′⟩ (when he chooses (a)), ⟨Rn

L\{⟨v, v′⟩}, (Sn; s′)|⟨v,v′⟩⟩
(if he acts as in (b)), or ⟨Rn

L \ {⟨v, v′⟩}, Sn; s′⟩ (if he chooses (c)). It ends if
Learner arrives at g through an RT -path ⟨s, · · · , g⟩ or cannot make a move,
with both players winning in the former case and losing in the latter.

4 Alexandru Baltag et al.

a

b

c

e

G

f

L, T

T L, T
L

L

T

L

T

Fig. 1 A SLG game. In this graph, RL is labelled with ‘L’ and RT with ‘T ’. The starting
node is a and the goal node is G. We show that players have a winning strategy by depicting
the game to play out as follows. Learner begins by moving along the only available edge
to node b. Teacher in his turn can make ⟨e, f⟩ ‘visible’ to Learner by adding it to RL.
Then, Learner proceeds to move along ⟨b, c⟩, and Teacher extends ⟨b, e⟩ to RL. Afterwards,
Learner continues on the only option ⟨c,G⟩. Although she now has already arrived at the
goal node, her path ⟨a, b, c,G⟩ is not an RT -sequence. So, Teacher can remove ⟨b, c⟩ moving
Learner back to node b. Next, Learner has to move to e, and Teacher can delete ⟨e,G⟩ from
RL. Finally, Learner can arrive at G in 2 steps with Teacher doing nothing. Now we have
Set(⟨a, b, e, f,G⟩) ⊆ RT . So, they win.

Intuitively, the clause for Learner illustrates that she cannot distinguish
the links starting from the current position. The sequence Si is her current
learning process, which may include mistakes; RL represents Learner’s pos-
sible inferences; and RT is the correct inferences. For any position ⟨Rn

L, S
n⟩,

Set(Sn) ⊆ Rn
L. Besides, (b) and (c) focus on the case where Teacher eliminates

wrong transitions, but there is an important difference. Action (b) concerns
the case where Teacher gives Learner a counterexample to show that she has
gone wrong somewhere in her current process, so Learner should move back
to the conjecture right before the wrong transition. In contrast, (c) illustrates
that Teacher eliminates a wrong transition conjectured having not occurred in
Learner’s process yet, therefore it does not modify Learner’s current process.

From the winning condition, we know that both the players cooperate with
each other. It is important to recognize that Learner’s action does not conflict
with her cooperative nature: to achieve the goal, she tries to move in each
round. For an example of SLG, see Figure 1. The correlation between the
situation of theorem proving and SLG is shown in Table 1.

Remark 1 The interpretation of SLG in Table 1 can be easily adapted to char-
acterize other paradigms in formal learning theory, such as language learning
and scientific inquiry. More generally, any single-agent games, such as solitaire
and computer games, can be converted into SLG. Say, the player (Learner)
does not know the correct moves well, but she knows the starting position and
the goal position, and has some conjectures about the moves of the game. Be-
sides, she can be taught by Teacher: she just attempts to play it, while Teacher
instructs her positively (by revealing more correct moves) or negatively (by
pointing out incorrect moves, in which case Learner may have to be moved
back to the moment previous to the first incorrect move, if she made any).

Finally, we end this part by a preliminary comparison of SLG and SG.
First, note that the players in a SG can win only if the graph contains

a sequence of edges from the starting node to the goal. Similarly, in a SLG,

A Modal Logic for Supervised Learning 5

Table 1 Correspondence between theorem proving and supervised learning games.

Theorem Proving Supervised Learning Games
Axioms Starting node
Theorem Goal node
Lemmas conjectured by Learner Other states except the starting state and

the goal state
Learner’s possible inference from a to b RL-edge from a to b
Correct inference from a to b RT -edge from a to b
Inferring b from a Transition from a to b
Proof for a RL-sequence from the starting node to a
Correct proof for a RL-sequence S from the starting node to

a and Set(S) ⊆ RT

Giving a counterexample to the inference
from a to b in the proof S

Modifying S to S|⟨a,b⟩ (⟨a, b⟩ ∈ Set(S))

Giving a counterexample to the conjectured
inference from a to b not in the proof S

Deleting ⟨a, b⟩ from RL (⟨a, b⟩ ̸∈ Set(S))

Pointing out a potential inference from a to
b not conjectured by Learner before

Extending RL with ⟨a, b⟩

players cannot win when there exists no RT -path from the starting node to
the goal node. From the perspective of learning, both these two conditions
are reasonable: the interaction between Learner and Teacher makes sense only
when the goal is learnable. However, it is important to recognize that in both
SG and SLG, the existence of such a path cannot guarantee their winning.

Also, there are several notable differences between SG and SLG. In a SG,
Learner knows the underlying graph well, and is always on one of the paths
with which she can finally arrive at the goal (if they exist). Therefore, she has
the ability to move to a suitable node in the next round. In contrast, the player
in a SLG does not have this ability: all RL-links starting from her current
position look ‘the same’ from her perspective, and she is not able to guarantee
that her movements are always the good ones (even though sometimes she may
move to some ‘good’ nodes by chance). As to Teacher, compared with that of
SG, the player in SLG is more powerful: he now is not only able to remove
links, but also able to add new edges to the graph. However, from another
aspect, the ability of Teacher in SLG is more restrictive as well: he can only
delete the wrong translations from the graph.

An interesting issue worth studying is the precise relationship between SG
and SLG. One observation involving this is as follows. Given a SG including
a path with which the players can win, we can build a SLG by labelling the
links of the path with both ‘L’ and ‘T ’ and all others in the initial graph with
‘T ’ only. In the SLG constructed, with the same path as that of the initial SG,
the players can also win: Learner just moves (in each round there exists only
one RL-successor of her current position), and Teacher does not need to do
anything. The observation is restrictive, but it seems there does not exist an
obvious way to encode SG into SLG generally. We leave this for future work.

In the rest of the article, we will study SLG from a modal perspective, to
reason about players’ strategies in the game. Sabotage modal logic (SML) [6,
2–4] is known to be a suitable tool to characterize SG, which extends the basic

6 Alexandru Baltag et al.

modal logic with a sabotage modality ⟨−⟩φ stating that there is an edge such
that, φ is true at the evaluation node after deleting the edge from the model.
However, given the differences between SG and SLG, we will develop a novel
modal Logic of Supervised Learning (LSL) to capture SLG.

Outline. Section 2 introduces LSL along with its application to SLG and some
preliminary observations. Section 3 studies the expressivity of LSL. Section 4
investigates the model checking problem and satisfiability problem for LSL.
We end this paper by Section 5 on conclusion and future work.

2 The Logic of Supervised Learning (LSL)

In this section, we introduce the language and semantics of LSL, and analyze
its applications to SLG. Also, we make various observations, including some
logical validities and relations between LSL and other existing logics.

2.1 Language and Semantics

We begin by considering the actions of Learner. In SML, the standard modality
♢ characterizes the transition from a node to its successors and corresponds
well to Learner’s actions in SG. However, operator ♢ is not any longer sufficient
in our case. Note that after Teacher cuts a link ⟨w, v⟩ from Learner’s current
process S, Learner should start from w with the new path S|⟨w,v⟩ in the
next round. Therefore, the desired operator should remember the history of
Learner’s movements, similar to the case of memory logics [5].

To capture Teacher’s actions, a natural place to start is by defining oper-
ators corresponding to link addition and deletion. There is already a body of
literature on logics of these modalities, such as the sabotage operator ⟨−⟩ and
the bridge operator ⟨+⟩ [2–4]. As mentioned, each occurrence of ⟨−⟩ in a for-
mula deletes exactly one link, whereas the bridge operator adds links stepwise
to models. Yet, including these two modalities is still not enough: we need to
take into account if or not a link deleted by Teacher occurs in the path of
Learner’s movements. We now introduce the language L of LSL.

Definition 2 Let P be a countable set of propositional atoms. The language
L is recursively defined in the following way:

φ ::= p | ¬φ | (φ ∧ φ) | ♦φ | ⟨−⟩onφ | ⟨−⟩offφ | ⟨+⟩φ

where p ∈ P. Notions ⊤, ⊥, ∨ and → are as usual. Also, we use ■, [−]on, [−]off
and [+] to denote the dual operators of ♦, ⟨−⟩on, ⟨−⟩off and ⟨+⟩ respectively.

