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Abstract. The watershed transform is the basic morphological tool for image segmentation. Watershed lines, also
called divide lines, are a topographical concept: a drop of water falling on a topographical surface follows a steepest
descent line until it stops when reaching a regional minimum. Falling on a divide line, the same drop of water may
glide towards one or the other of both adjacent catchment basins. For segmenting an image, one takes as topographic
surface the modulus of its gradient: the associated watershed lines will follow the contour lines in the initial image.
The trajectory of a drop of water is disturbed if the relief is not smooth: it is undefined for instance on plateaus. On
the other hand, each regional minimum of the gradient image is the attraction point of a catchment basin. As gradient
images generally present many minima, the result is a strong oversegmentation. For these reasons a more robust
scheme is used for the construction of the watershed based on flooding: a set of sources are defined, pouring water
in such a way that the altitude of the water increases with constant speed. As the flooding proceeds, the boundaries
of the lakes propagate in the direction of the steepest descent line of the gradient. The set of points where lakes
created by two distinct sources meet are the contours. As the sources are far less numerous than the minima, there is
no more oversegmentation. And on the plateaus the flooding also is well defined and propagates from the boundary
towards the inside of the plateau. Used in conjunction with markers, the watershed is a powerful, fast and robust
segmentation method. Powerful: it has been used with success in a variety of applications. Robust: it is insensitive
to the precise placement or shape of the markers. Fast: efficient algorithms are able to mimic the progression of the
flood. In some cases however the resulting segmentation will be poor: the contours always belong to the watershed
lines of the gradient and these lines are poorly defined when the initial image is blurred or extremely noisy. In
such cases, an additional regularization has to take place. Denoising and filtering the image before constructing the
gradient is a widely used method. It is however not always sufficient. In some cases, one desires smoothing the
contour, despite the chaotic fluctuations of the watershed lines. For this two options are possible. The first consists
in using a viscous fluid for the flooding: a viscous fluid will not be able to follow all irregularities of the relief and
produce lakes with smooth boundaries. Simulating a viscous fluid is however computationally intensive. For this
reason we propose an alternative solution, in which the topographic surface is modified in such a way that flooding
it with a non viscous fluid will produce the same lakes as flooding the original relief with a viscous fluid. On this
new relief, the standard watershed algorithm can be used, which has been optimized for various architectures. Two
types of viscous fluids will be presented, yielding two distinct regularization methods. We will illustrate the method
on various examples.
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1. Introduction

A digital image is nothing but a collection of pixels
with color or intensity attributes distributed on a grid.
Segmentation is the process of regrouping pixels into
regions representing meaningful entities. Hence seg-
mentation follows an ambitious goal: contouring and
recognizing objects of interest. In many circumstances,
this goal is too complex and segmentation will process
in multiple stages: for instance construct regions which
are homogeneous for some criterion, and then regroup
regions according to some other criteria. Formally, each
stage of segmentations amounts to create a partition
of the space E into a set of regions (R, Ry, ..., Ry)
verifying £ = U;R; and R; N R; = §J; each regions
being homogeneous for some criterion like color, tex-
ture, motion. In some cases, one desires also to control
the size and/or the number of regions (if a relatively
simple description of the scene is required). Moreover
the process should be robust and yield the same result
if the image is degraded (presence of noise, blurring,
poor lighting conditions. . . ).

Many segmentation paradigms have been proposed
in the literature: statistical methods, fuzzy classifi-
cations, Markov fields, neurons networks or PDE-
based methods such as bayesian models, snakes or ac-
tive contours models, Mumford and Shah’s functional,
etc... Analogies with physical phenomena have in-
spired some particularly interesting models: various
energy minimizations as in the balloon model [5], ap-
plication of Fermat’s law of minimal action [6, 7], or
adaptation of Coulomb’s law [8]. In the present paper
we will flood a topographical relief and construct wa-
tershed lines.

Watershed-based segmentation has been invented
by C. Lantuéjoul and S. Beucher in 1979 [2]. The

watershed line

Figure2. Therelief flooding scenario: points where two lakes meet
define the watershed line.

fundamental idea is the following: a gradient image is
interpreted as a topographic relief where the contours
correspond to crest lines of the relief. More precisely,
the contours are the divide lines separating the various
catchment basins: a drop of water falling on a divide
line may glide on any side of it and reaches one of
the two adjacent catchment basins, following a line of
steepest slope. Inversely, a flooding scenario, in which
the minima serve as sources, will also follow the lines
of steepest descent from bottom to top ; the watershed
line will then be the meeting line of two flooding fronts
coming from two distinct minima (see Figs. 1 and 2).
Among all the segmentation methods, the watershed
transform is certainly one of the most popular judging
from the great diversity of applications in which the
method has been successfully applied. The morpholog-
ical segmentation paradigm is a two steps procedure:
during the first step, the image is analyzed and some
germs or markers are introduced within each object of
interest; the precise location of the marker inside the ob-
ject has no importance. This crucial step may be done
iteratively or interactively, permitting an elegant and
easy decision procedure. During the second step the
strongest and best contours separating the markers are
detected. This last part of the segmentation is fully au-
tomatic and is completely parameter free. Furthermore,

Figure 1. A gray-scale image, its gradient norm and the representation of the gradient image as a topographic surface.



very efficient implementations of the watershed trans-
form make the whole strategy one of the least expensive
ones in terms of computation time. Last, the strategy is
versatile, well adapted to images with any number of
dimensions. It may be also used on more complex struc-
tures such as neighborhood graphs or trees. It offers
nice perspectives in multi-scale segmentation strategies
or interactive segmentation schemes. Since its inven-
tion in 1979, many authors have contributed to make
the watershed-based segmentation paradigm powerful
by the way of important advances on theoretical, algo-
rithmic or experimental levels. With steadily growing
processing capacities , increasingly complex problems
of segmentation may be tackled. The list of publica-
tions on those topics is very long, but here are some
synthesis articles: [18,21,24].

