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Abstract

The notion of a context in formal concept analysis and that of an
approximation space in rough set theory are unified in this study
to define a Kripke context. For any context (G,M,I), a relation on
the set G of objects and a relation on the set M of properties are
included, giving a structure of the form ((G,R), (M,S), I). A Kripke
context gives rise to complex algebras based on the collections of pro-
toconcepts and semiconcepts of the underlying context. On abstraction,
double Boolean algebras (dBas) with operators and topological dBas
are defined. Representation results for these algebras are established in
terms of the complex algebras of an appropriate Kripke context. As
a natural next step, logics corresponding to classes of these algebras
are formulated. A sequent calculus is proposed for contextual dBas,
modal extensions of which give logics for contextual dBas with opera-
tors and topological contextual dBas. The representation theorems for
the algebras result in a protoconcept-based semantics for these logics.
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1 Introduction

Formal concept analysis (FCA) [1] and rough set theory [2] are both well-
established areas of study with applications in several domains including
knowledge representation and data analysis. There has also been a lot of study
connecting and comparing the two areas, e.g. in [3–11], and the work presented
here is motivated by such studies from the perspective of algebra and logic.

The central objects of FCA are contexts and concepts of a context [12].
A context is a triple K := (G,M, I), where G is the set of objects, and M is
the set of attributes and I ⊆ G × M . For any A ⊆ G,B ⊆ M , the following
sets are defined: A′ := {m ∈ M : for all g ∈ G(g ∈ A =⇒ gRm)}, and
B′ := {g ∈ G : for all m ∈ M(m ∈ M =⇒ gRm)}. A pair (A,B) is called
a concept of K, if A′ = B and B′ = A. For a concept (A,B), A is its extent

and B its intent. B(K) denotes the set of all concepts of K. An order relation
≤ is obtained on B(K) as follows: for (A1, B1), (A2, B2) ∈ B(K), (A1, B1) ≤
(A2, B2) if and only if A1 ⊆ A2 (equivalent to B2 ⊆ B1).

The notion of a concept was generalized to that of semiconcepts and pro-
toconcepts in [13, 14]. A pair (A,B) is called a semiconcept of K, if A′ = B
or B′ = A. (A,B) is called a protoconcept of K, if A′′ = B′ (equivalently
A′ = B′′). H(K) and P(K) denote the sets of all semiconcepts and protocon-
cepts of K respectively. It is observed that B(K) ⊆ H(K) ⊆ P(K). The partial
order ≤ on B(K) is extended to the setP(K) as: for any (A,B), (C,D) ∈ P(K),
(A,B) ⊑ (C,D) if and only if A ⊆ C and D ⊆ B.
The following operations are defined on P(K). For (A1, B1), (A2, B2) in P(K),

(A1, B1) ⊓ (A2, B2) := (A1 ∩A2, (A1 ∩ A2)
′

),

(A1, B1) ⊔ (A2, B2) := ((B1 ∩B2)
′

, B1 ∩B2),

¬(A,B) := (G \A, (G \A)
′

),

y(A,B) := ((M \B)
′

,M \B),

⊤ := (G, ∅),

⊥ := (∅,M).

With these operations, the protoconcepts of any context form an algebraic
structure called double Boolean algebra (dBa) [14]. The structure of a dBa is
such that there are two negation operators in it, which result in two Boolean
algebras being derived from it – justifying the name. The set of semiconcepts,
with the same operations as above, forms a subalgebra of the algebra of pro-
toconcepts. In this work, our interest lies in contextual and pure dBas [14, 15],
the structures formed by protoconcepts and semiconcepts respectively.

There may be circumstances in which the objects and properties defining a
context are indistinguishable with respect to certain attributes. For example,
two diseases may be indistinguishable by the symptoms available. Indistin-
guishability of objects and properties have motivated authors [5, 8, 11, 16] to
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study “indiscernibility” relations on the set of objects and the set of proper-
ties. Rough set-theoretic notions of approximation spaces and approximation
operators [2, 17] are then introduced in FCA.

A Pawlakian approximation space is a pair (W,E), where W is a set and
E is an equivalence relation on W . This is generalised to a pair (W,E) with E
any binary relation on W , and called a generalised approximation space [18].
For x ∈ W , E(x) := {y ∈ W : xRy}. The lower and upper approximations

of any A(⊆ W ) are defined respectively as AE := {x ∈ W : E(x) ⊆ A}, and

A
E
:= {x ∈ W : E(x)∩A 6= ∅}. Kent introduced the notion of approximation

space into FCA [8, 16], and defined lower and upper approximations of contexts
and concepts. The work of Saquer and Deogun [11] differs from that of Kent
in choosing the “indiscernibility” relations. Kent considers an indiscernibility
relation on the set G of objects which is externally given by some agent,
whereas Saquer and Deogun consider a relation that is determined by the given
context. For a given context K := (G,M, I), relations E1, E2 are defined on
the set G of objects and the set M of properties respectively, as follows.
(a) For g1, g2 ∈ G, g1E1g2 if and only if I(g1) = I(g2).
(b) For m1,m2 ∈ M , m1E2m2 if and only if I−1(m1) = I−1(m2).
Furthermore, for A ⊆ G,B ⊆ M , lower and upper approximations are defined
in terms of concepts of K, and using these, approximations of any pair (A,B)
that is not a concept, are given. Apart from Saquer and Deogun, Hu et.al. [5]
introduce approximation spaces on the sets of objects and properties. In [5],
for a given context K := (G,M, I), relations J1, J2 are defined on G and M
respectively, as follows.
(a) For g1, g2 ∈ G, g1J1g2 if and only if I(g1) ⊆ I(g2).
(b) For m1,m2 ∈ M , m1J2m2 if and only if I−1(m1) ⊆ I−1(m2).
The relations E1, E2 are equivalence relations [11], while the relations J1, J2
are partial order relations [5]. These observations have motivated us to define
the Kripke context, which unifies within a single framework, the notions of a
context of FCA and approximation space of rough set theory.

Definition 1 A Kripke context based on a context K := (G,M, I) is a triple KC :=
((G,R), (M,S), I), where R,S are relations on G and M respectively.

So a Kripke context consists of a context of FCA and two Kripke frames, which
in the terminology of rough set theory, are generalised approximation spaces.
Note that for a context K := (G,M, I), we get a Kripke context KCDS :=
((G,E1), (M,E2), I). Moreover, KCDS is an example such that the relations
E1 and E2 are reflexive, symmetric and transitive. This observation has led us
to define reflexive, symmetric or transitive Kripke contexts, where the relations
R and S are reflexive, symmetric or transitive.

It is shown that, using the lower and upper approximation operators
induced by the approximation space (G,R), (M,S) in a Kripke context
KC := ((G,R), (M,S), I), one can define unary operators fR and fS on the set
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P(K) of protoconcepts of the underlying context K := (G,M, I) such that fR
is an interior-type operator, while fS is a closure-type operator. The Kripke
context thus leads to complex algebras. The algebra of protoconcepts with the
operators fR and fS, is called the full complex algebra of KC. Any subalgebra
of the full complex algebra of KC is called a complex algebra. For a Kripke
context KC, the algebra of semiconcepts H(K) with operators fR↾H(K) and
fS↾H(K) is an instance of a complex algebra of KC. We show how, in terms
of approximation spaces and operators fE1 and fE2 , the full complex algebra
of the Kripke context KCDS can be utilised to compute all the approximation
operators defined in the work of Saquer and Deogun [11].

To understand the equational theory of the full complex algebra of pro-
toconcepts and the complex algebra of semiconcepts, abstractions of these
structures are defined: these are the double Boolean algebras with operators

(dBao) and topological dBas respectively. An immediate example of a dBao is
a Boolean algebra with operators [19]; a topological Boolean algebra [20] gives
an instance of a topological dBa. It is shown that the full complex algebra
of KC forms a contextual dBao, while the complex algebra of semiconcepts
forms a pure dBao. For a reflexive and transitive Kripke context, the full com-
plex algebra forms a topological contextual dBa and the complex algebra of
semiconcepts forms a topological pure dBa. Representation theorems for these
classes of algebras are then proved, in terms of the complex algebras of proto-
concepts and semiconcepts of an appropriate Kripke context. The results are
based on the representations obtained for dBas by Wille [14] and Balbiani [21].

As a natural next step, logics corresponding to dBaos are formulated. A
sequent calculus, denoted CDBL, is proposed for contextual dBas. CDBL
is extended to MCDBL and MCDBL4 for the contextual dBaos and topo-
logical contextual dBas respectively. Due to the representation theorems for
the algebras, one is able to get another semantics for these logics, based on
protoconcepts of contexts.

Section 2 gives the preliminaries required for this work. Kripke contexts,
their examples and the related complex algebras are studied in Section 3. In
particular, we indicate in Section 3.1 how the various approximations defined
in [11] can be expressed using terms of the full complex algebra of KCDS .
The dBaos and the topological dBa along with the representation results are
presented in Section 4. In Section 5, the logics corresponding to the algebras
are studied. CDBL for the class of contextual dBas is discussed in Section 5.1;
in Section 5.2,CDBL is extended toMCDBL andMCDBL4. In Section 5.3,
the protoconcept-based semantics for the logics is given. Section 6 concludes
the article.

In our presentation, the symbols ⇒, ⇔, and, or and not will be used with
the usual meanings in the metalanguage. Throughout, for a map f on X , f↾A
denotes the restriction of the map f on A ⊆ X , P(X) denotes the power set
of any set X , and the complement of A ⊆ X in a set X is denoted Ac. For
basic notions on universal algebra and lattices, we refer to [22, 23].
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2 Preliminaries

In the following subsections, we present basic notions and results related to
dBas, Boolean algebras with operators and approximation operators. Our
primary references are [11, 12, 14, 19–21].

2.1 Double Boolean algebra

A double Boolean algebra is defined as follows.

Definition 2 [14] An algebra D := (D,⊔,⊓,¬, y,⊤,⊥), satisfying the follow-
ing properties is called a double Boolean algebra (dBa). For any x, y, z ∈ D,
(1a) (x ⊓ x) ⊓ y = x ⊓ y (1b) (x ⊔ x) ⊔ y = x ⊔ y
(2a) x ⊓ y = y ⊓ x (2b) x ⊔ y = y ⊔ x
(3a) x ⊓ (y ⊓ z) = (x ⊓ y) ⊓ z (3b) x ⊔ (y ⊔ z) = (x ⊔ y) ⊔ z
(4a) ¬(x ⊓ x) = ¬x (4b) y(x ⊔ x) =yx
(5a) x ⊓ (x ⊔ y) = x ⊓ x (5b) x ⊔ (x ⊓ y) = x ⊔ x
(6a) x ⊓ (y ∨ z) = (x ⊓ y) ∨ (x ⊓ z) (6b) x ⊔ (y ∧ z) = (x ⊔ y) ∧ (x ⊔ z)
(7a) x ⊓ (x ∨ y) = x ⊓ x (7b) x ⊔ (x ∧ y) = x ⊔ x
(8a) ¬¬(x ⊓ y) = x ⊓ y (8b) yy(x ⊔ y) = x ⊔ y
(9a) x ⊓ ¬x = ⊥ (9b) x⊔yx = ⊤
(10a) ¬⊥ = ⊤ ⊓⊤ (10b) y⊤ = ⊥ ⊔ ⊥
(11a) ¬⊤ = ⊥ (11b) y⊥ = ⊤
(12) (x ⊓ x) ⊔ (x ⊓ x) = (x ⊔ x) ⊓ (x ⊔ x),
where x ∨ y := ¬(¬x ⊓ ¬y), and x ∧ y :=y(yx⊔yy). A quasi-order relation ⊑ on D is
defined as follows: x ⊑ y if and only if x⊓y = x⊓x and x⊔y = y⊔y, for any x, y ∈ D.