Intuitively, ♦φ states that φ holds after extending the current path with
one of its successors. ⟨−⟩onφ reads φ is the case after deleting a link on the
current path, while ⟨−⟩offφ states that after removing a link that is not on
the path, φ holds. We use different subscripts ‘on’ and ‘off ’ to indicate the

A Modal Logic for Supervised Learning 7

two situations. Instead of link deletion, ⟨+⟩φ shows that after extending the
model with a particular link, φ holds. Roughly, operator ♦ is used to capture
the actions of Learner in SLG, and operators ⟨+⟩, ⟨−⟩on and ⟨−⟩off characterize
those of Teacher. This will become clear after we introduce the semantics.

Several fragments of L will be studied in the article. For brevity, we use a
notational convention listing in subscript all modalities of the corresponding
language. For instance, L♦ is the fragment of L that has only the operator ♦
(besides Boolean connectives ¬ and ∧); L⟨−⟩off has only the modality ⟨−⟩off;
L♦⟨−⟩on has only ♦ and ⟨−⟩on, etc. We now proceed to define the models.

Definition 3 A model of LSL is a tuple M = ⟨W,RL, RT , V ⟩, where W is
a non-empty set of possible worlds, Ri∈{L,T} ⊆ W 2 are two binary relations
and V : P → 2W is a valuation function. F = ⟨W,RL, RT ⟩ is a frame. Let S
be an RL-sequence, i.e., Set(S) ⊆ RL. We name ⟨M, S⟩ a pointed model,
and S an evaluation sequence.

For brevity, usually we write M, S instead of ⟨M, S⟩. Also, we use M to
denote the class of pointed models and M• the class of pointed models whose
sequence S is a singleton. Let M = ⟨W,RL, RT , V ⟩ be a model, w ∈W and i ∈
{L, T}. We use Ri(w) := {v ∈W | Riwv} to denote the set of Ri-successors of
w in M. For any sequence S, define Ri(S) := Ri(e(S)), i.e., the Ri-successors
of a sequence S are exactly the Ri-successors of its last element. Moreover,
M ⊖ ⟨u, v⟩ := ⟨W,RL \ {⟨u, v⟩}, RT , V ⟩ is the model obtained by removing
⟨u, v⟩ from RL, and M ⊕ ⟨u, v⟩ := ⟨W,RL ∪ {⟨u, v⟩}, RT , V ⟩ is obtained by
extending RL in M with ⟨u, v⟩. Now let us introduce the semantics of LSL.

Definition 4 Let ⟨M, S⟩ be a pointed model and φ ∈ L. The semantics of
LSL is defined as follows:

M, S ⊨ p iff e(S) ∈ V (p)
M, S ⊨ ¬φ iff M, S ̸⊨ φ

M, S ⊨ φ ∧ ψ iff M, S ⊨ φ and M, S ⊨ ψ
M, S ⊨ ♦φ iff ∃v ∈ RL(S) s.t. M, S; v ⊨ φ

M, S ⊨ ⟨−⟩onφ iff ∃⟨v, v′⟩ ∈ Set(S) \RT s.t. M⊖ ⟨v, v′⟩, S|⟨v,v′⟩ ⊨ φ
M, S ⊨ ⟨−⟩offφ iff ∃⟨v, v′⟩ ∈ (RL \RT) \ Set(S) s.t. M⊖ ⟨v, v′⟩, S ⊨ φ
M, S ⊨ ⟨+⟩φ iff ∃⟨v, v′⟩ ∈ RT \RL s.t. M⊕ ⟨v, v′⟩, S ⊨ φ

Both the truth conditions for ⟨−⟩on and ⟨−⟩off show that links deleted
cannot be RT -edges. Intuitively, whereas ⟨−⟩on depicts the case when Teacher
deletes a link from Learner’s path S, ⟨−⟩off captures the situation where the
link deleted does not occur in S. Finally, ⟨+⟩φ means that after extending RL

with a link of RT , φ holds at the current sequence.
A formula φ is satisfiable if there exists ⟨M, S⟩ ∈ M with M, S ⊨ φ.

Also, validity in a model and in a frame is defined as usual. Note that the
relevant class of pointed models to specify LSL is M•. Hence LSL is the set of
L-formulas that are valid w.r.t. M•.

For any ⟨M, S⟩ and ⟨M′, S′⟩, we say that they are learning modal equiv-
alent (notation: ⟨M, S⟩ ↭l ⟨M′, S′⟩) iff M, S ⊨ φ ⇔ M′, S′ ⊨ φ for any

8 Alexandru Baltag et al.

formulas φ ∈ L. Besides, define Tl(M, S) := {φ ∈ L | M, S ⊨ φ}, denoting the
LSL theory of S in M. It is easy to see that two pointed models are learning
modal equivalent if, and only if, they have the same LSL theory. In addition,
we define a relation U ⊆ M ×M with ⟨⟨M, S⟩, ⟨M′, S′⟩⟩ ∈ U iff ⟨M′, S′⟩ is
⟨M, S;w⟩ for some state w with ⟨e(S), w⟩ ∈ RL, ⟨M⊖⟨v, v′⟩, S|⟨v,v′⟩⟩ for some
⟨v, v′⟩ ∈ Set(S) \RT , ⟨M⊖⟨v, v′⟩, S⟩ for some ⟨v, v′⟩ ∈ (RL \RT) \Set(S), or
⟨M⊕ ⟨v, v′⟩, S⟩ for some ⟨v, v′⟩ ∈ RT \ RL. Furthermore, we can also iterate
this order, to talk about models reachable in finitely many U-steps, obtaining
a new relation U∗.

2.2 Application: Winning Strategies in SLG

By Definition 4, language L is able to capture the actions of both players in
SLG. Also, our logic is expressive enough to describe the winning strategy (if
there is one) for players in finite graphs.1

Given a finite SLG, let p be a distinguished atom holding only at the goal
node. Generally, the winning strategy of Learner and Teacher can be described
by formulas of the following form:

■⃝0 ■⃝1 ■ · · · ⃝n ■(p ∧ [−]on⊥) (1)

where ⃝i is blank or one of ⟨−⟩on, ⟨−⟩off and ⟨+⟩, for each i ≤ n. In (1), the
recurring ■ operator depicts Learner’s actions and ⃝i Teacher’s response. The
proposition p signalizes Learner’s arrival at the goal, and [−]on⊥ states that
there are no edges in Learner’s path that Teacher can cut. Hence, we conclude
that Learner has reached the goal in a coherent way. Recall the example of
SLG in Figure 1. Formula ■⟨+⟩■⟨+⟩■⟨−⟩on■⟨−⟩off■■(p ∧ [−]on⊥) holds at
the starting node a. Therefore, there exists a winning strategy in this specific
SLG.

It is worthwhile to emphasize that in formula (1) we use ■, other than
♦, to characterize the actions of Learner, which may be different from some
other cases.2 However, the modality ■ used in formula (1) does not indicate
that Learner is unwilling to learn. Essentially, it illustrates that she has no
idea where to move in the next step, and we would claim that the form is
in line with the spirit of SLG where Learner may move in wrong directions:
Learner cannot distinguish different ways to the goal. In effect, all Learner
can do in a SLG is to move as much as possible. Meanwhile, Teacher has to
make some correct inferences ‘visible’ to Learner, and put Learner on track no
matter what happens. Therefore, the form of formula (1) does not violate the
cooperative nature of Learner.3

1 Generally speaking, to define the existence of winning strategies for players, we need to
extend SLG with some fixpoint operators. We leave this for future inquiry.

2 For instance, in sabotage games, we use ♢ to capture actions of Learner in formulas
describing winning strategies (if they exist). See [18].

3 In contrast, one extreme case of non-cooperative variants of SLG might be that Learner
is allowed to stay at her current position in each round: she makes no efforts to reach the
goal node.

A Modal Logic for Supervised Learning 9

Remark 2 In SG we know that links cut by Teacher represent wrong inferences.
However, SG does not tell us anything about the links that remain in the graph.
Therefore, winning strategies of the players in SG cannot guarantee against
situations like Gettier cases. In contrast, the formula [−]on⊥ in (1) ensures
that Teacher is not allowed to remove any more links from Learner’s path. In
SLG, a Gettier-style case is that Learner arrives at the goal node with some
⟨u, v⟩ ∈ RL \ RT occurring in her path, so Teacher now would be able to cut
those links. Therefore Gettier cases cannot be winning strategies in SLG.

