
J Math Imaging Vis (2008) 30: 249–274
DOI 10.1007/s10851-007-0054-1

Topological Repairing of 3D Digital Images

Marcelo Siqueira · Longin Jan Latecki ·
Nicholas Tustison · Jean Gallier · James Gee

Published online: 25 December 2007
© Springer Science+Business Media, LLC 2007

Abstract We present here a new randomized algorithm for
repairing the topology of objects represented by 3D binary
digital images. By “repairing the topology”, we mean a sys-
tematic way of modifying a given binary image in order
to produce a similar binary image which is guaranteed to
be well-composed. A 3D binary digital image is said to
be well-composed if, and only if, the square faces shared
by background and foreground voxels form a 2D manifold.
Well-composed images enjoy some special properties which
can make such images very desirable in practical applica-
tions. For instance, well-known algorithms for extracting
surfaces from and thinning binary images can be simplified

M. Siqueira (�)
Departamento de Computação e Estatística, Universidade Federal
de Mato Grosso do Sul, Av. Costa e Silva, S/N, Campus
Universitário, Campo Grande, MS 79070-900, Brazil
e-mail: marcelo@dct.ufms.br

L.J. Latecki
Department of Computer and Information Sciences, Temple
University, Philadelphia, PA 19122, USA
e-mail: latecki@temple.edu

N. Tustison · J. Gee
Penn Image and Computing Sciences Laboratory, Department of
Radiology, University of Pennsylvania, Philadelphia,
PA 19104, USA

N. Tustison
e-mail: tustison@grasp.cis.upenn.edu

J. Gee
e-mail: gee@mail.med.upenn.edu

J. Gallier
Department of Computer and Information Science, University of
Pennsylvania, Philadelphia, PA 19104, USA
e-mail: jean@cis.upenn.edu

and optimized for speed if the input image is assumed to
be well-composed. Furthermore, some algorithms for com-
puting surface curvature and extracting adaptive triangulated
surfaces, directly from the binary data, can only be applied
to well-composed images. Finally, we introduce an exten-
sion of the aforementioned algorithm to repairing 3D digital
multivalued images. Such an algorithm finds application in
repairing segmented images resulting from multi-object seg-
mentations of other 3D digital multivalued images.

Keywords Well-composed images · Digital topology ·
Randomized algorithms

1 Introduction

In several important applications, such as computer-aided
diagnosis, videoconferencing, and fluid dynamics simula-
tion, geometric objects are represented by 3D digital (multi-
valued) images. A 3D digital image consists of a finite grid
of points of Z

3, each of which is assigned some value in a
gray-level or color scale via a digitization process. In gen-
eral, the digitization process is carried out by a sampling de-
vice, such as a CT scanner or a CCD camera, which assigns
a value to a point of the image grid that is proportional to
some physical quantity measured by the device at the point
location.

By a segmentation process, the image points are grouped
together to form digital sets. For example, for simple thresh-
old binary segmentation, the points whose intensity values
are greater than a given threshold value are classified as be-
longing to a certain digital set. The output of the segmenta-
tion process is a 3D digital binary image in which the points
representing the digital set are assigned the value 1 and the

250 J Math Imaging Vis (2008) 30: 249–274

remaining points are assigned the value 0. By a reconstruc-
tion process, we commonly identify each point assigned the
value 1 by the segmentation process with a cuboid (voxel)
centered at the point. The union of these voxels forms a sub-
set of R

3, called the continuous analog of the foreground,
which can be viewed as the “continuous” representation of
one or more objects represented by the multivalued image.

Whenever a 3D digital image is used to represent geomet-
ric objects in practical applications, the continuous analog of
the foreground corresponding to any object in the image is
expected to exhibit some fundamental properties of the ob-
ject. In particular, the topology of the continuous analog of
the foreground is expected to be the same as the topology
of the object. Unfortunately, due to several factors related to
the digitization process, the segmentation and reconstruction
processes may not be able to produce a topologically correct
continuous analog of the foreground [1, 2]. To make things
worse, the topology of the object may not be known or even
available for the application, which makes the correction of
the topology of the continuous analog of the foreground gen-
erally not feasible.