A dBa D is called contextual if ⊑ is a partial order. A contextual dBa is also
known as a regular dBa [24]. D is pure if for all x ∈ D, either x ⊓ x = x or
x⊔x = x. In the following, let D := (D,⊔,⊓,¬, y,⊤,⊥) be a dBa. Let us give
some notations that shall be used:
D⊓ := {x ∈ D : x ⊓ x = x}, D⊔ := {x ∈ D : x ⊔ x = x}, Dp := D⊓ ∪D⊔.
For x ∈ D, x⊓ := x ⊓ x and x⊔ := x ⊔ x.

Proposition 1 [14] Dp := (Dp,⊔,⊓,¬, y,⊤,⊥) is the largest pure subalgebra of D.
Moreover, if D is pure, Dp = D.

Proposition 2 [21] Every pure dBa D is contextual.

Proposition 3 [25]

1. D⊓ := (D⊓,⊓,∨,¬,⊥,¬⊥) is a Boolean algebra whose order relation is the
restriction of ⊑ to D⊓ and is denoted by ⊑⊓.

2. D⊔ := (D⊔,⊔,∧, y,⊤, y⊤) is a Boolean algebra whose order relation is the
restriction of ⊑ to D⊔ and it is denoted by ⊑⊔.
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3. x ⊑ y if and only if x ⊓ x ⊑ y ⊓ y and x ⊔ x ⊑ y ⊔ y for x, y ∈ D, that is,
x⊓ ⊑⊓ y⊓ and x⊔ ⊑ y⊔.

Proposition 4 [26] Let x, y, a ∈ D. Then the following hold.

1. x ⊓ ⊥ = ⊥ and x ⊔ ⊥ = x ⊔ x that is ⊥ ⊑ x.
2. x ⊔ ⊤ = ⊤ and x ⊓ ⊤ = x ⊓ x that is x ⊑ ⊤.
3. x = y implies that x ⊑ y and y ⊑ x.
4. x ⊑ y and y ⊑ x if and only if x ⊓ x = y ⊓ y and x ⊔ x = y ⊔ y.
5. x ⊓ y ⊑ x, y ⊑ x ⊔ y, x ⊓ y ⊑ y, x ⊑ x ⊔ y.
6. x ⊑ y implies x ⊓ a ⊑ y ⊓ a and x ⊔ a ⊑ y ⊔ a.

Proposition 5 [27] For any x, y ∈ D, the following hold.

1. ¬x⊓¬x = ¬x and yx⊔yx =yx, that is, ¬x = (¬x)⊓ ∈ D⊓, yx = (yx)⊔ ∈ D⊔.
2. x ⊑ y if and only if ¬y ⊑ ¬x and yy ⊑yx.
3. ¬¬x = x ⊓ x and yyx = x ⊔ x.
4. x ∨ y ∈ D⊓, x ∧ y ∈ D⊔.
5. ¬¬⊥ = ⊥, and yy⊤ = ⊤.
6. ¬(x ⊓ y) = ¬x ∨ ¬y and y(x ⊔ y) =yx∧yy.

Definition 3 A subset F of D is a filter in D if and only if x⊓y ∈ F for all x, y ∈ F ,
and for all z ∈ D and x ∈ F, x ⊑ z implies that z ∈ F . An ideal in a dBa is defined
dually.
A filter F (ideal I) is proper if and only if F 6= D (I 6= D). A proper filter F (ideal
I) is called primary if and only if x ∈ F or ¬x ∈ F (x ∈ I or yx ∈ I), for all x ∈ D.
The set of primary filters is denoted by Fpr(D); the set of all primary ideals is
denoted by Ipr(D).
A base F0 for a filter F is a subset of D such that F = {x ∈ D : z ⊑ x for some z ∈
F0}. A base for an ideal is defined similarly.
For a subset X of D, F (X) and I(X) denote the filter and ideal generated by X
respectively.

Lemma 1 [26] Let F be a filter and I an ideal of D. Then for any element x ∈ D,

1. F (F ∪ {x}) = {a ∈ D : x ⊓ w ⊑ a for some w ∈ F}.
2. I(I ∪ {x}) = {a ∈ D : a ⊑ x ⊔ w for some w ∈ I}.

The following are introduced in [14] to prove representation theorems for dBas.
Fp(D) := {F ⊆ D : F is a filter of D and F ∩D⊓ is a prime filter in D⊓}.
Ip(D) := {I ⊆ D : I is an ideal of D and I ∩D⊔ is a prime ideal in D⊔}.

Proposition 6 [27] Fp(D) = Fpr(D) and Ip(D) = Ipr(D).

Lemma 2 [14]
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1. For any filter F of D, F ∩D⊓ and F ∩D⊔ are filters of the Boolean algebras
D⊓, D⊔ respectively.

2. Each filter F0 of the Boolean algebra D⊓ is the base of some filter F of D
such that F0 = F ∩D⊓. Moreover if F0 is prime, F ∈ Fp(D).

It is straightforward to show that similar results hold for ideals of dBas.

For a context K := (G,M, I) and sets A ⊆ G,B,⊆ M , recall the sets A′, B′

and the operations on protoconcepts of K defined in Section 1.

Lemma 3 [23]

1. A ⊆ A′′ and B ⊆ B′′.
2. A ⊆ X implies that X ′ ⊆ A′, B ⊆ Y implies that Y ′ ⊆ B′, for any X ⊆ G

and Y ⊆ M .

Theorem 7 [14]

1. P(K) := (P(K),⊓,⊔,¬, y,⊤,⊥) is a contextual dBa.
2. H(K) := (H(K),⊓,⊔,¬, y,⊤,⊥) is a pure dBa. Moreover, H(K) = P(K)p.

Theorem 8 [14]

1. The power set Boolean algebra (P(G),∩,∪,c , G, ∅) is isomorphic to the
Boolean algebra P(K)⊓ := (P(K)⊓,⊓,∨,¬,⊥,¬⊥), where any A(⊆ G) is
mapped to (A,A′) ∈ P(K)⊓.

2. The power set Boolean algebra (P(M),∪,∩,c ,M, ∅) is anti-isomorphic to
the Boolean algebra P(K)⊔ := (P(K)⊔,⊔,∧, y,⊤, y⊤), where any B(⊆ M)
is mapped to (B′, B) ∈ P(K)⊔.

Let us now move to representation theorems for dBas. The following nota-
tions and results are needed. Let D be a dBa. For any x ∈ D,
Fx := {F ∈ Fp(D) : x ∈ F} and Ix := {I ∈ Ip(D) : x ∈ I}.

Lemma 4 [10, 14] Let x ∈ D. Then the following hold.

1. (Fx)
c = F¬x and (Ix)

c = Iyx.
2. Fx⊓y = Fx ∩ Fy and Ix⊔y = Ix ∩ Iy.

To prove the representation theorem, Wille uses the standard context cor-
responding to the dBa D, defined as K(D) := (Fp(D), Ip(D),∆), where for
all F ∈ Fp(D) and I ∈ Ip(D), F∆I if and only if F ∩ I = ∅. Then we have

Lemma 5 [14] For all x ∈ D, F ′
x = Ix⊓⊔

and I ′x = Fx⊔⊓
.
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Theorem 9 [14] The map h : D → P(K(D)) defined by h(x) := (Fx, Ix) for all
x ∈ D is a quasi-embedding.

As a consequence of the above theorem, we have

Corollary 1 For a contextual dBa D, the map h : D → P(K(D)) defined by h(x) :=
(Fx, Ix) for all x ∈ D is an embedding.

Theorem 10 [21] Let D be a pure dBa. The map h : D → H(K(D)) defined by
h(x) := (Fx, Ix) for all x ∈ D is an embedding.

2.2 Boolean algebras with operators

In the literature, there are several definitions of Boolean algebras with addi-
tional operators. In this section, we mention the ones to be used in this
work.

Definition 4 [19] A Boolean algebra with operators (Bao) is an algebra A :=
(B,∨,∧,¬, 0, f) such that (B,∨,∧,¬, 0) is a Boolean algebra and f : B → B satisfies
the following.

Normality: f(0) = 0, Additivity: f(x ∨ y) = f(x) ∨ f(y).

Note that [19] gives a general definition of Baos with more than one operator.
In [20], a Boolean algebra (B,∨,∧,¬, 0) with only an additive operator f is
taken as the definition of Bao.

Definition 5 [20] An algebra A := (B,∨,∧,¬, 0, f) is called a closure algebra if
(B,∨,∧,¬, 0) is a Boolean algebra and for all x, y ∈ B, f : B → B satisfies the
following conditions.

1. f(0) = 0. 2. f(x ∨ y) = f(x) ∨ f(y).
3. ff(x) = f(x). 4. x ≤ f(x).

Note that for a closure algebra A := (B,∨,∧,¬, 0, f), one can define an
operator g on B as: g(x) := ¬f(¬x), for all x ∈ B. Then for all x, y ∈ B,

1′. g(1) = 1. 2′. g(x ∧ y) = g(x) ∧ g(y).
3′. gg(x) = g(x). 4′. g(x) ≤ x.

An algebraA := (B,∨,∧,¬, 0, g), where (B,∨,∧,¬, 0) is a Boolean algebra and
g satisfies 1′, 2′, 3′, 4′ is called a topological Boolean algebra in [28]. Moreover,
for a topological Boolean algebra A := (B,∨,∧,¬, 0, g), one can define an
operator gδ(x) := ¬g(¬x), for all x ∈ D such that A := (B,∨,∧,¬, 0, gδ) is a
closure algebra. In other words, a closure algebra and a topological Boolean
algebra of [28] are dual to each other and one can be obtained from the other.
In this work, by a topological Boolean algebra, we shall mean a closure algebra.
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2.3 Approximation operators

Recall the definitions of lower and upper approximation operators in an
approximation space given in Section 1. If the relation is clear from the context,

we shall omit the subscript and denote AE by A, A
E

by A.

Proposition 11 [18]
I. For an approximation space (W,E), the following hold.

(i) A = ((Ac))c, A = ((Ac))c.

(ii) W = W .

(iii) A ∩B = A ∩B,A ∪B = A ∪B.

(iv) A ⊆ B implies that A ⊆ B,A ⊆ B.

II. Moreover if E is a reflexive and transitive relation then the following hold.

(v) A ⊆ A and A ⊆ A.

(vi) (A) = A and (A) = A.

Let K := (G,M, I) be a context and recall the approximation spaces
(G,E1) and (M,E2) mentioned in Section 1. In [11], A ⊆ G and B ⊆ M are
called feasible if A′′ = A and B′′ = B. Then the concept approximation(s) of
A are defined as follows.

- If A is feasible, the concept approximation of A is (A,A′).
- If A is not feasible, A is considered as s rough set of the approximation space
(G,E1), and its concept approximations are defined with the help of its

lower approximation AE1
and upper approximation A

E1
. The lower concept

approximation of A is the pair ((AE1
)′′, (AE1

)′), while its upper concept

approximation is ((A
E1

)′′, (A
E1

)′).

For B ⊆ M :

- if B is feasible, the concept approximation of B is (B′, B);
- if B is non-feasible, the lower and upper concept approximations of B are

defined by ((B
E2

)′, (B
E2

)′′) and ((BE2
)′, (BE2

)′′) respectively.