2.3 Preliminary Observations

In this section, we make some preliminary observations on LSL. In particular,
we discuss the relations between LSL and other related logics, present some
logical validities, and study some basic features of LSL. Let us begin with the
relation between L♦ and the standard modal logic.

Proposition 1 Let M = ⟨W,RL, RT , V ⟩ be a model. For any ⟨M, S⟩ ∈ M
and φ ∈ L♦, M, S ⊨ φ⇔ ⟨W,RL, V ⟩, e(S) ⊨ φ∗, where φ∗ is a standard modal
formula obtained by replacing every occurrence of ♦ in φ with ♢.

Therefore, essentially the fragment L♦ of L is the standard modal logic.
Moreover, the operator ⟨−⟩off is much similar to the sabotage operator ⟨−⟩:

Proposition 2 Let M = ⟨W,RL, RT , V ⟩ be a model, and R = RL \ RT . For
any ⟨M, w⟩ ∈ M• and φ ∈ L⟨−⟩off , M, w ⊨ φ⇔ ⟨W,R, V ⟩, w ⊨ φ′, where φ′ is
a SML formula obtained by replacing each occurrence of ⟨−⟩off in φ with ⟨−⟩.

Next, the following result captures the relation between L♦⟨+⟩ and the
‘bridge modal logic (BML)’ (i.e., the modal logic extending the standard modal
logic with the bridge operator):

Proposition 3 Let M = ⟨W,RL,W
2, V ⟩ be a model. For any ⟨M, S⟩ ∈ M

and φ ∈ L♦⟨+⟩, M, S ⊨ φ ⇔ ⟨W,RL, V ⟩, e(S) ⊨ φ⋆, where φ⋆ is a BML
formula obtained by replacing every occurrence of ♦ in φ with ♢.4

Proposition 1-3 can be proved by a standard induction on formulas. From
these results, we know that several fragments of LSL are similar to some
existing logics. Yet, as a whole, different operators of LSL interact with each
other. For instance, for any ⟨M, w⟩ ∈ M•, formula [−]onφ is valid, as Set(w) =
∅. However, ♦¬[−]onφ is satisfiable. This presents a drastic difference between
LSL and other logics mentioned so far: in those logics, it is impossible that the
evaluation point has access to a node satisfying a contradiction. To understand
how operators in LSL work, we present some other validities.

4 By abuse of notation, for any φ ∈ L♦⟨+⟩, φ
⋆ is a formula of the bridge modal logic.

10 Alexandru Baltag et al.

w w1

p

w2

q

L T

Fig. 2 A case showing that validities of L♦⟨−⟩on are not closed under substitution. Consider
the general schema φ ∧ ♦ψ → ■[−]onφ of formula (2). Let φ := ♦p and ψ := ■q. It holds
that M, w ⊨ ♦p ∧ ♦■q. But, since w has exactly one RL-successor w1 and ⟨w,w1⟩ ̸∈ RT ,
we have M, w ̸⊨ ■[−]on♦p.

Proposition 4 Let p ∈ P and φ,ψ ∈ L. The following formulas are validities
of LSL (w.r.t. M•):

p ∧ ♦⊤ → ■[−]onp (2)

⃝ (φ→ ψ) → (⃝φ→ ⃝ψ) ⃝ ∈ {[−]off, [+]} (3)

■n[−]on(φ→ ψ) → (■n[−]onφ→ ■n[−]onψ) n ∈ N (4)

♦n⟨−⟩onφ→
∨

m<n

♦m⟨−⟩offφ 1 ≤ n ∈ N (5)

Their validity holds immediately by the semantics. Formula (2) states that,
for any singleton w, if it is p and has some RL-successors, then any of its
extensions ⟨w, v⟩ with v ∈ RL(w) is [−]onp, no matter whether ⟨w, v⟩ ∈ RT

or not. Principles (3) and (4) show that all operators [−]off, [+] and [−]on are
normal operators. Formula (5) illustrates that in some situations, a formula
containing ⟨−⟩on can be reduced to another formula containing ⟨−⟩off.

Note that principle (2) is not a schema. Although it will still be valid if we
replace propositional atoms occurring in it with any other Boolean formulas,
substitution fails generally. See Figure 2 for an example, which essentially
illustrates the following result:

Proposition 5 L♦⟨−⟩on and LSL are not closed under substitution.

Moreover, LSL and L♦⟨−⟩on also have other features very different from the
standard modal logic. For instance,

Proposition 6 Both L♦⟨−⟩on and LSL lack the tree model property.

Proof Let φT be the conjunction of p ∧ ♦p ∧ ♦¬p (T1), ■(p → ♦p ∧ ♦¬p)
(T2) and ■(¬p→ ⟨−⟩on(■p∧■■p)) (T3). Clearly, φT ∈ L♦⟨−⟩on is satisfiable
w.r.t. M• (see Figure 3). We now show that, for any M = ⟨W,RL, RT , V ⟩ and
w ∈ W , M, w ⊨ φT entails RLww. By (T1), it follows that w ∈ V (p), and it
can reach some w1 ∈ V (p) and some w2 ̸∈ V (p) via RL. Besides, (T2) states
that, via RL, each such w1 can also reach some p-node w3 and ¬p-node w4.
Finally, from (T3) we know that w can only reach one ¬p-point by RL and
that w1 does not have ¬p-successors via RL any longer after cutting ⟨w,w2⟩.
So, ⟨w,w2⟩ = ⟨w1, w4⟩. Therefore, RLww. ⊓⊔

As observed, many instances of validities in our logic are not straightfor-
ward, and LSL has some distinguishing features. In the sections to come we
will make a deeper investigation into our logic.

A Modal Logic for Supervised Learning 11

w

p

w1
L

L

Fig. 3 A model of φT. It is not hard to see that φT is true at w.

3 Expressive Power of LSL

In this section, we study the expressivity of LSL. First, we will show that
LSL is still a fragment of FOL even though it looks complicated. After this,
a suitable notion of bisimulation for LSL is introduced. Finally, we provide a
van Benthem style characterization theorem for the logic.

3.1 First-order Translation

Given the complicated semantics, is LSL still a fragment of FOL? In this part
we will provide a positive answer to this question, by describing a translation
from LSL to FOL. However, compared with that for the standard modal logic
[8], we now need some new devices.

Let L1 be the first-order language consisting of countable unary predicates
Pi∈N, two binary relations Ri∈{L,T}, and equality ≡. Take any finite, non-
empty sequence E of variables. Let y, y′ be two fresh variables not appearing
in E. When there exists ⟨x, x′⟩ ∈ Set(E) with x ≡ y and x′ ≡ y′, we define
E|⟨y,y′⟩ := E|⟨x,x′⟩. Now let us define the first-order translation.

Definition 5 Let E = ⟨x0, x1, · · · , xn⟩ be a finite sequence (non-empty) of
variables without any variable appearing more than once, and E− and E+

two finite sets (maybe empty) of ordered pairs of variables. The first-order
translation T(φ,E,E+, E−) from φ ∈ L to first-order formulas is as follows:

T(p,E,E+, E−) = Pe(E) T(¬φ,E,E+, E−) = ¬T(φ,E,E+, E−)
T(φ ∧ ψ,E,E+, E−) =T(φ,E,E+, E−) ∧ T(ψ,E,E+, E−)

T(♦φ,E,E+, E−) = ∃y
((∨

⟨x,x′⟩∈E+

(e(E) ≡ x ∧ y ≡ x′) ∨ (RLe(E)y∧

¬
∨

⟨v,v′⟩∈E−
(e(E) ≡ v ∧ y ≡ v′))

)
∧ T(φ,E; y,E+, E−)

)
T(⟨−⟩onφ,E,E+, E−) = ∃y∃y′

(∨
⟨x,x′⟩∈Set(E)\(E−∪E+)

(y ≡ x ∧ y′ ≡ x′)∧

RLyy
′ ∧ ¬RT yy

′ ∧ T(φ,E|⟨y,y′⟩, E
+, E− ∪ {⟨y, y′⟩})

)
T(⟨−⟩offφ,E,E+, E−) = ∃y∃y′

(
¬

∨
⟨x,x′⟩∈Set(E)∪E−∪E+

(y ≡ x ∧ y′ ≡ x′)∧

RLyy
′ ∧ ¬RT yy

′ ∧ T(φ,E,E+, E− ∪ {⟨y, y′⟩})
)

T(⟨+⟩φ,E,E+, E−) = ∃y∃y′
(
¬

∨
⟨x,x′⟩∈E−∪E+

(y ≡ x ∧ y′ ≡ x′) ∧ ¬RLyy
′∧

RT yy
′ ∧ T(φ,E,E+ ∪ {⟨y, y′⟩}, E−)

)

12 Alexandru Baltag et al.

where y, y′ are variables having not been used yet in the translation. In ad-
dition, given a set Φ of L-formulas, we denote by T(Φ,E,E+, E−) the set
{T(φ,E,E+, E−) | φ ∈ Φ} of first-order translations of formulas in Φ.