In many applications, the only geometric objects in-
volved are solids, i.e., objects that can be viewed as bounded
and closed subsets of R

3 whose boundary is a (topological)
surface (i.e., a 2D manifold). If a 3D digital binary image
correctly represents a solid object, then the image must be
well-composed, i.e., the boundary of the continuous analog
of the foreground representing a solid must be a surface [3].
If it is not, we can be sure that the topology of the continuous
analog is incorrect. However, if we do not know the topol-
ogy of the solid or are not given any information that allow
us to derive the correct topology, any attempt to modify the
topology of the continuous analog is at best a good guess.

Despite the resulting topological ambiguities, there are
still practical advantages in modifying the incorrect 3D dig-
ital binary image so that the boundary of the continuous ana-
log of the foreground becomes a surface, i.e., in order to pro-
duce a well-composed image. This is true even if the result-
ing well-composed image is not the correct one, i.e., even if
the surface corresponding to the boundary of the continuous
analog of the foreground is not topologically equivalent to
the surface of the solid. The reason is that well-composed
images have very interesting topological properties, which
enable us to simplify and optimize for speed algorithms
commonly used in computer graphics, image processing and
computer vision applications.

In particular, if the input image is well-composed, the
popular Marching Cubes (MC) algorithm for extracting tri-
angulated isosurfaces from 3D binary digital images will
always produce a topologically consistent surface [4]. The
reason is that the “ambiguity” problem will not occur [5].
Although there are several extensions of the MC algorithm
that ensure the extraction of a topologically consistent sur-
face from any given 3D digital binary image (see [6–10] to

name a few), these algorithms demand more work if the in-
put image is not well-composed. In addition, thinning al-
gorithms can be simplified and naturally made parallel if
the input image is well-composed [11, 12], and some algo-
rithms for computing surface curvature [13, 14] or extracting
adaptive triangulated surfaces [15], which operate directly
on the binary data, do assume that the input image is well-
composed.

The aforementioned advantages of well-composed im-
ages motivated the development of the so-called repairing
algorithms [16], which are algorithms for modifying a 3D
digital binary image (that is not well-composed) to produce
a well-composed image. A repairing algorithm can be used
whenever a 3D digital binary image representing a solid is
not well-composed and we have no means to find out the
correct topology of the solid. However, in order to be re-
ally useful in practice, a repairing algorithm must produce
a well-composed image by making only a few modifica-
tions in the input binary image, so that the resulting well-
composed image will not differ very much from the input
image.

Here, we introduce a new repairing algorithm for gener-
ating a 3D well-composed image from a given 3D digital bi-
nary image. The key operation of our algorithm is to change
the value assigned to a point of a binary image from 0 to 1.
The result is a new binary image. The operation is firstly
executed on the input binary image, and then on the image
obtained by the previous execution of the operation. The al-
gorithm stops when the image resulting from the most recent
execution of the key operation is well-composed, which we
prove to be the case after a finite amount of executions of
the operation.

Our algorithm is randomized, and its time and space com-
plexities are linear in the number of image points. We pro-
vide an upper bound on the expected point difference be-
tween the input image and its well-composed counterpart
produced by the algorithm. We also introduce an extension
of our algorithm that repairs 3D digital multivalued images.
We assume that the given multivalued image is the result of a
multi-object segmentation of another 3D digital multivalued
image (see [17] for an example of such a segmentation algo-
rithm). The repaired image is also a well-composed image
with respect to each digital set corresponding to a distinct
object of the input segmented image.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews some relevant and related work. Section 3 in-
troduces some basic concepts of digital topology. Section 4
gives an important characterization of 3D well-composed
images. Section 5 describes the algorithm for producing
a 3D well-composed image from a 3D digital binary im-
age, and derives an upper bound on the expected point-wise
difference between the input image and its well-composed
counterpart produced by the algorithm. Section 6 introduces

J Math Imaging Vis (2008) 30: 249–274 251

the extension of the algorithm in Sect. 5 to dealing with 3D
digital multivalued images. Section 7 shows the results of
the application of our algorithms on medical images. Fi-
nally, Sect. 8 summarizes our contributions and results, and
discusses future work.