A pair (A,B) is called a non-definable concept, if it is not a concept of the
context K. A concept is said to approximate such a pair (A,B), if its extent
approximates A and intent approximates B. The four possible cases for A,B
are considered: (i) both A and B are feasible, (ii) A is feasible and B is not,
(iii) B is feasible and A is not, and (iv) both A and B are not feasible. In case
both A and B are feasible and A′ = B then the pair (A,B) itself constitutes
a concept and no approximations are needed. For the other cases, the lower
approximation of (A,B) is obtained in terms of the meet of the lower concept
approximations of its individual components, while the upper approximation
of (A,B) is obtained in terms of the join of the upper concept approximations
of its individual components. For example, consider case (iv), when both A
and B are not feasible.
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The lower approximation of (A,B) is defined by (A,B) :=

((AE1
)′′, (AE1

)′) ⊓ ((B
E2

)′, (B
E2

)′′) = ((AE1
)′′ ∩ (B

E2
)′, ((AE1

)′′ ∩ (B
E2

)′)′).

The upper approximation of (A,B) is defined by (A,B) :=

((A
E1

)′′, (A
E1

)′) ⊔ ((BE2
)′, (BE2

)′′) = (((A
E1

)′ ∩ (BE2
)′′)′, (A

E1
)′ ∩ (BE2

)′′).

Let us illustrate these notions by an example. The following context (G,M, I)
is a subcontext of a context given by Wille [12] with some modifications.
G := {Leech,Bream,Frog,Dog, Cat} and M := {a, b, c, g}, where a:= needs
water to live, b:= lives in water, c:= lives on land, g:=can move around. I is
given by Table 1, where * as an entry corresponding to object x and property
y means xIy holds.

Table 1: Context K

a b c g

Leech * * *

Bream * * *

Frog * * * *

Dog * * *

Cat * * *

Observe that the properties a and g are indiscernible by objects, while Leech
and Bream as well as Dog and Cat are indiscernible by properties. The induced
approximation spaces are (G, {{Leech,Bream}, {Frog}, {Dog,Cat}}) and
(M, {{a, g}, {b}, {c}}).

Let A := {Leech,Bream,Dog} and B := {a, c}. A is not feasible, as
A′′ 6= A. B is also non-feasible. The upper and lower concept approxima-
tions of A are (G, {a, g}) and ({Leech,Bream,Frog}, {a, b, g}), respectively.
The upper and lower concept approximations of B are both given by
({Frog,Dog, Cat}, {a, g, c}). Moreover, (A,B) is a non-definable concept. The
lower approximation of (A,B) is ({Frog},M) and the upper approximation
is (G, {a, g}).

3 Kripke context

As given by Definition 1 in Section 1, a Kripke context based on a context
K := (G,M, I) is a triple KC := ((G,R), (M,S), I), where R,S are binary
relations on G and M respectively. Let us give a couple of examples of Kripke
contexts. The first example is based on Pawlakian approximation spaces.

Example 1 KC := ((G,R), (M,S), I), where G := {D1, D2, D3, D4} represents a
collection of diseases and M := {S1, S2, S3, S4, S5} a collection of symptoms. DiISj

holds if disease Di has symptom Sj , and I is given by Table 2. Equivalence relations
R on G and S on M are then induced as follows, relating respectively, the diseases
that have the same set of symptoms, and the symptoms that apply to the same set
of diseases:
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DiRDj , if and only if I(Di) = I(Dj), i, j ∈ {1, 2, 3, 4} and SiRSj , if and only if

I−1(Si) = I−1(Sj), i, j ∈ {1, 2, 3, 4, 5}.
One thus gets the approximation spaces (G,R) and (M,S).

Table 2: Context K

S1 S2 S3 S4 S5

D1 * * *

D2 * *

D3 * * *

D4 * * *

Our next example is motivated by the notion of bisimulation between
Kripke frames [19]. It gives a Kripke context KC := ((G,R), (M,S), I) such
that the relation I is in fact, a bisimulation between the Kripke frames (G,R)
and (M,S), that is, it satisfies the back and forth conditions: for all g ∈ G and
m ∈ M ,
for all g1 ∈ G (gRg1 and gIm =⇒ there exists m1 ∈ M(mSm1 and g1Im1));
for all m1 ∈ M (mSm1 and gIm =⇒ there exists g1 ∈ M(gRg1 and g1Im1)).

Example 2 KC := ((G,R), (M,S), I), where G := {c, d, e}, M := {a, b}, R :=
{(d, e), (c, d)} and S := {(a, b), (b, a)}. I is given by Table 3. Figure 1 depicts the
objects, properties and the three relations R,S, I . Each circular node represents an
object and each rectangular node a property. Two circular nodes are connected by
an arrow if they are related by R. Similarly for the rectangular nodes. The dotted
arrow represents the relation I . From the figure it is clear that I satisfies the back
and forth conditions.

Table 3: Context K

a b

c *

d *

e *

In a Kripke context KC := ((G,R), (M,S), I), if (G,R) is a Pawlakian
approximation space, one gets an interior operator −R : P(G) → P(G) defined
as −R(A) := AR for all A ∈ P(G) (Proposition 11). Similarly, one has the
interior operator −S : P(M) → P(M) defined by −M (B) := BS for all B ∈
P(M), if (M,S) is a Pawlakian approximation space. Now from Theorem
8, we get the isomorphism f : P(G) → P(K)⊓ given by f(A) := (A,A′)
for all A ∈ P(G) and the anti-isomorphism g : P(M) → P(K)⊔ given by
g(B) := (B′, B) for all B ∈ P(M). Taking a cue from the compositions of
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a

b

e

d

c

Fig. 1: Kripke Context KC

f,−R and g,−S , we can define two unary operators fR and fS on P(K) as
given below. It will be seen in Theorem 12 that fR is an interior-type operator
on P(K), while gS is a closure-type operator on P(K). For any (A,B) ∈ P(K),

• fR((A,B)) := (AR, (AR)
′),

• fS((A,B)) := ((BS)
′, BS).

fR, fS are well-defined, as (AR, (AR)
′) and ((BS)

′, BS) are both semiconcepts
and hence protoconcepts of K. This implies that the set P(K) of protoconcepts
is closed under the operators fR, fS. We have

Definition 6 Let KC := ((G,R), (M,S), I) be a Kripke context. The full complex

algebra of KC, P+(KC) := (P(K),⊔,⊓,¬, y,⊤,⊥, fR, fS), is the expansion of the
algebra P(K) of protoconcepts with the operators fR and fS .

Any subalgebra of P+(KC) is called a complex algebra of KC.

Let f δ
R, f

δ
S denote the operators on P(K) that are dual to fR, fS respec-

tively. In other words, for each x := (A,B) ∈ P(K),
f δ
R(x) := ¬fR(¬x) = ¬fR((Ac, Ac′)) = ¬(Ac

R, (A
c
R)

′) = ((Ac
R)

c, (Ac
R)

c′) =

(A
R
, (A

R
)′), by Proposition 11(i).

Similarly f δ
S(x) :=yfS(yx) = ((B

S
)′, B

S
).

Again, note that f δ
R(x) = (A

R
, (A

R
)′) and f δ

S(x) = ((B
S
)′, B

S
) are semicon-

cepts of K. Let us now list some properties of fR and fS .

Theorem 12 For all x, y ∈ P(K), the following hold.

1. fR(x ⊓ y) = fR(x) ⊓ fR(y) and fS(x ⊔ y) = fS(x) ⊔ fS(y).
2. fR(x ⊓ x) = fR(x) and fS(x ⊔ x) = fS(x).
3. fR(¬⊥) = ¬⊥ and fS(y⊤) =y⊤.
4. fR(¬x) = ¬f δ

R(x) and fS(yx) =yf δ
S(x).



Springer Nature 2021 LATEX template

14 Kripke contexts, dBao and corresponding modal systems

Proof Let x := (A,B) and y := (C,D).
1. We use Proposition 11(iii) in the following equations. fR((A,B)⊓(C,D)) = fR(A∩
C, (A ∩ C)′) = (A ∩ CR, (A ∩ CR)′) = (AR ∩ CR, (AR ∩ CR)′) = (AR, (AR)′) ⊓
(CR, (CR)′) = fR((A,B)) ⊓ fR((C,D)).
fS((A,B) ⊔ (C,D)) = fS((B ∩ D)′, B ∩ D) = ((B ∩DS)

′, B ∩DS) = fS((A,B)) ⊔
fS((C,D)).
2. fR((A,B) ⊓ (A,B)) = fR((A,A′)) = (AR, (AR)′) = fR((A,B)). Similarly, one
can show that fS((A,B) ⊔ (A,B)) = ((BS)

′, BS).
3. fR(¬⊥) = fR((G,G′)) = (GR, (GR)′) = (G,G′) = ¬⊥, by Proposition 11(ii).
Similarly, one gets fS(y⊤) =y⊤.

4. fR(¬(A,B)) = fR(Ac, Ac′) = (Ac
R, (Ac

R)′) = ((A
R
)c, (A

R
)c′) by Proposition

11(i). So fR(¬(A,B)) = ¬(A
R
, (A

R
)′) = ¬fδR((A,B)). Similarly, one can show that

fS(y(A,B)) =yfδS((A,B)). �

Using Theorem 12(1,3,4), one obtains

Corollary 2 For all x, y ∈ P(K),

1. f δ
R(x ∨ y) = f δ

R(x) ∨ f δ
R(y) and f δ

S(x ∧ y) = f δ
S(x) ∧ f δ

S(y).
2. f δ

R(⊥) = ⊥ and f δ
S(⊤) = ⊤.

Consider the restriction maps fR↾P(K)⊓ and fS↾P(K)⊔. From Theorem
12(2), it follows that P(K)⊓ and P(K)⊔ are closed under fR↾P(K)⊓ and
fS↾P(K)⊔ respectively. Using Theorem 12(1,3) and Corollary 2, we get

Corollary 3 P(KC)+⊓ := (P(K)⊓,⊓,∨,¬,⊥, fδR↾P(K)⊓) and P(KC)+⊔ :=
(P(K)⊔,⊔,∧, y,⊤, fS↾P(K)⊔) are Baos.

We next consider a Kripke context KC := ((G,R), (M,S), I) where the
relations R,S satisfy certain properties that are of particular relevance here.

Definition 7

1. KC is reflexive from the left, if R is reflexive.
2. KC is reflexive from the right, if S is reflexive.
3. KC is reflexive, if it is reflexive from both left and right.

The cases for symmetry and transitivity of KC are similarly defined.

Observe that the Kripke context in Example 2 is symmetric from the right.

Theorem 13 Let KC := ((G,R), (M,S), I) be a reflexive and transitive Kripke
context. Then for all x ∈ P(K), the following hold.

1. fR(x) ⊑ x and x ⊑ fS(x).
2. fRfR(x) = fR(x) and fSfS(x) = fS(x).
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Proof 1. Let (A,B) ∈ P(K). By Proposition 11(v) AR ⊆ A and BS ⊆ B, which
implies that A′ ⊆ (AR)′ and B′ ⊆ (BS)

′. Now B′′ = A′ and A′′ = B′, as (A,B) ∈
P(K). By Lemma 3, A ⊆ A′′ and B ⊆ B′′. So A ⊆ B′ and B ⊆ A′, which implies
that B ⊆ (AR)′ and A ⊆ (BS)

′. Therefore fR((A,B)) = (AR, (AR)′) ⊑ (A,B) and
(A,B) ⊑ fS((A,B)) = ((BS)

′, BS).
2. fRfR((A,B)) = fR((AR, (AR)′)) = ((AR)

R
, ((AR)

R
)′) = (AR, (AR)′) =

fR((A,B)), by Proposition 11(vi). Similarly, one can show that fSfS((A,B)) =
fS((A,B)). �

Theorems 13 and 12(4) give

Corollary 4 For all x ∈ P(K), x ⊑ fδR(x) and fδRfδR(x) = fδR(x).

