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Abstract. This paper discusses the interest of the Tree of Shapes of an image as a region oriented image
representation. The Tree of Shapes offers a compact and structured representation of the family of level lines of
an image. This representation has been used for many processing tasks such as filtering, registration, or shape
analysis. In this paper we show how this representation can be used for segmentation, rate distortion optimization,
and encoding. We address the problem of segmentation and rate distortion optimization using Guigues algorithm
on a hierarchy of partitions constructed using the simplified Mumford-Shah multiscale energy. To segment an
image, we minimize the simplified Mumford-Shah energy functional on the set of partitions represented in this
hierarchy. The rate distortion problem is also solved in this hierarchy of partitions. In the case of encoding, we
propose a variational model to select a family of level lines of a gray level image in order to obtain a minimal
description of it. Our energy functional represents the cost in bits of encoding the selected level lines while
controlling the maximum error of the reconstructed image. In this case, a greedy algorithm is used to minimize
the corresponding functional. Some experiments are displayed.

Keywords: mathematical morphology, tree structure, segmentation, rate distortion, morphological encoding,
minimal description length.

1. Introduction

In most image processing based applications, an image is usually viewed as a set of pixels placed
on a rectangular grid. The pixel provides a extremely local information: taking it as elementary
unit places the scale of representation far from the interpretation or decision scale. In recent
years, an increasing number of applications rely on region based image representations. For
instance, in MPEG-4 [13] or MPEG-7 [43] standards, the image is understood as a set of objects.
Region-based image representations offer two advantages with respect to pixel based ones: the
number of regions is much lower than the number of original pixels, and regions represent a first
level of abstraction with respect to the raw information.

A key concept in region based representations is the concept of partition of the image domain.
Let us mention two data structures which have proved to be useful in region based image
processing: the region adjacency graph and tree based structures. The region adjacency graph
(RAG) is the right data structure needed to encode a partition: the nodes represent regions and
two nodes are connected by an edge if their associated regions are neighbors. Merging algorithms
remove some links and merge the corresponding nodes, thus they transform a RAG into another
one. Thus, starting with an initial partition organized as a RAG, and merging regions according
to an homogeneity criterion we derive another partition represented by a RAG. This is the
basic structure of many segmentation algorithms. The main drawback of this structure is that
it can only represent a single scale of the image. To overcome it, tree based structures have
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been developed to represent a hierarchy of partitions. Quadtrees, the Critical Lake Tree [27], or
Partition Trees [37, 38] are examples of such structures.

One of the most sound alternatives to pixel based representations of images comes from math-
ematical morphology. According to Mathematical Morphology, an image u is a representative
of an equivalence class of images v obtained from u via a contrast change, i.e., v = g(u) where
g, for simplicity, will be a continuous strictly increasing function [19, 42]. The contrast of an
image depends on the sensor’s properties, on the lightning conditions, on the objects’ reflection
properties, etc., and these conditions are usually unknown. This led the physicist and gestaltist
M. Wertheimer [49] to state as a principle that the grey level is not an observable. Images are
observed up to an arbitrary and unknown contrast change. Mathematical Morphology recognized
contrast invariance as a basic requirement and proposed that image analysis operations should
take into account this invariance principle [42]. Under this assumption, an image is characterized
by its level sets (see Section 2) which constitute the basic objects for image processing and
analysis. In order to account for local changes in illumination a more local description of the
basic objects of an image is required. With this purpose several authors [8, 39, 42] proposed to
consider the connected components of (upper or lower) level sets as basic objects of the image.
In most cases, a connected component of a level set can be described in terms of its boundaries
which are Jordan curves: we call them level lines. By Sard’s theorem, this is the case if the image
u is a smooth function, but more general cases can be included with the right definition of level
lines.

The family of level lines of the image can be given a tree structure since they are ordered
by inclusion. This is essentially the tree of shapes of the image [29, 31]. It gives a complete
and non-redundant representation of the image and is contrast independent. The tree of shapes
merges into a single tree the information contained in the trees of connected components of
upper and lower level sets, called max and min tree, respectively. Even if we identify it as the
tree of shapes, this structure is nothing else than a region adjacency graph for the level lines of
the image.

Using level lines as basic objects of the image, many image processing tasks like edge detec-
tion, segmentation, or rate distortion browsing can be restricted to these objects. Indeed, edge
detection computed as a subfamily of level lines has been the object of several works [6, 15], and
the computed edges have been used for recognition purposes [7]. The main purpose of this paper
is to use the family of level lines as basic atoms for segmentation and rate/distortion browsing
tasks. For that, we shall rely on the tree of shapes as the basic data structure for handling
them. While edge detection is based on contrasted boundaries, we base our segmentation on a
homogeneity criterion expressed in terms of an energy and we compute a partition determined
by level lines minimizing this energy. If we minimize it with respect to all possible partitions, the
common strategies to minimize it are based on a greedy algorithm and give a local minimum,
called 2-normal segmentation in [32]. The problem of finding a global minimum is exponentially
complex. But, if the minimization takes place in a hierarchy of partitions, global minima can be
obtained [20, 21, 37].

Binary partition trees are a first example of hierarchical partitions and have been used for
a large number of applications such as filtering, segmentation, information retrieval, or visual
browsing [35, 36, 37, 38, 39]. In particular, as shown in [37, 38], partition trees are appropriate to
define optimum pruning strategies in the rate/distortion sense with restriction on the rate to be
transmitted or the distortion of the coded image. Its usefulness and efficiency for segmentation
purposes has been illustrated in [37]. Both, segmentation and browsing based on rate distortion
are two examples of problems where a global optimum can be found in the set of partitions
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represented by the tree, and would have an exponential complexity on the set of all partitions of
the image domain (even in the set of all trees that could be constructed from an initial partition).

Assuming that a hierarchy of partitions is given as a binary partition tree H, Salembier and
Garrido [37] use a Lagrangian formulation to solve the rate distortion problem [40]. If D(P ) and
C(P ) represent the distortion and the cost of encoding a given partition P , to solve the problem
of finding a partition P minimizing D(P ) such that C(P ) = γ, γ > 0, the authors define the
Lagrangian Eλ = λC + D and and use a dynamic programming strategy to find an optimal
pruning of H for a fixed value of λ > 0. Using a gradient descent, they find the value of λ and an
associated partition P such that C(P ) ≈ γ and P minimizes D(P ). A different type of algorithm
which finds the lower boundary of the convex hull of the set of achievable distortion/rate pairs
was proposed by Chou, Lookabaugh, and Gray in [14]. The proposed algorithm is a generalization
of the BFOS algorithm ([5]) for optimally pruning a tree [14, 21]. In a recent work, Guigues [20]
uses a dynamic programming principle to compute the optimal pruning of H with respect to the
energy Eλ, with an algorithm which is able to compute at the same time the optimal prunings
with respect to any value of λ. The three algorithms, the dynamic programming strategies
proposed in [20, 37] and the generalized BFOS algorithm [14, 21] can be used for finding an
optimal segmentation as a minimum of an energy E in a hierarchy of partitions when some
assumptions on E are satisfied (essentially E is the sum of a sub-additive and a super-additive
criterion).

The three algorithms described above compute an optimal partition given the hierarchy of
partitions H. In [37], the authors suppose that the hierarchy of partitions, in their case, a binary
partition tree, is constructed by using a merging algorithm with a merging criterion (based on
a homogeneity criterion, for instance, applied to an initial partition of the image domain in
flat zones) which has no particular relation with the optimization problem to be solved. In his
work [20], Guigues proposes an strategy to simultaneously construct the hierarchy and, using
a dynamic programming principle, minimize the energy Eλ on it. At each step, a region is
added to the hierarchy depending on the result of the dynamic programming optimization. The
construction of the hierarchy depends on the energy itself. This is called the climbing strategy.
At the end, one can compute from the constructed tree the optimum of Eλ for any λ.

In our case, the regions determined by level lines are taken as a initial partition of a hierarchy
which can be constructed using the simplified Mumford-Shah multiscale energy. Then, using
Guigues optimization algorithm [20], the global minima of the energy in the hierarchy can be
obtained at any scale. We use a similar approach to consider the problem of rate/distortion
browsing.

Using level lines as basic atoms permits to obtain segmentations compatible with the level
line structure of the image. This may be useful for some level set based algorithms, as in [23],
where region based computation of optical flow is computed by matching the vector fields of
unit normals to the level lines. It is important here that the regions of the segmentation are
determined by level lines. Let us finally mention that many other image processing tasks can
be efficiently addressed by means of morphological methods: contrast enhancement [9], filtering
[19, 42, 44, 46], compression [17, 36], segmentation [28, 35, 47], intersection [2], or registration
[30], to give some examples.