2 Related Work

Latecki, Eckhardt, and Rosenfeld [11] provided a formal
definition of 2D well-composed images, and characterized
these images by the absence of certain 2 × 2 neighborhoods
of image points, the so-called critical configurations. Later,
Latecki [3] extended the notion of well-composedness to
three dimensions, and characterized 3D well-composed im-
ages in terms of the absence of certain 2 × 2 and 2 × 2 × 2
neighborhoods of image points, which are the corresponding
critical configurations in three dimensions.

Latecki, Conrad, and Gross [1] showed that a topology-
preserving digitization process of a 2D r-regular object (i.e.,
the 2D analogous of a solid) must yield a 2D well-composed
image. Furthermore, they derived conditions relating the
properties of a 2D r-regular object to the image grid size
such that if these conditions are met by the digitization
process, then the topology of the object can be correctly re-
covered from the image by the segmentation and reconstruc-
tion processes. Unfortunately, the conditions derived in [1]
depends on the knowledge of properties of the object that
are hardly known in practice or they cannot be met by the
sampling device available for the digitization process.

Stelldinger and Köthe [2] showed that the conditions
given in [1] are not sufficient to guarantee that the topology
of a 3D r-regular object (i.e., a solid) can be correctly re-
covered from the image by the segmentation and reconstruc-
tion processes. Later, Stelldinger, Latecki, and Siqueira [18]
gave sufficient conditions to correctly reconstruct the topol-
ogy of a solid from a 3D digital binary image. However,
these conditions suffer from the same practical limitations
that the conditions given in [1] do.

The idea of modifying a binary image to produce a well-
composed one was given by Latecki [16], who also pro-
posed the first algorithm for producing a 2D well-composed
image from a 2D digital binary image. However, his algo-
rithm cannot be extended to dealing with 3D digital binary
images. Later, Rosenfeld, Kong, and Nakamura [19] intro-
duced an image operator, called simple deformation, that can
be used to produce 2D and 3D well-composed, but the re-
sulting well-composed images have 9 and 27 times more
points than the input 2D and 3D binary images,1 respec-
tively. To our best knowledge, the algorithm described in
this paper for producing a 3D well-composed image from a

1The algorithm in [19] inserts extra “slices” in the original image.

3D digital binary image is the first one to generate an output
image with the same size as the input image.

Our repairing algorithm is related to several results re-
garding the correct segmentation and reconstruction of the
human brain cortical surface from MR images [20–28]. The
cerebral cortex is the largest part of the human brain, and its
correct reconstruction is an important goal in medicine and
neuroscience. Although the human brain cortex is highly
folded, its intrinsic structure is that of a two-dimensional
sheet, several millimeters thick. More specifically, the cor-
tex is a thin folded sheet of gray matter (GM) that lies inside
the cerebrospinal fluid (CSF) and outside the white matter
(WM) of the brain. If the opening at the brain stem is artifi-
cially closed, the surface of the cortex has the topology of a
sphere, and the major topological problem that results from
an incorrect digitization or segmentation is the presence of
handles in the reconstructed surface [24].

Algorithms for segmenting and reconstructing cortical
models can be broadly divided into two types: those that in-
corporate some sort of topology-preserving mechanism into
the segmentation process [20, 21, 25, 26], and those that
do not [22–24, 27–29]. The topology-preserving algorithms
typically start with a surface of known topology and then
iteratively warp it so that it closely approximates the geom-
etry of the cortical surface. There are two major problems re-
garding topology-preserving segmentation algorithms. First,
they may lead to large geometric inaccuracies. Second, they
also require an initialization close to the cortex. So, correct-
ing the cortex topology is often necessary, either before or
after an initial, unconstrained segmentation [27], which can
be performed using local intensity, prior probabilities, and
geometric information without regard to topology [30].