From the perspective of SLG, E denotes Learner’s process, and E+, E−

represent links having already been added and deleted respectively. In any
translation, E+ and E− may be extended. For any extensions E+ ∪ X and
E−∪Y ,X∩Y = ∅. This is in line with our semantics: links deleted are different
from those added. Furthermore, unlike the standard modal logic, generally the
translation does not yield a formula with only one free variable. But, it does
so when setting E, E+ and E− to be a singleton, ∅ and ∅ respectively.

Note that in Definition 5, the sequence E includes no variable appearing
more than once, and it is not hard to see that any modification of E in a trans-
lation still has this property. Specifically, this assumption is used to guarantee
that assignments are well-defined. Let σ be an assignment, S a sequence of
points in a model, and E a sequence of variables with the same size as S. In
what follows, when writing σE:=S , we mean a new assignment that is the same
as σ except assigning variables in E to the corresponding points in S. Since all
variables in E appear only once, no variable in the sequence can be assigned
to different points in S. With Definition 5, we have the following result:

Lemma 1 Let T(φ,E,E+, E−) be a translation with E+ ∩E− = ∅, and y, y′
two fresh variables. For any assignment σ and model M, we have M⊖⟨v, v′⟩ ⊨
T(φ,E,E+, E−)[σ] iff M ⊨ T(φ,E,E+, E− ∪ {⟨y, y′⟩})[σy(′):=v(′)], for any
⟨v, v′⟩ ∈ RL \RT ; and M⊕⟨v, v′⟩ ⊨ T(φ,E,E+, E−)[σ] iff M ⊨ T(φ,E,E+ ∪
{⟨y, y′⟩}, E−)[σy(′):=v(′)], for any ⟨v, v′⟩ ∈ RT \RL.

Proof The proofs for these two cases are similar, and both of them can be
shown by induction on the syntax of formulas. We focus on the first one,
and only prove the cases for propositional atoms and ⟨−⟩on. Assume that
⟨v, v′⟩ ∈ RL \RT , and R

−
L := RL \ {⟨v, v′⟩}.

(1). Formula φ is p ∈ P. By Definition 5, M⊖⟨v, v′⟩ ⊨ T(φ,E,E+, E−)[σ]
iff M⊖ ⟨v, v′⟩ ⊨ Pe(E)[σ]. From the definition of M⊖ ⟨v, v′⟩, it follows that
M⊖⟨v, v′⟩ ⊨ Pe(E)[σ] iff M ⊨ Pe(E)[σ]. Again, by Definition 5, it holds that
M ⊨ Pe(E)[σ] iff M ⊨ T(φ,E,E+, E− ∪ {⟨y, y′⟩})[σy(′):=v(′)].

(2). Formula φ is ⟨−⟩onψ. We have the following equivalences:

M⊖ ⟨v, v′⟩ ⊨ T(φ,E,E+, E−)[σ]
⇔ M⊖ ⟨v, v′⟩ ⊨ ∃u∃u′(

∨
⟨z,z′⟩∈Set(E)\(E−∪E+)

(u ≡ z ∧ u′ ≡ z′) ∧R−
Luu

′∧

¬RTuu
′ ∧ T(ψ,E|⟨u,u′⟩, E

+, E− ∪ {⟨u, u′⟩}))[σ]
⇔ M ⊨ ∃u∃u′(

∨
⟨z,z′⟩∈Set(E)\(E+∪E−∪{⟨y,y′⟩})

(u ≡ z ∧ u′ ≡ z′) ∧RLuu
′∧

¬RTuu
′ ∧ T(ψ,E|⟨u,u′⟩, E

+, E− ∪ {⟨u, u′⟩, ⟨y, y′⟩}))[σy(′):=v(′)]
⇔ M ⊨ T(φ,E,E+, E− ∪ {⟨y, y′⟩})[σy(′):=v(′)]

The first equivalence holds directly by Definition 5. By the inductive hypothe-
sis and the definition of R−

L , the second one holds. The last equivalence follows
from the definition of first-order translation. The proof is completed. ⊓⊔

A Modal Logic for Supervised Learning 13

With Lemma 1, we now can show the correctness of the translation:

Theorem 1 Let ⟨M, S⟩ ∈ M and E an RL-sequence of variables with the
same size as S. For any φ ∈ L, M, S ⊨ φ iff M ⊨ T(φ,E, ∅, ∅)[σE:=S].

Proof The proof is by induction on the structure of φ. Also, we only consider
the cases for propositional atoms and ⟨−⟩on.

(1). Formula φ is p ∈ P. By the semantics, M, S ⊨ φ iff e(S) ∈ V (p). On
the other hand, by Definition 5, T(φ,E, ∅, ∅) is Pe(E). So we have M, S ⊨ φ
iff M ⊨ T(φ,E, ∅, ∅)[σE:=S].

(2). When φ is ⟨−⟩onψ, the following equivalences hold:

M, S ⊨ φ
⇔ there exists ⟨v, v′⟩ ∈ (Set(S) \RT) s.t. M⊖ ⟨v, v′⟩, S|⟨v,v′⟩ ⊨ ψ
⇔ there exists ⟨v, v′⟩ ∈ (Set(S) \RT) s.t.

M⊖ ⟨v, v′⟩ ⊨ T(ψ,E|⟨y,y′⟩, ∅, ∅)[σE:=S,y(′):=v(′)]
⇔ M ⊨ ∃y∃y′(

∨
⟨v,v′⟩∈Set(E)

(y ≡ v ∧ y′ ≡ v′) ∧RLyy
′ ∧ ¬RT yy

′∧

T(ψ,E|⟨y,y′⟩, ∅, {⟨y, y′⟩}))[σE:=S]
⇔ M ⊨ T(φ,E, ∅, ∅)[σE:=S]

The first equivalence follows from our semantics immediately. By the inductive
hypothesis, the second one follows. With Lemma 1, we have the third one. The
last one follows directly from Definition 5. This completes the proof. ⊓⊔

In the result above, we have an extra requirement on the sequence E used
in the translation, i.e., Set(E) ⊆ RL. Intuitively, this restriction corresponds
to the definition of pointed models. When S is a singleton, E is also a singleton,
and each extension of E fulfils the requirement automatically by Definition 5.

So far, by the translation, we have shown that LSL is a fragment of FOL.
Also, Definition 5 gives us other information about our logic. For example,
it includes immediate transfer of the compactness property of FOL to LSL.
Moreover, since the complexity of the model checking problem for FOL is
PSPACE-complete [11] and the translation has only a polynomial size increase,
we can obtain an upper bound for that of LSL. We will return to this below.

3.2 Bisimulation and Characterization for LSL

The notion of bisimulation serves as an important tool for measuring the ex-
pressive power of modal logics. However, LSL is not invariant under the stan-
dard bisimulation [8]. So, we introduce a novel notion of ‘learning bisimulation
(l-bisimulation)’ tailored to our logic, which finally leads to a van Benthem
style characterization theorem for LSL.