There is however a drawback with the watershed seg-
mentation: the strength of the watershed due to the ab-
sence of parameters is also its weakness. In some cases,
when the images to be segmented are corrupted by blur-
ring, noise, poor lighting conditions contours are poorly
defined, the segmentation must result from a compro-
mise between a complete adherence to the data (and
possibly to the noise) and a certain amount of modelling
; poorly defined parts of the contour have sometimes to
be interpolated by fitting a model to the better defined
parts. Energy-based methods (like the snakes, the bal-
loon model. ..) go along this line: smoothness terms
are incorporated in the model [4,5,11,28,35]. Follow-
ing our flooding analogy, one may imagine introducing
some degree of stiffness and a higher smoothness by
flooding the topographic relief with a viscous fluid.
This option is that of Hieu, Worring and Boomgaard
[10] who suggest to add a smoothness term in the water-
shed energy or that of Salembier [25], Marcotegui [13]
or Serra [27] who suggest to regularize the lakes along
the flooding scenario. Alternatively, the relief itself may
be modified in such a way that, by flooding this new re-
lief with a viscous fluid or a non viscous one, one would
produce exactly the same progression of the flooding,
and hence the same placement of the watershed lines.
The advantage is that an ordinary watershed transform
can be used on this new topographic surface, for which,
as we already mentioned, extremely fast algorithms ex-
ist. Furthermore, if the process has to be repeated, as in
interactive segmentation where various sets of mark-
ers may be used until a satisfactory result is obtained,
the topographic surface has to be smoothed only once.
This second promising alternative is chosen in this
article.
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In a precedent work [22], a viscous flooding simula-
tion of the relief using a mercury type of fluid has been
proposed: such a fluid enters more and more deeply in a
narrow isthmus or fjord when submitted to an increas-
ing pressure; the radius of curvature of its meniscus
increases with the pressure. The compression of the
fluid at the bottom of the lakes permits to adjust the
regularization to the topography of the relief. This idea
is discussed here and compared to another model based
on another model in which the viscosity decreases with
the temperature, as a function of the altitude of the re-
lief.

This paper is organized as follows: in the next sec-
tion, some key points of the watershed-based segmen-
tation are recalled and discussed. Then, the concept
of viscous watershed line is introduced. Two models
of viscosity are proposed and the viscous transforma-
tion of a relief is defined. The last part includes an
experimentation with the viscous watershed transform
applied on various image types.

2. The Watershed-Based Segmentation

2.1.  The Relief Flooding Scenario
and Others Definitions

In topography, the watershed line refers to a ridge that
divides areas drained by different river systems while a
catchment basin is the geographical area draining into
a river or reservoir.

The fundamental idea leading to the watershed-
based segmentation is built on an analogy. In standard
image segmentation applications, contours correspond
to high luminance transitions, i.e. points where the gra-
dient norm takes high values. The analogy consists
in regarding the gradient norm image (or any other
contours image) as a topographic relief in which the
crest lines represent the contours. In order to get closed
contours, we only consider a subset of the crest lines,
namely the watershed lines, or boundaries of the catch-
ment basins. (see Fig. 2).

Concurrently to the original pragmatic definition of
the watershed transform proposed by Lantuéjoul and
Beucher [2], a more formal definition exists in terms
of skeleton by influence zone. The watershed line is
the set of points at equal distance of the image minima,
according to a certain distance: the topographic dis-
tance. Distance-based formulations of watershed trans-
form are due to Meyer in the discrete case [17] and
to Schmidt and Najman in the continuous case [23].
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Much more usually, the watershed line is presented
as the set of meeting points of water in a relief flood-
ing scenario. The image being seen as a topographic
relief, it is progressively flooded, the water entering
by the regional minima. Gradually the level of water
goes up causing the appearance of a number of lakes
(one per minimum). All over the flooding process, each
lake takes the exact shape of the valley. Watershed
points are meeting points of lakes of different sources
(see Fig. 2). This formulation leads to very efficient
algorithmic solutions [12, 15,24,33, 34]. In this flood-
ing scenario, the lakes correspond to the level sets of
the functions, so the watershed points may be extracted
level by level. Denoting by X, (f) the level set of f at
level h,

Xn(f)=1{xeE, f(x)=h}

the negative sets S, = X, are the level sets of the lakes.

As the level of the flooding increases, new lakes ap-
pear and existing lakes become larger. At some pass
points of the relief, two lakes separated at level (h — 1)
meet at level /: in order to prevent this meeting, the
geodesic skeleton of influence of the lakes at level
(h — 1) is constructed within the lakes of level (/). This
process is repeated for all successive levels, keeping
the lakes separated along the watershed line. The lakes
atlevel (h — 1) play the role of markers and the level set
(Sn(f)) the role of reference set (see Figs. 3-5). This
formulation is due to Lantuéjoul and Beucher [2].