There are several algorithms to retrospectively correct the
topology of an already segmented MR brain image. The un-
derlying idea behind them is to identify handles and then
choose between cutting a handle or filling a hole. Some al-
gorithms assume that the handles are located at the thinnest
parts of the image region of interest, and make their decision
by minimally modifying the region or a triangulated surface
approximating the region boundary [23, 24]. Although they
often lead to accurate results, topological corrections may
not be optimal. Some other algorithms have achieved bet-
ter results by integrating statistical or geometric information
to the decision making process [22, 28, 29]. More recently,
Bazin and Pham [27] proposed an algorithm that corrects the
topology of an already segmented image using a topology-
preserving distance function. Their algorithm modifies the
color associated with the image points in order to preserve
the topology of an isosurface defined by a distance function.
The topological changes are detected by keeping track of the
function critical points.

There are two major differences between the above algo-
rithms and the repairing algorithms presented here. First, the

252 J Math Imaging Vis (2008) 30: 249–274

above algorithms assume that the desired topology is known
a priori, while our repairing algorithms do not. More specif-
ically, our repairing algorithms solve a related, but yet differ-
ent problem from the one of correcting topology: the prob-
lem of restoring the manifold property of digital sets. In this
problem, the correct topology is not known and the goal is to
obtain a well-composed image that is similar to the input im-
age. The topology of the resulting image may not be correct.
As we pointed out before, there are several applications in
computer graphics, image processing, and computer vision
that can benefit from dealing with well-composed images.
Second, most of the above topology correction algorithms
are restricted to correcting the topology of MR images of
the human brain cortex, while our repairing algorithms may
be applied to more general MR images.

Our repairing algorithms are also related to algorithms
for simplifying the topology of shapes represented by 3D
digital images [31–34]. By “simplifying topology”, we
mean the removal of topological artifacts in the form of
tiny handles from the image isosurfaces. These nearly in-
visible artifacts are responsible for slowing down the perfor-
mance of algorithms for isosurface simplification, remesh-
ing, and parametrization. Like the repairing algorithms pre-
sented here, the simplification algorithms in [31–34] do not
assume any prior knowledge of the correct topology, and
they also produce images that are suitable for some par-
ticular applications. Despite these similarities, the images
produced by topology simplification algorithms are not nec-
essarily well-composed, and the underlying ideas of some
of those algorithms are quite different from the ones of our
repairing algorithms.

3 Preliminaries

This section introduces some basic concepts of digital topol-
ogy, which is the field that studies the topological properties
of digital images. We refer the reader to [35, 36] for detailed
discussions of the concepts introduced here.

For any positive integer δ, let

δZ
3 = {(δ · z1, δ · z2, δ · z3) ∈ Z

3 | (z1, z2, z3) ∈ Z
3}.

Every point p in δZ
3 is called a grid point and is the center

of a grid cube with edges of length δ ∈ R
+, oriented parallel

to the Cartesian coordinate axes. We denote the grid cube
centered at p by V(p), and we commonly refer to a grid
cube as a voxel, to a corner of a voxel as a grid vertex, to an
edge of a voxel as a grid edge, and to the side of a voxel as
a grid square. Note that a grid vertex may be a point in R

3.
In what follows we define several important adjacency

and connectedness relations on δZ
3, for any positive inte-

ger δ:

Fig. 1 Four points of δZ
3 and their corresponding voxels

Definition 3.1 Two distinct points p = (p1,p2,p3) and
q = (q1, q2, q3) of δZ

3 are said to be face-adjacent if
|p1 − q1| + |p2 − q2| + |p3 − q3| = δ, or equivalently, if
V(p) and V(q) share a grid square.

Definition 3.2 Two distinct points p = (p1,p2,p3) and
q = (q1, q2, q3) of δZ

3 are said to be edge-adjacent if
|pi − qi | = δ and |pj − qj | = δ, for any i, j ∈ {1,2,3}, with
i �= j , and pk = qk , for k ∈ {1,2,3}, with k �= i and k �= j ;
or equivalently, if V(p) and V(q) share a grid edge but not
a grid square.

Definition 3.3 Two distinct points p = (p1,p2,p3) and
q = (q1, q2, q3) of δZ

3 are said to be corner-adjacent if
|pi − qi | = δ, for all i ∈ {1,2,3}, or equivalently, if V(p)

and V(q) share a grid vertex but not a grid edge.