Further, using Theorems 12, 13 and Corollaries 2, 4, we get

Corollary 5 P(KC)+⊓ := (P(K)⊓,⊓,∨,¬,⊥, fδR↾P(K)⊓) and P(KC)+⊔ :=
(P(K)⊔,⊔,∧, y,⊤, fS↾P(K)⊔) are topological Boolean algebras.

3.1 Complex algebra to concept approximation

Recall the Kripke context KCDS := ((G,E1), (M,E2), I) defined in Section
1, where (G,E1), (M,E2) are Pawlakian approximation spaces. We observe
that terms of the full complex algebra P+(KCDS) are able to express the
various notions of concept approximations mentioned in Section 2.3. Indeed,
for KCDS , we get the operators fE1 , fE2 : P(K) → P(K) as above, that
is, fE1((A,B)) := (AE1

, (AE1
)′), and fE2((A,B)) := ((BE2

)′, BE2
) for any

(A,B) ∈ P(K). Moreover, f δ
E1

((A,B)) = (A
E1

, (A
E1

)′) and f δ
E2

((A,B)) =

((B
E2

)′, B
E2

). Let A ⊆ G and B ⊆ M .
If A and B are feasible then the concept approximations of A and B are (A,A′)
and (B′, B) respectively and these are elements of P(K).
Suppose A and B are both non-feasible sets. Let x, y ∈ P(K) be such that the
extent of x is A and intent of y is B. Then we have the following.
The lower concept approximation of A, ((AE1

)′′, (AE1
)′) = (AE1

, (AE1
)′) ⊔

(AE1
, (AE1

)′) = fE1(x) ⊔ fE1(x).

The upper concept approximation of A, ((A
E1

)′′, (A
E1

)′) = (A
E1

, (A
E1

)′) ⊔

(A
E1

, (A
E1

)′) = f δ
E1

(x) ⊔ f δ
E1

(x).

The lower concept approximation of B, ((B
E2

)′, (B
E2

)′′) = ((B
E2

)′, B
E2

) ⊓

((B
E2

)′, B
E2

) = f δ
E2

(y) ⊓ f δ
E2

(y).
The upper concept approximation of B, ((BE2

)′, (BE2
)′′) = ((BE2

)′, BE2
) ⊓

((BE2
)′, BE2

) = fE2(y) ⊓ fE2(y).
Now by definition, approximations of any pair (A,B) are obtained using
the concept approximations of A and B. As shown above, the latter are all
expressible by the terms of the full complex algebra, and hence we have the
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observation. For instance, suppose, (A,B) is a non-definable concept of K with
A and B non-feasible.
The lower approximation of (A,B), ((AE1

)′′ ∩ (B
E2

)′, ((AE1
)′′ ∩ (B

E2
)′)′)

= (fE1(x) ⊔ fE1(x)) ⊓ (f δ
E2

(y) ⊓ f δ
E2

(y)) = (fE1(x) ⊔ fE1(x)) ⊓ f δ
E2

(y).

The upper approximation of (A,B), (((A
E1

)′ ∩ (BE2
)′′)′, (A

E1
)′ ∩ (BE2

)′′) =
(f δ

E1
(x) ⊔ f δ

E1
(x)) ⊔ (fE2(y) ⊓ fE2(y)) = (fE2(y) ⊓ fE2(y)) ⊔ f δ

E1
(x).

4 The algebras

In this section, we study abstractions of the algebraic structure P+(KC)
obtained in Section 3. These are dBas with operators (Definition 8), and
topological dBas (Definition 9).

4.1 Double Boolean algebras with operators

Definition 8 A structure O := (D,⊔,⊓,¬, y,⊤,⊥, I,C) is a dBa with operators

(dBao) provided
1. (D,⊔,⊓,¬, y,⊤,⊥) is a dBa and
2. I,C are monotonic operators on D satisfying the following for any x, y ∈ D.

1a I(x ⊓ y) = I(x) ⊓ I(y) 1b C(x ⊔ y) = C(x) ⊔C(y)
2a I(¬⊥) = ¬⊥ 2b C(y⊤) =y⊤
3a I(x ⊓ x) = I(x) 3b C(x ⊔ x) = C(x)

A contextual dBao is a dBao in which the underlying dBa is contextual. If the under-
lying dBa is pure, the dBao is called a pure dBao.
The duals of I and C with respect to ¬, y are defined as Iδ(a) := ¬I(¬a) and
Cδ(a) :=yC(ya) for all a ∈ D.

Any Bao provides a trivial example of a contextual and pure dBao. Indeed, in
a Bao (B,⊓,⊔,¬,⊤,⊥, f), setting y = ¬, C := f and I := f δ, one obtains the
dBao (B,⊓,⊔,¬, y,⊤,⊥, I,C). Due to the idempotence of the operators ⊓,⊔
in the Boolean algebra (B,⊓,⊔,¬,⊤,⊥), the dBa (B,⊓,⊔,¬, y,⊤,⊥) is pure;
as B⊓ = B⊔ = B, the dBa is contextual as well.

An immediate consequence is the following.

Theorem 14 Let O := (D,⊔,⊓,¬, y,⊤,⊥, I,C) be a dBao. Then

1. Op := (Dp,⊔,⊓,¬, y,⊤,⊥, I↾Dp,C↾Dp) is the largest pure subalgebra of O.
2. If O is pure, it is contextual and moreover, O = Op.

Proof 1. From Proposition 1 it follows that (Dp,⊔,⊓,¬, y,⊤,⊥) is the largest pure
subalgebra of D. To complete the proof it is sufficient to show that Dp is closed
under I and C, which follows from Definition 8(1a, 3a, 1b, 3b).
2. Proposition 2 gives the first part. For any pure dBa, D = Dp. �

As intended, the sets of protoconcepts and semiconcepts of a context
provide examples of dBaos:
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Theorem 15 Let KC := ((G,R), (M,S), I) be a Kripke context based on the
context K := (G,M, I). Then the following hold.

1. P+(KC) := (P(K),⊔,⊓,¬, y,⊤,⊥, fR, fS) is a contextual dBao.

2. H+(KC) := (H(K),⊔,⊓,¬, y,⊤,⊥, fR↾H(K), fS↾H(K)) is a pure dBao. It is
the largest pure subalgebra of P+(KC), that is, P+(KC)p = H+(KC).

Proof 1. From Theorem 7 it follows that (P(K),⊔,⊓,¬, y,⊤,⊥) is a dBa. To show
monotonicity of fR, fS , let (A,B), (C,D) ∈ P(K) and (A,B) ⊑ (C,D). Then, by
definition of ⊑, A ⊆ C and D ⊆ B, and by using Proposition 11(iv), AR ⊆ CR,
which implies (CR)′ ⊆ (AR)′. Hence fR((A,B)) ⊑ fR((C,D)). Similar to the above,
we can show the monotonicity of fS . Rest of the proof follows from Theorem 12.
2. From Theorem 7, it follows that P(K)p = H(K). By Theorem 14(2), P+(KC)p =

H+(KC) is the largest pure subalgebra of P+(KC). �

The following lists some basic properties of the operators I,C and their
duals in a dBao.

Lemma 6 Let O := (D,⊔,⊓,¬, y,⊤,⊥, I,C) be a dBao. Then the following hold for
any a, x, y ∈ D.
1. ¬Iδ(¬a) = Ia and yCδ(ya) = C(a).
2. I(¬a) = ¬Iδ(a) and Iδ(¬a) = ¬I(a).
3. C(ya) =yCδ(a) and Cδ(ya) =yC(a).
4. Iδ and Cδ both are monotonic.
5. Iδ(a ⊓ a) = Iδ(a) and Cδ(a ⊔ a) = Cδ(a).
6. Iδ(x ∨ y) = Iδ(x) ∨ Iδ(y) and Cδ(x ∧ y) = Cδ(x) ∧Cδ(y).
7. Iδ(⊥) = ⊥ and Cδ(⊤) = ⊤.
8. Iδ(x) ⊓ Iδ(x) = Iδ(x) and Cδ(x) ⊔Cδ(x) = Cδ(x).

Proof The proof is obtained in a straightforward manner. We use 1, 2, 3 and 5 of
Proposition 5, (8a), (8b) of Definition 2 and 3a, 3b of Definition 8. �

We noted earlier that a Bao provides an example of a dBao. The converse
question is addressed in Theorems 16 and 17 below.

Theorem 16 Let O := (D,⊔,⊓,¬, y,⊤,⊥, I,C) be a dBao such that for all a ∈ D
¬a =ya, ¬¬a = a. Then (D,⊔,⊓,¬,⊤,⊥,C) and (D,⊔,⊓,¬,⊤,⊥, Iδ) are Baos.

Proof That (D,⊔,⊓,¬,⊤,⊥) forms a Boolean algebra is not difficult to prove, and
the proof is given in the Appendix. In particular, one can show that y ⊔ z = y ∨ z
and y⊓z = y∧z for any y, z ∈ D. It is then easy to verify that C and Iδ are additive
and normal. Indeed, Definition 8(1b) implies that C is additive. As y⊤ = ⊥, by
Definition 8(3b), it is normal. On the other hand, as y ⊔ z = y ∨ z for all y, z ∈ D,
from Lemma 6(6) it follows that Iδ(x⊔y) = Iδ(x∨y) = Iδ(x)∨Iδ(y) = Iδ(x)⊔Iδ(y).
Iδ(⊥) = ⊥ by Lemma 6(7). �
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Theorem 17 Let O := (D,⊔,⊓,¬, y,⊤,⊥, I,C) be a dBao. Then O⊓ :=
(D⊓,⊓,∨,¬,⊥, Iδ↾D⊓) and O⊔ := (D⊔,⊔,∧, y,⊤,C↾D⊔) are Baos.

Proof By Proposition 3, D⊓ and D⊔ are Boolean algebras. Let x ∈ D⊓. Then
Iδ↾D⊓(x) ⊓ Iδ↾D⊓(x) = Iδ(x) ⊓ Iδ(x) = Iδ(x) = Iδ↾D⊓(x), by Lemma 6(8). So D⊓

is closed under Iδ↾D⊓. Similarly, D⊔ is closed under C↾D⊔. That both Iδ↾D⊓ and
C↾D⊔ are additive and normal follows from Lemma 6(6,7) and Definition 8. �

The following result addresses the converse of Theorem 17.

Theorem 18 Let D := (D,⊔,⊓,¬, y,⊤,⊥, ) be a dBa such that O⊓ :=
(D⊓,⊓,∨,¬,⊥, I) and O⊔ := (D⊔,⊔,∧, y,⊤,C) are Baos. Then O := (D,⊔,⊓,
¬, y,⊤,⊥, I,C) is a dBao, where I(x) := ¬I(¬x) and C(x) := C(x⊔x) for all x ∈ D.