We also explore the problem of optimal selection of level lines with respect to a Minimum
Description Length functional, but in this case we can only compute a locally optimal solution.
For that we construct an energy functional which measures the cost in bits of encoding the
family of level lines B, the gray values on them u|B, and the quantized error between u and
an approximate reconstruction of it based on (B, uB). The minimum of E provides us with a
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minimal description of u in the language defined by its level lines. This method can be considered
a Minimal-Description-Length functional ([26]) subordinated to the Topographic Map of the
image. This minimal description represents an (lossy) encoding of u.

Finally, let us explain the plan of the paper. In Section 2 we review the basic definitions of
Mathematical Morphology required to define the tree of shapes of an image. Section 3 is devoted
to explain the algorithm introduced by L. Guigues [20] to minimize a multiscale energy on a
hierarchy of partitions. In Section 4 we apply the above ideas to minimize the simplified version
of the Mumford-Shah functional subordinated to the topographic map of the image and we
display some experiments. The Mumford-Shah energy is minimized using Guigues optimization
algorithm on a hierarchy of partitions obtained also with the help of simplified Mumford-Shah
energy. The minimum obtained is a global one on the constructed hierarchy. In Section 5 we
apply the previous algorithm on the topographic map to solve the rate distortion problem and we
display some experiments comparing our results with the method used in [37]. Finally, in Section
6 we introduce a general energy functional for the selection of a minimal set of curves based on a
formulation of the Minimum Description Length principle subordinated to the topographic map
of the image. The functional measures the cost of encoding the selected family of level lines B,
the average value (or a polynomial approximation) of u on the connected components of Ω \B,
call it uB, and the cost of encoding the quantized errors between u and uB. We observe that
this functional is free of parameters besides the maximum error allowed in the quantizer. Some
experiments on the encoding and compression of digital elevation models are presented.

2. The Tree of Shapes of an image

A gray level image can be realistically modeled as a real function u : Ω → IR where x represents
an arbitrary point of a domain Ω ⊂ IRN (N = 2 for usual snapshots, 3 for medical images or
movies) and u(x) denotes the gray level at x. To simplify, we shall assume that N = 2 and that
the image domain Ω is a finite rectangle in IR2. As we have explained in the Introduction, images
are observed up to an arbitrary and unknown contrast change and image analysis and processing
operations should take into account the contrast invariance principle. Under this assumption,
an image is characterized by its upper (or lower) level sets

[u ≥ λ] = {x ∈ Ω, u(x) ≥ λ} (resp. [u < λ] = {x ∈ Ω, u(x) < λ}), λ ∈ IR.

Moreover, the image can be recovered from its upper level sets by the reconstruction formula

u(x) = sup{λ : x ∈ [u ≥ λ]},

and a similar formula exists for the lower level sets. As it is easily seen, the family of level sets
(upper or lower) of u is invariant under continuous strictly increasing contrast changes [19, 42].

In order to have a more local description of the basic objects of an image, we are led to consider
the connected components of (upper or lower) level sets as the basic objects of the image. This
led to the introduction of the Topographic Map as the family of connected components of upper
(or lower) level sets [u ≥ λ] (resp. [u < λ]). Moreover, the family of connected components
of upper level sets has a tree structure. And the same happens for the family of connected
components of lower level sets. These two trees can be merged in a single tree: the “Tree of
Shapes” of an image [29, 31]. In order to review this notion, we have to define the concept of
hole of a set, and the notion of saturation. From that, the shapes of an image, defined as the
saturation of the connected components of its level sets, have a tree structure, [3, 29, 31], and
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the tree is equivalent to the image: the knowledge of the tree is sufficient to reconstruct the
image. Let us briefly review these notions.

If A is a set in a topological space, int(A), Ā and ∂A will denote, respectively, the interior,
the closure and the boundary of A.

Even if we shall restrict ourselves to the case of discrete images, let us describe the main
notions of the tree in the case of images defined on a continuous domain of IR2, since this will
also cover the discrete case. Let Ω̄ be a closed rectangle of IR2, and let Ω be the interior of Ω̄.
To fix ideas we may assume that Ω̄ = [0, 1]2. We recall that the Jordan curve theorem holds in
Ω̄ [25].

We shall assume that the image u : Ω̄ → IR is an upper semi-continuous function, that is, we
assume that its upper level sets [u ≥ λ], λ ∈ IR are closed sets. Equivalently, the lower level sets
[u < λ] are open sets. We shall explain below how does this translate at the discrete level.

We may always transform a discrete image u(i, j), i ∈ {1, . . . , N} × {1, . . . ,M} into an
upper semi-continuous function in Ω̄ by defining u(x1, x2) = u(i, j) when (x1, x2) ∈ ( (i−1)

N , i
N )×

( (j−1)
M , i

M ), and taking at a common boundary between two pixels (resp., at a corner) the highest
value of the two (resp., of the four).

Given a point x ∈ [u < λ] (resp. x ∈ [u ≥ λ]), we denote cc([u < λ], x) (resp. cc([u ≥ λ], x))
the connected component of [u < λ] (resp. [u ≥ λ]) that contains x.

Heuristically, the tree of shapes is a data structure to encode in a tree the family of level lines of
the image. To be able to handle discontinuous functions, more specifically, upper semicontinuous
ones, we define level lines as the external boundary of the level sets of the image. This leads
us to the the notion of shape which consists in filling the holes of the connected components of
the level sets, upper or lower, of u. The operation of hole filling was called saturation in [3, 29].
Thus, level lines are the boundaries of shapes and to give the family of level lines is equivalent
to give the family of shapes. It is easy to imagine them when the image is smooth (its graph is
a smooth topography).

DEFINITION 1. Let A ⊂ Ω̄. We call holes of A in Ω̄ the components of Ω̄\A. Let p∞ ∈ Ω̄\A
be a reference point, and let T be the hole of A in Ω̄ containing p∞. We define the saturation of
A with respect to p∞ as the set Ω̄\T and we denote it by Sat(A,p∞). We shall refer to T as the
external hole of A and to the other holes of A as the internal holes. By extension, if p∞ ∈ A, by
convention we define Sat(A,p∞) = Ω̄. Note that Sat(A,p∞) is the union of A and its internal
holes.

The reference point p∞ acts as a point at infinity. In all what follows, we assume that the
point p∞ ∈ Ω̄ on which the saturations are based is fixed, i.e., all saturations will be computed
with respect to p∞. To simplify the notation, we shall write Sat(A) instead of Sat(A,p∞). We
shall also speak of holes of A instead of holes of A in Ω̄. We refer to [3, 29] for an overview on
the properties of the saturation operator.

We recall some concepts introduced in [3, 29].

DEFINITION 2. Given an image u, we call shapes of inferior (resp. superior) type the sets

Sat(cc([u < µ], x)) (resp. Sat(cc([u ≥ λ], x)))

where µ, λ ∈ IR, x ∈ Ω̄. We call shapes of u any shape of inferior or superior type. We denote
by S(u) the family of shapes of u.
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As it is proved in [11], even if the definition of saturation depends on p∞, the family of
shapes does not. Observe that since Ω̄ is unicoherent the boundary of any shape of an image is
connected. Moreover, as it is proved in [3, 29], if a shape S is closed, then S = Sat(∂S). This is
the mathematical translation of the fact that a shape is essentially equivalent with its boundary,
the level line.
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Figure 1. An example of a tree. a) Left: the graph of a function with its corresponding shapes. b) Right: the
tree of shapes corresponding to the Figure on the left, the nodes of the tree are numbered following a post-order
traversal.

THEOREM 1. ([3, 29]) Any two shapes are either disjoint or nested.

From this result, we can conclude that the set of shapes of an (upper semi-continuous) image
has an inclusion tree structure. For simplicity, we assume that our image is discrete. Then we
can represent the tree as a finite structure; the shapes are the tree nodes and the parent-child
relationship, represented by the links between nodes, is determined by inclusion (the child A
being a shape contained in the father Af with no other shape B such that A ⊆ B ⊆ Af ). The
root of the tree is

Ω̄ = Sat([u ≥ min
Ω̄

u])

And there is no loop: if A,B1, B2, C are shapes and A ⊆ Bi ⊆ C, i = 1, 2, then B1 ∩ B2 6= ∅,
hence the sets B1 and B2 must be nested.

