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Some remarks on semantics and expressiveness of

the Sentential Calculus with Identity

Steffen Lewitzka*

Abstract

Suszko’s Sentential Calculus with Identity SCI results from classical

propositional calculus CPC by adding a new connective ≡ and axioms for

identity ϕ ≡ ψ (which we interpret here as ‘propositional identity’). We

reformulate the original semantics of SCI in terms of Boolean prealgebras

establishing a connection to ‘hyperintensional semantics’. Furthermore, we

define a general framework of dualities between certain SCI -theories and

Lewis-style modal systems in the vicinity of S3 . Suszko’s original approach

to two SCI -theories corresponding to S4 and S5 can be formulated as a spe-

cial case. All these dualities rely particularly on the fact that Lewis’ ‘strict

equivalence’ is axiomatized by the SCI -principles of ‘propositional iden-

tity’.

Keywords: non-Fregean logic, Boolean prealgebra, hyperintensional seman-

tics, modal logic

1 Introduction

The set Fm≡ of formulas of the Sentential Calculus with Identity SCI is induc-

tively defined in the usual way over an infinite set V of propositional variables

x0, x1, ..., logical connectives ⊥, ⊤, ¬, ∨, ∧, → and an identity connective ≡ for

building formulas of the form (ϕ ≡ ψ). As a deductive system, SCI extends clas-

sical propositional logic CPC by the identity axioms (id1)–(id7) below. That is,

SCI can be axiomatized by all formulas having the form of a classical tautology

together with the following identity axioms:

(id1) ϕ ≡ ϕ
(id2) (ϕ ≡ ψ) → (ϕ→ ψ)
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(id3) (ϕ ≡ ψ) → (¬ϕ ≡ ¬ψ)
(id4)–(id7) ((ϕ1 ≡ ψ1) ∧ (ϕ2 ≡ ψ2)) → ((ϕ1 ∗ ϕ2) ≡ (ψ1 ∗ ψ2)),
where ∗ ∈ {∨,∧,→,≡}, respectively.

With Modus Ponens MP as inference rule, the notion of derivation is defined

in the usual way. We write Φ ⊢SCI ϕ if there is a derivation of ϕ ∈ Fm≡ from

the set Φ ⊆ Fm≡. The introduction of SCI is a consequence of R. Suszko’s work

on non-Fregean logics which, in turn, was motivated by his attempts to formal-

ize ontological aspects of Wittgenstein’s Tractatus logico-philosophicus (see, e.g.

[14]). Recall that, according to G. Frege, the denotation (referent, Bedeutung) of a

formula is nothing but a truth-value. This principle, called by Suszko the Fregean

Axiom, can be formalized as (ϕ ↔ ψ) → (ϕ ≡ ψ) if we assume the classical in-

terpretation of connectives and read ϕ ≡ ψ as ‘ϕ and ψ have the same denotation’.

The essential feature of a non-Fregean logic is the failure of Fregean Axiom. SCI

can be seen as a basic non-Fregean logic extending CPC . The identity axioms

express our basic intuition on propositional identity: it should be a congruence

relation on formulas that refines equivalence ↔.1 As already pointed out in [2],

replacing (id3)–(id7) by the single scheme

(1) (ϕ ≡ ψ) → (χ[x := ϕ] ≡ χ[x := ψ]), 2

which we call the Substitution Principle SP, results in a deductively equivalent sys-

tem.3 SP essentially says that formulas with the same denotation can be replaced

by each other in any context. This principle can be seen as a particular instance of

a general ontological law known in the literature as the indiscernibility of identi-

cals or Leibniz’s law. In a formal context, SP represents a necessary condition for

the existence of a natural propositional semantics. In fact, if we interpret logical

connectives and further operators of the object language semantically as functions

on propositions, then SP says that all these functions are well-defined: identical

arguments yield identical function values. For instance, SP holds in classical and

intuitionistic propositional logic with propositional identity ϕ ≡ ψ given as equiv-

alence ϕ↔ ψ. If we assume the propositional modal language and define proposi-

tional identity as strict equivalence: (ϕ ≡ ψ) := �(ϕ↔ ψ), then SP is a derivable

principle in Lewis modal systems S3–S5 but not in the weaker systems S1 and

S2 , cf. [9, 11]. However, it is enough to add SP to system S1 in order to get a

1Indeed, (ϕ ≡ ψ) → (ϕ ↔ ψ) as well as (ϕ ≡ ψ) → (ψ ≡ ϕ) and ((ϕ ≡ ψ) ∧ (ψ ≡ χ)) →
(ϕ ≡ χ) are derivable. The ‘compatibility’ with connectives of the language is expressed by axioms

(id3) and (id4)–(id7).
2χ[x := ϕ] is the result of substituting ϕ for every occurrence of variable x in χ. The concept

can be formally defined in the obvious way by induction on the construction of χ.
3This fact can be shown by induction on χ.
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logic with a natural algebraic semantics. This logic was introduced in [9] under

the name S1+SP . In the present paper, we shall refer to it by the simpler label

S1SP . We then get the hierarchy S1SP ( S3 ( S4 ( S5 of Lewis (-style) modal

logics for which we can use the same framework of algebraic semantics based on

Boolean algebras (we shall explore this kind of semantics in section 4).

The interpretability of SCI in Lewis system S3 indicates a strong connec-

tion between SCI -theories and Lewis-style modal systems. Essential aspects of

that connection were already revealed by Suszko, Bloom [13, 2] showing that

specific extensions of SCI correspond, in some sense, to modal logics S4 and

S5 , respectively. Instead of interpreting SCI -theories in Lewis modal systems,

Suszko’s approach restores modal logic within SCI -extensions via the definition

�ϕ := (ϕ ≡ ⊤).
In the present paper, we study dualities between SCI -theories and Lewis-style

modal systems (not restricted to S4 and S5 ) in a systematical way and establish

precise criteria for the existence of such dualities. We consider here both object

languages separately – the language of SCI versus the language of propositional

modal logic – and define appropriate translations between them. In contrast to the

original model-theoretic approach (cf. [1, 2]), we introduce SCI -models explicitly

as Boolean prealgebras (or Boolean prelattices). In this way, we find a bridge to an

approach known in the literature as ‘hyperintensional semantics’ (see, e.g., [4, 12])

and present SCI as a basic classical logic for (hyper-) intensional modeling and

reasoning.

2 Intensionality as a measure for the discernibility of propo-

sitions

Originally introduced by M. J. Cresswell [3], the notion of ‘hyperintensionality’

has been interpreted in different ways in the literature and there seems to be no

formal standard definition. Usually, an operator (of a given logic) is regarded as

extensional if its application to formulas with the same truth-value results again in

formulas having the same truth-value, otherwise the operator may be seen as inten-

sional.4 In the context of possible worlds semantics, an operator is often regarded

as hyperintensional if its application to formulas having the same truth-values at

all possible (accessible) worlds does not necessarily result in formulas with the

same truth-value at the actual world. For instance, the modal operator of normal

modal logics is intensional (but not hyperintensional). Therefore, modal logics are

often regarded as intensional logics. Possible worlds semantics, however, is not an

4We consider here only classical logics.
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appropriate framework for dealing with hyperintensional operators. There are pro-

posals in the literature conceiving hyperintensional semantics in terms of Boolean

prelattices (see, e.g., [4, 12, 11]), and we will follow a similar approach. For this

purpose, let us regard a proposition as the denotation of a formula at a given model.

A proposition can be, e.g., a truth-value (in classical propositional logic), a set of

possible worlds (in normal modal logics), an element of some algebraic structure,

etc. Under these assumptions, we propose to explain intensionality as a measure

of discernibility of propositions. The more propositions can be distinguished in

models of the underlying classical logic the higher the degree of intensionality. In

CPC , only two propositions, the True and the False, can be distinguished. Cur-

rent modal logics provide much more (infinitely many) propositions: even if two

formulas ϕ and ψ have the same truth-value at the actual world, they may have dif-

ferent truth-values at some accessible world and thus denote different propositions:

the Fregean Axiom does not hold – the denotation of a formula is more than a clas-

sical truth-value. Nevertheless, many propositions remain indiscernible: logically

equivalent formulas such as ¬¬ϕ and ϕ will always denote the same proposition

in classical modal logics. The aim of hyperintensional semantics is to overcome

such limitations of the possible worlds framework (motivations come, e.g., from

the study of natural language semantics) and to provide a more fine-grained ap-

proach that allows to discern even more propositions. This goal can be perfectly

achieved working with SCI and appropriate axiomatic extensions. By a propo-

sition we will mean more specifically the element of a given SCI -model. The

degree of intensionality of a model is the largest number of propositions that can

be distinguished. We shall see that all expressible intensions can be discerned in

logic SCI . In fact, there is an SCI -model where any two different formulas denote

different propositions, see Theorem 3.12 below. We call such a model intensional

since the denotation of a formula can be identified with its intension, i.e. its syntac-

tical form. In this sense, SCI is a logic of highest degree of intensionality and, of

course, is able to model hyperintensional operators. Imposing appropriate axioms,

we get specific SCI -theories where specific propositions become indiscernible. In

particular, CPC as well as some Lewis-style modal logics can be represented as

specific SCI -theories. While models of CPC are extensional, models of modal

logics lie somewhere between the extremes of extensional and intensional model.

In the following, we will present SCI as an (hiper-) intensional logic.5

5In contrast to our view, Bloom and Suszko explicitly deny the intensional character of SCI .

“Some people, upon discovering that the identity connective was not truth-functional, have thought

that SCI is an intensional logic. We emphatically deny this. The essence of intensionality is that the

rule ”equals may be replaced by equals” fails. However, this rule does hold in the SCI ... ” (cf. p. 1

of [2]). Actually, that rule is formalized by SP which is valid in SCI .
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3 Boolean prealgebras as models of SCI

Recall that a preorder on a set M is a binary relation on M satisfying reflexiv-

ity and transitivity. If a preorder is also antisymmetic, then it is a partial order.

We also expect the reader to be familiar with the concepts of Boolean algebra,

filters and ultrafilters (on Boolean algebras) and quotient Boolean algebras. We

apply a somewhat unusual notation for Boolean algebras (with operators) which

has the advantage that for any new connective or symbol of the underlying ob-

ject language a corresponding operator for the algebraic semantics can easily be

identified. In particular, for the connectives ∨,∧,¬,⊥,⊤,→ of our classical logic,

we denote the corresponding operations of a given Boolean (pre-) algebra B by

f∨, f∧, f¬, f⊥, f⊤, f→ (or, more precisely, by fB∨ , etc., if we wish to emphasize the

given context of (pre-) algebra B).