Proof Let x, y ∈ D. Using Proposition 5(6), I(x⊓y) = ¬I(¬(x⊓y)) = ¬I(¬x∨¬y) =
¬(I(¬x) ∨ I(¬y)), as ¬x,¬y ∈ D⊓ by Proposition 5(1). As I(¬x), I(¬y) ∈ D⊓, using
definition of ∨ we have I(x ⊓ y) = ¬I(¬x)⊓ ¬I(¬y) = I(x)⊓ I(y). Using Proposition
5(5), I(¬⊥) = ¬I(¬¬⊥) = ¬I(⊥) = ¬⊥. By Definition 2(4a), I(x ⊓ x) = ¬I(¬(x ⊓
x)) = ¬I(¬x) = I(x).
C(y⊤) = C(y⊤⊔y⊤) = C(y⊤) =y⊤, as ⊤ ∈ D⊔. That C(x⊔x) = C(x) is immediate
from Definition 2. Finally, one shows that C(x ⊔ y) = C(x) ⊔C(y) for all x, y ∈ D.
Let x, y ∈ D. Using commutativity and associativity of ⊔ and Definition 2(1b),
additivity of C and the fact that x⊔ x, y ⊔ y ∈ D⊔, we have the following equalities.
C(x⊔y) = C((x⊔y)⊔(x⊔y)) = C((x⊔x)⊔(y⊔y)) = C(x⊔x)⊔C(y⊔y) = C(x)⊔C(y).
So O is a dBao. �

We end this part by noting a close connection between the full com-
plex algebra of a Kripke frame and that of a corresponding Kripke context.
Let (W,R) be a Kripke frame and F+ := (P(W ),∩,∪,c ,W, ∅,mR) be the
full complex algebra [19], where for all A ∈ P(W ), mR(A) := {w ∈ W :

R(w) ∩ A 6= ∅} = A
R
. This is a Bao, and as observed earlier, yields the dBao

(P(W ),∩,∪,c ,W, ∅,mδ
R,mR). For the Kripke frame (W,R), let us define the

Kripke context KC0 := ((W,R), (W,R), 6=). By Definition 6, we have the full
complex algebra of KC0 as P+(KC0) := (P(K),⊔,⊓,¬, y,⊤,⊥, f1, f2), where
f1((A,B)) := (AR, (AR)

′), f2((A,B)) := ((BR)
′, BR) for all (A,B) ∈ P(K).

Then we get

Theorem 19 For the full complex algebra P+(KC0), the following hold.

1. ¬x =yx, ¬¬x = x and f1(x) = ¬f2(¬x) for all x ∈ P(K).
2. (P(K),⊔,⊓,¬,⊤,⊥, f2) is a Bao, which is isomorphic to F+.

Proof 1. Let A ⊆ W and x ∈ Ac. Then for all a ∈ A, x 6= a, which implies that
x ∈ A′. Now let x ∈ A′. Then x 6= a, for all a ∈ A, which implies that x ∈ Ac. So
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A′ = Ac, and A′′ = Ac′ = Acc = A. Therefore (A,B) ∈ P(K) if and only if A = Bc,
which is equivalent to Ac = B.
Let (A,Ac) ∈ P(K). Then ¬(A,Ac) = (Ac, A) =y(A,Ac) and ¬¬(A,Ac) = (A,Ac).
f2((A,Ac)) := ((Ac)′

R
, (Ac)

R
), giving

¬f2(¬(A,Ac)) = ¬f2((A
c, A)) = ¬((AR)′, AR) = ((AR)′c, (AR)′c′) = (AR, (AR)′).

So f1((A,Ac)) = (AR, (AR)′) = ¬f2(¬(A,Ac)).
2. By Theorem 16 it follows that (P(K),⊔,⊓,¬,⊤,⊥, f2) is a Bao.
Let us define a map f from P(W ) to P(K) by f(A) := (A,Ac) for all A ⊆ W .
It is clear that f is well-defined. To show f is a homomorphism, let A,B ⊆ W .
f(A ∩ B) = (A ∩ B, (A ∩ B)c) = (A,Ac) ⊓ (B,Bc) = f(A) ⊓ f(B) and f(A ∪ B) =
(A ∪ B, (A ∪ B)c) = (A,Ac) ⊔ (B,Bc) = f(A) ⊔ f(B). f(Ac) = (Ac, A) = ¬f(A) =

yf(A) and f(W ) = (W, ∅) = ⊤ f(∅) = (∅,W ) = ⊥. f(mR(A)) = (A
R
, (A

R
)c) =

((Ac
R
)c, Ac

R
) = f2((A,Ac)) = f2(f(A)).

Injectivity and surjectivity of f follow trivially. �

From Theorem 19, we may conclude that the dBao P+(KC0) is identifiable
with the Bao F+.

4.1.1 Representation theorems for dBaos

For every dBao O := (D,⊔,⊓,¬, y,⊤,⊥, I,C), we construct a Kripke context
based on the standard context K(D) := (Fp(D), Ip(D),∆) corresponding to
the underlying dBa D. For that, relations R and S are defined on Fp(D) and
Ip(D) respectively as follows.

For all u, u1 ∈ Fp(D), uRu1 if and only if Iδ(a) ∈ u for all a ∈ u1.

For all v, v1 ∈ Ip(D), vSv1 if and only if Cδ(a) ∈ v for all a ∈ v1.

The following results are required to get (Representation) Theorem 20.

Lemma 7 If F is a primary filter (ideal) of a dBa D, then for any x ∈ D, exactly
one of the elements x and ¬x belongs to F .

Proof Proof follows from the definition of a primary filter (ideal). �

Lemma 8 Let O := (D,⊔,⊓,¬, y,⊤,⊥, I,C) be a dBao. The following hold.

1. For all u, u1 ∈ Fp(D), uRu1 if and only if for all a ∈ D, Ia ∈ u implies that
a ∈ u1.

2. For all v, v1 ∈ Ip(D), vSv1 if and only if for all a ∈ D, Ca ∈ v implies that
a ∈ v1.

Proof 1. For all a ∈ D, suppose Ia ∈ u implies that a ∈ u1. If possible, assume
u✚Ru1. Then there exists a1 ∈ u1 such that Iδ(a1) /∈ u. So ¬Iδ(a1) ∈ u, which implies
that I(¬a1) ∈ u by Lemma 6(2). As a1 ∈ u1, ¬a1 /∈ u1, which contradicts that
I(¬a1) ∈ u. Hence uRu1.
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Now, we assume that uRu1 and let a1 ∈ D such that Ia1 ∈ u. If possible,
suppose a1 /∈ u1. Then ¬a1 ∈ u1. So Iδ(¬a1) ∈ u as uRu1. Therefore by Lemma 6,
Iδ(¬a1) = ¬I(a1) ∈ u, which is a contradiction by Lemma 7. Hence a1 ∈ u1.
Proof of 2 is similar to the above. �

Lemma 9 Let D := (D,⊔,⊓,¬, y,⊤,⊥) be a dBa. For all a, b ∈ D, the following hold.

1. If a ⊓ b = ⊥ then a ⊓ a ⊑ ¬b.
2. If a ⊓ a ⊑ ¬b then a ⊓ b ⊑ ⊥.
3. If a ⊔ b = ⊤ then yb ⊑ a ⊔ a.
4. If yb ⊑ a ⊔ a then ⊤ ⊑ a ⊔ b.

In particular, if D is a contextual dBa then a ⊓ b = ⊥ if and only if a ⊓ a ⊑ ¬b, and
a ⊔ b = ⊤ if and only if yb ⊑ a ⊔ a.

Proof 1. Let a, b ∈ D and a ⊓ b = ⊥. Then by Definition 2(1a) and the associative
law, ⊥ = (a ⊓ a) ⊓ (b ⊓ b). So ⊥ ∨ ¬(b ⊓ b) = ((a ⊓ a) ⊓ (b ⊓ b)) ∨ ¬(b ⊓ b). By
Definition 2(6a), ⊥ ∨ ¬(b ⊓ b) = ((a ⊓ a) ∨ ¬(b ⊓ b)) ⊓ ((b ⊓ b) ∨ ¬(b ⊓ b)). Now
(a ⊓ a) ∨ ¬(b ⊓ b) = ¬(¬(a ⊓ a) ⊓ ¬¬(b ⊓ b)) = ¬(¬a ⊓ (b ⊓ b)) by Definition 2(4a)
and Proposition 5(3). So (a⊓a)∨¬(b⊓ b) = ¬(¬a⊓ b) by Definition 2(1a). Similarly,
we can show that ⊥ ∨ ¬(b ⊓ b) = ¬(b ⊓ ¬⊥). Therefore ⊥ ∨ ¬(b ⊓ b) = ¬(b ⊓ ¬⊥) =
¬(b ⊓ (⊤ ⊓ ⊤)) by Definition 2(10a). Using Definition 2(1a) and Proposition 4(2),
⊥∨¬(b⊓b) = ¬(b⊓⊤) = ¬(b⊓b) = ¬b, where the last equality follows from Definition
2(4a). This implies that ¬b = ¬(¬a⊓b)⊓¬⊥ = ¬(¬a⊓b), as ¬(¬a⊓b), b⊓b,¬⊥ ∈ D⊓.
¬¬a ⊑ ¬(¬a ⊓ b), as ¬a ⊓ b ⊑ ¬a. So a ⊓ a ⊑ ¬(¬a ⊓ b) = ¬b.
2. Let a ⊓ a ⊑ ¬b. Then a ⊓ a ⊓ b ⊑ ¬b ⊓ b by Proposition 4(6) and by Definition
2(1a), a ⊓ b ⊑ ⊥.
Now if D is a contextual dBa then ⊑ becomes a partial order. Therefore from the
above it follows that a ⊓ b = ⊥ if and only if a ⊓ a ⊑ ¬b.
The other parts can be proved dually. �

Lemma 10 Let O be a dBao and KC(O) := ((Fp(D), R), (Ip(D), S),∆). Then for
all a ∈ D the following hold.

1. Fa
R
= FIδ(a) and FaR

= FI(a).

2. Ia
S
= ICδ(a) and IaS = IC(a).

Proof 1. Let F ∈ Fa
R
. Then there exists F1 ∈ Fa such that FRF1, which implies

that Iδ(a) ∈ F , as a ∈ F1. So Fa
R

⊆ F
Iδ(a).

Let F ∈ F
Iδ(a) and we show that F ∈ Fa

R
. We must then find a primary filter

F1 ∈ Fa such that FRF1. Let F0 := {x ∈ D : Ix ∈ F} and F01 := {x ⊓ a : x ∈ F0}.
Then F01 is closed under ⊓ and F01 ⊆ D⊓. Next we show that ⊥ /∈ F01. If possible,
suppose ⊥ ∈ F01. Then there exists x1 ∈ F0 such that x1 ⊓ a = ⊥, which implies
that a ⊓ a ⊑ ¬x1 by Lemma 9(1). So Iδ(a ⊓ a) ⊑ Iδ(¬x1), whence Iδ(a) ⊑ Iδ(¬x1)
by Lemma 6(4,5). Iδ(¬x1) ∈ F , as Iδ(a) ∈ F and F is a filter, which implies that
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¬I(x1) ∈ F . So I(x1) /∈ F which contradicts that x1 ∈ F0. Therefore ⊥ /∈ F01. Since
D⊓ is a Boolean algebra and F01 ⊆ D⊓, there exists a prime filter F2 containing
F01. So F3 := {x ∈ D : y ⊑ x for some y ∈ F2} is a primary filter containing F2 by
Lemma 2 and Proposition 6. For all x ∈ F0, x⊓a ∈ F01 ⊆ F2 and x⊓a ⊑ x, x⊓a ⊑ a,
which implies that F0 ⊆ F3 and a ∈ F3. By Lemma 8(1) it follows that FRF3.

Therefore F ∈ Fa
R
.

Using Proposition 11(i), Lemmas 4 and 6(1), we get

FaR
= ((F c

a )
R
)c = ((F¬a)

R
)c = F c

Iδ(¬a) = F
¬Iδ(¬a) = FI(a).

2 can be proved dually. �

The Kripke context KC(O) of Lemma 10 is used to obtain the representa-
tion theorem.

Theorem 20 (Representation theorem) Let O := (D,⊔,⊓,¬, y,⊤,⊥, I,C) be a
dBao. The following hold.

1. O is quasi-embeddable into the full complex algebra P+(KC(O)) of the
Kripke context KC(O). h : D → P(K(D)) defined by h(x) := (Fx, Ix) for
all x ∈ D, is the required quasi-embedding.