Definition 6 For any M = ⟨W,RL, RT , V ⟩ and M′ = ⟨W ′, R′
L, R

′
T , V

′⟩, a
non-empty relation Zl ⊆ U∗(⟨M, S⟩) × U∗(⟨M′, S′⟩) is an l-bisimulation
between ⟨M, S⟩ and ⟨M′, S′⟩ (notation: ⟨M, S⟩Zl⟨M′, S′⟩) if:

14 Alexandru Baltag et al.

Atom: M, S ⊨ p iff M′, S′ ⊨ p, for each p ∈ P.
Zig♦: If there exists v ∈ RL(e(S)), then there exists v′ ∈ R′

L(e(S
′)) such that

⟨M, S; v⟩Zl⟨M′, S′; v′⟩.
Zig⟨−⟩on : If there is ⟨u, v⟩ ∈ Set(S) \RT , then there is ⟨u′, v′⟩ ∈ Set(S′) \R′

T

with ⟨M⊖ ⟨u, v⟩, S|⟨u,v⟩⟩Zl⟨M′ ⊖ ⟨u′, v′⟩, S′|⟨u′,v′⟩⟩.
Zig⟨−⟩off : If there exists ⟨u, v⟩ ∈ (RL \RT)\Set(S), then there exists ⟨u′, v′⟩ ∈

(R′
L \R′

T) \ Set(S′) with ⟨M⊖ ⟨u, v⟩, S⟩Zl⟨M′ ⊖ ⟨u′, v′⟩, S′⟩.
Zig⟨+⟩: If there exists ⟨u, v⟩ ∈ RT \ RL, then there exists ⟨u′, v′⟩ ∈ R′

T \ R′
L

with ⟨M⊕ ⟨u, v⟩, S⟩Zl⟨M′ ⊕ ⟨u′, v′⟩, S′⟩.
Zag♦, Zag⟨−⟩on , Zag⟨−⟩off and Zag⟨+⟩: the analogous clauses in the converse

direction of Zig♦, Zig⟨−⟩on , Zig⟨−⟩off and Zig⟨+⟩ respectively.

For brevity, we write ⟨M, S⟩↔l⟨M′, S′⟩ if there is an l-bisimulation Zl such
that ⟨M, S⟩Zl⟨M′, S′⟩.

The clauses for ♦ is similar to those for ♢ in the standard bisimulation: they
keep the model fixed and extend the evaluation sequence with one of its RL-
successors. However, all conditions for ⟨−⟩on, ⟨−⟩off and ⟨+⟩ change the model.
In particular, clauses for ⟨−⟩off and ⟨+⟩ do not modify the evaluation sequence,
while those for ⟨−⟩on change both the model and the current sequence. By a
straightforward induction on φ ∈ L, we have the following result:

Theorem 2 (↔l ⊆↭l) For any pointed models ⟨M, S⟩ and ⟨M′, S′⟩, it holds
that: ⟨M, S⟩↔l⟨M′, S′⟩ ⇒ ⟨M, S⟩ ↭l ⟨M′, S′⟩.

Moreover, the converse direction of Theorem 2 holds for the models that
are ω-saturated. For each finite set Y , we denote the expansion of L1 with a set
Y of constants with LY

1 , and denote the expansion of M to LY
1 with MY . Let

x be a finite tuple of variables. A model M = ⟨W,RL, RT , V ⟩ is ω-saturated
if, for every finite subset Y of W , the expansion MY realizes every set Γ (x)
of LY

1 -formulas whose finite subsets Γ ′(x) are all realized in MY .

Theorem 3 (↭l⊆ ↔l) For any ω-saturated ⟨M, S⟩ and ⟨M′, S′⟩, it holds
that: ⟨M, S⟩ ↭l ⟨M′, S′⟩ ⇒ ⟨M, S⟩↔l⟨M′, S′⟩.

Proof We show that ↭l itself is an l-bisimulation. Here we only prove the
cases involving clauses Zig♦ and Zig⟨−⟩on . Let E

′ be a sequence of variables
over R′

L with the same size as S′.
(1). Let v ∈ RL(S). We prove that there is some v′ ∈ R′

L(S
′) with

⟨M, S; v⟩ ↭l ⟨M′, S′; v′⟩. For any finite Γ ⊆ Tl(M, S; v), we have:

M, S ⊨ ♦
∧
Γ ⇔ M′, S′ ⊨ ♦

∧
Γ

⇔ M′ ⊨ T(♦
∧
Γ,E′, ∅, ∅)[σE′:=S′]

⇔ M′ ⊨ ∃y(R′
Le(E

′)y ∧ T(
∧
Γ,E′; y, ∅, ∅))[σE′:=S′]

As the pointed model ⟨M′, S′⟩ is ω-saturated, there exists y ∈ R′
L(E

′) with
M′ ⊨ T(Tl(M, S; v), E′; y, ∅, ∅)[σE′:=S′]. By Theorem 1, there is v′ ∈ R′

L(S
′)

s.t. ⟨M, S; v⟩ ↭l ⟨M′, S′; v′⟩. The proof of the Zig♦ clause is completed.
(2). Let ⟨u, v⟩ ∈ Set(S)\RT . We show that there exists ⟨u′, v′⟩ ∈ Set(S′)\

R′
T s.t. ⟨M ⊖ ⟨u, v⟩, S|⟨u,v⟩⟩ ↭l ⟨M′ ⊖ ⟨u′, v′⟩, S′|⟨u′,v′⟩⟩. Let Γ be a finite

subset of Tl(M⊖ ⟨u, v⟩, S|⟨u,v⟩), then the following equivalences hold:

A Modal Logic for Supervised Learning 15

M, S ⊨ ⟨−⟩on
∧
Γ ⇔ M′, S′ ⊨ ⟨−⟩on

∧
Γ

⇔ M′ ⊨ T(⟨−⟩on
∧
Γ,E′, ∅, ∅)[σE′:=S′]

⇔ M′ ⊨ ∃y∃z(
∨

⟨x,x′⟩∈Set(E′)

(y ≡ x ∧ z ≡ x′) ∧ ¬R′
T yz∧

T(
∧
Γ,E′|⟨y,z⟩, ∅, {⟨y, z⟩}))[σE′:=S′]

Since ⟨M′, S′⟩ is ω-saturated, there are y, z s.t. ⟨y, z⟩ ∈ Set(E′) \ R′
T and

M′ ⊨ T(Tl(M⊖⟨u, v⟩, S|⟨u,v⟩), E′|⟨y,z⟩, ∅, {⟨y, z⟩}))[σE′:=S′]. W.l.o.g., assume

σ(y) = u′ and σ(z) = v′. As ⟨u′, v′⟩ ∈ Set(S′) \R′
T , M′ ⊖ ⟨u′, v′⟩ ⊨ T(Tl(M⊖

⟨u, v⟩, S|⟨u,v⟩), E′|⟨y,z⟩, ∅, ∅))[σE′:=S′] follows from Lemma 1. By Theorem 1,

M′ ⊖ ⟨u′, v′⟩, S′|⟨u′,v′⟩ ⊨ Tl(M⊖ ⟨u, v⟩, S|⟨u,v⟩). So, ⟨M ⊖ ⟨u, v⟩, S|⟨u,v⟩⟩ ↭l

⟨M′ ⊖ ⟨u′, v′⟩, S′|⟨u′,v′⟩⟩. The proof of Zig⟨−⟩on is completed. ⊓⊔

Thus we have established a match between learning modal equivalence and
learning bisimulation for the ω-saturated models. Now, by a simple adaptation
of standard arguments [8,6,25], we can show the following result:

Theorem 4 For any α(x) ∈ L1 with only one free variable, α(x) is equivalent
to the translation of some φ ∈ L iff α(x) is invariant under l-bisimulation.

Proof The direction from left to right holds by Theorem 2 directly. We now
consider the other direction. Let α ∈ L1 with only one free variable. Suppose
that α is invariant under l-bisimulation. Define Cl(α) := {T(φ, x, ∅, ∅) | φ ∈
L and α ⊨ T(φ, x, ∅, ∅)}. Each formula of Cl(α) has only one free variable x.
We now show Cl(α) ⊨ α. Let ⟨M, w⟩ ∈ M• such that M ⊨ Cl(α)[σx:=w]. First,
we prove that Σ = T((Tl(M, w), x, ∅, ∅)) ∪ {α} is consistent.

Suppose that Σ is not consistent. By the compactness of FOL, it holds
that ⊨ α → ¬

∧
Γ for some finite Γ ⊆ T(Tl(M, w), x, ∅, ∅). Then from the

definition of Cl(α), we know ¬
∧
Γ ∈ Cl(α), which is followed by ¬

∧
Γ ∈

T(Tl(M, w), x, ∅, ∅). However, it contradicts to Γ ⊆ T(Tl(M, w), x, ∅, ∅).
Now we show M ⊨ α[σx:=w]. Since Σ is consistent, there exists some

⟨M′, w′⟩ ∈ M• s.t. M′ ⊨ Σ[σx:=w′]. Consequently, ⟨M, w⟩ ↭l ⟨M′, w′⟩.
Now take two ω-saturated elementary extensions ⟨Mω, w⟩ and ⟨M′

ω, w
′⟩ of

⟨M, w⟩ and ⟨M′, w′⟩ respectively (such extensions always exist [12]). By the
invariance of FOL under elementary extensions, M′ ⊨ α[σx:=w′] entails M′

ω ⊨
α[σx:=w′]. Moreover, by Theorem 3 and the assumption that α is invariant
for l-bisimulation, we have Mω ⊨ α[σx:=w]. By the elementary extension, we
obtain M ⊨ α[σx:=w]. Therefore, Cl(α) ⊨ α.