Definition 3.1. A structure B = (B, f∨, f∧, f¬, f⊥, f⊤, f→,�) of type (2, 2, 1, 0, 0, 2)
with a preorder � on universe B is a Boolean prealgebra if the relation ≈ defined

by a ≈ b :⇔ (a � b and b � a) is a congruence relation onB such that the quotient

B/≈ is a Boolean algebra, and for all a, b ∈ B we have: a � b ⇔ f∧(a, b) ≈ a.

In this case, we call ≈ the associated congruence, and we call quotient B/≈ the

associated Boolean algebra. If the given structure B itself is a Boolean algebra,

then we denote the underlying lattice order by ≤.6

Of course, every Boolean algebra together with its lattice order (regarded as

a preorder) is trivially a Boolean prealgebra. Recall that every Boolean algebra

is a Heyting algebra. Those Heyting algebras which are not Boolean algebras are

non-trivial though natural examples of Boolean prealgebras. In order to see this,

consider any designated ultrafilter U of a given Heyting algebra (which exists by

Zorn’s Lemma) and the preorder a � b :⇔ f→(a, b) ∈ U , where f→(a, b) is

the relative pseudo-complement of a w.r.t. b. Then the resulting quotient alge-

bra modulo ≈ is the two-element Boolean algebra.7 Considering the intuitionistic

tautology (x → y) ↔ (x → (x ∧ y)), one easily checks that also the condition

a � b⇔ f∧(a, b) ≈ a holds for all elements a, b of the Heyting algebra.8

Note that we cannot do without that second condition in Definition 3.1. Even if

the resulting quotient B/≈ of structure B is a Boolean algebra, condition a � b⇔
f∧(a, b) ≈ a is not necessarily true. Consider, for instance, the 4-element Boolean

6Even if B is a Boolean algebra, the lattice order ≤ may differ from the given preorder �.
7Of course, there may exist further congruence relations on a given Heyting algebra that result in

a Boolean quotient algebra.
8Recall that all intuitionistic tautologies are interpreted by the top element f⊤ of any Heyting

algebra under any assignment, and also recall that the following condition is valid in every Heyting

algebra: f→(a, b) = f⊤ iff a ≤ b.
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algebra Pow(2) with the preorder � given by set-theoretic inclusion on Pow(2)
extended by the tuple ({1}, {2}), so we have in particular {1} � {2}. Relation ≈
is the identity on Pow(2) and the resulting quotient algebra is, of course, again the

Boolean algebra Pow(2). However, the second condition of Definition 3.1 fails

since we have {1} � {2}, but {1} ( {2}, i.e. {1} ∩ {2} 6= {1}.

If one deals with Boolean algebras, then one usually considers only the op-

erations of supremum (join) f∨, infimum (meet) f∧, complement f¬, least ele-

ment f⊥ and greatest element f⊤. Further relevant operations, such as implication

f→(a, b) := f∨(f¬(a), b), are definable. This, however, does not hold in general

for Boolean prealgebras. For instance, although we have f→(a, b) ≈ f∨(f¬(a), b),
the propositions (i.e. elements) f→(a, b) and f∨(f¬(a), b) may be distinct.

Lemma 3.2. Let B be a Boolean prealgebra with preorder �, and let B/≈ be

the associated Boolean algebra with lattice order ≤B/≈. Then for all a, b ∈ B:

a � b⇔ a ≤B/≈ b.

Proof. Let B be a Boolean prealgebra with preorder �. Then for all a, b ∈ B,

a � b⇔ fB∧ (a, b) ≈ a⇔ f
B/≈
∧ (a, b) = a⇔ a ≤B/≈ b.

Definition 3.3. Let B be a Boolean prealgebra with associated Boolean algebra

B/≈, and let F ⊆ B be closed under ≈, i.e. a ∈ F ⇔ b ∈ F whenever a ≈ b, for

any a, b ∈ B. Then we say that F is a filter of B if the set FB/≈ = {a | a ∈ F}
is a filter (in the usual sense) of Boolean algebra B/≈. The notions of proper filter

and ultrafilter of a Boolean prealgebra are defined analogously.

Corollary 3.4. Let B be a Boolean prealgebra. A subset F is a filter of B if and

only if the following conditions are satisfied for all a, b ∈ B:

• If a, b ∈ F , then f∧(a, b) ∈ F .

• If a ∈ F and a � b, then b ∈ F .

A filter F is a proper filter iff F 6= B iff f⊥ /∈ F . A filter F is an ultrafilter iff F is

maximal among all proper filters.

Corollary 3.5. Let B be a Boolean prealgebra. If B is itself a Boolean algebra,

then its lattice order ≤ refines the given preorder �, i.e., for all a, b ∈ B: a ≤ b
implies a � b.

Proof. Suppose B is a Boolean algebra. Then for any a, b ∈ B: a ≤ b ⇔ a =

fB∧ (a, b) ⇒ a = f
B/≈
∧ (a, b) ⇔ a ≤B/≈ b ⇔ a � b, where the last step follows

from Lemma 3.2.
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Definition 3.6. An SCI -model M is a structure

M = (M,TRUE , f∨, f∧, f¬, f⊥, f⊤, f→, f≡,�)

where (M,f∨, f∧, f¬, f⊥, f⊤, f→,�) is a Boolean prealgebra, TRUE ⊆ M is

a designated ultrafilter and f≡ is an additional binary function satisfying for all

m,m′ ∈ M : f≡(m,m
′) ∈ TRUE ⇔ m = m′. The elements of the universe M

are called propositions, and TRUE is the designated set of true propositions.

An assignment (or valuation) of an SCI -model M is a function γ : V → M .

Any assignment γ extends in the canonical way to a function from Fm≡ to M
which we again denote by γ. More precisely, we have γ(⊥) = f⊥, γ(⊤) = f⊤,

and γ(ϕ ∗ ψ) = f∗(γ(ϕ), γ(ψ)) for ∗ ∈ {∨,∧,→,≡}.

Definition 3.7. If M is an SCI -model and γ is an assignment of M, then we

call the tuple (M, γ) an SCI -interpretation. The satisfaction relation between

interpretations and formulas is defined as follows:

(M, γ) � ϕ :⇔ γ(ϕ) ∈ TRUE

If (M, γ) � ϕ for all assignments γ ∈ MV , then we write M � ϕ and say

that M validates ϕ (or ϕ is valid in M). For Φ ⊆ Fm≡, we define as usual

(M, γ) � Φ :⇔ (M, γ) � ϕ for all ϕ ∈ Φ. The relation of logical consequence

is defined in the standard way for any set Φ ∪ {ϕ} ⊆ Fm≡: Φ 
SCI ϕ :⇔
Mod(Φ) ⊆ Mod({ϕ}), where for any Ψ ⊆ Fm≡, Mod(Ψ) is the class of all

SCI -interpretations satisfying Ψ .

Corollary 3.8. The connective of propositional identity has the intended meaning,

i.e. for any interpretation (M, γ) and any ϕ,ψ ∈ Fm≡: (M, γ) � ϕ ≡ ψ iff

γ(ϕ) = γ(ψ) iff ϕ and ψ denote the same proposition in (M, γ).

Proof. (M, γ) � ϕ ≡ ψ iff γ(ϕ ≡ ψ) ∈ TRUE iff f≡(γ(ϕ), γ(ψ)) ∈ TRUE iff

γ(ϕ) = γ(ψ).

In [2], the authors consider only the logical connectives ¬ and →, and con-

sequently define an SCI -model as a structure A = (A, f¬, f→, f≡) that satisfies

certain conditions according to [Definition 1.6 [2]] (we use here our specific nota-

tion for the semantic operations f¬, f→, f≡ in order to keep the presentation con-

sistent). By the following result, that original definition is essentially equivalent

to our Definition 3.6 of SCI -model presented above. This is not obvious since

both definitions are formulated in very different ways. In particular, the original

definition given in [2] hides the prelattice structure which is an explicit part of our

concept of SCI -model.
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Theorem 3.9 (Equivalence of the two semantics). Our semantics based on Boolean

prealgebras is equivalent to original semantics of SCI in the following sense. Let

M = (M,TRUE , f∨, f∧, f¬, f⊥, f⊤, f→, f≡,�) be an SCI -model according to

Definition 3.6. Then the pair < A,TRUE >, where A = (M,f¬, f→, f≡), is a

model of SCI according to [Definition 1.6 [2]]. On the other hand, if < A, B >,

with A = (A, f¬, f→, f≡), is a model according to [Definition 1.6 [2]], then

M = (M,B, f∨, f∧, f¬, f⊥, f⊤, f→, f≡,�) is an SCI -model in our sense, where

a � b ⇔ f→(a, b) ∈ B, and the additional operations f∨, f∧, f⊥, f⊤ can be de-

fined by the usual Boolean equations (e.g. f⊤ := f→(a, a) for some fixed a ∈ A,

etc.).

Proof. If M = (M,TRUE , f∨, f∧, f¬, f⊥, f⊤, f→, f≡,�) is an SCI -model in

our sense, then, using the terminology of [Definition 1.6 [2]], the set TRUE is

clearly closed, proper, prime and normal. Since M is based on a Boolean preal-

gebra, we have f⊤ � h(ϕ) ∈ TRUE for any classical propositional tautology ϕ
and any valuation (assignment) h of M. Since f≡(a, b) ∈ TRUE ⇔ a = b, also

the identity axioms of SCI are all interpreted by elements of TRUE under any

assignment h. Thus, TRUE is also admissible and therefore a prime, normal filter

according to [Definition 1.6 [2]]. Thus, the reduct A = (M,f¬, f→, f≡) along

with prime, normal filter TRUE ⊆ M yields an SCI -model in the original sense.