Based on these results P. Monasse proposed in [29, 31] a data structure to encode the family
of shapes of the image, or in a more informal way, its level lines. This data structure is like a
region adjacency graph for the level lines of the image.

As we explained above, level lines are defined as boundaries of shapes and not as connected
components of iso-level sets [u = λ] because the image may have discontinuities. Let us express
this idea with an example: If A is a connected region and u is the binary image u(i, j) = 255
if (i, j) ∈ A, and u(i, j) = 0 if (i, j) 6∈ A, then there are no iso-level sets [u = λ] when λ =
1, 2, . . . , 254, but the boundary of the connected components of [u ≥ λ] for λ = 1, 2, . . . , 254, 255
gives us the boundary of A. Much more complex situations may appear in real images. To be
able to compute these level lines which would appear at the walls of a cliff we use the definition
of level lines as external boundaries of shapes. Moreover, the sets [u = λ] may be quite dispersed
and it can be difficult that its connected components have a real curve structure.
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Even if the tree of shapes can be considered as a fusion of the upper and lower level sets,
maxima and minima are not highlighted in this representation. All level lines are represented
and highlighting one structure or another depends more on the operator used on the tree or on
the functional minimized on it.

3. Optimization of a multiscale energy on a hierarchy of partitions

There are several alternative but related strategies to minimize an energy on a hierarchy of
partitions, see [14, 20]. We shall follow here the approach in [20]. Let Ω be the image domain,
and let P(Ω), Part(Ω) denote the family of subsets of Ω and partitions of Ω, respectively.

DEFINITION 3. Let P0 ∈ Part(Ω). We say that H is hierarchy of partitions of Ω constructed
over P0 if H is a family of nonempty subsets of Ω such that

(i) Ω ∈ H

(ii) Any two sets in H are either nested or disjoint.

(iii) Any set in H contains a set in P0.

A family H′ of nonempty subsets of Ω satisfying (ii) and (iii) is called a pre-hierarchy over P0.

A cut of H is a partition of Ω whose elements are in H. We shall assume that the hierarchies
we consider are finite, i.e., we assume that H has a finite number of elements. In this case, H is
a tree whose nodes are the subsets of Ω in H. Two nodes are related by an edge (of the tree) if
one is contained in the other and no other set in the hierarchy is in between. The sets in P0 are
the leaves of the tree, Ω is the root, and the concepts of father, children and siblings apply.

DEFINITION 4. We say that Eλ : Part(Ω) → IR+ is an affine energy on Part(Ω) if there exist
two functions C,D : Part(Ω) → IR+ and λ ∈ IR+ such that Eλ(P ) = λC(P ) + D(P ) for any
P ∈ Part(Ω). In this case, we denote Eλ ≈ (C,D, λ)

DEFINITION 5. We say that E : Part(Ω) → IR+ is separable if there exists a function on the
subsets of Ω which we denote by E such that

E(P ) =
∑
R∈P

E(R) ∀P ∈ Part(Ω).

We say that E : P(Ω) → IR+ is subadditive if

E(R ∪ S) ≤ E(R) + E(S) ∀R,S ⊆ Ω such that R ∩ S = ∅.

DEFINITION 6. Let Eλ ≈ (C,D, λ) be an affine energy. We say that Eλ is a multiscale energy
if C,D are separable and C is subadditive. The value λ is called the scale parameter of the energy.

From now on we assume that Eλ ≈ (C,D, λ) is a multiscale energy. We assume that the
multiscale energy is defined on the cuts of H. For any λ, let C∗

λ(H) be the cut of H minimizing
Eλ. Let us review the algorithm proposed by Guigues in [20] to compute C∗

λ(H) for any λ > 0
which is based on a the dynamic programming functional relation.

For each R ∈ H, let
H(R) = {S ∈ H : S ⊆ R}.
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We call H(R) the partial hierarchy on the node R. As it is proved in [20], if R ∈ C∗
λ(H) then R

is locally optimal in H, that is, Eλ(R) ≤ Eλ(Y ) for any cut Y of the partial hierarchy H(R).
Let P ∗

λ (H) the set of nodes of H which are locally optimal in H for the energy Eλ.
Let

Λ∗(R) := {λ ∈ IR+ : R ∈ C∗
λ(H)}.

The set Λ∗(R) represents the set of scales such that R is in the cut of H minimizing Eλ.
Let

Λ∗up(R) := {λ ∈ IR+ : R ∈ P ∗
λ (H)}.

The set Λ∗up(R) represents the set of scales for which R is locally optimal in H for the energy
Eλ. As proved in [20], Λ∗up(R) is an interval of type [a,∞). We denote by λ+(R) the left point of
the interval and we refer to it as the scale of apparition of R in an optimal cut of the multiscale
energy Eλ. Then Guigues [20] proved the following result:

PROPOSITION 1. For any R ∈ H, Λ∗up(R) = [λ+(R), λ−(R)) where λ−(R) = minS∈H:R⊆S λ+(S).
Thus

C∗
λ(R) = {R ∈ H : λ+(R) ≤ λ < λ−(R)}.

We call the set Λ∗up(R) the interval of persistence of the region R. The persistent hierarchy
obtained from H and Eλ is

H∗ := {R ∈ H : Λ∗up(R) 6= ∅}.

On the persistent hierarchy H∗ we have λ−(R) = λ+(Rf ) where Rf denotes the father of R in
H∗.

For each R ∈ H, λ ∈ IR+, we define

E(λ, R) = λC(R) + D(R).

We define the partial energy of the node R ∈ H as the energy of the optimal cut of H(R) with
respect to Eλ and we denote it by E∗(λ, R). That is

E∗(λ, R) = Eλ(C∗
λ(H(R))).

Observe that for any leave R of the hierarchy we have E∗(λ, R) = E(λ, R) for any λ ∈ IR+.

PROPOSITION 2. The partial energies E∗(λ, R) of the nodes of H are related by the dynamic
programming equation

E∗(λ, R) = inf{E(λ, R),
∑

S∈F(R)

E∗(λ, S)} for any R ∈ H,

where F(R) is the family of children of R.

PROPOSITION 3. Assume that Eλ ≈ (C,D, λ) is a multiscale energy on the hierarchy H.
Then for any R ∈ H we have

(i) E∗(λ, R) is a piecewise affine, nondecreasing, continuous and concave function of λ.

(ii) We have E∗(λ, R) =
∑

S∈F(R) E∗(λ, S) if λ < λ+(R), while E∗(λ, R) = E(λ, R) for any
λ ≥ λ+(R).
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(iii) If C is strictly subadditive, i.e., if C(X) <
∑

Y ∈F(X) C(Y ) for any X ∈ H, then λ+(R) ∈
IR and is the only solution of

E(λ, R) =
∑

S∈F(R)

E∗(λ, S).

Combining the results of Propositions 1, 2, 3 we are able to compute the λ-cuts C∗
λ(H).

The above algorithm can be implemented once we have the hierarchy as it happens with
the algorithms used in [14, 37]. Usually this hierarchy is constructed with a different merging
algorithm [37]. On the contrary, the climbing algorithm proposed by Guigues [20] constructs the
hierarchy at the same time that it implements the dynamic programming principle of Proposition
2. Our approach will be to construct the hierarchy from an initial partition using the mergings
obtained with a greedy optimization algorithm for the simplified Mumford-Shah energy (see
Section 4) at several scales. Then we use Guigues algorithm described in Propositions 1, 2,
3 to obtain the minimum of the energy on this hierarchy at any scale λ. A more precise
description of this construction will be given in next Section. This approach can be used for
computing multiscale segmentations (with the simplified Mumford-Shah energy) and to compute
the solution to the rate/distortion problem.

4. The simplified Mumford-Shah functional on the Topographic Map

The idea of computing a segmentation by selecting a subset of the family of level lines of u can
be applied to the simplified version of Mumford-Shah energy functional, leading to a version of
it subordinated to the Topographic Map of the image.