2. If O is a contextual dBao then the quasi-embedding h is an embedding.
3. Op is embeddable into the largest pure subalgebra H+(KC(O)) of

P+(KC(O)).

Proof 1. Let D := (D,⊔,⊓,¬, y,⊤,⊥) be the underlying dBa. By Theorem 9, we
know that the map h : D → P(K(D)) defined by h(x) := (Fx, Ix) for all x ∈ D
is a quasi-embedding. To show h is a dBao homomorphism, we prove that for any
x ∈ D, h(Ix) = fR(h(x)) and h(Cx) = fS(h(x)), that is, (FIx, IIx) = (FxR

, (FxR
)′)

and (FCx, ICx) = ((IxS)
′, IxS). By Lemma 10(1), FxR

= FIx. By Lemma 5,

F ′

Ix = IIx⊓⊔
= I(Ix⊓Ix)⊔(Ix⊓Ix) = IIx⊔Ix = IIx, the last two equalities hold, as

Ix ⊓ Ix = I(x ⊓ x) = Ix and by Lemma 4(1). So (FxR
)′ = IIx.

Similar to the above, using Lemma 10(2) and Lemma 5, we can show that
(FCx, ICx) = ((IxS)

′, IxS). Hence h is the required quasi-embedding from the dBao

O into P+(KC(O)) .
2. Since O is contextual, the quasi-order is a partial order. As a result, h becomes
injective.
3. Let x ∈ Dp. Then either x ⊓ x = x or x ⊔ x = x. If x ⊓ x = x, h(x) = (Fx, Ix) =
(Fx, F

′
x), by Lemmas 4 and 5. Now if x ⊔ x = x, h(x) = (Fx, Ix) = (I ′x, Ix), by Lem-

mas 4 and 5. So h↾Dp is an injective dBao homomorphism from Op to H+(KC(O)),
as Op is pure and by Proposition 2. �

Corollary 6 Let O be a pure dBao. Then O is embeddable into the complex algebra
H+(KC(O)) of the Kripke context KC(O).

Proof Proof follows from Theorems 14(2) and 20(3). �
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4.2 Topological double Boolean algebras

Definition 9 A dBao O := (D,⊓,⊔,¬, y,⊤,⊥, I,C) is called a topological dBa if
the following hold.

4a I(x) ⊑ x 4b x ⊑ C(x)
5a II(x) = I(x) 5b CC(x) = C(x)

A topological contextual dBa is a topological dBa in which the underlying dBa is
contextual. If the underlying dBa is pure, the topological dBa is called a topological

pure dBa.

Again, as intended, we obtain a class of examples of topological dBas from
the sets of protoconcepts and semiconcepts of contexts.

Theorem 21 Let KC := ((G,R), (M,S), I) be a reflexive and transitive Kripke
context. Then the following hold.

1. P+(KC) is a topological contextual dBa.

2. P+(KC)p = H+(KC) is a topological pure dBa.

Proof 1. Proof follows from Theorems 15 and 13.
2. Proof is similar to the proof of Theorem 15(2). �

Now, we will show that for a topological dBa O, KC(O) is a reflexive and
transitive Kripke context. For that, we first prove the following lemma.

Lemma 11 Let D be a topological dBa. Then for all a ∈ D, IδIδ(a) = Iδ(a) and
CδCδ(a) = Cδ(a).

Proof Let a ∈ D. By Definition 9(5a), II(¬a) = I(¬a), which implies that ¬II(¬a) =
¬I(¬a). By Lemma 6(2), Iδ(¬I¬a) = Iδ(a), whence IδIδ(a) = Iδ(a). Similarly, we
can show that CδCδ(a) = Cδ(a). �

We now have

Theorem 22 KC(O) := ((Fp(D), R), (Ip(D), S),∆) is a reflexive and transitive
Kripke context.

Proof To show R is reflexive, let F ∈ Fp(D) and Ia ∈ F for some a ∈ D. By
Definition 9(4a), Ia ⊑ a, which implies that a ∈ F , as F is a filter. So FRF by
Lemma 8.
To show R is transitive, let F, F1, F2 ∈ Fp(O) such that FRF1 and F1RF2. We show

that FRF2. Let a ∈ F2. Then Iδ(a) ∈ F1, as F1RF2, which implies that IδIδ(a) ∈ F ,
as FRF1. So Iδ(a) = IδIδ(a) ∈ F , using Lemma 11. Thus FRF2.
Similarly, one can show that S is reflexive and transitive. �
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Combining Theorem 20, Corollary 6 and Theorem 22, we get the represen-
tation results for topological dBas in terms of reflexive and transitive Kripke
contexts.

Theorem 23 A topological dBa O is quasi-embeddable into the full complex algebra
P+(KC(O)) of the reflexive and transitive Kripke context KC(O).

Op is embeddable into the complex algebra H+(KC(O)) of KC(O). Moreover,

1. IfO is a topological contextual dBa thenO is embeddable intoP+(KC(O)).
2. If O is a topological pure dBa then O is embeddable into the complex

algebra H+(KC(O)) of KC(O).

5 Logics corresponding to the algebras

We next formulate the logic CDBL for contextual dBas. The logic MCDBL
for the class of contextual dBaos, and its extension MCDBL4 for topological
contextual dBas are both defined with CDBL as their base. In Section 5.3, it
is shown that, apart from the algebraic semantics, the logics can be imparted
a protoconcept-based semantics, due to the representation theorems for the
respective classes of algebras obtained in Sections 4.

5.1 CDBL

The language L of CDBL consists of a countably infinite set PV of
propositional variables, propositional constants ⊥,⊤, and logical connectives
⊔,⊓,¬, y. The set F of formulae is given by the following scheme:

⊤ | ⊥ | p | α ⊔ β | α ⊓ β | ¬α |yα,

where p ∈ PV. ∨ and ∧ are definable connectives: α ∨ β := ¬(¬α ⊓ ¬β) and
α ∧ β :=y(yα⊔yβ) for all α, β ∈ F. A sequent in CDBL is a pair of formulae
denoted by α ⊢ β for α, β ∈ F. If α ⊢ β and β ⊢ α, we use the abbreviation
α ⊣⊢ β.

The axioms of CDBL are given by the following schema.

1 α ⊢ α.

Axioms for ⊓ and ⊔:
2a α ⊓ β ⊢ α 2b α ⊢ α ⊔ β
3a α ⊓ β ⊢ β 3b β ⊢ α ⊔ β
4a α ⊓ β ⊢ (α ⊓ β) ⊓ (α ⊓ β) 4b (α ⊔ β) ⊔ (α ⊔ β) ⊢ α ⊔ β

Axioms for ¬ and y:
5a ¬(α ⊓ α) ⊢ ¬α 5b yα ⊢y(α ⊔ α)
6a α ⊓ ¬α ⊢ ⊥ 6b ⊤ ⊢ α⊔yα
7a ¬¬(α ⊓ β) ⊣⊢ (α ⊓ β) 7b yy(α ⊔ β) ⊣⊢ (α ⊔ β)

Generalization of the law of absorption:
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8a α ⊓ α ⊢ α ⊓ (α ⊔ β) 8b α ⊔ (α ⊓ β) ⊢ α ⊔ α
9a α ⊓ α ⊢ α ⊓ (α ∨ β) 9b α ⊔ (α ∧ β) ⊢ α ⊔ α

Laws of distribution:
10a α ⊓ (β ∨ γ) ⊣⊢ (α ⊓ β) ∨ (α ⊓ γ) 10b α ⊔ (β ∧ γ) ⊣⊢ (α ⊔ β) ∧ (α ⊔ γ)

Axioms for ⊥,⊤:
11a ⊥ ⊢ α 11b α ⊢ ⊤
12a ¬⊤ ⊢ ⊥ 12b ⊤ ⊢y⊥
13a ¬⊥ ⊣⊢ ⊤ ⊓ ⊤ 13b y⊤ ⊣⊢ ⊥ ⊔ ⊥

The compatibility axiom:
14 (α ⊔ α) ⊓ (α ⊔ α) ⊣⊢ (α ⊓ α) ⊔ (α ⊓ α)

Rules of inference of CDBL are as follows.

For ⊓ and ⊔:
α ⊢ β

α ⊓ γ ⊢ β ⊓ γ
(R1)

α ⊢ β

γ ⊓ α ⊢ γ ⊓ β
(R1)′

α ⊢ β

α ⊔ γ ⊢ β ⊔ γ
(R2)

α ⊢ β

γ ⊔ α ⊢ γ ⊔ β
(R2)′

For ¬, y:
α ⊢ β

¬β ⊢ ¬α
(R3)

α ⊢ β

yβ ⊢yα
(R3)′

Transitivity:
α ⊢ β β ⊢ γ

α ⊢ γ
(R4)

Order:
α ⊓ β ⊢ α ⊓ α α ⊓ α ⊢ α ⊓ β α ⊔ β ⊢ β ⊔ β β ⊔ β ⊢ α ⊔ β

α ⊢ β
(R5)

(R5) captures the order relation of the contextual dBas.

Derivability is defined in the standard manner: a sequent S is derivable (or
provable) in CDBL, if there exists a finite sequence of sequents S1, . . . , Sm

such that Sm is the sequent S and for all k ∈ {1, . . . ,m} either Sk is an axiom
or Sk is obtained by applying rules of CDBL to elements from {S1, . . . , Sk−1}.
Let us give a few examples of derived rules and sequents.

Proposition 24 The following rules are derivable in CDBL.

α ⊢ β α ⊢ γ

α ⊓ α ⊢ β ⊓ γ
(R6)

β ⊢ α γ ⊢ α

β ⊔ γ ⊢ α ⊔ α
(R7)

Proof (R6) is derived using (R1), (R1)′ and (R4), while for (R7) one uses (R2), (R2)′

and (R4). �

Theorem 25 For α, β, γ ∈ F, the following are provable in CDBL.
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1a (α ⊓ β) ⊣⊢ (β ⊓ α). 1b α ⊔ β ⊣⊢ β ⊔ α.
2a α ⊓ (β ⊓ γ) ⊣⊢ (α ⊓ β) ⊓ γ. 2b α ⊔ (β ⊔ γ) ⊣⊢ (α ⊔ β) ⊔ γ.
3a (α ⊓ α) ⊓ β ⊣⊢ (α ⊓ β). 3b (α ⊔ α) ⊔ β ⊣⊢ α ⊔ β.
4a ¬α ⊢ ¬(α ⊓ α). 4b y(α ⊔ α) ⊢yα.
5a α ⊓ (α ⊔ β) ⊢ (α ⊓ α). 5b α ⊔ α ⊢ α ⊔ (α ⊓ β).
6a α ⊓ (α ∨ β) ⊢ α ⊓ α. 6b α ⊔ α ⊢ α ⊔ (α ∧ β).
7a ⊥ ⊢ α ⊓ ¬α. 7b α⊔yα ⊢ ⊤.
8a ⊥ ⊢ ¬⊤. 8b y⊥ ⊢ ⊤.

Proof The proofs are straightforward and one makes use of axioms 2a, 3a, 4a,
Proposition 24 and the rule (R4) in most cases. For instance, here is a proof for 1a:

4a (α ⊓ β) ⊢ (α ⊓ β) ⊓ (α ⊓ β)

3a α ⊓ β ⊢ β α ⊓ β ⊢ α 2a

(α ⊓ β) ⊓ (α ⊓ β) ⊢ β ⊓ α (R6)

(α ⊓ β) ⊢ (β ⊓ α) (R4)

Interchanging α and β in the above, we get (β ⊓ α) ⊢ (α ⊓ β).
(4a) follows from axiom 2a and (R3). (7a), (8a) follow from axiom 11a. The remaining
proofs are given in the Appendix. Note that the proofs of (ib), i = 1, 2, 3, 4, 5, 6, 7, 8,
are obtained using the axioms and rules dual to those used to derive (ia). �

Definitions of valuations on the algebras and satisfaction of sequents are as
follows.