For an example, refer to Fig. 1 and suppose that the points
a, b, c, and d in the figure are all grid points of the set δZ

3.
Then, points a and b are face-adjacent, points b and c are
edge-adjacent but not face-adjacent, and points c and d are
corner-adjacent but not edge-adjacent nor face-adjacent.

The face-adjacency relation is also known as 6-adjacency.
Two other relevant adjacency relations are the 18- and 26-
adjacency relations. Two distinct points of δZ

3 are said to
be 18-adjacent if they are face- or edge-adjacent, and 26-
adjacent if they are face-, edge-, or corner-adjacent. For in-
stance, in Fig. 1, points a and b are 6-adjacent, 18-adjacent,
and 26-adjacent, points b and c are 18-adjacent and 26-
adjacent but not 6-adjacent, and points c and d are 26-
adjacent but not 18-adjacent.

Definition 3.4 Let A be any subset of points of δZ
3, and

let ρ ∈ {6,18,26}. For any p and q in A, the sequence
〈x(0), . . . , x(n)〉 of points of A, where n ∈ Z, with n ≥ 0,
is said to be a ρ-path in A connecting p to q if x(0) = p,
x(n) = q , and x(i−1) is ρ-adjacent to x(i), where i ∈ Z and
1 ≤ i ≤ n. In particular, there are ρ-paths of length zero; for
instance, 〈p〉. We refer to ρ-paths of length zero as trivial

J Math Imaging Vis (2008) 30: 249–274 253

paths. If there is a ρ-path in A connecting p to q then we
say that p is ρ-connected in A to q .

Definition 3.5 Let A be any subset of points of δZ
3, and

let ρ ∈ {6,18,26}. We say that A is ρ-connected if for all
p,q ∈ A, there is a ρ-path in A connecting p to q . If B is
a maximal ρ-connected subset of A then we say that B is a
ρ-connected component, or simply ρ-component, of A.

For an example, suppose that A is the set of points in
Fig. 1. Then, point a is 6-connected to point b, 18-connected
to point c, and 26-connected to point d . So, there is a 26-
path of length 3 in A connecting a to d . We also have that A

is 26-connected and that B = {a, b, c} is a 18-component
of A. Note that ρ-connectedness is an equivalence rela-
tion, i.e., it is reflexive, symmetric, and transitive. So, every
ρ-component of A is nonempty and any two distinct ρ-
components of A are disjoint.

Definition 3.6 Let A be any subset of δZ
3. We define the

set

bd(A) = {(p, q) ∈ δZ
3 × δZ

3 |
p ∈ A,q ∈ A, and p and q are face-adjacent},

which is called the digital boundary in δZ
3 between A and

A, where A is the complement of A with respect to δZ
3.

Given any subset A of δZ
3, we define

V(A) =
⋃

p∈A

V(p)

and

V(bd(A)) =
⋃

(p,q)∈bd(A)

(V(p) ∩ V(q)),

i.e., V(A) is the point set corresponding to the union of all
voxels of points in A, and V(bd(A)) is the point set corre-
sponding to the union of all grid squares shared by a point in
A and a point not in A. Note that V(bd(A)) is the (topolog-
ical) boundary of V(A) in R

3. We call V(A) and V(bd(A))

the continuous analog of A and the continuous analog of the
digital boundary in δZ

3 between A and A, respectively [3].

Definition 3.7 A 3D digital (multivalued) image is a func-
tion

F : Gn1,n2,n3,δ → C

from a nonempty and finite subset of δZ
3,

Gn1,n2,n3,δ = {(g1, g2, g3) ∈ δZ
3 | gi = δ · di, di ∈ [1, ni],

i ∈ {1,2,3}},

where n1, n2, n3, and δ are all positive integers, to a non-
empty and finite subset of Z. The domain Gn1,n2,n3,δ of F is
called a 3D grid with spacing δ and size n1 × n2 × n3. The
elements of the co-domain C of F are called colors. So, the
image F assigns a color F(p) from C to each grid point
p ∈ Gn1,n2,n3,δ .