Finally, we show that α is equivalent to the translation of an L-formula.
Since Cl(α) ⊨ α, by the compactness and deduction theorems of FOL it holds
that ⊨

∧
Γ → α for some finite Γ ⊆ Cl(α). Besides, by the definition of Cl(α),

we have ⊨ α→
∧
Γ . Thus, ⊨ α↔

∧
Γ . Now the proof is completed. ⊓⊔

Therefore, in terms of the expressivity, LSL is as powerful as the one free
variable fragment of FOL that is invariant for l-bisimulation.

16 Alexandru Baltag et al.

4 Model Checking and Satisfiability for LSL

In this section, we consider the model checking problem and satisfiability prob-
lem for LSL. In particular, we show that the model checking problems for both
LSL and L♦⟨+⟩ are PSPACE-complete. Also, both LSL and L♦⟨−⟩on lack the
finite model property, and their satisfiability problems are undecidable.

Theorem 5 Model checking for LSL is PSPACE-complete.

Proof As mentioned, an upper bound can be established by Definition 5, which
suggests that model checking for LSL is in PSPACE. On the other hand, a
lower bound can be provided by a reduction f from BML into L♦⟨+⟩. Precisely,
f is the reverse of the translation used in Proposition 3. Clearly, f has a
polynomial size increase. Let ⟨W,RL, V ⟩ be a standard relational model and
w ∈ W . It holds that ⟨W,RL, V ⟩, w ⊨ φ iff ⟨W,RL,W

2, V ⟩, w ⊨ f(φ). Since
the model checking problem for BML is also PSPACE-complete [3], the model
checking for LSL is PSPACE-hard. The proof is completed. ⊓⊔

By the same reasoning as in the proof of Theorem 5, but now focusing on
L♦⟨+⟩ instead of LSL, we can obtain the following result:

Theorem 6 Model checking for L♦⟨+⟩ is PSPACE-complete.

Given the form of formula (1) describing winning strategies in SLG, it
is also an interesting problem concerning the game to study the complex-
ity of the model checking for the fragment of L consisting only of operators
∧,■, ⟨−⟩on, ⟨−⟩on and ⟨+⟩ (without ¬). We leave this as an open problem.

Now we move to considering the satisfiability problem. In particular, it
will be shown that LSL is undecidable. To achieve this, in what follows we
will study L♦⟨−⟩on instead of LSL. We first show that the fragment does not
enjoy the finite model property. To prove this, we will construct a ‘spy point’
[9], which can see any reachable point in one step.

Theorem 7 L♦⟨−⟩on does not enjoy the finite model property.

Proof To prove this, we construct an L♦⟨−⟩on-formula that can only be satisfied
by some infinite models. Let φ∞ be the conjunction of the following formulas:

(F1) p ∧ q ∧ ♦p ∧ ♦¬p ∧■¬q
(F2) ■(p→ ♦q ∧ ♦¬q ∧■p)
(F3) ■(p→ ■(q → ■¬q ∧ ♦¬p))
(F4) ♦(¬p ∧ ⟨−⟩on■(p ∧■(q → ■p)))
(F5) ■(p→ ■(¬q → ♦q ∧ ♦¬q ∧■p))
(F6) ■(p→ ■(¬q → ■(q → ■¬q ∧ ♦¬p)))
(F7) ♦(¬p ∧ ⟨−⟩on■■(¬q → ■(q → ■p)))
(Spy) ■(p→ ■(¬q → ■(q → ⟨−⟩on(¬q ∧■¬q ∧ ⟨−⟩on(q ∧ ♦(p ∧■¬q))))))
(Irr) ■(p→ ■(q → ⟨−⟩on(¬q ∧■¬q ∧■♦q)))

(No-3cyc) ¬♦(p ∧■(q → ⟨−⟩on(¬q ∧■(¬q ∧■(q → ⟨−⟩on(¬q ∧■¬q∧
⟨−⟩on(q ∧ ♦(p ∧■¬q)) ∧ ♦♦(p ∧■¬q)))))))

(Trans) ■(p→ ■(q → ⟨−⟩on(¬q ∧■¬q ∧■■(¬q → ■(q → ⟨−⟩on(¬q∧
■¬q ∧ ⟨−⟩on(p ∧ ¬♦q ∧ ♦■¬q)))))))

A Modal Logic for Supervised Learning 17

w p,qv0

w0

p

w1

p

w2

p

w3

p

· · ·

Fig. 4 A model of formula φ∞ (every link in the model belongs to RL, and RT = ∅). It
can be shown that the formula is true at w.

Formula φ∞ is satisfiable (see Figure 4). Now we show that for any ⟨M, w⟩,
if M, w ⊨ φ∞, then M is infinite. Let B := {v ∈ W | v ∈ RL(w) ∩ V (p)}. In
what follows, we assume that all previous conjuncts hold.

By (F1), node w is (p∧ q), and RL(w)∩ V (q) = ∅. Consequently, ¬RLww.
Besides, B ̸= ∅ and RL(w) \B ̸= ∅. From (F2), it follows that each element of
B can see some (q∧p)-point(s) and (¬q∧p)-point(s) via RL, but cannot see any
¬p-points through RL. Hence each point in B has at least one RL-successor
distinct from itself. By (F3), for any w1 ∈ B, each of its RL-successors that
is q can see some ¬p-point(s) via RL, but cannot see any q-points by RL. By
(F4), RL(w) \ B ̸= ∅ is a singleton. Moreover, each w1 ∈ B can see point w
via RL, and for each w2 ∈ V (q), RLw1w2 entails w2 = w.

Formulas (F2)-(F4) show the properties of the (¬q ∧ p)-points accessible
from w in one step by RL. Similarly, formulas (F5)-(F7) play the same roles as
(F2)-(F4) respectively, but focusing on showing the properties of the (¬q ∧ p)-
points accessible from w in 2 steps via RL. In particular, (F7) guarantees that
every (¬q ∧ p)-point w1 accessible from w in 2 steps by RL can also see w via
RL, and that for each q-point w2, RLw1w2 entails w2 = w.

Formula (Spy) shows that, for any (¬q ∧ p)-points w1, w2 s.t. RLww1 and
RLw1w2, after removing some ⟨v, v′⟩ ∈ {⟨w,w1⟩, ⟨w1, w2⟩, ⟨w2, w⟩}, v is ¬q
and does not have any q-successors. As w ∈ V (q), v ̸= w. Besides, if ⟨v, v′⟩ =
⟨w1, w2⟩, after we cut ⟨v, v′⟩, v still can see w ∈ V (q), so ⟨v, v′⟩ = ⟨w2, w⟩. Also,
after deleting ⟨w,w1⟩, w can reach a p-point w3 via RL s.t. RL(w3)∩V (q) = ∅.
Therefore, w3 = w2. Thus, (Spy) ensures that each (¬q∧p)-point w1 accessible
from w in 2 steps via RL is also accessible from w in one step via RL.

By (Irr), for each w1 ∈ B, ¬RLw1w1. (No-3cyc) shows RL-links cannot be
cycles of length 2 or 3 in B, and (Trans) forces RL to transitively order B.

Hence ⟨B,RL⟩ is an unbounded strict partial order, thus B is infinite and
so is W . This completes the proof. ⊓⊔

We now proceed to show the undecidability of L♦⟨−⟩on , by encoding the
N×N tiling problem [21]. Inspired by [9], we will use three modalities ♦s, ♦u

and ♦r to stand for ♦. Correspondingly, a model M = {W,Rs, Ru, Rr, RT , V }
now includes four relations. We are going to construct a spy point over Rs, and
relations Ru, Rr represent moving up and to the right, respectively, from one
tile to the other. Intuitively, the union of these three relations can be treated
as RL in the model. Moreover, as illustrated by the following proof, they are

18 Alexandru Baltag et al.

disjoint with each other. So they are a partition of RL. Thanks to this, we do
not need any extra modalities to represent ⟨−⟩on.