We recall that the skeleton by influence zone as-
sociates with a family of components Ci, Cs,...C,

Figure 3. The relief and its level sets.
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Figure 5. The relief and the dividing line calculating by the water-
shed transform.

called markers, the connected set of points at equal
euclidian distance from two different components:

In the geodesic case, the space E is replaced by a refer-
ence set R and a condition is added: the components C;
and C; must belong to the same connected component
of R and of course the separating points p are selected
in R.

The advantage of this formulation of the water-
shed construction is to stress the contribution of each
level set. For smoothing the topographic surface, we
will apply to each level set of the topographic sur-
face a closing by a disk, whose radius depends on the
altitude.

Now, how is the watershed transform used in prac-
tice for segmenting an image f ? First the image edges
are enhanced by computing their gradient magnitude
[IV f]l. This can be for example approximated by the
discrete morphological gradient §(f) — e(f), where
8(f) = f @ B is the flat dilation of f by a small disk
B and ¢(f) = f © B is the flat erosion of f by B.
After the edge enhancement, the segmentation process
starts with creating flooding waves that emanate from
a set of markers (feature points inside desired regions)
and flood the topographic surface ||V f||. The simplest
markers are the regional minima of the gradient image.
However, very often, the minima are extremely numer-
ous, leading to an over-segmentation. For this reason, in
many practical cases, the watershed will take as sources

<
¢

Figure 4. Flooding of the relief (white sets correspond to lakes). From left to right: a first lake appears at the flooding level 1; a second lake
appears at level 2. The two lakes grow then meet at level 5 then 6. At each level &, the watershed points correspond to the skeleton by influence

zone of the lakes at level (2 — 1) into the level set [ X, (f)]¢.
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Figure 6. Profile of the original function f and of the marker function g. The reconstructed function having as minima those of g is represented

in bold.

of the flooding a smaller set of markers, which have
been identified by a preliminary analysis step as inside
germs of the desired segmentation.

In the case where the sources for the flooding are not
all minima of the topographic surface, two solutions are
possible. First, use the markers as sources: in this case,
catchment basins without sources are flooded from al-
ready flooded neighboring regions. Such a flooding al-
gorithm using hierarchical queues has been described
in [3]. The second solution consists in modifying the
topographic surface as slightly as possible, in such a
way that the markers become its only regional minima.
This operation is called swamping. If m, m», ...my
are the binary markers, we construct a marker function
g defined as follows: g = +o0o outside the markers
and g = f inside the markers. On the other hand, the
topographic surface f is modified by constructing the
highest flooding of f below function g; in other terms,
we perform a reconstruction closing of f using g as
marker [19]. The process is illustrated by Fig. 6. Sev-
eral operators have been invented for selecting the per-
tinent markers: let us mention the -4 extrema [26], the
dynamics [9], the waterfall [1] and the generalization
of these concepts in terms of extinction functions [29,
31,32]. The basic idea is to carry out a granulometry
of the scene (i.e. a multi-scale filtering of the origi-
nal scene), to study individually each object evolution
throughout the simplification scales in order to evalu-
ate their persistence although interpreted as a signifi-
cance degree [29,31,32]. Filters compatible with such
an analysis are the morphological levelings [20, 30].

2.2.  Precision and Robustness
of the Watershed Transform

By construction, the localization of the contours ex-
tracted by the watershed transform is entirely deter-
mined by the topographic surface: the lakes follow
faithfully the borders of land and their contours can

Figure 7. Original image (image to be segmented).

be rather irregular and chaotic. This is the case in pres-
ence of noise, or poorly defined gradient images, as is
the case when the original image is blurred.

For segmenting the central part of the flower pre-
sented in Fig. 7, two flooding sources have been manu-
ally placed: one inside and one outside the heart of the
flower. As usually, transitions of luminance correspond
to a high value of the gradient norm, so the relief to be
flooded is the gradient image. Here, the gradient corre-
sponds to the morphological gradient (dilation minus
erosion by a disk of size one).

Without pre-processing, the watershed line is poorly
localized (see Fig. 8). This was foreseeable: the pre-
cise localization of the heart of the flower is hard to
determine as the image is fuzzy. During the flooding
procedure, water leaks between contour fragments and
some lakes meet at wrong places. . . This phenomenon
is quite frequent in the case of noisy data (and espe-
cially when gradient images are considered).

When contours are blurred or badly defined, the seg-
mentation must result from a compromise between a
complete adherence to the data and a certain amount
of modelling. As illustrated in our example, in the
watershed-based scenario, irregularly shaped lakes,
when they meet naturally, create irregular watershed
lines. Regularizing the watershed can only proceed
from some modelization and smoothing of the water
front. Either the water front itself is smoothed out, as if
the fluid had some viscosity or alternatively the topo-
graphic surface itself has to be smoothed out, and some
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Figure 8. From left to right: gradient image (relief to be flooded), flooding sources (one is placed in the center of the flower; the other is the

edge of the field) and watershed line(superimposed to the original image).

Figure 9. From left to right: closed gradient (the relief to be flooded is closed by a disk of radius 9 = 30), flooding sources superimposed to
the closed gradient and watershed line computed on the closed relief (superimposed to the original relief).

fjords have to be filled. In both cases the lakes created
during flooding will present smooth contours.