Now let us suppose < A, B >, with A = (A, f¬, f→, f≡), is a model in the sense

of [2]. We have to extract from that concept a preorder � that yields a prelattice

and the desired SCI -model in the sense of Definition 3.6 above. For elements

a, b ∈ A, we define a � b :⇔ f→(a, b) ∈ B. Since B is a prime, normal filter (in

the terminology of [Definition 1.6 [2]], B is, in a sense, deductively closed (i.e. if

h(Φ) ⊆ B and Φ ⊢SCI ϕ, then h(ϕ) ∈ B, for any set Φ∪{ϕ} of formulas and any

valuation h of A). It follows that � is a preorder on A, and a ≈ b :⇔ (a � b and

b � a) defines a congruence relation of the structure (A, f¬, f→). In particular, for

any propositional formulas ϕ,ψ (without identity connective), if ϕ ↔ ψ is a theo-

rem of CPC , then h(ϕ) ≈ h(ψ) under any valuation h. Thus, all Boolean equa-

tions are valid in the quotient structure of (A, f¬, f→) modulo ≈, and that quotient

structure must be a Boolean algebra (actually, it is the two-element Boolean alge-

bra). We may define additional Boolean operations, such as f∧ ... , in the obvious

way. Furthermore, one easily verifies that the equivalence a � b ⇔ f∧(a, b) ≈ a
is valid. Thus, (A, f¬, f→,�) is a Boolean prealgebra. Finally, the equivalence

f≡(a, b) ∈ B ⇔ a = b is warranted by the fact that B is normal (in the sense

of [Definition 1.6 [2]]). Thus, M = (A,B, f∨, f∧, f¬, f⊥, f⊤, f→, f≡,�) is an

SCI -model according to Definition 3.6 above.

One easily verifies that any SCI -interpretation (in our sense) satisfies the ax-

ioms of SCI . Completeness of SCI w.r.t. our semantics follows from the original

8



completeness theorem of SCI (see, e.g. [2]) together with Theorem 3.9. Neverthe-

less, we will sketch out in the following an independent proof. Suppose Φ is a set

of formulas which is consistent in SCI . By Zorn’s Lemma, there is an extension

Ψ ⊇ Φ which is maximal consistent in logic SCI . By the axioms of propositional

identity, the relation ∼= defined by

ϕ ∼= ψ :⇔ (ϕ ≡ ψ) ∈ Ψ

is a congruence relation on Fm≡ (symmetry, transitivity and compatibility with

operations follow from applications of (1), i.e. the Substitution Property SP).

Moreover, by (id2), ϕ ∼= ψ implies: ϕ ∈ Ψ ⇔ ψ ∈ Ψ . For ϕ ∈ Fm≡, let [ϕ]
be the congruence class of ϕ modulo ∼=. Then we put M := {[ϕ] | ϕ ∈ Fm≡},

TRUE := {[ϕ] | ϕ ∈ Ψ} and define operations f¬([ϕ]) := [¬ϕ], f∗([ϕ], [ψ]) :=
[ϕ ∗ ψ], for ∗ ∈ {∨,∧,→,≡}, and f⊥ := [⊥], f⊤ := [⊤]. The relation � on M
defined by

[ϕ] � [ψ] :⇔ ϕ→ ψ ∈ Ψ

is a preorder on M . By SP, � is well-defined. Next we show that the structure

M′ = (M,f∨, f∧, f¬, f⊥, f⊤, f→,�)

is a Boolean prealgebra. The relation ≈ given by

[ϕ] ≈ [ψ] :⇔ ϕ↔ ψ ∈ Ψ ⇔ ([ϕ] � [ψ] and [ψ] � [ϕ])

is obviously a congruence relation of M′. Since Ψ is maximal consistent, it con-

tains in particular all equivalences ϕ ↔ ψ which are valid in CPC . These equiv-

alences axiomatize as equations ‘ϕ = ψ’ the class of Boolean algebras. It follows

that the quotient of M′ modulo ≈ is a Boolean algebra whose elements are the

congruence classes of the elements [ϕ] ∈ M modulo ≈. Moreover, for any ele-

ments [ϕ], [ψ] we have: [ϕ] � [ψ] iff ϕ → ψ ∈ Ψ iff (ϕ ∧ ψ) ↔ ϕ ∈ Ψ iff

f∧([ϕ], [ψ]) ≈ [ϕ]. Hence, M′ is a Boolean prealgebra in accordance with Defini-

tion 3.1.9 By construction, we have for any elements [ϕ], [ψ]: [ϕ] = [ψ] iff ϕ ∼= ψ
iff ϕ ≡ ψ ∈ Ψ iff [ϕ ≡ ψ] = f≡([ϕ], [ψ]) ∈ TRUE . Thus,

M := (M,TRUE , f∨, f∧, f¬, f⊥, f⊤, f→, f≡,�)

is an SCI -model. We consider the assignment γ ∈ MV defined by x 7→ [x]. By

induction on formulas, it follows that γ(ϕ) = [ϕ]. Then we have

(M, γ) � ϕ⇔ γ(ϕ) = [ϕ] ∈ TRUE ⇔ ϕ ∈ Ψ.

9M′ is not necessarily a Boolean algebra. For example, f∨([ϕ], [ψ]) = [ϕ ∨ ψ] 6= [ψ ∨ ϕ] =
f∨([ψ], [ϕ]) is possible. Even if M′ is a Boolean algebra, the preorder � may be strictly coarser

than the underlying lattice order (cf. Lemma 3.5). In fact, � is the lattice order iff Ψ contains all

instances of the Fregean Axiom (ϕ ≡ ψ) ↔ (ϕ↔ ψ).

9



In particular, (M, γ) � Φ and whence Φ is satisfiable. We have proved soundness

and completeness of SCI w.r.t. the semantics given by the class of SCI -models.

Theorem 3.10 (Soundness and Completeness). For any set Φ ∪ {ϕ} ⊆ Fm≡, the

following holds: Φ 
SCI ϕ⇔ Φ ⊢SCI ϕ.

Classical propositional logic CPC is extensional in the sense that the denota-

tion (reference, Bedeutung) of any formula is given by its truth-value relative to

the underlying assignment: either true or false. Consequently, the Fregean Axiom

holds: (ϕ ↔ ψ) ↔ (ϕ ≡ ψ). It is known that this situation can be modeled in

SCI by presenting a two-element model where all true formulas denote one ele-

ment (the true proposition) and all false formulas denote the other one (the false

proposition).

Example 3.11. There exists an extensional SCI -model, i.e. a two-element model

M where the denotation of a formula is nothing but a classical truth value: for

every assignment γ : V → {0, 1} and all ϕ,ψ ∈ Fm, (M, γ) � ϕ ≡ ψ iff

(M, γ) � ϕ↔ ψ iff ϕ and ψ have the same classical truth-value.

Of course, the desired extensional model will be based (up to isomorphism) on

the two-element Boolean algebra B with universe {0, 1}. Let � be the natu-

ral total order on {0, 1}. The resulting relation ≈ is the identity and the asso-

ciated quotient algebra is B itself. We define an additional Boolean operation

f≡ : {0, 1} × {0, 1} → {0, 1} by f≡(x, y) = 1 :⇔ x = y. Then B together with

f≡ and the unique ultrafilter TRUE := {1} yields an SCI -model M. Obviously,

for any assignment γ : V → {0, 1} and for any formulas ϕ,ψ ∈ F≡, we have

(M, γ) � ϕ ≡ ψ iff γ(ϕ) = γ(ψ) iff ϕ and ψ have the same classical truth-value.

It is clear that the above two-valued SCI -model along with all possible as-

signments yields essentially the standard two-valued semantics of classical propo-

sitional logic CPC . In fact, CPC is represented by the SCI -theory SCI ext that

results from SCI by adding Fregean Axiom (ϕ↔ ψ) → (ϕ ≡ ψ). Theory SCI ext

contains (ϕ ↔ ψ) ↔ (ϕ ≡ ψ) and thus (ϕ↔ ψ) ≡ (ϕ ≡ ψ) as theorems. By SP,

(ϕ ↔ ψ) and (ϕ ≡ ψ) then can be replaced by each other in every context. One

easily shows that SCI ext is sound and complete w.r.t. the class of all extensional

(i.e., two-element) SCI -models. We have for any ϕ ∈ Fm≡:

⊢SCI
ext ϕ ⇔ ⊢CPC ϕ∗,

where ϕ∗ is the result of replacing every subformula of the form ψ ≡ χ in ϕ by

ψ ↔ χ.
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Another important example of SCI -model, as opposed to an extensional model,

is an intensional model where the denotation of a formula is determined by its in-

tension, i.e. its syntactical form. In such a model, any two (syntactically) different

formulas have different denotations. The denotation of a formula can be identified

with its intension. In the following, we present a construction of such a model.

Intensional models have also been constructed for a logic that extends SCI by

propositional quantifiers and a truth predicate (see, e.g. the discussion and a con-

struction presented in [8]).10

Example 3.12. There exists an intensional SCI -model, i.a. a model M along with

an assignment γ such that for all ϕ,ψ ∈ Fm≡,

(M, γ) � ϕ ≡ ψ ⇔ ϕ = ψ.

Let us construct model M. We define a rank R : Fm≡ → N on formulas as

follows:

• R(x) = R(⊥) = R(⊤) = R(ϕ ≡ ψ) = 0, for any x ∈ V and ϕ,ψ ∈ Fm≡.

• If ϕ,ψ ∈ Fm such that R(ϕ) and R(ψ) are already defined, then R(¬ϕ) =
R(ϕ) + 1 and R(ϕ ∗ ψ) = max{R(ϕ), R(ψ)} + 1, where ∗ ∈ {∨,∧,→}.

We consider the given enumeration of the set of variables V = {x0, x1, x2, ...}
and define the set TRUE by induction on rank R as the smallest set such that the

following conditions are satisfied:

• For formulas of rank 0, we have: ⊥ 6∈ TRUE , ⊤ ∈ TRUE , xi ∈ TRUE iff

i is an even index, ϕ ≡ ψ ∈ TRUE iff ϕ = ψ.

• Suppose membership of all formulas of rank ≤ n ∈ N w.r.t. TRUE is

already determined. Letϕ, ψ be formulas such thatmax{R(ϕ), R(ψ)} = n.

Then:

– ϕ ∧ ψ ∈ TRUE if ϕ ∈ TRUE and ψ ∈ TRUE

– ϕ ∨ ψ ∈ TRUE if ϕ ∈ TRUE or ψ ∈ TRUE

– ¬ϕ ∈ TRUE if ϕ /∈ TRUE

– ϕ→ ψ ∈ TRUE if ϕ /∈ TRUE or ψ ∈ TRUE

10The construction of an intensional model for such a first-order logic is not trivial because of the

impredicativity of propositional quantifiers. Note that bound variable x in formula ∀xϕ ranges over

the universe of all propositions which contains in particular the proposition denoted by ∀xϕ itself.
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Membership w.r.t. TRUE determines a classical truth-value for every formula.