Theorem 8 The satisfiability problem for L♦⟨−⟩on is undecidable.5

Proof Let T = {T1, · · · , Tn} be a finite set of tile types. For each Ti, u(Ti),
d(Ti), l(Ti) and r(Ti) are the colors of its up, down, left and right edges
respectively. Also, each Ti is coded with a fixed proposition ti. Now we show
that φT , the conjunction of the following formulas, is true iff T tiles N× N.

(M1) p ∧ q ∧ ♦sp ∧ ♦s¬p ∧■s¬q ∧ ♦s⟨−⟩on■sp
(M2) ■s(p→ ♦s⊤ ∧■s(q ∧ ♦s¬p))
(M3) ♦s(¬p ∧ ⟨−⟩on■s■s(q ∧ ¬♦s¬p))
(M4) ■s(p→ ♦u⊤ ∧■u(p ∧ ¬q ∧ ♦s⊤ ∧■s(q ∧ ♦s¬p)))

■s(p→ ♦r⊤ ∧■r(p ∧ ¬q ∧ ♦s⊤ ∧■s(q ∧ ♦s¬p)))
(M5) ♦s(¬p ∧ ⟨−⟩on■s■u■s¬♦s¬p)

♦s(¬p ∧ ⟨−⟩on■s■r■s¬♦s¬p)
(M6) ■s(p→ ■u(♦u⊤ ∧ ♦r⊤ ∧■u(p ∧ ¬q) ∧■r(p ∧ ¬q)))

■s(p→ ■r(♦u⊤ ∧ ♦r⊤ ∧■u(p ∧ ¬q) ∧■r(p ∧ ¬q)))
(M7) ■s(p→ ■s(q ∧ ⟨−⟩on(¬q ∧■u(♦sq ∧ ¬♦u¬♦sq))))

■s(p→ ■s(q ∧ ⟨−⟩on(¬q ∧■r(♦sq ∧ ¬♦r¬♦sq))))
(Spy) ■s(p→ ■u■s⟨−⟩on(■s⊥ ∧ ⟨−⟩on(p ∧ q ∧ ♦s(p ∧■s⊥))))

■s(p→ ■r■s⟨−⟩on(■s⊥ ∧ ⟨−⟩on(p ∧ q ∧ ♦s(p ∧■s⊥))))
(Func) ■s(p→ ■s⟨−⟩on(■s⊥ ∧■u⟨−⟩on(■s⊥ ∧■u⊥))

■s(p→ ■s⟨−⟩on(■s⊥ ∧■r⟨−⟩on(■s⊥ ∧■r⊥))
(No-UR) ■s(p→ ■s⟨−⟩on(■s⊥ ∧■u■r♦sq ∧■r■u♦sq))

(No-URU) ■s(p→ ■s⟨−⟩on(■s⊥ ∧■u■r■u♦sq))
(Conv) ■s(p→ ■s⟨−⟩on(■s⊥ ∧ ♦u■s⟨−⟩on(■s⊥ ∧ ♦u⊤∧

♦r■u⟨−⟩on(■u⊥ ∧ ♦s♦s(p ∧■s⊥ ∧ ♦r♦u(p ∧■u⊥))))))
(Unique) ■s(p→

∨
1≤i≤n

ti ∧
∧

1≤i<j≤n

(ti → ¬tj))

(Vert) ■s(p→
∧

1≤i≤n

(ti → ♦u

∨
1≤j≤n, u(Ti)=d(Tj)

tj))

(Horiz) ■s(p→
∧

1≤i≤n

(ti → ♦r

∨
1≤j≤n, r(Ti)=l(Tj)

tj))

Let M = {W,Rs, Ru, Rr, RT , V } be a model and w ∈ W s.t. M, w ⊨ φT .
We show that M tiles N×N. Define G := {v ∈W | v ∈ Rs(w)∩ V (p)} where
Rs(w) := {v ∈W | Rswv}. We will use the elements of G to represent tiles.

By (M1), node w is (p ∧ q), and Rs(w) ∩ V (q) = ∅. So, ¬Rsww. Besides,
Rs(w)\G is a singleton (e.g., {v}) and G ̸= ∅. By (M2), each tile w1 has some
successor(s) via Rs, and each w2 ∈ Rs(w1) is q and has some ¬p-successor(s)
via Rs. Formulas (M1) and (M2) illustrate that Rs is irreflexive. Formula
(M3) ensures that each tile w1 can see w via Rs, and that for each w2 ∈

5 The four modalities used in its proof can be reduced to two by a standard argument [23],
but we will omit the details because of the syntactic cost involved in writing the formulas.

A Modal Logic for Supervised Learning 19

V (q), Rsw1w2 entails w2 = w. From (M4), we know that each tile has some
successor(s) viaRu and some successor(s) viaRr. Besides, each point accessible
from a tile via Ru or Rr is (¬q ∧ p), and it has some q-successor(s) w1 via
Rs where each w1 can see some ¬p-point(s) via Rs. By formula (M5), each
w1 ∈ W accessible from a tile via Ru or Rr can see w by Rs. Also, for each
(q ∧ p)-point w2, if w2 ∈ Rs(w1), then w2 = w. Formula (M6) ensures that
each w1 ∈W accessible from some tile via Ru or Rr also has some successor(s)
via Ru and some successor(s) via Rr. Besides, each such successor via Ru or
Rr is (¬q ∧ p). Formula (M7) shows that both the restrictions of Ru and Rr

to G × G are irreflexive and asymmetric. By (Spy), w is a spy point via Rs.
Note that formula (M4) says that each tile has some tile(s) above it and some
tile(s) to its right. Now, with (Func), we have that each tile has exactly one
tile above it and exactly one tile to its right. By (No-UR), any tile cannot be
above/below as well as to the left/right of another tile. Formula (No-URU)
disallows cycles following successive steps of the Ru, Rr, and Ru relations,
in this order. Moreover, (Conv) ensures that the tiles are arranged as a grid.
Formula (Unique) guarantees that each tile has a unique type. Finally, (Vert)
and (Horiz) force the colors of tiles to match properly. Thus, M tiles N× N.

On the other hand, it is easy to see that any tiling of N × N induces a
model for φT . Now the proof is completed. ⊓⊔

From Theorem 7 and Theorem 8, it follows immediately that LSL lacks
the finite model property, and its satisfiability problem is undecidable.

Finally, it is worth noting that, besides L♦⟨−⟩on , other fragments also de-
serve to be studied, say, L♦⟨−⟩off . It is already known that the satisfiable prob-
lem for SML is undecidable [6] and its model checking problem is PSPACE-
complete [3]. Given the similarity between ⟨−⟩off and ⟨−⟩ (recall Proposition
2), is the model checking for L♦⟨−⟩off PSPACE-complete? And is its satisfia-
bility problem undecidable?

5 Conclusion and Future Work

Summary Motivated by restrictions on learning in SG, we have extended the
game to SLG by naming right and wrong paths of learning, and let Teacher not
only delete but also add links. Afterwards, logic LSL was presented, which en-
ables us to reason about players’ strategies in SLG. Besides, to understand the
new device, we provided some interesting observations and logical validities.
Next, we studied basics of its expressivity, including its first-order translation,
a novel notion of bisimulation and a characterization theorem for LSL as a
fragment of FOL that is invariant under the bisimulation introduced. Finally,
it was proved that model checking for LSL is PSPACE-complete, and via the
research on L♦⟨−⟩on we showed that LSL does not enjoy the finite model prop-
erty and its satisfiability problem is undecidable.

Relevant Research Broadly, this work takes a small step towards studying
the interaction between graph games, logics and formal learning theory. As

20 Alexandru Baltag et al.

mentioned, the success condition of learning studied in the article is finite
identification. Both [27] and [24] concern this kind of learnability in the context
of indexed families of recursive languages. More generally, a relaxed notion
of finite identification and its relation to logics and information updates is
proposed and studied in [13,15–17].