In fact, the simplest modification of the relief pro-
ducing smoother divide lines is the morphological clos-
ing (see Fig. 10). A large closing produces a much
smoother image. However the contour is still poorly
localized if one constructs the watershed associated to
the sources, as illustrated in Fig. 9.

This example illustrates a well known duality: with-
out pre-filtering, the segmentation is precise but noise
sensitive; with pre-filtering, the segmentation is robust
but less precise. Our purpose is to modulate the smooth-
ing to the topography in order to obtain more sensible
results than with a plain closing. We want the con-
tour to stick to the data where the data are sure and
to stick more to a model where the data are poorly
defined.

Figure 10. Effect of a closing on a thin contour line: in black, the
original contour; in gray, the closed contour. Each point outside the
closed contour belongs to a disk of radius R.

3. The Viscous Watershed Transform
3.1. Oil and Mercury Flooding Scenarios

Our goal is to regularize the watershed line in order to
gain in robustness while preserving a great precision
of the localization in places where contours are well
defined.

We will distinguish two types of scenarios.

The first scenario is well adapted for almost all
gradient images for which bottoms of valleys are of
gray level zero: as a consequence, the luminance of a
point in a gradient image equals to its contrast. This
is (almost) true even if the image is degraded by blur-
ring. In such a situation, higher values of the gradi-
ent are the sign of a well defined contour in the orig-
inal image: the watershed line has to follow the relief
more faithfully in these areas (and this independently
of the depth of the adjacent valleys). Inversely, low
values of the gradient indicate the presence of blur-
ring due to motion or poor focus; for such parts of
the contour, a higher regularization has to take place.
This may be accomplished by using an oil type of
fluid: such a fluid enters more and more deeply in a
narrow isthmus when its temperature increases. Sup-
pose now that the temperature of the fluid increases
with the altitude of the relief; this means that the
lakes will better stick to the relief as their altitude
increases and the contours at higher altitude gain in
precision.
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important
regularization
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Figure 11. The regularization (i.e. the closing activity) has to be locally adapted to the gradient values. In points of low gradient, an important
regularization is needed (a closing by a large disk can be applied) while a weak regularization is sufficient at points of high gradient values (a

closing by a small disk is applied).

In other situations, the valleys depth will be the fun-
damental parameter of the gradient for modulating the
regularization and a second scenario is needed. In such
a situation one desires a smoothing which decreases
with the depth of the valleys (this behavior is illustrated
inFig. 11). A mercury type of fluid will do the job: such
a fluid enters more and more deeply in a narrow isth-
mus or fjord when submitted to an increasing pressure;
the radius of curvature of its meniscus increases with
the pressure. The pressure at a given point of a lake is
equal to the height of the column of liquid above this
point. This means that, as the level of the lake increases,
the pressure at a given altitude increases and the fluid
is able to enter more and more within the fjords,
whereas at the surface of the lake, the smoothing is
maximal.

We will call the first type “oil flooding” and the sec-
ond type “mercury flooding” and present below how to
implement them.

For instance, let us concentrate on the viscous wa-
tershed line, i.e. the set of points separating the viscous
lakes. If f denotes the original relief, the goal is to
find a modified relief g such that the viscous watershed
line of the original relief coincides with the standard
watershed line of the modified relief:

Wsh(g) = ViscWsh( f)

As said in Section 2.1, the watershed transform of a
function g can be expressed as skeletons by influence
computed on the level sets of g: the watershed points are
points of the level sets X} (g) located at equal geodesic
distance of the lakes at level 7 — 1 (see Fig. 4). The
water lakes appearing by flooding of g are components
of X;(g)°. So, the construction of g will be fully defined

as soon as we have defined how each level set of f is
transformed during the viscous flooding simulation:

Vh, Xn(g)" = Xp(ViscousLakes(f))*

3.2.  Viscous Flooding Simulation

The concept of viscous flooding has been first proposed
by Meyer [16]. It is inspired from a physical measure
where the rock granulometry is measured by injecting
mercury in the rock: the amount of mercury increases
as the pressure allows reaching narrower holes in the
rock. This process has inspired Matheron for introduc-
ing families of increasing openings [14] as the basis of
granulometric measurements.

A smoothed version of a set may be obtained by
taking the union of all disks of a given radius included
in this set; the smoothing increases with the radius of
the disks, as more and more details cannot be covered
by such disks:

r(4) = {B:]B! c A}

xekE

y, is the opening by the structuring element B”". If B”
is the euclidian disk of radius r, the opened set may be
interpreted as the space filled by a viscous fluid with a
given viscosity [14]; the viscosity r being a function of
the pressure for mercury types of fluids and function
of the temperature for oil types of fluid. Hence open-
ings by disks of decreasing radius will represent the
space filled by a viscous fluid with decreasing viscos-
ity (increasing pressure for mercury or temperature for
oil) (see Fig. 12). When the fluid gets less viscous, the
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Figure 12. Lakes formed by fluids of decreasing viscosity: they are represented via openings by disks of decreasing radius.

space filled by the fluid gets larger; it can be defined as
the set y,(S) with r < ry. Of course, the viscosity of a
fluid is determined by the relation linking r to pressure
or temperature.