The relation � on M := Fm≡ defined by ϕ � ψ :⇔ ϕ → ψ ∈ TRUE is a

preorder. Moreover, the relation ≈ defined by ϕ ≈ ψ :⇔ (ϕ � ψ and ψ � ϕ)

⇔ ‘both ϕ and ψ belong to TRUE or both ϕ and ψ belong to M r TRUE ’

is a congruence relation on the structure (M,∨,∧,¬,⊥,⊤,→). The associated

quotient algebra is the two-element Boolean algebra {0, 1} where 1 is the image

of TRUE under the canonical homomorphism. Moreover, ϕ � ψ ⇔ ϕ → ψ ∈
TRUE ⇔ [(ϕ∧ψ) → ϕ ∈ TRUE and ϕ→ (ϕ∧ψ) ∈ TRUE] ⇔ (ϕ∧ψ) ≈ ϕ.

Hence,

M′ = (M,∨,∧,¬,⊥,⊤,→,�)

is a Boolean prealgebra. Together with ultrafilter TRUE and the operation f≡ on

M = Fm≡ defined by f≡(ϕ,ψ) := (ϕ ≡ ψ) we then obtain the SCI -model

M = (M,TRUE ,∨,∧,¬,⊥,⊤,→, f≡,�).

Consider the assignment γ : V → Fm≡, x 7→ x. Then, by induction on formulas,

γ(ϕ) = ϕ for any ϕ ∈ Fm≡. Furthermore, for all ϕ,ψ ∈ Fm≡:

(M, γ) � ϕ ≡ ψ ⇔ γ(ϕ ≡ ψ) = f≡(γ(ϕ), γ(ψ)) ∈ TRUE

⇔ γ(ϕ) = γ(ψ) ⇔ ϕ = ψ.

As a consequence, already observed by Suszko, only trivial identities are theo-

rems of SCI .

Corollary 3.13. For all ϕ,ψ ∈ Fm≡, ⊢SCI ϕ ≡ ψ ⇔ ϕ = ψ.

Proof. If ϕ = ψ, then by identity axiom (id1): ⊢SCI ϕ ≡ ψ. On the other hand,

if ϕ 6= ψ, then we have (M, γ) 2 ϕ ≡ ψ for the intensional model constructed

above and thus ϕ ≡ ψ is not logically valid. Soundness yields 0SCI ϕ ≡ ψ.

In the remainder of this section, we show that some relevant modal principles

can be restored in the pure SCI , i.e. in SCI with no additional axioms. The

representation of certain Lewis-style modal systems by means of appropriate SCI -

extensions will be the topic of the next section.

For ϕ ∈ Fm≡, we define

(2) �ϕ := (ϕ ≡ ⊤).

Theorem 3.14. Let M be an SCI -model. Then the following are equivalent:

(i) M is based on a Boolean algebra, i.e. its {f∨, f∧, f¬, f⊥, f⊤}-reduct is a

Boolean algebra.
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(ii) For all formulas χ having the form of a classical tautology, and for all for-

mulas ϕ and ψ, model M validates �χ and (ϕ ≡ ψ) ↔ �(ϕ↔ ψ).

Proof. If M is a Boolean algebra, then all theorems of CPC , as well as their

substitution instances, are evaluated by the top element f⊤ under any assignment.

It is also known that the equivalence f→(m,m′) = f⊤ ⇔ m ≤ m′ holds in every

Boolean algebra (actually, in every Heyting algebra). Then it is clear that (i) implies

(ii). Now, suppose (ii) holds true. Then M validates in particular �(ϕ ↔ ψ)
whenever ϕ ↔ ψ is a classical tautology. Since (ϕ ≡ ψ) ↔ �(ϕ ↔ ψ) is valid

in M, we have M � ϕ ≡ ψ for all Boolean equations ϕ ≡ ψ that axiomatize the

class of Boolean algebras. Hence, M itself is based on a Boolean algebra.

Definition 3.15. SCI+ is the logic that results from SCI by adding the following

axioms:

• �χ whenever χ has the form of a classical tautology,

• (ϕ ≡ ψ) ↔ �(ϕ↔ ψ).

The next result then follows from Theorem 3.14.

Corollary 3.16. The SCI -extension SCI+ is sound and complete w.r.t. the class

of those SCI -models which are based on Boolean algebras. As a consequence,

SCI+ coincides with the known SCI -theory WB .11

The question arises whether theory SCI+ contains further interesting modal

laws. Using Corollary 3.16, we may argue semantically showing that the following

formulas are theorems of SCI+:

• �ϕ→ ϕ

• �(ϕ→ ψ) → (�ϕ→ �ψ).

In fact, given a Boolean algebra, the top element f⊤ is contained in every ultra-

filter; and for any elements m,m′: if m ≤ m′, then m = f⊤ implies m′ = f⊤.

Thus, the validity of the above formulas is justified. However, some principles

of normal Lewis systems are not valid. For instance, the full necessitation rule

does not hold. As a contra-example, we consider the Boolean algebra 22 with el-

ements ∅, {0}, {1}, {0, 1} and set-theoretic inclusion as lattice order, along with

the ultrafilter TRUE = {{0}, {0, 1}} and operation f≡ defined by f≡(m,m
′) :=

{0} ∈ TRUE if m = m′, and f≡(m,m
′) = {1} /∈ TRUE otherwise. Then

f�({0}) = f≡({0}, f⊤) = {1} 6≤ {0}. Thus, �(�ϕ→ ϕ) is not valid.

11Theory WB is discussed in some works on non-Fregean logic (see, e.g. [15] for a detailed

presentation).
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Definition 3.17. In some analogy to Lewis modal system S3 , we define the follow-

ing extension of SCI+: SCI 3 is the logic that results from SCI+ by adding all

formulas of the form �(ϕ→ ψ) → �(�ϕ→ �ψ) as theorems.

Note, however, that the alleged analogy to Lewis system S3 is rather weak. For

instance, �(�(ϕ→ ψ) → �(�ϕ→ �ψ)) is a theorem of S3 but not of SCI 3.

Definition 3.18. An SCI -model M is an SCI 3-model if M is based on a Boolean

algebra and satisfies the following condition for all m,m′ ∈M :

m ≤ m′ ⇒ f�(m) ≤ f�(m
′),

where f�(m) := f≡(m, f⊤). That is, f� is monotonic on M .

Corollary 3.19. Logic SCI 3 is sound and complete w.r.t. the class of SCI 3-

models.

Proof. One easily checks that every SCI 3-model validates formulas of the form

�(ϕ → ψ) → �(�ϕ → �ψ). In order to prove completeness, it is enough to

show that the constructed model in the proof of Theorem 3.10 above satisfies the

condition of monotonicity of f�. Since SCI 3 contains SCI+, we already know

that that model is a Boolean algebra. So for two elements [ϕ] and [ψ], suppose

[ϕ] ≤ [ψ] (where ≤ is the lattice order). Then (ϕ → ψ) ≡ ⊤ ∈ Ψ . That is,

�(ϕ → ψ) ∈ Ψ and thus �(�ϕ → �ψ) ∈ Ψ . But then (�ϕ → �ψ) ≡ ⊤ ∈ Ψ
and thus [�ϕ→ �ψ] = [⊤], i.e. f�([ϕ]) = [�ϕ] ≤ [�ψ] = f�([ψ]).

We are interested in conditions that ensure, in some precise sense, complete

restorations of some Lewis-style modal systems, in particular of S3–S5 . It turns

out that principle (ϕ ≡ ψ) ↔ �(ϕ ↔ ψ), valid in SCI+, is too weak for this

purpose. In fact, we must postulate the equation (ϕ ≡ ψ) ≡ �(ϕ ↔ ψ), i.e. we

must identify propositional identity with strict equivalence. These topics will be

studied in section 5.

4 Some Lewis-style modal systems and their algebraic se-

mantics

The goal of this section is to revise some Lewis-style modal systems in the vicinity

of S3 (more precisely, systems based on a logic called S1SP ) which in the sub-

sequent section then will be shown to be dual, in some precise sense, to certain

SCI -theories. Our object language is now the language of propositional modal

logic Fm�, i.e. the set of formulas inductively defined over the set of variables

14



V = {x0, x1, ...}, logical connectives ⊥,⊤,∨,∧,¬,→ and the modal operator

�. Thus, the languages Fm≡ and Fm� share the ‘pure’ propositional part based

on the logical connectives. We introduce an ‘identity connective’ defined by strict

equivalence:

(3) (ϕ ≡ ψ) := (�(ϕ→ ψ) ∧�(ψ → ϕ)).

It is evident that under this interpretation, all Lewis modal systems S1–S5 satisfy

Suszko’s identity axioms (id1) ϕ ≡ ϕ and (id2) (ϕ ≡ ψ) → (ϕ → ψ). More-

over, S3 also satisfies the remaining identity axioms, i.e. SP ( where, of course,

identity is given as strict equivalence according to (3) above). S3 is the weakest

Lewis modal system containing SP (cf. [9, 11]). In the following, we recall defi-

nitions of some relevant Lewis-style modal systems and consider an algebraic se-

mantics which can be immediately translated into SCI -semantics, and vice-versa.

We adopt that particular approach to algebraic semantics from [9].

Lewis system S1 can be defined in the following way (cf., e.g., [5]). All for-

mulas of the following form are axioms:

• tautologies (and their substitution-instances) of CPC

• �ϕ→ ϕ

• (�(ϕ→ ψ) ∧�(ψ → χ)) → �(ϕ→ χ) (transitivity of strict implication)

The inference rules are Modus Ponens MP, Axiom Necessitation AN “If ϕ is an

axiom, then �ϕ is a theorem”, and Substitution of Proved Strict Equivalents SPSE

“If ϕ ≡ ψ is a theorem, then so is χ[x := ϕ] ≡ χ[x := ψ]”.

Lewis system S3 results from S1 by adding

(S3) �(ϕ→ ψ) → �(�ϕ→ �ψ)

as an axiom scheme to S1 . Of course, rule (AN) now applies also to (S3). Rule

SPSE can be ignored since it is derivable from the rest.