According to Mumford-Shah, [33], a segmentation of an image u : Ω → IR is defined as a pair
(B, ũ) where ũ is piecewise regular function, regular in Ω \ B, and B is a the set of boundaries
where ũ is discontinuous. The set of curves B represents a partition of the image domain Ω. In
particular, if we assume that ũ is piecewise constant, then Ω \ B is a union of regions and ũ
takes a constant value on each of them which is equal to the mean value of u on it. We define
the simplified Mumford-Shah functional Eλ

MS as

Eλ
MS

(
B, ũ|Ω\B

)
= λH1(B) +

∫
Ω\B

(u− ũ)2 (1)

where H1(B) denotes the length of the system of curves B, ũ is a piecewise constant image,
i.e., constant on each region of Ω \B, and λ > 0 is a parameter. We observe that, given B, the
minimum of Eλ

MS with respect to the variable ũ is explicitly given by

ũ =
∑
Oi

uOiχOi where uOi =
1
|Oi|

∫
Oi

u dx, (2)

Oi being the connected components of Ω \ B (as usual, for any set O, χO(x) = 1 if x ∈ O,
χO(x) = 0, if x 6∈ O). This observation permits us to write the energy as a function of B and
denote it by Eλ

MS(B) instead of Eλ
MS

(
B, ũ|Ω\B

)
. This energy is a multiscale energy which can

be written as Eλ
MS ≈ (C,D, λ) where

C(B) = H1(B), D(B) =
∫
Ω\B

(u− ũ)2 dx. (3)
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Observe that C(B) is strictly subadditive.

We shall restrict us to the case of digitized images, i.e., we assume that the domain Ω =
{1, . . . , N} × {1, . . . ,M}, N,M ∈ IN , and the image u : Ω → {1, . . . , L}, L ∈ IN . Let S(u) be
the tree of shapes of u. Observe that any set of shapes T ⊆ S(u) can be endowed with a tree
structure whose nodes are the shapes in T , two consecutive shapes of T being related by an
edge. Let

ST (u) := {T : T ⊆ S(u)}.

Let us denote
∂T = ∪A∈T ∂A.

We consider the minimization of (1) restricted to the set {∂T : T ∈ ST (u)}, i.e.,

min
B=∂T ,T ∈ST (u)

Eλ
MS(B). (4)

Minimizing the simplified Mumford-Shah functional subordinated to the topographic map is a
segmentation which contains a similarity criterion and computes regions whose boundaries are
level lines. This is not the most general context for a segmentation, since boundaries of objects
may be bounded by curves formed by pieces of level lines and may not coincide with full level
lines. In spite of this, level lines are robust and contrast invariant objects, and the main edges
of the image are contained in them. Let us comment on a context where this could be useful:
we have used this level lines based segmentation as a tool for a region based contrast invariant
optical flow estimation [23]. Our optical flow estimation is based on the matching the normals
to the level lines (hence level lines) and is region based, thus it is important that the regions
we use are bounded by level lines, and the segmentation presented here is a tool to compute an
initial partition of the image [23].

Figure 2. The domain G(A) obtained after suppression of the shape A. It is the region determined by the father
of A, denoted by Af , the external shape in the Figure, the siblings of A, denoted by A1, A2 and the children of
A, denoted by B1, B2.

Observe that the computation of the optimum has an exponential complexity on the number
of shapes if all possible combinations of them are taken into account. As explained in Section 3,
this computation becomes feasible if we restrict our search space to a hierarchy of partitions of
Ω, and we shall do this. Starting with the initial partition determined by ∂S(u) we construct a
hierarchy using the mergings produced by a greedy algorithm applied to the energy (1) at several
scales λk, k ≥ 1. The greedy algorithm produces a local minimum of (4) and the hierarchy will
contain all the merging steps to compute the local minima at several scales. Then the algorithm
described in Section 3 will compute the global minimum of Eλ

MS on this hierarchy for any value
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of λ. Notice that the global optimum corresponding to λ = λk does not necessarily coincide with
the local one obtained using the greedy algorithm.

The basic operation of the greedy algorithm is the merging of two neighboring regions which,
in the present context is equivalent to the suppression of a shape. Given T ∈ ST (u), the
suppression of a shape A in T gives T \ {A} ∈ ST (u). Let us describe this operation as a
merging of two regions of Ω \ ∂T . For that, let Af be the father of A, let {B1, . . . , Bp} be the
children of A, and let {A1, . . . , Ak} be the siblings of A. It is implicitly understood that, if A
is a leaf of T , the family of children of A is empty. Similarly, it may happen that the family of
siblings of A is empty. The shape A determines two regions

Au = Af \ ∪
(
A ∪ ∪k

i=1Ai

)
, Ad = A \ ∪

(
∪p

i=1Bi

)
.

and the merging of these two regions produces the region (see Figure 2)

G(A) = Au ∪Ad = Af \ ∪
(
∪p

i=1Bi ∪ ∪k
i=1Ai

)
Let us describe the greedy algorithm proposed in [24, 32] which finds a local minimum of (4).
Since this algorithm could be applied to any energy, let us denote it by E instead of Eλ

MS . Let

∆E(T , A) = E(T )− E(T \ {A}).

A greedy algorithm: Set T0 = S(u).
Step 1: For any A ∈ T0 compute ∆E(T0, A) and insert it in a queue Q with priority ∆E(T0, A),
the highest priority corresponding to the highest value of ∆E(T0, A).
Step 2: Iterate the following procedure: Choose the shape A∗ ∈ Ti which corresponds to the
first element in the queue constructed in Step1 if ∆E(Ti, A

∗) > 0, and define Ti+1 = Ti \
{A∗}. Recompute the values of ∆E(Ti+1, A

′) for all shapes A′ which are adjacent to A∗ (i.e.,
parent, children, or siblings of A∗) and reorder again the queue in decreasing order of the values
∆E(Ti+1, A), A ∈ Ti+1 (the highest priority corresponding to the highest value). We stop when
no shape A∗ exists with ∆E(Ti, A

∗) > 0.
The last tree obtained T ∗ determines the boundaries and the regions of the segmentation. It is

a local optimal solution of (4), in the sense that any other merging of regions of the segmentation
increases the energy [24, 32].
Construction of a hierarchy. Since Eλ

MS is a multiscale energy, we can compute its minimum
on a hierarchy of partitions using Guigues algorithm [20] (see Section 3). To explain our construc-
tion of the hierarchy of partitions let us recall the definition of completion. Let P0 ∈ Part(Ω) and
let H be a pre-hierarchy over P0. The operation of adding to H a node R constructed by merging
two regions of H without father is called a completion. Then we start with the initial partition P0

determined by ∂S(u) and we take the pre-hierarchy H′ := {R : R ∈ P0}. Then we choose λ1 > 0
and we minimize Eλ1

MS using the greedy algorithm, adding to the hierarchy H′ the completions
corresponding to the merging of neighboring regions performed during the execution of the
algorithm. Let P1 be the locally optimal solution obtained. We continue iteratively this process
by minimizing the simplified Mumford-Shah energy E

λk+1

MS , λk+1 = 2λk, k ≥ 1, (one could also
use λk+1 = λk +∆, for some value ∆ > 0) on the initial partition Pk using the greedy algorithm
and storing the successive mergings as nodes of the hierarchy. The construction may be stopped
either when the value of λk attains a maximum scale value λmax, or when we reach the set Ω.
The value of λ+ at each node is computed using Propositions 2 and 3. Then, using Proposition
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1, we are able to compute the λ-cuts on the constructed hierarchy for any λ > 0. These λ-
cuts are local minima of Eλ

MS ; they are also global minima when restricted to the hierarchy.
The implementation of this algorithm is based on the results of Guigues [20]. It can be used for
computing multiscale segmentations and to compute the solution of the rate/distortion problem.

4.1. Experiments obtained minimizing functional Eλ
MS

We display some results obtained by minimizing the simplified version of the Mumford-Shah
functional Eλ

MS given by (4). The functional Eλ
MS is minimized on a hierarchy of partitions

constructed with the algorithm described in Section 4. To construct it we started with the value
λ1 = 2 and updated it with λk+1 = 2λk, k ≥ 1, up to a maximal scale which gives the region
Ω as segmentation. For each experiment, we shall display the original image, the boundaries of
the segmentation B and the image ũ which takes the mean value of u on each region of the
segmentation.

The energy functional is a multiscale one. The value of λ determines the minimal size of the
regions of the segmentation [32]. If we do not know a priori this size, by taking (for instance)
λ = 2k we can obtain a multiscale family of segmentations of the image which contain the
information at several scales [24, 32]. For the reasons of display we selected some reasonable
value of λ depending on the image. Using a different λ near to the one we used will not change
much the results. One could filter the hierarchy of partitions so that all regions obtained have a
minimal size, but this is not related with the optimization of the functional on the hierarchy.