Recall that we do not wish to model the fluid, but to
smooth the relief in such a way that a non viscous fluid
will behave as a viscous one: opening the lakes by y; in
order to make them viscous or closing the background
of the lakes, i.e. the level set X, (f) by the closing ¢,
will have the same effect:

Vh =0, Xple, (O] = ¢ [ Xn(H] = [y (Xn(/I)

3.3. Oil Flooding

We illustrate on Figs. 13—15 the viscous flooding sce-
nario with an oil type of fluid. Figure 13 represents
a relief with two catchment basins and 6 gray levels.
There are two regional minima, one at level 1 on the
left and one at level 2 on the right. The temperature is
supposed to be indexed on the gray levels: atlevel 1, the
temperature Tj is cold and the oil extremely viscous.
The minimum on the left is large enough and a viscous

Figure 13.  Original relief.

| vy
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Figure 15. The watershed line and the viscous watershed line.

lake appears. When the lake reaches level 2 its temper-
ature increases and the fluid becomes less viscous. The
valley on the right is too thin, so it is not flooded. At
flooding level 3, the viscosity has again decreased; at
this step, two lakes are formed. When the flooding level
increases, the lakes temperature also increases and the
level sets enlarge. At flooding level 5, the meeting of
the water fronts is possible. As in the non viscous case,
the watershed points correspond to points of a skele-
ton by influence zone but the sets to be considered are
not the same: they correspond to the level sets of the
viscous fluid lakes (see Fig. 15). In the present section,
it is explained how these sets are expressed. As illus-
trated in Fig. 15, the watershed line derived from the
viscous model differs from the standard watershed line
in points of contour of low gray level.

It is now time to detail the viscous flooding of our
relief. We consider a topographic surface f defined
on a domain E and taking its values in [0, M]. We
are interested in computing the modification to apply
to each threshold X (f), defining the maximum ex-
tension X, (T (f)) of a viscous fluid at this altitude.
A non viscous fluid will then follow the same exten-
sion. At flooding level %, the temperature of the fluid is

r 9vg

Figure 14. Simulation of the viscous flooding. Because of the viscosity, the lakes apparition and meeting may be delayed (in comparison with
the non viscous case). The watershed line is still a skeleton by influence zone but now associated with the set of viscous lakes.



Figure 16. Oil flooding of a single cylinder: in the lowest levels,
the temperature is low so the fluid is of high viscosity; in surface, the
temperature increases and the fluid is less viscous.

uniform and equal to 7},; the viscosity radius associated
with the fluid at this temperature is (k). The viscous
lakes are defined by the opening of size r(h):

Ve (X3)

(see the Fig. 16).

We are now at the heart of the method: the con-
struction of a modified relief (denoted 7'(f)) having
the same level sets as the viscous lakes formed in our
relief. T'(f) must satisfy:

Vh > 0, Xp(T(F) = [vrnXn(H))] = @ranXn(f))

When £ increases, the level set X, (f) decreases.
But r(h) also decreases and thus the operator ¢,
decreases. Hence the series X,(T(f)), produced by
applying a decreasing operator to a decreasing series
of sets are decreasing as & increases; they are thus really
the level sets of a function 7'(f). An explicit formula
for this transformation is the following:

T(H)=\/ ernxn(fN=\/ h-xu[@ran(f)] with

h>0 h>0

1 VpeXu(f)
0 elsewhere

xn(f)(p) = {

In this formulation, A.x;,(f) simply corresponds to
the level set X, (f) represented at the altitude 4.

This formulation may be directly implemented: for
each level A, the level set of the input function f is
extracted then closed using a disk of radius r(h). The
output function results from the superposition of the
closed level sets; the sets being repositioned at their
initial altitude.
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T(f) inherits from all the properties of the
closing ¢,. It is idempotent (7 o7 =T), increas-
ing (fi<fp=T(fi)<T(f,)) and anti-extensive
(T(f) < f). Hence, the operator T is called a viscous
closing. The standard closing corresponds to a viscous
closing with a constant viscosity (r(h) = roVh > 0).
Lastly, the viscous closing T is finer than the standard
morphological closing: f < T(f) < ¢, (f).

Note the hierarchical action of the viscous closing:
low altitude level sets are severely closed whereas the
highest level sets are nearly preserved. The computa-
tion of the viscous closing involves the computation of
anumber of binary closings (one per level ), represent-
ing anon negligible cost. However, the viscous closings
is generally computed on gradient images presenting a
reduced number of gray levels. Furthermore in case of
interactive segmentation for example where the num-
ber, position and shape of the markers are adjusted by
hand, numerous computations of the watershed have
to be performed; each of them flooding the same topo-
graphic surface with a different set of sources. In this
case the unique modification of the topographic surface
is advantageous compared to a method trying to model
the flooding itself.

3.4. Mercury Flooding

Flooding with a mercury type of fluid has already been
addressed in [22]. There is however a difference in the
presentation which follows. In [22] we have considered
an infinitely high column of fluid, which is not realistic.
In the present analysis, we limit the column of fluid
to the grey tone range [0, M] of the image. During
flooding, a mercury type of fluid enters more and more
deeply in a narrow isthmus or fjord when submitted
to an increasing pressure; the radius of curvature of its
meniscus increases with the pressure. Let us consider
the mercury flooding of a relief f at level & and detail
how the geometries of the lakes are defined.