Definition 10 Let D := (D,⊔,⊓,¬, y,⊤D,⊥D) be a contextual dBa. A valuation

v : F → D on D is a map such that for all α, β ∈ F the following hold.
1. v(α ⊔ β) := v(α) ⊔ v(β). 4. v(α ⊓ β) := v(α) ⊓ v(β).
2. v(yα) :=yv(α). 5. v(¬α) := ¬v(α).
3. v(⊤) := ⊤D. 6. v(⊥) := ⊥D.

Definition 11 A sequent α ⊢ β is said to be satisfied by a valuation v on a contextual
dBa D if and only if v(α) ⊑ v(β). α ⊢ β is true in D if and only if for all valuations
v on D, v satisfies α ⊢ β. α ⊢ β is valid in the class of all contextual dBas if and only
if it is true in every contextual dBa.

Theorem 26 (Soundness) If a sequent α ⊢ β is provable in CDBL then it is valid
in the class of all contextual dBas.

Proof The proof that all the axioms of CDBL are valid in the class of all contextual
dBas is straightforward and can be obtained using Proposition 4 and Definition 2.
One then needs to verify that the rules of inference preserve validity. Using Propo-
sition 4, one can show that (R1), (R2), (R1)′ and (R2)′ preserve validity. The cases
for (R3) and (R3)′ follow from Proposition 5.

To show (R5) preserves validity, let the sequents α⊓β ⊢ α⊓α, α⊓α ⊢ α⊓β, α⊔β ⊢
β ⊔ β, and β ⊔ β ⊢ α ⊔ β be valid in the class of all contextual dBas. Let D be a
contextual dBa and v a valuation in D. Then v satisfies each sequent, which implies
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that v(α⊓β) ⊑ v(α⊓α), v(α⊓α) ⊑ v(β⊓α), v(α⊔β) ⊑ v(β⊓β) and v(β⊔β) ⊑ v(α⊔β).
So v(α ⊓ β) = v(α ⊓ α) and v(α ⊔ β) = v(β ⊔ β), as D is contextual. This gives
v(α)⊓ v(β) = v(α)⊓ v(α) and v(α)⊔ v(β) = v(β)⊔ v(β). Thus v(α) ⊑ v(β), whence
α ⊢ β is satisfied by v. �

As usual, the completeness theorem is proved using the Lindenbaum-Tarski
algebra of CDBL, and the algebra is constructed in the standard way as
follows. A relation ≡⊢ is defined on F by: α ≡⊢ β if and only if α ⊣⊢ β, for
α, β ∈ F. ≡⊢ is a congruence relation on F with respect to ⊔, ⊓, ¬, y. The
quotient set F/ ≡⊢ with operations induced by the logical connectives, give the
Lindenbaum-Tarski algebra L(F) := (F/ ≡⊢,⊔,⊓,¬, y, [⊤], [⊥]). The axioms
in CDBL and Theorem 25 ensure that L(F) is a dBa. One then has

Proposition 27 For any formula α and β the following are equivalent.

1. α ⊢ β is provable in CDBL.
2. [α] ⊑ [β] in L(F) of CDBL.

Proof For 1 =⇒ 2, we make use of (R1)′, (R4), axiom 2a and Theorem 25(2a, 3a).

α ⊢ β

α ⊓ α ⊢ α ⊓ β

α ⊓ β ⊢ α

α ⊓ (α ⊓ β) ⊢ α ⊓ α α ⊓ β ⊢ α ⊓ (α ⊓ β)

α ⊓ β ⊢ α ⊓ α

So α⊓α ⊣⊢ α⊓β, which implies that [α]⊓ [α] = [α⊓α] = [α⊓ β] = [α]⊓ [β]. Dually
we can show that [α] ⊔ [β] = [β] ⊔ [β]. Therefore [α] ⊑ [β].
For 2 =⇒ 1, suppose [α] ⊑ [β]. Then [α]⊓[β] = [α]⊓[α]. So [α⊓β] = [α⊓α]. Similarly
we can show that [α ⊔ β] = [β ⊔ β]. Therefore α ⊓ β ⊣⊢ α ⊓ α and α ⊔ β ⊣⊢ β ⊔ β.
Now using (R5), α ⊢ β. �

It is worth noting that the axioms of CDBL are obtained by converting the
dBa axioms into sequents. Nonetheless, the system is complete with respect to
the class of contextual dBas, because the relation ≡⊢ provides a partial order
on the set F/ ≡⊢, which forces the Lindenbaum algebra L(F) to become a
contextual dBa.

Theorem 28 L(F) is a contextual dBa.

Proof Follows directly by axiom 1, (R4) and Proposition 27. �

The canonical map v0 : F → F/ ≡⊢ defined by v0(γ) := [γ] for all γ ∈ F, can
be shown to be a valuation on L(F).
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Theorem 29 (Completeness) If a sequent α ⊢ β is valid in the class of all contextual
dBas then it is provable in CDBL.

Proof If α ⊢ β be valid in the class of all contextual dBas, it is true in L(F). Consider
the canonical valuation v0. Then v0(α) ⊑ v0(β) and so [α] ⊑ [β]. By Proposition 27,
it follows that α ⊢ β is provable in CDBL. �

5.2 MCDBL and MCDBL4

The language L1 of MCDBL adds two unary modal connectives � and � to
the language L of CDBL. The formulae are given by the following scheme.

⊤ | ⊥ | p | α ⊔ β | α ⊓ β | ¬α |yα | �α | �α,

where p ∈ PV. The set of formulae is denoted by F1. The axiom schema for
MCDBL consists of all the axioms of CDBL and the following.

15a �α ⊓�β ⊣⊢ �(α ⊓ β) 15b �α ⊔�β ⊣⊢ �(α ⊔ β)
16a �(¬⊥) ⊣⊢ ¬⊥ 16b �(y⊤) ⊣⊢y⊤
17a �(α ⊓ α) ⊣⊢ �(α) 17b �(α ⊔ α) ⊣⊢ �(α)

Rules of inference: All the rules of CDBL and the following.
α ⊢ β

�α ⊢ �β
(R8)

α ⊢ β

�α ⊢ �β
(R9)

Definable modal operators are ♦,�, given by ♦α := ¬�¬α and �α :=y�yα.
It is immediate that

Theorem 30 If a sequent α ⊢ β is provable in CDBL then it is provable in
MCDBL.

A valuation v on a contextual dBao O := (D,⊔,⊓,¬, y,⊤D,⊥D, I,C), is
a map from F1 to D that satisfies the conditions in Definition 10 and the
following for the modal operators:

Definition 12 v(�α) := I(v(α)) and v(�α) := C(v(α)).

Definitions of satisfaction, truth and validity of sequents are given in a
similar manner as before.

5.2.1 MCDBLΣ

MCDBL4 is obtained as a special case of the logic MCDBLΣ that is defined
as follows.

Definition 13 Let Σ be any set of sequents in MCDBL. MCDBLΣ is the logic
obtained from MCDBL by adding all the sequents in Σ as axioms.
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Note that if Σ = ∅ then MCDBLΣ is the same as MCDBL. The set Σ
required to define MCDBL4 will be given at the end of this section. Let us
briefly discuss some features of MCDBLΣ for any Σ – these would then apply
to both MCDBL and MCDBL4.

Let VΣ denote the class of those contextual dBaos in which the sequents of
Σ are valid. As a consequence of axioms 15a, 16a, 17a, 15a, 16b, 17b and rules
(R8), (R9), one can conclude that if a sequent α ⊢ β is provable in MCDBLΣ
then it is valid in the class VΣ.

As before, one has the Lindenbaum-Tarski algebra LΣ(F1) for MCDBLΣ;
it has additional unary operators induced by the modal operators in L1.
More precisely, LΣ(F1) := (F1/≡⊢,⊔,⊓,¬, y, [⊤], [⊥], f�, f�), where f�, f� are
defined as: f�([α]) := [�α], f�([α]) := [�α].

Proposition 27 extends to this case. Using this proposition and rules (R8),
(R9), one shows that the operators f�, f� are monotonic:

Lemma 12 For α, β ∈ F1, [α] ⊑ [β] in LΣ(F1) implies that f�([α]) ⊑ f�([β]) and
f�([α]) ⊑ f�([β]).

(F1/≡⊢,⊔,⊓,¬, y, [⊤], [⊥]) is a contextual dBa; Lemma 12 along with axioms
16a, 16b, 17a, 17b and the result corresponding to Proposition 27 give

Theorem 31 LΣ(F1) ∈ VΣ.

One then gets in the standard manner,

Theorem 32 (Completeness) If a sequent α ⊢ β is valid in the class VΣ then it is
provable in MCDBLΣ.

MCDBL4 is defined as the logic MCDBLΣ where Σ contains the following:
18a �α ⊢ α 18b α ⊢ �α
19a ��α ⊣⊢ �α 19b ��α ⊣⊢ �α

We have thus obtained

Theorem 33 (Soundness and Completeness)

1. α ⊢ β is provable in MCDBL if and only if α ⊢ β is valid in the class of
all contextual dBaos.

2. α ⊢ β is provable in MCDBL4 if and only if α ⊢ β is valid in the class of
all topological contextual dBas.
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5.3 Protoconcept-based semantics for the logics

As a consequence of the representation result for contextual dBas (Corollary
1), we get another semantics for CDBL based on the sets of protoconcepts
of contexts. The required basic definitions are derivable from those given in
Section 5. However, for the sake of completeness, these are mentioned here. We
first define valuations, models and satisfaction for a context K := (G,M, I).
Valuations associate formulae with protoconcepts of K:
A valuation is a map v : F → P(K) such that

v(α ⊔ β) := v(α) ⊔ v(β). v(α ⊓ β) := v(α) ⊓ v(β).
v(¬α) := ¬v(α). v(yα) :=yv(α).
v(⊤) := (G, ∅). v(⊥) := (∅,M).

A model for CDBL based on the context K is a pair M := (P(K), v), where v
is a valuation.

Let K denote the collection of all contexts.

Definition 14 A sequent α ⊢ β is said to be satisfied in a model M based on K if
v(α) ⊑ v(β). α ⊢ β is true in K if it is satisfied in every model based on K. α ⊢ β is
valid in the class K if it is true in every context K ∈ K.

As for any context K the set P(K) of protoconcepts of K forms a contextual
dBa (Theorem 7(1)), and for any model M := (P(K), v), v is a valuation
according to Definition 10, Theorem 26 gives us the soundness of CDBL with
respect to the above semantics. In other words, if a sequent is provable in
CDBL then it is valid in the class K.

For the completeness result, we make use of the (Representation) Corol-
lary 1 for contextual dBas and the fact that the Lindenbaum-Tarski algebra
L(F) is a contextual dBa (Theorem 28). From these it follows that h :
F/ ≡⊢→ P(K(L(F))) defined as h([α]) := (F[α], I[α]) for all [α] ∈ F/ ≡⊢, is
an embedding. Recall the canonical map v0 : F → F/ ≡⊢ defined in Section
5. The composition v1 := h ◦ v0 is then a valuation, which implies that
M(L(F)) := (P(K(L(F))), v1) is a model for CDBL.

Theorem 34 (Completeness) If a sequent α ⊢ β is valid in K then α ⊢ β is provable
in CDBL.