Lewis system S4 results from S3 by adding

(S4) �ϕ→ ��ϕ

as an axiom scheme (rule (AN) now applies also to (S4)). Finally, S5 results

from S4 by adding
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(S5) ¬�ϕ→ �¬�ϕ

as an axiom scheme.

We do not consider Lewis system S2 since it is apparently not susceptible to

our algebraic semantics. Recall, however, that S2 can be captured by a non-normal

Kripke-style semantics. There is no known natural semantics for Lewis system S1

(cf. [5]). If we strengthen the S1 -rule SPSE to our stronger Substitution Principle

SP, (ϕ ≡ ψ) → (χ[x := ϕ] ≡ χ[x := ψ]), and add it as a theorem scheme to

S1 (i.e., SP is regarded a scheme of theorems; recall that AN is not applicable

to theorems), then we obtain modal system S1 + SP which was introduced and

studied in [9]. Simplifying notation, we will refer to that system as S1SP instead

of S1 + SP . In contrast to S1 , the stronger system S1SP has a natural model-

theoretic semantics which we will recall below.

In system S1 , derivations from the empty set, i.e. derivations of theorems, are

defined as usual. For L ∈ {S1SP ,S3 ,S4 ,S5} and Φ ∪ {ϕ} ⊆ Fm�, we write

Φ ⊢L ϕ if there is a derivation of ϕ from Φ, i.e. a finite sequence ϕ1, ..., ϕn = ϕ
such that for each ϕi, i ≤ i ≤ n, the following holds: ϕi ∈ Φ or ϕi is an axiom of

L or ϕi is obtained by AN (i.e. ϕi = �ψ for some axiom ψ of L) or ϕi is obtained

by MP applied to preceding formulas of the sequence. Note that we can do without

the full Necessitation Rule “If ϕ is a theorem, then so is �ϕ”. In fact, by induction

on derivations one shows that the full Necessitation Rule is derivable in S4 .

The following result is proven in [[9], Lemma 2.3] where it is originally for-

mulated for logic S1SP . The proof given there makes use of SP. However, one

recognizes that SP can be replaced by the S1 -rule SPSE in the proof. Hence, the

result also holds in the weaker system S1 .

Lemma 4.1 ([9]). Every instance of the following principle N is a theorem of S1 :

�ϕ↔ (ϕ ≡ ⊤).

N expresses the fact that there exists exactly one necessary proposition, namely

the proposition denoted by ⊤.

N would easily follow from distribution principle K, �(ϕ → ψ) → (�ϕ →
�ψ).12 However, K is not available in S1 . Nevertheless, using N and SP we are

able to show the following (cf. [9], Lemma 2.4):

Lemma 4.2 ([9]). Distribution principle K holds in S1SP , i.e. formulas of the

form

�(ϕ→ ψ) → (�ϕ→ �ψ)

12Consider classical tautology ϕ ↔ (ϕ↔ ⊤), rule AN, principle K and MP.
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are theorems of S1SP .

Lemma 4.3. Equivalences �(ϕ ∧ ψ) ↔ (�ϕ ∧�ψ) are theorems of S1SP .

Proof. We show that �(ϕ ∧ ψ) → (�ϕ ∧ �ψ) is a theorem. By Lemma 4.1,

�(ϕ∧ψ) ↔ ((ϕ∧ψ) ≡ ⊤). In particular, we have the following valid implication:

�(ϕ ∧ ψ) → �(⊤ → (ϕ ∧ ψ)). By the transitivity axiom of strict implication

of S1 , (�(⊤ → (ϕ ∧ ψ)) ∧ �((ϕ ∧ ψ) → ϕ)) → �(⊤ → ϕ). Note that

�((ϕ ∧ ψ) → ϕ)) results from an application of rule AN. Then transitivity of

implication yields �(ϕ ∧ ψ) → �(⊤ → ϕ), i.e. �(ϕ ∧ ψ) → (ϕ ≡ ⊤). By

principle N, we get �(ϕ∧ψ) → �ϕ. Similarly, we get �(ϕ∧ψ) → �ψ and thus

�(ϕ ∧ ψ) → (�ϕ ∧�ψ).
Now, we show the converse (�ϕ ∧ �ψ) → �(ϕ ∧ ψ) making use of SP. Note

that �ψ ↔ (ψ ≡ ⊤) and (ψ ≡ ⊤) → �(ϕ ∧ y)[y := ψ] ≡ �(ϕ ∧ y)[y := ⊤]
are instances of N and SP, respectively. By transitivity of implication, �ψ →
(�(ϕ ∧ ψ) ≡ �(ϕ ∧ ⊤)) is a theorem. Thus, �ψ → (�(ϕ ∧ ⊤) → �(ϕ ∧ ψ)) is

a theorem. By rule AN, ϕ ≡ (ϕ ∧ ⊤) is a theorem. Then we may apply S1 -rule

SPSE (or the stronger SP) and derive �ψ → (�ϕ → �(ϕ ∧ ψ)) which modulo

CPC is equivalent to (�ϕ ∧�ψ) → �(ϕ ∧ ψ).

By Lemma 4.3, we may write strict equivalence �(ϕ → ψ) ∧ �(ψ → ϕ)
equivalently and shorter as �(ϕ ↔ ψ) in systems containing S1SP . In S1SP , we

may also strengthen the result of Lemma 4.1 as follows.

Lemma 4.4. The following scheme �N is derivable in S1SP :

�ϕ ≡ (ϕ ≡ ⊤).

Proof. Note that ϕ ↔ (ϕ ↔ ⊤) is a propositional tautology. Rule AN yields

�(ϕ ↔ (ϕ ↔ ⊤)), i.e. ϕ ≡ (ϕ ↔ ⊤). Consider the instance (ϕ ≡ (ϕ ↔ ⊤)) →
(�x[x := ϕ] ≡ �x[x := (ϕ ↔ ⊤)] of SP and apply MP. This yields theorem

�ϕ ≡ �(ϕ↔ ⊤)

In the following definitions, by a Boolean algebra expansion we always mean

a structure M = (M,TRUE , f∨, f∧, f¬, f⊥, f⊤, f→, f�) which is based on a

Boolean algebra with the usual operations along with a designated ultrafilter TRUE

and an additional unary function f�. The induced lattice order is always denoted

by ≤.

Definition 4.5. Let M be a Boolean algebra expansion satisfying the following

conditions for all a, b, c ∈M :

(1) f�(a) ∈ TRUE ⇔ a = f⊤
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(2) f�(a) ≤ a
(3) f∧(f�(f→(a, b)), f�(f→(b, c))) ≤ f�(f→(a, c))
Then we call M an S1SP -algebra.

Note that conditions (2) and (3) reflect corresponding axioms of S1 .

Lemma 4.6. In every S1SP -algebra it holds that

f�(f∧(a, b)) ∈ TRUE ⇔ f∧(f�(a), f�(b)) ∈ TRUE ,

for all elements a, b, i.e. formulas of the form

�(ϕ ∧ ψ) ↔ (�ϕ ∧�ψ)

are valid in the class of S1SP -algebras. Moreover, modal principle K ,

�(ϕ→ ψ) → (�ϕ→ �ψ),

is valid in the class of S1SP -algebras.

Proof. By (1), f�(f∧(a, b)) ∈ TRUE ⇔ a = f⊤ and b = f⊤ ⇔ f�(a) ∈ TRUE

and f�(b) ∈ TRUE ⇔ f∧(f�(a), f�(b)) ∈ TRUE . The second assertion can be

shown as follows: For a given S1SP -algebra, suppose f�(f→(a, b)) ∈ TRUE and

f�(a) ∈ TRUE . The former implies f→(a, b) = f⊤, i.e. a ≤ b. The latter implies

a = f⊤. It follows b = f⊤ and thus f�(b) ∈ TRUE .

Notice that validity of modal principle K in the class of S1SP -algebras does

not mean that all instances of K are interpreted by the top element of the given

Boolean algebra (as it is the case in normal modal logics). It only means that such

instances are interpreted by some element of the ultrafilter TRUE , a designated

ultrafilter that contains in particular the element f�(f⊤). In fact, we cannot choose

an arbitrary ultrafilter TRUE of the Boolean algebra: condition (1) of Definition

4.5 must be fulfilled. In this aspect, our semantic approach differs from the usual

one where the involved class of modal algebras usually forms an equational class,

i.e. a variety of algebras. Recall that a modal algebra in the usual sense is a

Boolean algebra with an operator f� satisfying the following sronger conditions

for all elements a, b:

f�(f∧(a, b)) = f∧(f�(a), f�(b)) and

f�(f⊤) = f⊤.

It is known that the class of all modal algebras in this sense constitutes algebraic

semantics for normal modal system K .
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Given the modal language Fm� and an S1SP -algebra M, the notion of an

assignment (valuation) γ : V →M is defined as before as a ‘homomorphism’ from

Fm� to M, in particular: γ(�ϕ) = f�(γ(ϕ)). Also the notion of satisfaction is

given in the same way: (M, γ) � ϕ ⇔ γ(ϕ) ∈ TRUE . S1SP -algebras were

introduced in [9] (not under this name) to provide a kind of algebraic semantics for

Lewis-style modal logic S1SP :

Theorem 4.7 ([9]). S1SP is (strongly) sound and complete with respect to the

class of all S1SP -algebras.

Definition 4.8. A Boolean algebra expansion M is an S3 -algebra if the following

hold for all a, b ∈M :

(1) f�(a) ∈ TRUE ⇔ a = f⊤
(2) f�(a) ≤ a
(S3) f�(f→(a, b)) ≤ f�(f→(f�(a), f�(b)))

Lemma 4.9. Every S3 -algebra is an S1SP -algebra, i.e. particularly condition (3)

of Definition 4.5 is satisfied. Moreover, in every S3 -algebra, the modal operator

f� is a monotone function and it holds that

f�(f∧(a, b)) = f∧(f�(a), f�(b)),

for all elements a, b.

Proof. Condition (S3) ensures that f� is a monotone function: a ≤ b iff f→(a, b) =

f⊤ iff f�(f→(a, b)) ∈ TRUE
(S3)
⇒ f�(f→(f�(a), f�(b))) ∈ TRUE iff

f→(f�(a), f�(b)) = f⊤ iff f�(a) ≤ f�(b). Note that f∧(a, b) ≤ a and f∧(a, b) ≤
b. Monotonicity implies

f�(f∧(a, b)) ≤ f∧(f�(a), f�(b)).