We are inspired by the work on SG [30], SML [6] and their application to
formal learning theory [18]. This article is also relevant to other work studying
graph games with modal logics, such as [10,20,25,28,31,26]. Technically, the
logic LSL has resemblances to several recent logics with model modifiers, such
as [2–4]. Besides, instead of updating links, [32] considers a logic of stepwise
point deletion, which sheds light on the long-standing open problem of how
to axiomatize the sabotage-style modal logics. Moreover, [32] is also helpful to
understand the complexity jumps between dynamic epistemic logics of model
transformations and logics of freely chosen graph changes recorded in current
memory. Another relevant line of research for this paper is epistemic logics.
As mentioned already, one goal of our work is to avoid the Gettier problem.
Similarly, [7] uses the topological semantics to study the full belief.

Future Work Except what have been studied in this article, there are still
various open problems deserving to be studied in the future, from the perspec-
tives of logic, games and learning theory.

From the logic point of view, Section 2.2 shows that logic LSL is able to
express the winning positions for players in finite games, but to capture those
for infinite games, can LSL be expanded with some least-fixpoint operators?
From the translation described in Definition 5, we know that LSL is effec-
tively axiomatizable [29]. However, is it possible to axiomatize the logic via a
Hilbert-style calculus? Also, Proposition 5 shows that validities of LSL are not
closed under substitution. But, are the schematic validities of LSL decidable?
Moreover, are they axiomatizable?

In terms of games, we do not know the complexity of SLG, although we
have a basic observation on the necessary condition of winning. Besides, SLG
includes exactly two players, and it is meaningful to study the cases that
are more general. In addition, SLG studied in the article is a cooperative
game, but there are also other cases corresponding to different levels of players’
ability and attitude. Say, Learner may be unwilling to learn, and Teacher can
also be unhelpful or not omniscient. Are there some natural variants of SLG
capturing these situations? Finally, another interesting direction to investigate
is the significance of cycles in SLG. Consider the case that Learner reaches
the goal through a path ⟨a0, a1, ..., ai, ..., am, ..., an⟩ from the starting node
a0 to the goal node an, where Set(⟨a0, a1, ..., ai⟩) ∪ Set(⟨am..., an⟩) ⊆ RT ,
Set(⟨ai..., am⟩) ̸⊆ RT and ai = am. According to our theory, Learner has
not reached the goal through a correct path, so she has not learned properly.
However, it can be argued that even if one in a learning situation learns some
unimportant circular argument in addition to a proper argument, one has
still learned the proper argument. But our game now cannot capture these

A Modal Logic for Supervised Learning 21

scenarios. A possible solution is to define learning such that it could include
‘meaningless’ cycles. Nonetheless, it is an issue worth looking into.

Finally, although Section 1 discusses some applications of SLG to scenarios
of learning, the relations between our framework and existing proposals of
formal learning theory deserve to be studied more systematically.6

Acknowledgements. We thank Johan van Benthem, Fenrong Liu, Fernando
R. Velázquez-Quesada, Nina Gierasimczuk and Lena Kurzen for their inspiring
suggestions. We also wish to thank the two anonymous reviewers for their
very useful comments for improvement. Dazhu Li is supported by the Major
Program of the National Social Science Foundations of China [17ZDA026].

References

1. D. Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75:87–106, 1987.

2. C. Areces, R. Fervari, and G. Hoffmann. Moving arrows and four model checking results.
In L. Ong and R. Queiroz, editors, WoLLIC 2012, volume 7456 of LNCS, pages 142–153.
Springer, 2012.

3. C. Areces, R. Fervari, and G. Hoffmann. Relation-changing modal operators. Journal
of the IGPL, 23(4):601–627, 2015.

4. C. Areces, R. Fervari, G. Hoffmann, and M. Martel. Satisfiability for relation-changing
logics. Journal of Logic and Computation, 28:1143–1470, 2018.

5. C. Areces, D. Figueira, S. Figueira, and S. Mera. The expressive power of memory
logics. The Review of Symbolic Logic, 4:290–318, 2011.

6. G. Aucher, J. van Benthem, and D. Grossi. Modal logics of sabotage revisited. Journal
of Logic and Computation, 28(2):269–303, 2018.

7. A. Baltag, N. Bezhanishvili, A. Özgün, and S. Smets. A topological approach to full
belief. Journal of Philosophical Logic, 48(2):205–244, 2019.

8. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University Press,
2001.

9. P. Blackburn and J. Seligman. Hybrid languages. Journal of Logic, Language and
Information, 4(3):251–272, 1995.

10. F. Z. Blando, K. Mierzewski, and C. Areces. The modal logics of the poison game. In
F. Liu, H. Ono, and J. Yu, editors, Knowledge, Proof and Dynamics, Logic in Asia:
Studia Logica Library, pages 3–23. Springer, 2020.

11. A. Chandra and P. Merlin. Optimal implementation of conjunctive queries in relational
databases. In Proceedings of 9th ACM STOC, pages 77–90. 1977.

12. C. C. Chang and H. J. Keisler. Model Theory. Studies in Logic and the Foundations of
Mathematics. North-Holland, 1973.

13. C. Dégremont and N. Gierasimczuk. Finite identification from the viewpoint of epistemic
update. Information and Computation, 209(3):383–396, 2011.

14. E. Gettier. Is justified true belief knowledge? Analysis, 23(6):121–123, 1963.
15. N. Gierasimczuk. Bridging learning theory and dynamic epistemic logic. Synthese,

169(2):371–384, 2009.
16. N. Gierasimczuk. Learning by erasing in dynamic epistemic logic. In A. H. Dediu, A. M.

Ionescu, and C. Martin-Vide, editors, Proceedings of LATA09, volume 5457 of LNCS,
pages 362–373. Springer, 2009.

17. N. Gierasimczuk and D. de Jongh. On the complexity of conclusive update. The
Computer Journal, 56(3):365–377, 2013.

6 For more discussions on the applications of SG-style frameworks to paradigms of learning
theory, we refer to [18], whose arguments also apply to SLG after minor modifications.

22 Alexandru Baltag et al.

18. N. Gierasimczuk, L. Kurzen, and F. R. Velázquez-Quesada. Learning and teaching as
a game: A sabotage approach. In X. He, J. Horty, and E. Pacuit, editors, Proceedings
of LORI 2009, volume 5834 of LNCS, pages 119–132. Springer, 2009.

19. E. Gold. Language identification in the limit. Information and Control, 10:447–474,
1967.

20. D. Grossi and S. Rey. Credulous acceptability, poison games and modal logic. In
N. Agmon, M. E. Taylor, E. Elkind, and M. Veloso, editors, Proceedings of AAMAS
2019, pages 1994–1996, 2019.

21. D. Harel. Recurring dominoes: Making the highly undecidable highly understandable. In
Selected papers of the international conference on “foundations of computation theory”
on Topics in the theory of computation, pages 51–71, 1985.

22. K. T. Kelly, O. Schulte, and C. Juhl. Learning theory and the philosophy of science.
Philosophy of Science, 64(2):245–267, 1997.

23. M. Kracht and F. Wolter. Normal monomodal logics can simulate all others. Journal
of Symbolic Logic, 64:99–138, 1999.

24. S. Lange, T. Zeugmann, and S. Kapur. Monotonic and dual monotonic language learn-
ing. Theor. Comput. Sci., 155:365–410, 1996.

25. D. Li. Losing connection: the modal logic of definable link deletion. Journal of Logic
and Computation, 30:715–743, 2020.

26. D. Li, S. Ghosh, F. Liu, and Y. Tu. On the subtle nature of a simple logic of the hide
and seek game. In A. Silva, R. Wassermann, and R. de Queiroz, editors, Proceedings of
WoLLIC2021, volume 13038 of LNCS, pages 201–218, 2021.

27. Y. Mukouchi. Characterization of finite identification. In K. P. Jantke, editor, Analogical
and Inductive Inference, volume 642 of LNAI, pages 260–267. Springer, 1992.

28. D. Thompson. Local fact change logic. In F. Liu, H. Ono, and J. Yu, editors, Knowledge,
Proof and Dynamics, Logic in Asia: Studia Logica Library, pages 73–96. Springer, 2020.

29. J. van Benthem. Correspondence theory. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic: Volume II: Extensions of Classical Logic, pages 167–
247. Springer, 1984.

30. J. van Benthem. Logic in Games. The MIT Press, 2014.
31. J. van Benthem and F. Liu. Graph games and logic design. In F. Liu, H. Ono, and

J. Yu, editors, Knowledge, Proof and Dynamics, page 125–146. Springer, 2020.
32. J. van Benthem, K. Mierzewski, and F. Z. Blando. The modal logic of stepwise removal.

The Review of Symbolic Logic, pages 1–28, 2020.