A special type of 3D digital image is the 3D binary image
which is a two-valued 3D digital image whose co-domain
is {0,1}. We shall denote a 3D binary image F by the pair
(Gn1,n2,n3,δ,X), where Gn1,n2,n3,δ is the image grid and X is
the subset of all points p of Gn1,n2,n3,δ such that F(p) = 1.
We commonly refer to X and to Gn1,n2,n3,δ − X as the fore-
ground and background of the image (Gn1,n2,n3,δ,X), re-
spectively. From now on, we will assume that δ = 1. The
reason is that the algorithms and proofs described hencefor-
ward do not depend on the “size” of the image voxels, and
the use of δ as an arbitrary parameter can mislead the reader
to think otherwise. For simplicity, we will also let G denote a
3D grid Gn1,n2,n3,1 with spacing 1 and size n1 ×n2 ×n3, for
some given positive integers n1, n2, n3, and we may some-
times denote the foreground and background of (G,X) by
X1 and X0, respectively.

4 3D Well-Composed Images

This section gives the formal definition of 3D well-composed
images and provides a characterization of 3D well-composed
images in terms of certain configurations of grid points,
called critical configurations.

Definition 4.1 ([3]) Let (G,X) be any 3D digital binary im-
age. We say that (G,X) is a 3D well-composed binary im-
age, or simply well-composed, if, and only if, the continu-
ous analog V(bd(X1)) of the digital boundary bd(X1) in Z

3

between X1 and X1 = (Z3 − X1) is a (topological) surface
(i.e., a 2D manifold) in R

3.

Recall that a subset S ⊂ R
3 is called a topological sur-

face, or just surface for short, if each point p ∈ S has an
open neighborhood Nε(p) = {q ∈ S | d(p,q) < ε} that is
homeomorphic to the open disk

D
2 = {x = (x1, x2) ∈ R

2 | x2
1 + x2

2 < 1},
where d(x, y) is the Euclidean distance from x to y, with
x, y ∈ R

3, and ε is some positive real number.
For instance, if (G,X) is the binary image whose fore-

ground X1 = X is the set of points {a, b, c, d} in Fig. 1,
then (G,X) is not well-composed, as any point in the edge
V(b) ∩V(c), as well as the point V(c) ∩V(d), have no open
neighborhood that is homeomorphic to D

2. But, if X1 is the

254 J Math Imaging Vis (2008) 30: 249–274

Fig. 2 a Critical configuration 1. b Critical configuration 2. For the
sake of clarity, only the two voxels in X1 (or X1) are shown in (a), and
only the two (or six) voxels in X1 (or X1) are shown in (b)

set {a, b}, then (G,X) is well-composed, as V(bd(X1)) is
the boundary of a parallelepiped (i.e., a surface in R

3).
Although Definition 4.1 does not provide us with any

explicit property that could be used to decide whether a
given image is well-composed, well-composedness is in-
deed equivalent to the absence of certain configurations of
subsets of four and eight points of the image grid as defined
below (refer to Fig. 2):

Definition 4.2 Let A be any set of four points of G. We say
that A is an instance of the critical configuration 1 in (G,X),
or C1 for short, if two points of A are in X1, the other two
are in X1, the two points in X1 (resp. X1) are edge-adjacent,
and the voxels of the four points share an edge.

Definition 4.3 Let A be any set of eight points of G. We
say that A is an instance of the critical configuration 2 in
(G,X), or C2 for short, if two (resp. six) points of A are
in X1, the other six (resp. two) are in X1, the two points
in X1 (resp. X1) are corner-adjacent, and the voxels of the
eight points share a corner.

The following theorem stated and proved by Latecki [3]
establishes an equivalence between a 3D well-composed im-
age and the absence of instances of the critical configura-
tions 1 and 2 in the image grid:

Theorem 4.1 A 3D digital binary image (G,X) is well-
composed if, and only if, there is no instances of C1 and
C2 in (G,X).

There is a straightforward algorithm to decide whether a
given 3D digital binary image (G,X) is well-composed: for
each subset A of four (resp. eight) points of G, whose voxels
share an edge (resp. a corner), it suffices to check if A is an
instance of C1 (resp. C2) in (G,X) using Definitions 4.2
and 4.3.