Figure 3 displays the results obtained minimizing (4) (applied to Lena image in Figure
3.a) with λ = 100. Figure 3.b displays the set of curves B obtained, Figure 3.c displays the
reconstruction ũ.

Figure 4 displays the results obtained minimizing (4) (applied to the image in Figure 4.a) with
λ = 60. Figure 4.b displays the set of curves B obtained, Figure 4.c displays the reconstruction
ũ.

Figure 5 displays the results obtained minimizing (4) (applied to the image in Figure 5.a) with
λ = 200. Figure 5.b displays the set of curves B obtained, Figure 5.c displays the reconstruction
ũ.

Figure 6 displays the results obtained minimizing (4) (applied to the image in Figure 6.a) with
λ = 50. Figure 6.b displays the set of curves B obtained, Figure 6.c displays the reconstruction
ũ.

5. Rate Distortion optimization on the tree of shapes

Rate distortion theory is a branch of information theory addressed to relate the distortion
(reconstruction error) of a fixed-length coding scheme to the data rate (e.g., number of bits
per pixel) used in the scheme. Under the assumption that the input image is continuous, the
distortion will never be zero within a finite data rate, because of quantization error. While it
does not specify the form of optimal coders, rate distortion theory does present guidelines about
the conditions under which the best performance is achieved. If a lossy compression method is
used, the recovered image g(x) differs from the original f(x). This difference (the distortion) is
normally quantified by the mean square error of reconstruction:

D = E[(f(x)− g(x))2]

If we ask for a maximum allowed distortion D∗ then, the bit rate required in the coding scheme
has the corresponding lower bound R(D∗) which is a monotone decreasing function of D∗. Recall
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Figure 3. Result obtained minimizing Eλ
MS with λ = 100 using the algorithm described in Section 4. a) Left:

Original image. b) Middle: Segmentation boundaries. c) Right: the image ũ.

Figure 4. Result obtained minimizing Eλ
MS with λ = 60 using the algorithm described in Section 4. a) Left:

Original image. b) Middle: Segmentation boundaries. c) Right: the image ũ.

Figure 5. Result obtained minimizing Eλ
MS with λ = 200 using the algorithm described in Section 4. a) Left:

Original image. b) Middle: Segmentation boundaries. c) Right: the image ũ.
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14 C. Ballester, V. Caselles, L. Igual and L. Garrido

Figure 6. Result obtained minimizing Eλ
MS with λ = 50 using the algorithm described in Section 4. a) Left:

Original image. b) Middle: Segmentation boundaries. c) Right: the image ũ.

that (for any memoryless source and single-letter distortion measure), the source coding theorem
tells us that for any ε > 0, there exists an r, and code of block length r and rate R < R(D∗) + ε
such that the average per letter distortion denoted d, is such that d ≤ D∗ + ε. R(D∗) is called
the rate distortion function. The inverse function will be denoted by D(R). For a full account
on the Rate Distortion Theory, we refer to [4, 40].

One of the fundamental problems is to minimize the rate (number of necessary bits to store
an image), taking into account that the distortion between the given image and the compressed
image does not exceed a given threshold D∗. This problem can be written as the following
constrained optimization problem:

minR(D), subject to: D ≤ D∗. (5)

The associated dual problem is known as the optimal bit allocation problem, one tries to
minimize the distortion under the constraint of a fixed data rate. To put us in the algorithmic
framework that we shall describe below, let Sb a finite set which represents the possible encoding
structures and B ∈ Sb be a member of that set. Let R(B) and D(B) be the rate and distortion
functions expressed in terms of the variable B ∈ Sb. If Rmax represents the number of available
bits, we may write the dual problem as

min
B∈Sb

D(B) , subject to R(B) ≤ Rmax. (6)

To fix ideas, given the image u, we take Sb = ST (u), and for each B ∈ Sb, let the reconstructed
image ũ be given by (2). We measure the distortion in terms of the mean square error between
u and ũ, i.e,

D(B) =
∫
Ω\B

(u− ũ)2 dx. (7)

The rate can be measured in terms of the cost in bits of encoding the curves B (which we may
write as proportional to its length) plus the cost of encoding the gray level values in the regions
of Ω \B. That is

R(B) = βH1(B) + G(ũ|Ω\B), (8)

where β represents the cost in bits for each direction, usually β = 2 or 3, and the second term,
G̃(ũ|Ω\B), denotes the encoding cost of the gray values uOi , a constant value for each region of
Ω \ B. The number of bits needed to encode each value uOi is constant (for instance, 8 bits, if
u is a gray level image with 256 possible gray level values).
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Let us restrict to consider the optimal bit allocation problem (6). The complexity of using
all possible partitions determined by the sub-trees of ST (u) is exponential. For that reason,
we shall restrict our space of candidate solutions to a hierarchy of partitions obtained with the
algorithm described in Section 4. For that, we observe that the energy Eλ := D(B) + λR(B),
B ∈ Sb, is a multiscale energy and the strategy that uses the greedy algorithm on a given set
of scales (see Section 4) can be applied to construct a hierarchy Hrd. Then, using Section 3, we
compute the optima of Eλ on Hrd for any given value of λ (observe that once the hierarchy is
constructed, any of the algorithms described in [21, 37] could be used). Observe that the energy
Eλ incorporates the budget constraint with the Lagrange multiplier λ, and we can use the secant
iterative method to compute the value of λ which gives the specified rate. Let us explain this.

Redefine Sb as the set of B ∈ ST (u) which can be obtained by pruning the hierarchy Hrd. In
the present context and following [40], the Lagrangian multiplier theorem states that, for any
λ ≥ 0, the optimal solution B∗(λ) to the unconstrained problem,

min
B∈Sb

(D(B) + λR(B)) , (9)

is also an optimal solution of the constrained problem,

min
B∈Sb

D(B) , subject to R(B) ≤ R(B∗(λ)). (10)

Thus, for every non-negative λ, there exists a corresponding constrained problem whose solution
is identical to that of the unconstrained problem. If R(B∗(λ)) happens to be equal to the upper
bound Rmax, then B∗(λ) is the desired solution of (6).

The algorithm to find the λ such that R(B∗(λ)) = Rmax relies on the following result (see
[40], pp. 57-58, and also [41]).

THEOREM 2. If R(B∗(λ1)) > R(B∗(λ2)), then

λ2 ≥ −D(B∗(λ1))−D(B∗(λ2))
R(B∗(λ1))−R(B∗(λ2))

≥ λ1. (11)

As a consequence, R(B∗(λ)) and D(B∗(λ)) are, respectively, non-increasing and non-decreasing
functions of λ.

Theorem 2 can be used to find the optimum value of λ. Indeed, since R(B∗(λ)) is a non-
increasing function of λ, the bisection method can be used to find an optimal value of λ [40].
In practice, since Sb is a finite set, the bisection method is stopped when a solution λ is found
such that

Rmax − error ≤ R(B∗(λ)) ≤ Rmax + error (12)

for some specified value of error ≥ 0, where Rmax is the maximum number of bits available, i.e.,
the budget. As in [18], we have used the secant iterative method (a gradient search algorithm)
to search for a value of λ satisfying (12). The secant method starts with two initial guesses for
λ, λl and λh which have to be selected such that R(B∗(λl)) ≥ Rmax ≥ R(B∗(λh)). In practice,
[18], the algorithm starts with a high value (we have used λh = 106) and a low value (we have
used λl = 2) of λ. For each value of λ, the optimum of Eλ on Hrd is computed, and also the
values D(B∗(λ)) and R(B∗(λ)). For λh (respectively, λl), the optimum resulting segmentation
should be a coarse partition associated to the root node (resp., a fine segmentation associated to
leaf nodes). The partitions correspond to rates R(B∗(λh)) and R(B∗(λl)), and should be below
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and above the budget Rmax, respectively. If none of these rates is closed enough to the budget,
a new Lagrange parameter is defined as

λ = −D(B∗(λh))−D(B∗(λl))
R(B∗(λh))−R(B∗(λl))

The procedure is iterated until the rate satisfies (12).

Figure 7. The rate R(B∗(λ)) for the bureau image of Figure 4.a for the of values of λ multiples of 10 up to
λ = 100000.

We stress the fact that, as it is shown in [40], the above algorithm gives us the solution of
problem (6) if we are able to compute the global minimum of (9). Observe that the algorithm
of Section 4 is able to compute the global minimum of (9) on Sb. In Figure 7 we display the
rate R(B∗(λ)) for the bureau image of Figure 4.a for a set of values of λ (we have chosen the
multiples of 10). We see that, as stated in Theorem 2, R(B∗(λ)) is a decreasing function of λ.