On the other hand, ϕ→ (ψ → (ϕ ∧ ψ)) is a propositional tautology and therefore

denotes the top element, under any assignment. Thus, f�(f→(a, f→(b, f∧(a, b)))) ∈
TRUE , for any elements a, b. Condition (S3) along with ‘Modus Ponens’ yields

f�(f→(f�(a), f�(f→(b, f∧(a, b))))) ∈ TRUE , i.e. f�(a) ≤ f�(f→(b, f∧(a, b))).
Again by (S3), we get f�(f→(b, f∧(a, b))) ≤ f�(f→(f�(b), f�(f∧(a, b)))). Thus,

f�(a) ≤ f�(f→(f�(b), f�(f∧(a, b))) ≤ f→(f�(b), f�(f∧(a, b)) and hence

f→(f�(a), f→(f�(b), f�(f∧(a, b))) = f⊤.

The term on the left hand side of the last equation is an interpretation of the for-

mula x → (y → z) which is logically equivalent to (x ∧ y) → z. Hence,

f→(f∧(f�(a), f�(b)), f�(f∧(a, b))) = f⊤, i.e.

f∧(f�(a), f�(b)) ≤ f�(f∧(a, b)).
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Finally, f∧(f�(a), f�(b)) = f�(f∧(a, b)).
In order to see that every S3 -algebra is an S1SP -algebra, it is enough to show that

condition (3) of Definition 4.5 follows from the conditions of Definition 4.8:

((ϕ → ψ) ∧ (ψ → χ)) → (ϕ → χ)) is a propositional tautology and is therefore

interpreted by the top element f⊤ of any model. By (1),

f�(f→(f∧(f→(a, b), f→(b, c)), f→(a, c))) ∈ TRUE .

Applying (S3) and ‘Modus Ponens’, we get

f�(f→(f�(f∧(f→(a, b), f→(b, c))), f�(f→(a, c)))) ∈ TRUE .

Since f∧(f�(a), f�(b)) = f�(f∧(a, b)), as shown above, we obtain the follow-

ing: f�(f→(f∧(f�(f→(a, b)), f�(f→(b, c))), f�(f→(a, c)))) ∈ TRUE . Apply-

ing condition (1) yields

f→(f∧(f�(f→(a, b)), f�(f→(b, c))), f�(f→(a, c))) = f⊤,

i.e., f∧(f�(f→(a, b)), f�(f→(b, c))) ≤ f�(f→(a, c)), which is precisely condition

(3) of Definition 4.5.

Definition 4.10. We call a Boolean algebra expansion M a strong S4 -algebra if

the following conditions hold for all elements a, b:
(1) f�(a) ∈ TRUE ⇔ a = f⊤
(2) f�(a) ≤ a
(K) f�(f→(a, b)) ≤ f→(f�(a), f�(b))
(S4) f�(a) ≤ f�(f�(a))

Lemma 4.11. Every strong S4 -algebra is an S3 -algebra.

Proof. It is enough to show that condition (S3) holds in every strong S4 -algebra.

First, we observe that conditions (1) and (S4) imply that f�(f⊤) = f⊤. Then by

(K), f�(f→(f�(f→(a, b)), f→(f�(a), f�(b)))) = f⊤. Again by (K),

f→(f�(f�(f→(a, b))), f�(f→(f�(a), f�(b)))) = f⊤. That is,

f�(f�(f→(a, b))) ≤ f�(f→(f�(a), f�(b))). Applying condition (S4), we obtain

condition (S3): f�(f→(a, b))) ≤ f�(f→(f�(a), f�(b))).

If there is a notion of strong S4 -algebra, one may expect that there is a notion

of S4 -algebra, too. Indeed, S4 -algebras have been studied in the literature under

different labels such as topological Boolean algebras or interior algebras. An S4 -

algebra (alias interior algebra alias topological Boolean algebra) is usually defined

as a Boolean algebra with an operator f� (which can be viewed as an interior op-

erator) such that the following conditions (IA1)–(IA4) are satisfied for all elements
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a, b:

(IA1) f�(a) ≤ a
(IA2) f�(f�(a)) = f�(a)
(IA3) f�(f∧(a, b)) = f∧(f�(a), f�(b))
(IA4) f�(f⊤) = f⊤.

Theorem 4.12. Every strong S4 -algebra is an S4 -algebra.

Proof. Suppose M is a strong S4 -algebra in the sense of Definition 4.10. Then

(IA1) above holds trivially. (IA2) follows from (IA1) along with condition (S4).

(IA3) is condition (S3) which holds by Lemma 4.11. By condition (1), f�(f⊤) ∈
TRUE . Then, by condition (S4), f�(f�(f⊤)) ∈ TRUE . Again by (1), f�(f⊤) =
f⊤, i.e. (IA4) is satisfied.

The converse of Theorem 4.12 is not true. As a contra-example we consider any

interior algebra with more than two elements where the interior operator f� is the

identity: a 7→ f�(a) = a. For every ultrafilter U , there exists an element a ∈ U
such that a < f⊤. Then condition (1) of Definition 4.10 of a strong S4 -algebra

cannot be satisfied by all elements. An interior algebra gives rise to a strong S4 -

algebra if there is an ultrafilter TRUE such that for any element a, a < f⊤ implies

f�(a) /∈ TRUE .

Thus, the class of strong S4 -algebras is properly contained in the class of all S4 -

algebras. Nevertheless, for a completeness result concerning Lewis modal system

S4 , it is enough to consider only strong S4 -algebras.

Definition 4.13. A Boolean algebra expansion M is called an S5 -algebra if all

elements a satisfy the following:

f�(a) =

{

f⊤, if a = f⊤

f⊥, else

Note that Definition 4.13 does not impose any condition on the designated

ultrafilter TRUE of the given Boolean algebra expansion. Actually, if we only

consider the algebraic properties of an S5 -algebra, then the designated ultrafilter

can be disregarded. The resulting notion of an S5 -algebra then is equivalent to

the usual definitions of S5 -algebras found in the literature. For example, an S5 -

algebra can be characterized as an interior algebra in which every open element

is closed, i.e. where f♦(f�(a)) = f�(a) holds for every element a, with closure

operator f♦(a) := f¬(f�(f¬(a))). In fact, one easily verifies:

Corollary 4.14. Let M be a Boolean algebra expansion. The following are equiv-

alent:
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• M is an S5 -algebra.

• M is an interior algebra satisfying for all a ∈M : f♦(f�(a)) = f�(a).

In particular, every S5 -algebra is an S4 -algebra (i.e. an interior algebra). Given

any S5 -algebra, condition (1) of Definition 4.10 is (trivially) satisfied, indepen-

dently of the choice of the designated ultrafilter TRUE . Thus, every S5 -algebra is

also a strong S4 -algebra.

Recall that the relation of satisfaction between S1SP -interpretations (M, γ)
and formulas ϕ ∈ Fm� is given similarly as for SCI models: (M, γ) � ϕ :⇔
γ(ϕ) ∈ TRUE . Also the concept of logical consequence is defined in the usual

way. Extending the proof of Theorem 4.7 in a straightforward way, we get

Theorem 4.15. S3 (S4 , S5 ) is strongly sound and complete w.r.t. the class of all

S3 -algebras ((strong) S4 -algebras, S5 -algebras), respectively.

5 Dualities between SCI -theories and Lewis-style modal

logics

The goal of this section is to show that under certain assumptions, some Lewis-style

modal logics are, in a precise sense, in duality with certain theories formalized in

the language of SCI , more precisely, with certain axiomatic extensions of SCI .

The crucial conditions for these dualities are the following:

(I) ‘The SCI principles of propositional identity are valid. In particular, SP is

valid.’

(II) ‘Propositional identity = strict equivalence’, i.e., (ϕ ≡ ψ) ≡ �(ϕ ↔ ψ)
holds.

(III) ‘Necessity = identity with proposition ⊤. In particular, there is exactly one

necessary proposition: the proposition denoted by ⊤’, i.e., �ϕ ≡ (ϕ ≡ ⊤)
holds.

(IV) ‘All classical tautologies are necessary: If ϕ is a classical tautology (i.e. an

instance of a theorem of CPC ), then �ϕ is valid.’

From a semantic point of view, (III) and (IV) will ensure that the envolved

SCI -models are Boolean algebras (cf. Theorem 3.14 and the remark in the last

paragraph of section 3.)
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We remark here that a similar type of dualities between propositional logics

with an identity connective and normal modal systems is established by T. Ishii

[6]. His propositional calculus PCI is also defined in the language of SCI though

the axioms (and rules) for the identity connective differ in some aspects from SCI .

Ishii shows duality between PCI and normal system K , as well as a series of

further dualities between extensions of PCI and corresponding normal modal sys-

tems.13

We now establish translations between the propositional languages of SCI and

of modal logic, i.e. between Fm≡ and Fm�.

Definition 5.1. The translation box : Fm≡ → Fm� is inductively defined as

follows: box (x) := x, box (⊥) := ⊥, box (⊤) := ⊤, box (¬ϕ) := ¬box (ϕ),
box (ϕ ∗ ψ) := (box (ϕ) ∗ box (ψ)), for ∗ ∈ {∧,∨,→}, and

box (ϕ ≡ ψ) := (�(box (ϕ) → box (ψ)) ∧�(box (ψ) → box (ϕ)).
14

On the other hand, the translation id : Fm� → Fm≡ is inductively defined as

follows: id(x) := x, id(⊥) := ⊥, id(⊤) := ⊤, id(¬ϕ) := ¬id(ϕ), id(ϕ ∗ ψ) :=
(id(ϕ) ∗ id(ψ)), for ∗ ∈ {∧,∨,→}, and

id(�ϕ) := (id(ϕ) ≡ ⊤).

For Φ ⊆ Fm≡, we let box (Φ) := {box (ψ) | ψ ∈ Φ}; and for Φ ⊆ Fm�, the set

id(Φ) is defined analogously.

Induction on formulas ensures that box (ϕ) ∈ Fm� for any ϕ ∈ Fm≡; and

id(ϕ) ∈ Fm≡ for any ϕ ∈ Fm�. If the underlying logics are strong enough, then

the translations box and id are inverse to each other in the sense of the next result.