We consider a topographic surface f defined on
a domain E and taking its values in [0, M]. We are
interested in computing the modification to apply to
each threshold X (f), defining the maximum exten-
sion X, (T (f)) of a viscous fluid at this altitude. A non
viscous fluid will then follow the same extension.

Letus consider a threshold X, ( /). When the flooding
with mercury reaches the level ¢, its maximal extension
will be limited by the closing ¢, ) of X,(f). The radius
r(0) is the maximal radius of curvature of mercury at
atmospheric pressure; let us call this pressure Py. When
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Figure 17. On the left: cylinder to be flooded; on the right: column
of viscous fluid. In the bottom of the cylinder, the fluid is more
compressed; it behaves as if it were less viscous.

the level of flooding increases and reaches the height
h, there will be a pressure proportional to the height
h —t of fluid above the level 7. Let us call this pressure
P(h — t). The maximal radius of curvature of mercury
at pressure P(h —t) will be r(h —t) < r(0). Hence the
fluid will have entered more deeply into the fjords of
X,(f). limited by the set ¢, [X,()].

We may now compute the threshold XuT( )] at
altitude / of the smoothed relief. It will be the contri-
bution of all levels below /4. Imagine that we consider
an aerial view of the flooding at level 4. The contri-
bution of level k itself is @, Xi(f) as illustrated on
Fig. 17 in the case of a single cylinder. One verifies that
the contribution of level 4 itself is ¢,y X, ( f). Consid-
ering the aerial view, the flooding will be the union of
all floodings at levels up to 4. Itis limited by a set which
is the intersection of all limiting sets for all levels up
to h: /\0<k<h @rn—i Xk (f). Let us remark that we have
two conflicting evolutions in the series @, —i) Xk (f):
when ¢ increases, the closing ¢,.,—) increases and the
threshold X (f) decreases: see Figs. 17 and 18.

On the other hand X, (f) = X,(f + h — k), where
f + h — k is the vertical translation of f by the value
h — k loped to the maximal value M. Hence

XlT(M = N\ GosoXu(f +h—k).

O<k<h

But since the closing ¢.»—k) is a flat operator, the
threshold commutes with the closing and we have

XlT(M = N\ Xngroio(f +h =k

O<k<h

= Xh|: /\ Orin—1(f +h — k):|

0<k<h

Figure 18. Profile of the relief and of the mercury flooding. The
contribution of the cylinder f; of basis Sy at level h > k is y,(h —
k)(Sk). Its contribution at level & < k is @.

Defining r = h — k, we get

XulT()] = Xh|: N\ eolf +f)]

0<t<h

In this formula the height 4 appears not only in the
threshold level but also in the range of the parame-
ter + which varies from 0 to 2. What happens when u
takes a value [ > h ? The ground level of the deepest
lakes of the function f + [ is greater than or equal to
[. Hence the threshold X (f + [) represents the whole
domain of definition E of the function f and the clos-
ing ¢, of E is again E. Hence all levels of t above h
in /\O<t ¢r»y(f + t) have no influence on its threshold
at level /. Hence

XulT(H)) = Xh[ A\ <Pr(z)(f+l‘)i|

0<t<h

= Xh[/\fpr(z)(f + t)}

0<t

and since the height % is not present anymore in our
parenthesis, we may identify the functions which are
thresholded: T(f)] = o, ¢ro)(f + 1), which is
the formula established in [22]; the only difference
being the range of ¢ varying between 0 and M: see
Fig. 18.

Finally:

(N = N\ +1

t>0



The viscous transformation T is increasing and
anti-extensive as the morphological closing but not
idempotent because of the translation (f + k).
Hence it does not correspond to a morphological
closing.

T is finer than the standard morphological clos-
ing: f<T(f)< @r0)(f). Note that the image is first
roughly closed (¢,«)(f)), then details are re-injected
via softer closings (¢, (f + t) with r(t) < r(0)). As
the flooding level & increases (h — 00), the fluid at the
basement is more and more compressed (it seems like
a non-viscous fluid (r(h) — 0), the data are less and
less filtered (¢, (f + 1) — f + h).

3.5. Comparison of the Models

The effects of our viscous transforms are illustrated on
Figs. 19 and 20. Both T and 7'( f) are anti-extensive and
more precise than the standard morphological closing
p(f<T<gand f <T <)

At last, by definition of our viscous transforms, we
have

Vh, Xp[T(f)] = or@[Xn(f)] and
Xl T = (e[ Xa(F+D1 C @ran[Xa(£)]

t>0
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which leads to the following inequality:
T<T

Let us now appreciate the relations between the mer-
cury and the oil models.

In the mercury model, for a given flooding level 7,
fluids of different viscosity invade the relief: the vis-
cosity of the fluid in a lake depends on the depth of
the lake. In a single cylinder having its basis at level &,
all the sections being equal, the less viscous fluid im-
poses its geometry: it is the fluid located at the bottom
of the valley, i.e. at level k. The same result may be
obtained with oil, considering that the viscosity radius
of mercury at the pressure P(h —k) equals the viscosity
radius of the oil at temperature 7' (h — k): see Fig. 21. In
other words, the mercury and oil scenarios are equiva-
lent if the temperature of the oil is not indexed on the
flooding level but on the depth of the valleys: oil pene-
trates inside the relief with the temperature 7j and then
becomes hotter when the oil lakes depth increases.