Figures 8 and 9 correspond to the minimization of (10) with a rate restriction of 40Kbits,
44Kbits, respectively, with an error = 1Kbits. These rate restrictions correspond to compression
rates around 15.36, 11.91, respectively. The actual rates attained are 40348, 44218 bits, respec-
tively. The corresponding PSNR are: 26.25, 28.32 dB. The left Figure corresponds to the family
of selected level lines, the right Figure is the associated reconstruction, the value on each region
being the average of the gray levels of the original image on that region. For these experiments,
we have chosen β = 2, that is we encode the curves with two bits per direction. We have also
checked that with an arithmetic encoding of B and the values of ũ on the regions of Ω \B, the
actual compression rate is higher than the prescribed one.

We repeated the experiment using the method proposed in [18, 37]: the rate-distortion
functional is minimized on a binary partition tree constructed by merging flat zones (which
are connected components of iso-level sets). The experiments are displayed in Figures 10 and
11. We asked for the same rates as in the experiments displayed in Figures 8, 9, i.e., 40 and
44 Kbits, respectively. The actual rates attained are 40102 and 44086 bits, respectively. The
corresponding PSNR are: 24.57 and 25.71 dB.

6. Minimum Cost Selection of Level Lines

Let Ω = {1, . . . , N} × {1, . . . ,M}, N,M ∈ IN , and the image u : Ω → {1, . . . , L}, L ∈ IN .
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Figure 8. a) Left: Level lines selected by (10) asking for a rate of 40 Kbits (with an error of ±1 Kbits). b) Right:
Piecewise constant reconstructed image. The actual rate attained is 40348 bits and the PSNR is 26.25 dB.

Figure 9. a) Left: Level lines selected by (10) asking for a rate of 44 Kbits (with an error of ±1 Kbits). b) Right:
Piecewise constant reconstructed image. The actual rate attained is 44218 bits and the PSNR is 28.32 dB.

Our goal is to obtain a minimal description of the image subordinated to the tree of shapes
of u. For that, our algorithm will select the boundaries of a sub-family of shapes in the tree

Figure 10. a) Left: Level lines selected using the approach in [18, 37] asking for a rate of 40 Kbits (with an error
of ±1 Kbits). The rate-distortion functional is minimized on a binary partition tree constructed by merging flat
zones (which are connected components of iso-level sets). b) Right: Piecewise constant reconstructed image. The
actual rate attained is 40102 bits and the PSNR is 24.57 dB.
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Figure 11. a) Left: Level lines selected using the approach in [18, 37] asking for a rate of 44 Kbits (with an error
of ±1 Kbits). b) Right: Piecewise constant reconstructed image. The actual rate attained is 44086 bits and the
PSNR is 25.71 dB.

which minimize the number of bits necessary to encode a simplified version of the image. This
simplified version is formed by (a) the selected family of curves, (b) some values of u which
permit to reconstruct the image on the regions determined by the curves in (a), for instance, the
gray levels on the curves, or a value on each region, and (c) the quantized errors between the
original image and an estimation obtained by interpolating the data given by (a) and (b). The
errors will be quantized so that the maximum error between the original and the reconstructed
image is controlled. As we shall discuss below, this process depends obviously on the choice of
the interpolation algorithm.

For each T ⊆ S(u), let ∂T = ∪A∈T ∂A, and let u|∂T be the values of u on T . Either we use
an interpolation operator which permits us to reconstruct an approximation to u in Ω\∂T from
the data (∂T , u|∂T ), or we directly store an approximation to u in each connected component
(call it region) of Ω \ ∂T . Let Oi, i = 1, . . . , r, be the connected components of Ω \ ∂T . Let uOi

T
be an approximation to u in Oi and let

uT (x) = uOi
T (x) if x ∈ Oi, i ∈ {1, . . . , r}. (13)

The most simple example is

uOi
T (x) = uOi when x ∈ Oi, where uOi =

1
|Oi|

∫
Oi

u dx. (14)

Thus, uT is given by the average of u on the connected components of Ω \ ∂T . More general
cases can be considered if uT is a polynomial of a given degree on each region.

Given the allowed maximal error δ ∈ {1, . . . , L}, we shall denote by Q the quantization
operator

Q(e) = sign(e)b|e|/δcδ, e ∈ IR. (15)

We propose to obtain a simplified description of the image by minimizing the following minimal
description length energy functional subordinated to the tree of shapes of u

E (∂T , uT ) = C (∂T ) + G(uT ) +D (Q(u− uT )) , (16)

where C (∂T ) corresponds to the cost of encoding the set of curves ∂T , G(uT ) denotes the cost
of encoding uT , and the D (Q(u− uT )) is the cost of encoding the quantized interpolation errors
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Q(u − uT ). To simplify, we shall assume that uT is given by (13) and (14). Let us recall that
the entropy gives a lower bound of the cost in bits/symbol of a lossless code for a sequence of
symbols of an alphabet.

The curves are encoded using either a chain coding, or a differential chain coding scheme. In
both cases, the cost of encoding the curves ∂T is given by the formula

C(∂T ) = E(∂T )H1(∂T ), (17)

where H1(∂T ) denotes the length of the system of curves ∂T , and E(∂T ) is the entropy of
the statistical distribution of directions in ∂T , in case of chain coding; or the entropy of the
distribution of differences of directions in ∂T if we use a or differential chain coding strategy
to encode it. We have tested both cases with slightly better results for the differential chain
coding scheme; and we displayed the results corresponding to this case in the experiments in
Section 6.2. An accurate analysis of the cost per contour point is given in [16] for a directional
encoding of a 4-connected boundary. This cost is log2 3 ≈ 1.5849 bits per contour point if
we use an unconstrained 4-connected contour code, or a number between log2 3 and log (1 +√

2) ≈ 1.2716 if we incorporate some first order constraints on the impossibility of certain
consecutive configurations described in [16]. We have also made experiments using the cost
C(∂T ) = (log2 3)H1(∂T ) with results comparable to the differential chain coding scheme (see
Section 6.2).

The term G(uT ) denotes the encoding cost of the gray values uOi , a constant value for each
region of Ω \ ∂T . The number of bits needed to encode each value uOi is constant and equal to
[log2 L] + 1 (for instance, 8 bits, if u is a gray level image with 256 possible gray level values).

Finally, let us describe the last term in (16). If δ ∈ {0, . . . , L} is the allowed maximum error,
and Q denotes the quantization operator given by (15), then the quantized errors between uT
and u are

ε(x) = Q(u− uT )(x), where x ∈ Ω.

We denote by D(ε) the cost in bits of the quantized error. Since the error is quantized with a
quantization step equal to δ, we have K := range of the error/δ possible values for ε, and we can
compute the error’s probability distribution and entropy (which gives us the average codeword
length). The cost in bits of encoding the error is given by the entropy of ε(x), denoted by E(ε),
multiplied by the number of pixels of the image, i.e., by

D(ε) = E(ε) ·N ·M. (18)

Observe that, if we define the reconstructed image as urec = uT + ε, then this construction
guarantees that

‖ urec − u ‖∞≤ δ.

The energy (16) measures the length of the image description, i.e., the length (or cost in
bits) of the image model, plus the cost associated to the errors between the true image and
its approximated version. In any case, this criterion of simplicity for determining the image
description is a Minimum-Description-Length (MDL) criterion [34].

The energy (16) is simple enough to be able to address it numerically. We compute a local
minimum of it using the greedy algorithm described in Section 4. We are unable to compute a
global minimum, and this deserves further exploration. In spite of this, the result is probably
near the optimal one at least when computing on a hierarchy of partitions. The only reason
we have to say this is that the results obtained when minimizing the simplified Mumford-Shah
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functional with the greedy algorithm are not far from the ones obtained when minimizing the
functional on the hierarchy described in Section 4.

6.1. Further remarks on the model

We may also start with a given interpolation operator I which permits to reconstruct an
approximation to the image in Ω from the data (∂T , u|∂T ), and we denote this interpolated
image as u∗T = I(∂T , u|∂T ). That is, if A ∈ T and B1, . . . , Bp are its children, we define

u∗T |A\∪p
i=1Bi

= I(∂A ∪ ∪n
i=1∂Bi, u|∂A∪∪n

i=1∂Bi
)

The function u∗T is obtained by pasting together these functions.