Recall that in the language of modal logic Fm�, we use the following ab-

breviation: (ϕ ≡ ψ) := (�(ϕ → ψ) ∧ �(ψ → ϕ)), cf. (3) above. Since we

are working with modal systems containing S1SP , we may define equivalently

(ϕ ≡ ψ) := �(ϕ ↔ ψ), cf. Lemma 4.6. Also recall that in the language L≡ of

SCI , we use the abbreviation �ϕ := (ϕ ≡ ⊤), cf. (2).

Theorem 5.2. • Let L be a modal logic in the language Fm� containing

S1SP . Then for any ϕ ∈ Fm�:

⊢L ϕ ≡ box (id(ϕ)).15

13Ishii does not use the term ‘duality’.
14We may abbreviate this by �(box (ϕ) ↔ box (ψ)) since this formula is equivalent to the original

one modulo SPS1 , cf. Lemma 4.6.
15In the following, we will write such an expression also as ϕ ≡L box (id(ϕ)).
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• Let L≡ be an axiomatic extension of SCI in the language Fm≡ containing

theorems of the form (χ ≡ ψ) ≡ �(χ ↔ ψ).16 Then for any ϕ ∈ Fm≡:

⊢L≡
ϕ ≡ id(box (ϕ)).17

Proof. Under the assumptions of the first item, we show the assertion by induction

on ϕ ∈ Fm�. If ϕ is an atomic formula, we get box (id(ϕ)) = ϕ. Then the

assertion holds because �(ϕ ↔ ϕ) is a theorem of L (apply the rule of Axiom

Necessitation (AN) to ϕ↔ ϕ). Now suppose ϕ = �ψ for some ψ ∈ Fm�.

box (id(ϕ)) = box (id(�ψ))

= box (id(ψ) ≡ ⊤), by definition of id

= �(box (id(ψ) ↔ ⊤)), by definition of box

≡L �(ψ ↔ ⊤), by induction hypothesis and SP

= (ψ ≡ ⊤)

≡L �ψ, recall that �ψ ≡ (ψ ≡ ⊤) is a theorem of S1SP

= ϕ

Hence, ϕ ≡L box (id(ϕ)), i.e. ⊢L ϕ ≡ box (id(ϕ)). The remaining cases of the

induction step follow straightforwardly. Now, we assume the hypotheses of the

second item and show its assertion by induction on ϕ ∈ Fm≡. The induction

base is clear; and in the induction step, only the case ϕ = (ψ ≡ χ) requires some

attention:

id(box (ϕ)) = id(box (ψ ≡ χ))

= id(�(box (ψ) ↔ box (χ))), by definition of box

= (id(box (ψ)) ↔ id(box (χ))) ≡ ⊤, by definition of id

≡L≡
(id(box (ψ)) ≡ id(box (χ))), by assumptions on L≡

≡L≡
(ψ ≡ χ), by induction hypothesis and SP

= ϕ

If L is a modal logic and L≡ is an SCI -extension satisfying the hypotheses

required in Theorem 5.2, then we are able to establish a condition (actually, two

equivalent conditions) under which both logics have, in a precise sense, the same

expressive power, i.e. are dual to each other:

16That is, formulas of the form (χ ≡ ψ) ≡ ((χ↔ ψ) ≡ ⊤) are theorems.
17We will write such an expression also as ϕ ≡L≡

id(box (ϕ)).
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Definition 5.3. Let L be a modal logic in the language Fm� containing S1SP .

Let L≡ be an extension of SCI in the language Fm≡ containing theorems of the

form (χ ≡ ψ) ≡ �(χ ↔ ψ). Furthermore, suppose one of the following two

conditions is true:

(i) For any Φ ∪ {ϕ} ⊆ Fm≡, Φ ⊢L≡
ϕ⇐⇒ box (Φ) ⊢L box (ϕ).

(ii) For any Φ ∪ {ϕ} ⊆ Fm�, Φ ⊢L ϕ⇐⇒ id(Φ) ⊢L≡
id(ϕ).

Then we say that L≡ and L are dual to each other, and we call L≡ the (dual)

SCI -theory of modal logic L; and we call L the (dual) modal theory of L≡.

Actually, it would be enough to consider only one of the conditions (i), (ii) in

Definition 5.3, as the next result shows.

Lemma 5.4. Let L be a modal logic and let L≡ be its dual SCI -theory according

to Definition 5.3. Then both conditions (i) and (ii) of Definition 5.3 are satisfied.

Proof. Let L≡ be the SCI -theory of modal system L and suppose that fact is wit-

nessed by condition (i) of Definition 5.3. We show that condition (ii) follows. Let

Φ ∪ {ϕ} ⊆ Fm� and suppose Φ ⊢L ϕ. There are ϕ1, ..., ϕn ∈ Φ such that

⊢L (ϕ1∧ ...∧ϕn) → ϕ. By Theorem 5.2, ⊢L box (id((ϕ1∧ ...∧ϕn) → ϕ)). Then

condition (i) yields ⊢L≡
id((ϕ1 ∧ ... ∧ ϕn) → ϕ). Taking into account the defini-

tion of id , that implies id(Φ) ⊢L≡
id(ϕ). The implication from right-to-left of (ii)

follows similarly. Analogously, one establishes condition (i) under the assumption

that condition (ii) holds true.

Lemma 5.5. Let L be a modal logic and let L≡ be its dual SCI -theory. Then the

following hold:

(a) For any ϕ ∈ Fm≡, ⊢L box (�ϕ) ≡ �box (ϕ), i.e. box (�ϕ) ≡L �box (ϕ).
(b) For any ϕ,ψ ∈ Fm�, ⊢L≡

id(ϕ ≡ ψ) ≡ (id(ϕ) ≡ id(ψ)), which we also

write as id(ϕ ≡ ψ) ≡L≡
(id(ϕ) ≡ id(ψ)).

Proof. Under the given assumptions, we have: box (�ϕ) = box (ϕ ≡ ⊤) =
�(box (ϕ) ↔ ⊤) = (box (ϕ) ≡ ⊤) ≡L �box (ϕ). The last equation holds be-

cause �ψ ≡ (ψ ≡ ⊤) is a theorem of S1SP and thus of L, for any ψ ∈ Fm�.

On the other hand: id(ϕ ≡ ψ) = id(�(ϕ ↔ ψ)) = (id(ϕ) ↔ id(ψ)) ≡
⊤) ≡L≡

(id(ϕ) ≡ id(ψ)). The last equation holds because formulas of the form

(χ ≡ ξ) ≡ ((χ ↔ ξ) ≡ ⊤) are theorems of L≡.

As expected, particular examples of Definition 5.3 are the SCI -theories of

modal systems S1SP , S3 , S4 and S5 which we are going to define in the following

as deductive systems in the language of SCI . Recall that we have �ϕ := (ϕ ≡ ⊤).
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Definition 5.6. We consider the language Fm≡ of SCI and define deductive sys-

tems on the base of the following axiom schemes (CPC) + (1)–(5):

(CPC) any formula ϕ having the form of a classical tautology, i.e. ϕ is the substi-

tution instance of a theorem of CPC

(1) (χ ≡ ψ) ↔ �(χ↔ ψ)
(2) �ϕ→ ϕ
(3’)(�(ϕ → ψ) ∧�(ψ → χ)) → �(ϕ→ χ)
(3) �(ϕ→ ψ) → �(�ϕ→ �ψ)
(4) �ϕ→ ��ϕ
(5) ¬�ϕ→ �¬�ϕ.

Then logic S1SP≡ is axiomatized by the axiom schemes (CPC), (1), (2), (3’) to-

gether with the scheme of theorems SP (ϕ ≡ ψ) → (χ[x := ϕ] ≡ χ[x := ψ]).
That is, S1SP≡ is given by the following deductive system. For Φ ∪ {ϕ} ⊆ Fm≡,

we write Φ ⊢S1SP≡
ϕ if there is a derivation, i.e. a sequence ϕ1, ..., ϕn = ϕ, such

that for every ϕi, 1 ≤ i ≤ n: ϕi ∈ Φ or ϕi is an instance of (CPC), (1)–(3’) or

SP or ϕi is obtained by rule MP or ϕi is obtained by rule AN (i.e. there is some

1 ≤ j < i such that ϕj is an axiom, i.e. an instance of (CPC) + (1)–(3’) and

ϕi = �ϕj).

The deductive system S3≡ is defined analogously but with axiom schemes (CPC),

(1), (2), (3) (and without theorem scheme SP). Similarly, logic S4≡ is given by the

axioms (CPC) and (1)–(4). If additionally we consider axiom scheme (5), then we

obtain system S5≡.18

Lemma 5.7. (χ ≡ ψ) ≡ �(χ ↔ ψ) is a theorem of S1SP≡.

Proof. Applying rule AN to (1) results in �((χ ≡ ψ) ↔ �(χ ↔ ψ)). Formula

((χ ≡ ψ) ≡ �(χ ↔ ψ)) ↔ �((χ ≡ ψ) ↔ �(χ ↔ ψ)) is an instance of (1).

Modus Ponens yields (χ ≡ ψ) ≡ �(χ ↔ ψ).

Theorem 5.8. SCI ⊆ SCI+ ⊆ S1SP≡ ⊆ S3≡ ⊆ S4≡ ⊆ S5≡.

Proof. The first inclusion is trivial by the definitions (cf. Definition 3.15).

Claim 1: SCI+ ⊆ S1SP≡.

It is enough to show SCI ⊆ S1SP≡. Recall that SP is euivalent to the identity

axioms (id3)–(id7) (modulo the rest of SCI ). So we only need to show that (id1)

ϕ ≡ ϕ and (id2) (ϕ ≡ ψ) → (ϕ → ψ) are theorems of S1SP≡. (id1) derives

considering axiom ϕ ↔ ϕ, rule AN and scheme (1). (id2) derives from (1)+(2).

Thus Claim 1 is true.

Claim 2: �(ϕ ∧ ψ) → (�ϕ ∧�ψ) is a theorem of S3≡.

Apply AN to the tautologies (ϕ ∧ ψ) → ϕ and (ϕ ∧ ψ) → ψ and consider axiom

18Of course, rule AN only applies to the given axioms of the respective underlying system.
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schemes (3) and (2). Using propositional calculus, Claim 3 follows.

Claim 3: S1SP≡ ⊆ S3≡.