Theorem 4.1 also implies that there is only one kind
of ρ-connectedness in well-composed images, for ρ ∈
{6,18,26}; that is, every 26-component of the foreground
X (resp. background X0) of (G,X) is a 18-component

Fig. 3 a Points with coordinates (x, y,0) and (b) points
with coordinates (x, y,1) of the 3D binary digital image
(G,X), where G = [0,3] × [0,3] × [0,1] and X = {(1,1,0),

(2,2,0)} ∪ {(x, y, z) ∈ G | z = 1}. Foreground and background points
are represented by open circles and solid circles, respectively

of X (resp. X0), which in turn is a 6-component of X

(resp. X0). However, the converse is not generally true;
that is, if every 26-component of X (resp. X0) is a 18-
component of X (resp. X0), and every 18-component of X

is a 6-component of (resp. X0), the image is not necessar-
ily well-composed. For instance, suppose that G is the grid
[0,3] × [0,3] × [0,1], and let X be the set

X = {(1,1,0), (2,2,0)} ∪ {(x, y, z) ∈ G | z = 1},
as shown in Fig. 3. Note that the foreground X (resp. back-
ground X0) of (G,X) has only one ρ-component, for any
ρ ∈ {6,18,26}. The 26-component of X (resp. X0) is a 18-
component of X (resp. X0), and the 18-component of X

(resp. X0) is in turn a 6-component of X (resp. X0). Yet,
(G,X) is not well-composed.

5 A Repairing Algorithm for 3D Binary Images

This section presents a new algorithm for repairing a given
3D binary image (G,X) that is not well-composed. By re-
pairing, we mean to produce a 3D well-composed binary
image (G,X′) by iteratively changing the color value of cer-
tain background of (G,X), so that they become foreground
points of (G,X′). The algorithm is randomized and has lin-
ear space and time complexities in |G|, where |G| is the
number of grid points. The input of the algorithm consists
of G and X, and its output is X′.

To compute X′, the algorithm finds a subset P of the
background X0 of (G,X) such that (G,X ∪ P) is well-
composed, and then lets X′ = X ∪ P . So, P can be viewed
as a subset of the background whose assigned colors are
changed from 0 to 1 in order to produce (G,X′). Such a sub-
set P always exists, as P = X0 would make (G,X ∪ P) =
(G,G), which is clearly a well-composed image. However,
in the context of practical applications, it is important to
have (G,X) and (G,X′) as similar as possible.

J Math Imaging Vis (2008) 30: 249–274 255

Fig. 4 Illustration of the
definitions of Nx(p), Ny(p),
Nz(p), and N (p). Points in
Nx(p), Ny(p), Nz(p), and
N (p) are represented by solid
circles

We can maximize the similarity between (G,X) and
(G,X′) by finding the smallest subset P of X0 such that
(G,X ∪ P) is well-composed. We can trivially do that by
enumerating and testing all subsets of X0. However, this
procedure has exponential time complexity in the size |G|
of G, which rules out its practical use. Our algorithm is not
guaranteed to find a smallest set P , but it has linear time
complexity in |G|. Furthermore, the size of the sets P com-
puted by our algorithm when tested against biomedical im-
ages typically found in practical applications were satisfac-
torily small (see Sect. 7).

The algorithm starts by letting P = ∅. Then, it loops over
all points of G seeking for instances of C1 and C2 in (G,X).
If no instance of a critical configuration is found, the algo-
rithm terminates with X′ = X. Otherwise, for each instance
of C1 and C2, the algorithm iteratively inserts points from
X0 − P into P until the image (G,X ∪ P) becomes well-
composed. Every time the algorithm inserts one or more
points into P , it eliminates at least one instance of C1 or
C2 from the current image, (G,X ∪ P). However, the point
insertion operation may also give rise to other instances of
C1 and C2 in (G,X ∪ P), which will be eventually elimi-
nated from the resulting image by further point insertions.