Let G̃(u|∂T ) denote the cost of encoding the gray values of u on ∂T . Then we could consider
the functional

Ẽ (∂T , u|∂T ) = C(B) + G̃(u|∂T ) +D (Q(u− u∗T )) . (19)

As in (16), the first term in (19) corresponds to the cost of the curves. The encoding cost G̃(u|∂T )
can be computed by

G̃(u|∂T ) = E(u|∂T )H1(u|∂T ) (20)

where E(u|∂T ) denotes the entropy of the gray levels of u on ∂T . Finally, the third term in (19)
is the cost of the quantized interpolation error between u and u∗T . This cost is computed as in
(18).

As it was proved in [10] in a continuous domain, interpolation operators satisfying the max-
imum principle and a set of structural and geometrical axioms can be given in terms of the
solution of a degenerate elliptic partial differential equation. Between them, we would single out
the Absolutely Minimizing Lipschitz Extension Model (the so-called AMLE) and the Laplacian
[10]. Both are able to interpolate data given on a set of curves, and the AMLE is also able to
interpolate data given on points. Moreover, as proved in [12], as a consequence of maximum
principle, both methods are shape preserving in the sense that they do not create new critical
levels (see [12] for a precise statement). But the computational complexity makes these operators
unfeasible, if the corresponding partial differential equation is solved iteratively and we have not
converged, the results are not good in terms of cost and errors with respect to the more simple
method proposed here.

6.2. Experiments using E (∂T , uT )

We display some results obtained by minimizing the functional E given by (16) which uses the
mean value as interpolation operator. For the cost of the curves we tested three expressions: a)
the differential chain coding cost, i.e., the expression (17) with E(∂T ) being the entropy of the
distribution of differences of directions in ∂T ; b) the chain coding cost, i.e., (17) with E(∂T )
being the entropy of the distribution of directions in ∂T ; c) the cost C(∂T ) = log2 3H1(∂T ).
The results obtained with a) and c) are quite similar and better than the ones obtained with b).
The experiments displayed in Figures 12, 13, 14 and 15 correspond to the case a) but we shall
comment on the results obtained with b), c). For each experiment, we shall display the selected
family of level lines, denoted by ∂T , and the image uT which takes the mean value of u on each
region of the segmentation.

Figure 12 displays the results obtained minimizing (16) with δ = 7 for the image of Lena
displayed in Figure 3.a. Figure 12.a displays the set of curves ∂T obtained, Figure 12.b displays
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Figure 12. Experiment obtained minimizing (16) with δ = 7. a) Left: the selected family of level lines. b) Right:
the function uT .

the reconstruction uT . For this Figure and cases a),b), and c) described in the previous para-
graph, the total cost E(∂T , u∂T ) in bits, the cost of curves C(∂T ) in bits, and the peak signal
to noise ratio PSNR are respectively: case a) 141806.5, 54514.5, and 28.13; case b) 158570.7,
77450.6, and 29.17; case c) 138867.8, 57530.0, and 28.94.

Figure 13 displays the results obtained minimizing (16) with δ = 7 for the original image
displayed in Figure 4.a. Figure 13.a displays the set of curves ∂T obtained, Figure 13.b displays
the reconstruction uT . For this Figure and cases a),b), and c) the corresponding values of the
total cost, the cost of the curves and the PSNR are, respectively: case a) 157091.1, 42687.3, and
26.70; case b) 200348.8, 70656.4, and 26.29; case c) 180198.8, 61085.8, and 26.42.

Figure 14 displays the result obtained minimizing functional (16) applied to the original image
displayed in Figure 5.a with δ = 7. Figure 14.a displays the set of curves ∂T obtained. Figure
14.b displays the reconstruction uT . For this Figure and cases a),b), and c) the corresponding
values of the total cost, the cost of the curves and the PSNR are, respectively: case a) 103663.9,
49370.8, and 29.74; case b) 121801.8, 67630.6, and 29.91; case c) 99326.9, 50030.5, and 30.18.

Figure 15 displays the results obtained minimizing (16) applied to the original image displayed
in Figure 6.a with δ = 7. Figure 15.a displays the set of curves ∂T obtained, Figure 15.b displays
the reconstruction uT . For this Figure and cases a),b), and c) the corresponding values of the
total cost, the cost of the curves and the PSNR are, respectively: case a) 67123.3, 28180.7, and
31.87; case b) 80563.8, 41459.8, and 32.72; case c) 67073.7, 28867.7, and 32.85.

REMARK 1. Let us comment on the result obtained using the AMLE interpolator (i.e. if we
solve the PDE 〈D2u(Du), Du〉 = 0 on each region Γ of Ω\∂T with Dirichlet boundary data u on
∂Γ). Using the AMLE as interpolation operator, minimizing (19) for Figure 13 and cases a),b),
and c) described in the first paragraph of this section, the total cost E(∂T , u|∂T ) in bits, the
cost of curves C(∂T ) in bits, and the peak signal to noise ratio PSNR are respectively: case a)
385689.8, 102314.7, and 21.66; case b) 390565.8, 115573.6, and 20.98; case c) 408788.3, 134369.1,
and 21.70. Due to the computational complexity of the AMLE interpolation, if this algorithm
has not converged, the results are not good.

The computational complexity of the minimization depends on the interpolator. In the case
of functional (16) which uses the average as interpolator, the cost is the same as the cost of
construction of the tree plus essentially the cost of the greedy algorithm for segmentation. This
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Figure 13. Experiment obtained minimizing (16) with δ = 7. a) Left: the selected family of level lines. b) Right:
the function uT .

Figure 14. Experiment obtained minimizing (16) with δ = 7. a) Left: the selected family of level lines. b) Right:
the function uT .

Figure 15. Experiment obtained minimizing (16) with δ = 7. a) Left: the selected family of level lines. b) Right:
the function uT .

is of the order of a few seconds for a 256× 256 image. Due to the computational cost, we do not
recommend using a PDE based interpolation.

The subset of the level lines obtained by minimizing the energy functionals (16) is a partition
of the image domain but it cannot be interpreted as a segmentation, since it is not based on
a similarity criterion, or the contrast along the boundaries. On the other hand, the functional
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gives us an algorithm for image encoding which permits to control the L∞ error between the
compressed image and the original one. We give some experiments in this direction.

6.3. Image encoding and compression

Many algorithms exist for data compression. They can be classified into lossless and lossy. Loss-
less algorithms introduce no error, thereby limiting the amount of achieved data compression.
Lossy algorithms achieve higher compression ratios at the expenses of introducing errors in the
decoded image. It is important in this case to have a control on this error. Typically, lossy
compression algorithms control the L2 norm of the error (the root mean square error). In some
applications, in particular compression of digital elevation models (DEM), the control of the
maximum error is essential [12]. DEM data consist of a discrete digital representation of a
surface terrain. Each cell in a DEM corresponds to a point (x, y, z) in 3D space. We can think
of (x, y) as the coordinates in the image domain and the height z as the gray value of the image
(see Fig. 16). This kind of data requires a large amount of bytes to store it. Typically a DEM
image from a small terrain has 1200× 1200 points, that is 1440000 bytes (1.4MB) when using
8 bits for the height, or 2880000 (2.8MB) when using 16 bits. If we note that for a complete
terrain description of a country we need hundreds of these images, then storing them requires
some compression.

The energy functional (16) permits us to select a sample ∂T of the level lines of the im-
age, together with the approximation uT given by the average values of u on the connected
components of Ω \ ∂T . An example of the selected family of curves is displayed in Figure 16.
The method permits a control of the error in the maximum norm. The only parameter to be
given is the maximum error allowed δ. As in [12], in order to improve the performance of this
algorithm we adopt a simple multiscale strategy. Given the original image v of size N × M ,
we filter it to reduce its bandwidth and subsample it with a factor k (typically k = 2 and we
average it in blocks of size 2× 2)). Let ṽ be the filtered version of v, and let u(i, j) = ṽ(ki, kj)
be its subsampled version of size N

k × M
k . Then we minimize the energy functional (16) and

we obtain a family of curves ∂T , together with the approximation uT given by the average
values of u on the connected components of Ω \ ∂T . We store both ∂T and the values defining
uT . We also store the quantized residuals Q(u − uT ). We compute urec = uT + Q(u − uT ).
Then we zoom out urec to obtain an image Urec, compute the residuals Q(v − Urec), and define
vrec = Urec + Q(v−Urec). The image vrec satisfies max(i,j) |v(i, j)− vrec(i, j)| ≤ δ. We compress
T , the values uT , Q(u − uT ), and Q(v − Urec) with an arithmetic coder. As we shall explain
below, we display in Table I some results obtained with this algorithm.