Proof If possible, suppose α ⊢ β is not provable in CDBL. By Proposition 27,
[α] 6⊑ [β]. By Proposition 3(3), either [α] ⊓ [α] 6⊑⊓ [β] ⊓ [β] or [α] ⊔ [α] 6⊑⊔ [β] ⊔ [β].
Then there exists a prime filter F0 in L(F)⊓ (a Boolean algebra by Proposition 3)
such that [α] ⊓ [α] ∈ F0 and [β] ⊓ [β] /∈ F0. By Lemma 2, there exists a filter F in
L(F) such that F ∩L(F)⊓ = F0 and as F0 is prime, F ∈ Fp(L(F)). As [α]⊓ [α] ∈ F0,
[α] ⊓ [α] ∈ F and [β] ⊓ [β] /∈ F , because [β] ⊓ [β] /∈ F0 and [β] ⊓ [β] ∈ L(F)⊓. So
[α] ∈ F , as [α] ⊓ [α] ⊑ [α], and [β] /∈ F , otherwise [β] ⊓ [β] ∈ F . This gives F ∈ F[α]

and F /∈ F[β], whence F[α]✓⊆F[β].
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In case [α] ⊔ [α] 6⊑⊓ [β] ⊔ [β], we can dually show that there exists I ∈ Ip(L(F))
such that [α] /∈ I and [β] ∈ I giving I[β]✓⊆I[α].

So v1(α) = (F[α], I[α]) ✓⊑ (F[β], I[β]) = v1(β), which implies that α ⊢ β is not
true in the model M(L(F)) – a contradiction. �

In case of MCDBL and MCDBL4, instead of a context K := (G,M, I),
we consider a Kripke context KC := ((G,R), (M,S), I) based on K :=
(G,M, I). A valuation v : F1 → P(K) extends the one for CDBL with
the following definitions for the modal operators: v(�α) := fR(v(α)) and
v(�α) := fS(v(α)). Let us denote the class of all Kripke contexts by KC and
that of all reflexive and transitive Kripke contexts by KCRT . Models, satis-
faction of sequents is as for CDBL. Then it is straightforward to show that
MCDBL and MCDBL4 are sound with respect to the classes KC and KCRT

respectively.
Note that by Theorem 31, for MCDBL the Lindenbaum-Tarski algebra

LΣ(F1) is a contextual dBao, while for MCDBL4, it is a topological contex-
tual dBa. The completeness of MCDBL with respect to the class KC is then
proved in a similar manner as Theorem 34, the representation result given by
Theorem 20(2) being used. In case of MCDBL4, as a consequence of Theorem
22, KC(LΣ(F1)) is a reflexive and transitive Kripke context. Using the (Rep-
resentation) Theorem 23(1), one gets completeness of MCDBL4 with respect
to the class KCRT .

6 Conclusions

In a pioneering work unifying FCA and rough set theory, Yao, Düntsch and
Gediga [3, 29] proposed object oriented and property oriented concepts of
a context. For a context K := (G,M, I), its complement is the context
Kc := (G,M,−R), where −R := G × M \ R. It has been shown that the
lattice of concepts of K is dually isomorphic (isomorphic) to that of object ori-
ented (property oriented) concepts of Kc. In the line of Wille’s work, negation
was introduced into the study and object oriented semiconcepts and proto-
concepts of a context were proposed in [9, 10]. It was observed that (A,B)
is a protoconcept of K, if and only if (Ac, B) is an object oriented protocon-
cept of Kc. The same holds for semiconcepts of a context. For a context K,
object oriented protoconcepts form a dBa, while object oriented semiconcepts
form a pure dBa. The entire study presented here may also be done in terms
of object oriented semiconcepts and protoconcepts. In particular, one may
derive representation results for the algebras introduced here, with the help of
corresponding algebras of object oriented semiconcepts and protoconcepts.

A complete [15] dBa D is one for which the Boolean algebras D⊓ and D⊔

are complete. Vormbrock and Wille [15] have shown that any complete fully
contextual (pure) dBa D for which D⊓ and D⊔ are atomic, is isomorphic
to the algebra of protoconcepts (semiconcepts) of some context. This result
gives rise to the question of such a characterisation in case of a complete fully
contextual dBao D for which D⊓ and D⊔ are atomic. It appears that, using
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Vormbrock and Wille’s results and the representation results obtained here for
dBaos in terms of the full complex algebra of protoconcepts, one should be
able to obtain the desired characterisation.

Another direction of investigation one may pursue, is the duality between
the class of all Kripke contexts and that of all dBaos. We have shown in this
work that a dBao O induces a Kripke context KC(O), and on the other hand,
a Kripke context KC induces a dBao P+(KC). A natural question then would

be: is KC(P+(KC)) isomorphic to KC?
Topological representation results for algebras are well-studied in litera-

ture. This would serve as yet another immediate point of investigation for the
algebras discussed in this work.

Logics corresponding to dBas, pure dBas and their extensions with oper-
ators as defined here, remain an open question. The logic MCDBL4 for
topological contextual dBas is obtained as a special case of MCDBLΣ, where
Σ is any set of sequents in MCDBL. This gives a scheme of obtaining several
other logics that may express properties of dBaos and corresponding classes of
Kripke contexts besides the ones considered here. For topological contextual
dBas and correspondingly, reflexive and transitive Kripke contexts,MCDBL4
with Σ containing the modal axioms for reflexivity and transitivity, serves the
purpose. One may well include other axioms (such as symmetry) in Σ, and
investigate the resulting modal systems.
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Appendix A Proofs

Proof in Theorem 16, that (D,⊓,⊔,¬,⊤,⊥) is a Boolean algebra: Let O be
a dBao such that for all a ∈ D, ¬a =ya and ¬¬a = a. Let x, y ∈ D such
that x ⊑ y and y ⊑ x. By Proposition 4(4), x ⊓ x = y ⊓ y and x ⊔ x =
y ⊔ y. Using Proposition 5(3), ¬¬x = ¬¬y and so x = y. Therefore (D,⊑)
is a partially ordered set. From Definition 2(2a and 2b) it follows that ⊓,⊔
is commutative, while Definition 2(3a and 3b) gives that ⊓,⊔ is associative.
Using Definition 2(5a) and Proposition 5(3), x ⊓ (x ⊔ y) = x ⊓ x = ¬¬x. So
x⊓(x⊔y) = x. Again using Definition 2(5b) and Proposition 5(3), x⊔(x⊓y) =
x. Therefore (D,⊓,⊔,¬,⊤,⊥) is a bounded complemented lattice. To show
it is a distributive lattice, we show that for all x, y,∈ D x ⊓ y = x ∧ y and
x ∨ y = x ⊔ y. Rest of the proof follows from Definition 2(6a and 6b).

Let x, y ∈ D. Then x, y ⊑ x ⊔ y. Proposition 5(2) gives ¬(x ⊔ y) ⊑ ¬x,¬y.
Therefore by Proposition 4(6), ¬(x⊔y)⊓¬y ⊑ ¬x⊓¬y and ¬(x⊔y)⊓¬(x⊔y) ⊑
¬(x⊔y)⊓¬y. So ¬(x⊔y)⊓¬(x⊔y) ⊑ ¬x⊓¬y. By Proposition 5(1), ¬(x⊔y) ⊑
¬x⊓¬y, and by Proposition 5(2), ¬(¬x⊓¬y) ⊑ ¬¬(x⊔y) = (x⊔y)⊓ (x⊔y) ⊑
x ⊔ y. Hence x ∨ y ⊑ x ⊔ y. Using Proposition 4(5) and Proposition 5(2),
¬x ⊓ ¬y ⊑ ¬x,¬y. So ¬¬x ⊑ ¬(¬x ⊓ ¬y) and ¬¬y ⊑ ¬(¬x ⊓ ¬y). Therefore
x ⊑ ¬(¬x ⊓ ¬y) = x ∨ y and y ⊑ ¬(¬x ⊓ ¬y) = x ∨ y. Proposition 4(6) gives
x⊔y ⊑ x∨y, as (x∨y)⊔(x∨y) =yy(x∨y) = ¬¬(x∨y) = x∨y. So x⊔y = x∨y.
Dually we can show that x ⊓ y = x ∧ y.

Proof of Theorem 25:
2a.

4a (α ⊓ β) ⊓ γ ⊢ ((α ⊓ β) ⊓ γ) ⊓ ((α ⊓ β) ⊓ γ)

2a (α ⊓ β) ⊓ γ ⊢ (α ⊓ β) α ⊓ β ⊢ β 3a

(R4) (α ⊓ β) ⊓ γ ⊢ β (α ⊓ β) ⊓ γ ⊢ γ 3a

((α ⊓ β) ⊓ γ) ⊓ ((α ⊓ β) ⊓ γ) ⊢ β ⊓ γ (R6)

(α ⊓ β) ⊓ γ ⊢ β ⊓ γ (R4) – (I)
Now,

4a (α ⊓ β) ⊓ γ ⊢ ((α ⊓ β) ⊓ γ) ⊓ ((α ⊓ β) ⊓ γ)

2a (α ⊓ β) ⊓ γ ⊢ α ⊓ β α ⊓ β ⊢ α 2a

(α ⊓ β) ⊓ γ ⊢ α (R4) (α ⊓ β) ⊓ γ ⊢ β ⊓ γ (from (I) above)

((α ⊓ β) ⊓ γ) ⊓ ((α ⊓ β) ⊓ γ) ⊢ α ⊓ (β ⊓ γ) (R6)

(α ⊓ β) ⊓ γ ⊢ α ⊓ (β ⊓ γ) (R4)
Similarly we can show that α ⊓ (β ⊓ γ) ⊢ (α ⊓ β) ⊓ γ.

3a.

4a (α ⊓ α) ⊓ β ⊢ ((α ⊓ α) ⊓ β) ⊓ ((α ⊓ α) ⊓ β)

2a (α ⊓ α) ⊓ β ⊢ α ⊓ α α ⊓ α ⊢ α 2a

(R4) (α ⊓ α) ⊓ β ⊢ α (α ⊓ α) ⊓ β ⊢ β 3a

((α ⊓ α) ⊓ β) ⊓ ((α ⊓ α) ⊓ β) ⊢ α ⊓ β (R6)

(α ⊓ α) ⊓ β ⊢ α ⊓ β (R4)

4a α ⊓ β ⊢ (α ⊓ β) ⊓ (α ⊓ β)

4a α ⊓ β ⊢ (α ⊓ β) ⊓ (α ⊓ β)

2a (α ⊓ β) ⊢ α (α ⊓ β) ⊢ α 2a

(α ⊓ β) ⊓ (α ⊓ β) ⊢ α ⊓ α (R6)

(R4) α ⊓ β ⊢ α ⊓ α α ⊓ β ⊢ β 3a

(α ⊓ β) ⊓ (α ⊓ β) ⊢ (α ⊓ α) ⊓ β (R6)

α ⊓ β ⊢ (α ⊓ α) ⊓ β (R4)

5a.

4a α ⊓ (α ⊔ β) ⊢ (α ⊓ (α ⊔ β)) ⊓ (α ⊓ (α ⊔ β))

2a α ⊓ (α ⊔ β) ⊢ α α ⊓ (α ⊔ β) ⊢ α 2a

(α ⊓ (α ⊔ β)) ⊓ (α ⊓ (α ⊔ β)) ⊢ α ⊓ α (R6)

α ⊓ (α ⊔ β) ⊢ α ⊓ α (R4)

6a. Proof is identical to that of 5a.


	Introduction
	Preliminaries
	Double Boolean algebra
	Boolean algebras with operators 
	Approximation operators

	Kripke context
	Complex algebra to concept approximation

	The algebras
	Double Boolean algebras with operators 
	Representation theorems for dBaos

	Topological double Boolean algebras

	 Logics corresponding to the algebras
	CDBL
	MCDBL and MCDBL4 
	MCDBL

	Protoconcept-based semantics for the logics

	Conclusions
	Proofs