Note that, in order to improve the visibility of the im-
ages presented in Figs. 19 and 20, gray-levels dynamics
have been changed from one image to another. For this
reason, the inequalities between the transformed im-
ages are not preserved on our illustrations.

In our original oil model, the temperature is a func-
tion of the flooding level and not of the valley’s depth.
Of course, the two models are equivalent if the relief

Figure 19. From left to right: original relief (gradient of the flower image of Fig. 7), effect of the viscous transformation of size 30 (mercury
model: T), effect of the viscous closing of size 30 (oil model: T'), and comparison with the standard closing of size 30. In order to improve the
visibility of the images, the gray-levels dynamics have been normalized for each image.

Figure 20. From left to right: original relief (ultrasound image of the left ventricle of the heart), effect of the viscous transformation of size 20
(mercury model: T), effect of the viscous closing of size 20 (oil model: T') and effect of a standard closing of size 20 . In order to improve the
visibility of the images, the gray-levels dynamics have been normalized for each image. Without enhancement, we have: Id < T < T < ¢.
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Figure 21. A same set of viscous lakes is obtained by mercury
flooding (on the left) and oil flooding (on the right).

is a union of cylinders with all minima at level 0. This
configuration is common in segmentation applications
as we will see in Section 4. As an example, gradients
of constant piece wise functions are of this type.

4. Application to Image Segmentation
4.1. Case of a Thin Contour Line

In order to better understand the behavior of the vis-
cous watershed transform we have constructed a series
of synthetic test images (Figs. 22-24). It consists in a
thin and broken contour line dividing the space into
two parts. In the first image, on the left of Fig. 22, the
contour line is bright, having a high altitude. The vis-

Figure 22.  Viscous closing of a synthetic image. The original con-
tour is a one pixel thin line. The viscous closing gradually thicks the
contour.

Figure 24. Viscous Watershed Line in the case of a contour of
variable height.

cous closing of the relief produces a thick contour zone
whose crest line remains close to the fine initial line;
smooth versions of the original contours are added at
lower altitudes. Remark that in the particular case of
this test example, the image consists in a cylinder and
both oil and mercury flooding produce the same result.
In the present examples, the viscosity is set to 20 (more
exactly, 20 is the radius of the structuring element used
for a fluid at the temperature of reference). Then, the
viscosity decreases as the altitude increases: if & de-
notes the altitude of the source, the viscosity at level
(h+1)is 19, 18 at level (& + 2). The effect on the wa-
tershed construction is best illustrated by the series of
Fig. 23, where the same contour line is represented with
increasing heights. As foreseen, the strongest regular-
ization of the construction of the watershed line occurs
for the contours with a low altitude. As the altitude in-
creases, the watershed line is less and less smoothed
out. The last example in Fig. 24 summarizes all these
effects: again the same contour, but with a varying al-
titude, low in the central part of the image and high on
the top and bottom of the image. The contour which
is produced follows our expectation: a strong smooth-
ing in the central part of the image and gradually no
smoothing towards the borders of the image.

4.2.  Segmentation of Fuzzy or Blurred Images

We consider again the example of the flower presented
in Section 2.2. As noted previously, the image is fuzzy
and contouring the heart of the flower is delicate. The

Figure 23. Viscous Watershed Transform computed on contours of increasing height (with a constant viscosity): the stronger the contour is,
the softer the regularization is.
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Figure25. Original fuzzy image and segmentation obtained via the
standard watershed transform.

computation of the plain watershed transform directly
of the gradient image leads to a incorrect result.

The Fig. 26 presents the segmentation obtained via
a viscous watershed transform. Both oil and mercury
flooding models are experimented. The results are simi-
lar: in both cases, the viscous watershed line is correctly
localized whereas the standard watershed produces in-
correct contours (see Fig. 25).

Finally we test the robustness of the viscous water-
shed transform against noise. Gaussian noise has been
added to the original gradient image: see Fig. 27. Non
viscous and viscous watershed lines are computed on
the degraded gradient. In all cases, adding noise hardly
changes the watershed positioning. In particular, the
viscous model gives as good results as without noise.
For both models, the quality of the segmentation is not
really affected by blurring: see Fig. 28.

4.3.  Generic Images Segmentation

In many image processing tasks, such as the process-
ing of multimedia images, we encounter images of very
different nature. We now present various examples of
image segmentation tasks. In this section, the viscous
watershed transform is applied on images of very dif-
ferent types. The segmentation algorithm proceeds in
three steps:

1. a first segmentation of the image by the standard
watershed transform computed on the original gra-
dient image is performed (see Fig. 29). The sources
have been chosen among the largest and most con-
trasted regional extrema of the original image. For
this step, one can refer to [21,31]. This first seg-

Figure 27. Addition of a gaussian noise, watershed transform com-
puted on the noisy gradient.

mentation is used to build a mosaic image, i.e. a
piece-wise constant image where the segmented re-
gions are filled with the local mean gray-values of
the original image.

2. thin contour lines are extracted computing the
morphological gradient of the mosaic image (see
Fig. 29).

3. the viscous closing of the image of the thin contour
lines is performed (Fig. 30) and the viscous water-
shed transform is computed (Fig. 31). It is recalled
that in this case (where all the relief valleys are at the
same level) oil and mercury models are equivalent.