The zoom out process can be done by using a bicubic spline interpolation, although this can
create new maxima and minima due to the well known oscillation problem of splines. As in [12],
we have used a shape preserving spline, which avoids the oscillation problem of classical splines,
that is, respects the monotonicity of the original data (no new maxima or minima are created).
Concretely, we use the algorithm proposed in [22].

We shall compare the results obtained with our algorithm with the results obtained with
JPEG-2000. For that, we have used the Jasper software [1] (available at http://www.ece.ubc.ca/-
mdadams/jasper). Since, following strictly the JPEG-2000 specifications, this algorithm can
not automatically control the maximum error, we will explain below in more detail how this
comparison was performed. We also compare our results with ones obtained in [12]. From now
on, the algorithm in [12] is denoted by ME, standing for morphological encoding, and our
algorithm is denoted by MSLL, standing for mimimal selection of level lines. We report results
on a set of 10 DEM images of size 1200 by 1200 pixels with 16 bits per sample. The comparison
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Figure 16. Left: Original DEM image example. Right: Selected level lines using our algorithm with maximum
error 5.

will be done in terms of the compression ratio (abbreviated, CR) and the RMSE, the standard
root mean square error. In all cases, the maximum error was fixed, and we compare the resulting
RMS error. Other comparisons with JPEG-LS (which has a near lossless mode where one can
impose the maximum allowed error) can be found in [45, 12].

Table I shows the compression ratio and RMSE in meters corresponding to a set of 10
images quantized with 16 bits/sample when compressed with ME and MSLL with a maximum
error e = 5 meters. The compression ratio is given with respect to the size computed using 16
bits/sample. The maximum error being fixed, the RMS error gives another index to judge the
algorithms.

Table II shows the results obtained using JPEG-2000 to compress the above set of images
(column 0). For that, we have used the Jasper software [1] (available at http://www.ece.ubc.ca/-
mdadams/jasper). The set of images is quantized with 16 bits/sample but their real range differs
from image to image. We have computed it and expressed it in bits/sample (using the nearest
integer by excess to cover the real range of the image). When running the Jasper software for a
given image we introduced the real range in bits/sample, call it b (which for the set of images
displayed is usually 11 or 12), together with the compression ratio desired. This compression
ratio is equal to the one obtained with MSLL and given in the first column of Table I (since
this CR is given with respect to 16 bits/sample we have to rescale it in the following way: if c
represents the CR given in column 1 of Table I, we ask for the CR c b

16). The reason to specify
the real range is that the quantizers used by the algorithm depend on it, and the results were
much worst if we specified 16 bits/sample for each image. We may also choose to specify either
the CR or the RMSE error and we have chosen to specify the CR (see below). Recall that
following strictly the JPEG-2000 specifications, this algorithm can not automatically control
the maximum error. Thus, if we want that the maximum error of the compressed images is 5, as
in Table I, we compute the pixels of the JPEG-2000 compressed image where the error is higher
than 5 and we correct their value by adding the quantized errors (with δ = 5). We obtain a new
compressed image with a maximum error of 5.
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Table I. Compression Ratio (CR) and RMSE for MSLL
and ME for a set of 10 DEM images quantized with 16
bits/sample, with a maximum error of 5 meters. The maxi-
mum error being fixed, the RMS error gives another index to
judge the algorithms.

CR CR RMSE RMSE
(MSLL) (ME) (MSLL) (ME)

baker-e 11.225 11.125 2.605 2.582

bend-e 11.643 11.599 2.614 2.552

bend-w 15.421 15.831 2.633 2.622

billings-e 18.557 19.284 2.437 2.541

sacramento-e 8.877 9.056 2.669 2.676

salina-e 13.296 13.713 2.613 2.593

salina-w 11.397 11.544 2.612 2.599

sandpoint-e 9.677 9.633 2.597 2.550

yakima-e 16.629 17.027 2.491 2.466

yakima-w 7.256 7.390 2.724 2.753

AVERAGE 12.398 12.620 2.599 2.593

Now, let us describe Table II. First we run Jasper software asking for the same compression
ratio (as explained in the previous paragraph) as the one obtained with our algorithm MSLL
which is displayed in column 1 of Table I. The compression ratio obtained may slightly differ
from the one we asked for, due to the properties of the quantizer. The maximum error is larger
than 5, and it is displayed in column 2. Then we correct the value of the pixels where the
maximum error is greater than 5 (by adding the quantized errors) and we obtain an image
whose maximum error is 5 (this is indicated in column 3). With this step we deviate from the
standard JPEG-2000 specifications (that is, the complete compressed bit stream would not be
in standard format due to the error control part). After these correction steps we obtain the
final compression ratio displayed in column 1. Column 4 contains the final RMSE.

Figure 17 displays a selected region of a DEM image and its compressed versions using MSLL,
JLS (JPEG-LS, a lossless mode of JPEG, [48]) and JPEG-2000. The figure shows both the gray
scale images and its level sets. Note that the topographic structures are better preserved in
the case of the MSLL and JPEG-2000 compression while it is distorted in the case of JLS
compression [48]. For other results concerning JLS compression we refer to [12].

7. Conclusion

We have discussed the interest of the Tree of Shapes of an image as a region oriented image
representation. The Tree of Shapes offers a compact and structured representation of the family
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Table II. Results obtained using JPEG − 2000 ([1]) to compress the
images in column 0. For that we run the JasPer software giving to the
code the number b of bits/sample according to the range of the image
and asking for the same compression ratio as the one obtained with our
algorithm (Table I) rescaled as explained in the text by the factor b/16.
The compression ratio obtained may be different to the one we asked for,
due to the properties of the quantizer. The maximum error is larger than 5
and is displayed in column 2. Then we correct the value of the pixels where
the maximum error ir greater than 5, by adding the quantized errors, and
we obtain an image whose maximum error is 5 (this is indicated in column
3). Since the number of those pixels is small, the amount of bits required
for this correction is insignificant and does not modify the CR. The final
CR obtained after these corrections is displayed in Column 1 (and is
referred to the size computed using 16 bits/sample). Column 4 contains
the RMSE error after the correction. For more information, we refer to
the text.

CR L∞ L∞ RMSE

(JPEG-2000) (no corrected) (corrected)

baker-e 12.881 18 5 1.947

bend-e 13.453 20 5 1.967

bend-w 18.487 18 5 1.652

billings-e 23.128 16 5 1.559

sacramento-e 9.851 19 5 2.087

salina-e 15.974 20 5 1.787

salina-w 13.139 18 5 1.920

sandpoint-e 11.110 19 5 2.054

yakima-e 20.75 20 5 1.671

yakima-w 8.408 23 5 2.357

AVERAGE 14.719 19.1 5 1.900

of level lines of an image [29, 31]. We have shown how this representation can be used for
segmentation, rate distortion optimization, and encoding. For segmentation purposes, we have
minimized the simplified Mumford-Shah energy functional subordinated to the topographic map
of the image, displaying some experiments. The functional was minimized on a hierarchy of
partitions of the image domain constructed using a greedy algorithm to compute local minima of
the simplified Mumford-Shah functional at several scales. The result corresponds to a minimum
of the functional on the hierarchy of partitions. The rate distortion problem is also solved in this
hierarchy of partitions.

We have formulated a version of the Minimum Description Length principle subordinated
to the topographic map of the image which gives us a structured encoding of the image. The
associated energy functional represents the cost in bits of encoding the selected level lines while

MinimalDescriptJMIVrevised6.tex; 26/06/2005; 12:38; p.26



27

Figure 17. Top row: From left to right selected region of the original DEM image bend-e, the same region after
compressing with MSLL with sup error 5, after compressing with JLS with sup error 5 and after compressing
with JPEG-2000 with sup error 5. Bottom row: Level lines of the above images.

controlling the maximum error of the reconstructed image. In this case, a greedy algorithm is
used to minimize the corresponding functional and some experiments are displayed. In case of
digital elevation models, we have tested the selected family of level lines as an encoding of the
image, and we have displayed the corresponding compression results and compared them to
JPEG-2000.
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20. L. Guigues, “Modèles Multi-Échelles pour la Segmentation d’Images”. PhD thesis, Université de Cergy-
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