It is enough to show that scheme (3) is stronger than (3’), and that scheme SP

is derivable in S3≡. Of course, (ϕ → ψ) → ((ψ → χ) → (ϕ → χ)) is a

propositional tautology and thus an axiom. Applying rule AN, (3), (2) and modus

ponens then yields �(ϕ→ ψ) → (�(ψ → χ) → �(ϕ→ χ)). Modulo CPC , this

is equivalent to (3’). (Note that we argued as in original modal logic.) Thus, (3) is

stronger than (3’) (modulo the rest). Finally, in order to show that principle SP is

derivable, we derive the identity axioms (id3)–(id7) of SCI which are equivalent

to SP modulo the rest. Consider the tautology (ϕ↔ ψ) → (¬ϕ↔ ¬ψ) and apply

AN, (3), (2) and MP. We derive �(ϕ ↔ ψ) → �(¬ϕ ↔ ¬ψ). By scheme (1)

and transitivity of implication, we get (ϕ ≡ ψ) → (¬ϕ ≡ ¬ψ), i.e. (id3). Now

we consider the tautology (ϕ ↔ ψ) → ((ϕ′ ↔ ψ′) → ((ϕ ∨ ϕ′) ↔ (ψ ∨ ψ′))).
By AN and axioms, �(ϕ ↔ ψ) → (�(ϕ′ ↔ ψ′) → �((ϕ ∨ ϕ′) ↔ (ψ ∨ ψ′))).
In this formula, we may replace formulas of the form �(χ1 ↔ χ2) by χ1 ≡ χ2,

according to (1). This results in (ϕ ≡ ψ) → ((ϕ′ ≡ ψ′) → ((ϕ∨ϕ′) ≡ (ψ∨ψ′)))
which is equivalent to ((ϕ ≡ ψ)∧ (ϕ′ ≡ ψ′)) → ((ϕ∨ϕ′) ≡ (ψ ∨ψ′)), i.e. (id4).

Similarly, we derive (id5) and (id6). Towards (id7), we consider the propositional

tautology

(ϕ↔ ψ) → ((ϕ′ ↔ ψ′) → ((ϕ ↔ ϕ′) ↔ (ψ ↔ ψ′))) and derive

(*) �(ϕ ↔ ψ) → (�(ϕ′ ↔ ψ′) → �((ϕ ↔ ϕ′) ↔ (ψ ↔ ψ′))) in a similar way

as before. Using Claim 2 and axiom scheme (3), we get

�((ϕ ↔ ϕ′) ↔ (ψ ↔ ψ′)) → �(�(ϕ ↔ ϕ′) ↔ �(ψ ↔ ψ′)). Considering (*)

and transitivity of implication, we derive

�(ϕ ↔ ψ) → (�(ϕ′ ↔ ψ′) → �(�(ϕ ↔ ϕ′) ↔ �(ψ ↔ ψ′))). Now, in the

same way as before, we apply (1) and corresponding replacements to derive

(**) (ϕ ≡ ψ) → ((ϕ′ ≡ ψ′) → (�(ϕ ↔ ϕ′) ≡ �(ψ ↔ ψ′))). Note that the

proof of Lemma 5.7 also works in S3≡. By schemes (3’) and (1), the connective

≡ is transitive in S3≡. Putting these observations together and considering the

equations ‘(ϕ ≡ ϕ′) ≡ �(ϕ ↔ ϕ′) ≡ �(ψ ↔ ψ′) ≡ (ψ ≡ ψ′)’, we are able to

derive

(�(ϕ ↔ ϕ′) ≡ �(ψ ↔ ψ′)) → ((ϕ ≡ ϕ′) ≡ (ψ ≡ ψ′)). This together with (**)

and transitivity of implication yields

(ϕ ≡ ψ) → ((ϕ′ ≡ ψ′) → ((ϕ ≡ ϕ′) ≡ (ψ ≡ ψ′))) which is equivalent to (id7).

Thus, Claim 3 is true. Finally, the inclusions S3≡ ⊆ S4≡ ⊆ S5≡ are clear by

Definition 5.6.

We are now able to establish the intended dualities between some of our SCI -

theories and corresponding modal systems.
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Theorem 5.9. The logics S1SP≡, S3≡, S4≡ and S5≡ introduced in Definition 5.6

are the dual SCI -theories of the modal logics S1SP , S3 , S4 and S5 , respectively.

Proof. We prove the duality between S3 and S3≡. The remaining dualities follow

in the same way. First, let us check that the logics L := S3 and L≡ := S3≡ satisfy

the conditions of Definition 5.3. On the one hand, we know that S3 is the weakest

Lewis modal system containing principle SP (c.f. [9, 11]) and thus contains S1SP .

On the other hand, by Theorem 5.8 and Lemma 5.7, we know that L≡ = S3≡

contains SCI and theorems (χ ≡ ψ) ≡ �(χ ↔ ψ). It remains to check one of

the equivalent conditions (i) or (ii) of Definition 5.3. We show that (i) holds. So

let Φ ∪ {ϕ} ⊆ Fm≡ and suppose Φ ⊢S3≡
ϕ. We show box (Φ) ⊢S3 box (ϕ) by

induction on the length n ≥ 1 of derivations of ϕ from Φ in S3≡. If n = 1, then

we distinguish the following cases (a)–(d).

(a) ϕ ∈ Φ. Then trivially box (ϕ) ∈ box (Φ) and thus box (Φ) ⊢S3 box (ϕ).
(b) ϕ has the form of a classical tautology. Since translation box preserves logical

connectives, it follows that box (ϕ) is of the same form, i.e., has the form of a

classical tautology, too, and as such is an axiom of S3 .

(c) ϕ is an instance of scheme (1), say ϕ = (χ ≡ ψ) ↔ ((χ ↔ ψ) ≡ ⊤). By

definition of box :

box (ϕ) = �(box (χ) ↔ box (ψ)) ↔ �((box (χ) ↔ box (ψ)) ↔ ⊤).
Considering the definition of the identity connective (ϕ1 ≡ ϕ2) := �(ϕ1 ↔ ϕ2)
in S3 , this yields box (ϕ) = (box (χ) ≡ box (ψ)) ↔ ((box (χ) ↔ box (ψ)) ≡ ⊤).
By Lemma 4.4, �(box (χ) ↔ box (ψ)) ≡ ((box (χ) ↔ box (ψ)) ≡ ⊤) is a theorem

of S3 . Applying SP, we get

box (ϕ) ≡S3 ((box (χ) ≡ box (ψ)) ↔ �(box (χ) ↔ box (ψ)))

= (box (χ) ≡ box (ψ)) ↔ (box (χ) ≡ box (ψ)).

Of course, any such trivial biconditional is a theorem of S3 and so is box (ϕ).
(d) ϕ is an instance of scheme (2), say ϕ = (�ψ → ψ). By Lemma 5.5(a),

box (ϕ) ≡S3 �box (ψ) → box (ψ). The latter is an axiom of S3 .

(e) ϕ is an instance of scheme (3), say ϕ = �(ψ → χ) → �(�ψ → �χ). As in

(d), we apply Lemma 5.5(a) and get

box (ϕ) ≡S3 �(box (ψ) → box (χ)) → �(�box (ψ) → �box (χ)). The latter is an

axiom of S3 .19

Examining the cases (b)–(e) above, we conclude in particular the following

Fact: For any axiom χ of S3≡, we have box (χ) ≡S3 χ
′, where χ′ is an axiom of

modal system S3 .

19Note that the same argument is applicable if we consider the axioms (3’), (4), (5). If ϕ is such

an axiom, then box (ϕ) is the corresponding axiom of modal system S1SP , S4 , S5 , respectively.
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Now, suppose ϕ is derived in n+1 steps and the assertion is true for all derivations

of length ≤ n. We may assume that ϕ is obtained by an application of the rules

MP or AN. In the former case, there are ψ and ψ → ϕ derived in ≤ n steps, and

the induction hypothesis yields box (Φ) ⊢S3 box (ϕ). In the latter case, ϕ = �χ for

some axiom χ of S3≡ that occurs in the given derivation. By Lemma 5.5(a) and

the Fact above, box (ϕ) ≡S3 �box (χ) and box (χ) ≡S3 χ
′, where χ′ is an axiom

of modal system S3 . Since SP holds in S3 , we may replace box (χ) by χ′ in every

context. Applying SP in S3 , we get box (ϕ) ≡S3 �χ′. Since χ′ is an axiom of

S3 , formula �χ′ is a theorem of S3 by the rule of Axiom Necessitation. Hence,

box (ϕ) is a theorem of S3 . We have finished the induction and thus the proof of

the Theorem.

We have established dualities between some particular SCI -theories and cor-

responding Lewis-style modal logics by means of the respective deductive systems

(cf. Definition 5.3). How can these dualities be described semantically? One eas-

ily recognizes that a given S1SP -algebra can be transformed into an SCI -model

defining f≡(a, b) := f�(f↔(a, b)), where f↔(a, b) is defined in the obvious way.

This corresponds to the theorem (ϕ ≡ ψ) ≡ �(ϕ ↔ ψ) of S1SP . The result-

ing SCI -model then will be a model of S1SP≡. The other way round, any given

SCI -model which is a model of S1SP≡ can be transformed into an S1SP -algebra

defining f�(a) := f≡(a, f⊤). This corresponds to the theorem �ϕ ≡ (ϕ ≡ ⊤)
of modal system S1SP . We conclude that the SCI -theory S1SP≡ is sound and

complete w.r.t. the class of exactly those SCI -models which can be obtained from

S1SP -algebras by the above presented transformation. So from a semantic point

of view, the duality between SCI -theory S1SP≡ and modal system S1SP is given

by those respective classes of models (and the transformations in both directions).

Analogously, we can describe the remaining dualities semantically. Detailed proofs

derive straightforwardly from the above results.

Our view on intensionality as a measure for the discernibility of propositions

(‘the more propositions can be distinguished in models of the underlying logic the

higher degree of intensionality’) is presented here in a rather informal and intuitive

way. An interesting task for future work could be a precise formalization of that

concept – in classical as well as in non-classical settings. The dualities established

in this paper generalize and extend earlier results (e.g. [2, 9]) or are in analogy

with similar results that hold in propositional logics distinct from SCI (cf. [6]).

The question arises which further (hyper-) intensional logics can be represented in

a framework based on SCI or based on a logic with different axioms for propo-

sitional identity. Can all (hyper-) intensional logics be captured by an appropriate

axiomatization of propositional identity? These and similar questions remain to be

further investigated.
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