Why do we work with thin contour lines? Remem-
ber that our regularization is based on hierarchical clos-
ings. When contours are thick or close to one another,
they may coalesce by closing (as the closing does not
preserve the homotopy). This effect is limited if the
contours are fine. In order to avoid this drawback, one
could replace the morphological closing by a homo-
topic transformation (a thickening for example) in or-
der to prevent this phenomenon. When thin regions
have to be segmented, this point is of great importance
(see for example the arm of the table tennis player on
the Fig. 31: for the strongest closing, the contours of
the arm coalesce into a central skeleton line).

The Figs. 31 and 32 present the results obtained
by the previous algorithm for different viscosities of
the fluid. Note that, instead of increasing the viscosity
of the fluid, it is possible to lower the heights of the
contour arcs: this allows to speed up the computation.

The proposed regularization adapts the closing size
to the gradient norm, i.e. the height of the contours.
This process adapted when a high gradient value means

Figure 26. Viscous closings of the gradient image and associated viscous watershed lines (oil type and mercury type).
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Figure 29. From left to right: original image, morphological gradient, result of the Watershed Transform (in white), gradient of the mosaic
image (each segmented region is filled with the local mean value of the original image; then the morphological gradient of this mosaic image is

computed).

Figure 31.  Watershed line computed on the precedent filtered relief (from left to right: ro = 5, 10, 20).

precise contours and low gradient values fuzzy con-
tours. This is not always the case, a poorly contrasted
object can have extremely sharp contours and alow gra-
dient norm: on the other hand the gradient line would
be narrow. Adapting the algorithm to such a situation
is the object of our current work: the idea is to distin-
guish fuzzy contours, which have to be smoothed, and
sharp contours which have to be tracked with preci-

sion. This means that in that case, the viscosity has to
be indexed to the contour thickness rather than to its
height.

4.4.  Segmentation of the Heart Ultrasound Image

We consider now another example, that of an ultra-
sound image representing the left ventricle of the heart:
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Figure 32. From left to right: original image, Watershed Lines (on top) and Viscous Watershed Lines (on bottom) obtained from two different
sets of flooding sources. In the second case, a more important viscosity is imposed.

see Fig. 33. In that case especially, the relief to be
flooded is the original image itself, as its gradient does
not improve the localization of the contours. The strat-
egy involves the following steps:

1. the computation of the viscous transformation of the
original image.

2. the imposition of markers inside and outside the
ventricle.

3. the computation of the watershed transform on the
gradient of the viscous closed image.

Two models have been tested: the oil and the mer-
cury. Equivalent viscosities have been considered: the
viscosity radius ry at reference temperature and at at-
mospheric pressure is the same in both cases. The mer-
cury flooding scenario has been especially conceived
for solving problems comparable to those introduced
by the ultrasound example. Results are presented on
Figs. 34 and 35. As previously, the result obtained by
this method is very good.

We compare our segmentation to the contour pro-
duced via a geodesic snake [4]. The results are sim-
ilar: see Fig. 36. This was foreseeable: the evolution

Figure 34. From left to right: relief closed by viscous closing (oil
model), gradient of the viscous closed image and watershed trans-
form.

of a viscous lake may be interpreted as an active vari-
ety, the viscosity playing the role of the rigidity. The
difference between the two approaches lies in the math-
ematical formulation: in our solution, the geometrical
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Figure 35. From left to right: relief closed by viscous closing (mer-
cury model), gradient of the viscous closed image and watershed
transform.

Figure 36. Segmentation based on a geodesic active contour.

constraints have been expressed as pre-processing.
Nevertheless, note that the viscous watershed-based
algorithm presents a major advantage in compari-
son with the active contours models: it depends on
a smaller number of parameters. In particular, the
convergence of the snake type algorithms is always
a delicate matter: the contour evolution stops when
reaching a local minimum of the energy functional,
which does not always yield the correct result. In our
paradigm, the convergence is guaranteed on a global
optimum: the process stops when the relief is entirely
flooded.

5. Conclusion

Introducing some type of viscosity in the watershed
transform is not a new topic in mathematical morphol-
ogy. The originality of our work consists in expressing
the viscosity as a pre-filtering of the contour image;
the original segmentation paradigm and its qualities are
preserved. The proposed pre-processing, the so-called
viscous closing, consists in closing the contours, with
closing sizes adjusted to the contour heights. Two types
of viscous floodings have been presented: one with an
oil type of fluid, the second with a mercury type of fluid.
The oil type of fluid is more adapted to cases where low
contours are supposed to be poorly localized and can
be smoothed out, and higher contours are supposed to

be more precise and should be smoothed less. Mercury
type on the contrary is adapted to cases where higher
levels of the contours are prone to leakages of flood-
ing and a higher regularization is required. We noticed a
drawback of the method, when small details are present
in the figure, whose width is comparable to the sizes
of our closings. In such cases non desirable effects, as
merging of contours may occur. These could be pre-
vented by homotopic thickenings instead of plain clos-
ings. A second direction of improvement would be to
create a smoothing model, which better recognizes the
precision or fuzziness of the contours, independently
of their height; like that, the level of smoothing of each
piece of contours could be better adjusted to its quality.
Both directions of improvement will be studied in a
forthcoming work.
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