5.1 The Elimination of Critical Configurations

Let n1, n2, n3 be the positive integers defining G (see Defi-
nition 3.7), and for any p = (p1,p2,p3) ∈ Z

3, let

Nx(p) = {(p1, y, z) | y ∈ {p2,p2 + 1} and

z ∈ {p3,p3 + 1}},
Ny(p) = {(x,p2, z) | x ∈ {p1,p1 + 1} and

z ∈ {p3,p3 + 1}},
Nz(p) = {(x, y,p3) | x ∈ {p1,p1 + 1} and

y ∈ {p2,p2 + 1}},

and

N (p) = {p1,p1 + 1} × {p2,p2 + 1} × {p3,p3 + 1}.
Figure 4 illustrates the above definitions.

We also define

J (p) = {Nx(p),Ny(p),Nz(p),N (p)}.
If any of Nx(p), Ny(p), Nz(p) is an instance of C1 in
(G,X), we say that J (p) contains an instance of C1. Like-
wise, if N (p) is an instance of C2 in (G,X), we say that
J (p) contains an instance of C2. Note that each instance
of C1 consists of the four points in one of Nx(p), Ny(p),
and Nz(p), for some p ∈ G. Likewise, each instance of C2
consists of the eight points in N (p), for some p ∈ G. Note
also that if N (p) is an instance of C2 in (G,X), then none
of Nx(p), Ny(p), and Nz(p) can be an instance of C1 in
(G,X). Conversely, if at least one of Nx(p), Ny(p), and
Nz(p) is an instance of C1 in (G,X) then N (p) cannot be
an instance of C2 in (G,X). So, either J (p) contains no in-
stances of a critical configuration, or it contains at least one
instance of C1, or it contains exactly one instance of C2.

The above observations led us to a simple procedure to
find all instances of C1 and C2 in the input image, (G,X).
Let Q be an empty queue. For each point p ∈ G, check
if J (p) contains a critical configuration. If so, we insert
p into Q. If Q remains empty then (G,X) has no critical
configurations and the algorithm terminates with X′ = X.
Otherwise, the algorithm initiates the step of elimination of
critical configurations. Note that a point p ∈ G is in Q if,
and only if, J (q) contains an instance of C1 or C2. For the
purpose of the description of the algorithm, let us assume
that Q is not empty.

The step of elimination of critical configurations is basi-
cally a loop that iterates until the queue Q becomes empty.
For the time being, assume that Q will become empty af-
ter a finite number, n, of iterations of the loop. Then, for
each i ∈ {1, . . . , n}, the i-th iteration of the loop removes
exactly one point q from Q and produces the i-th subset,

256 J Math Imaging Vis (2008) 30: 249–274

X(i), of a sequence, X(1), . . . ,X(n), of subsets of G, where
X ⊂ X(1) and X(j−1) ⊂ X(j), for each j ∈ {2, . . . , n}. More
specifically, for each i ∈ {1, . . . , n}, the subset X(i) is ob-
tained by letting X(i) = X(i−1) ∪ S(i), where X(0) = X and
S(i) ⊆ (X0 − X(i−1)). In other words, S(i) is a subset of the
background of the image (G,X(i−1)), and hence the fore-
ground, X(i), of (G,X(i)) is a superset of the foreground,
X(i−1), of (G,X(i−1)). The set S(i) is carefully chosen by
the algorithm in such a way that J (q), where q is the
point removed from Q at the beginning of the i-th iteration,
does not contain any critical configuration with respect to
(G,X(i)). When the loop ends, we let X′ = X(n), which is
equivalent to say that X′ = X ∪ P , with

P =
n⋃

i=1

S(i).

To efficiently compute the set S(i), the algorithm relies in
three simple facts. First, if q is the point removed from Q in
the i-th iteration and J (q) contains an instance, A, of C1 or
C2 in (G,X(i−1)), then all points of A must belong to G, as
G is a rectangular grid. Second, it can be shown that A will
not be a critical configuration in (G,X(i)) only if a subset of
the background points of (G,X(i−1)) that belong to A are
inserted into S(i). So, the set S(i) can always be computed
and the choices of points of (X0 − X(i−1)) to be inserted
into S(i) are limited to the background points of (G,X(i−1))

in A. Third, the set J (q) contains either 0, exactly one, ex-
actly two, or exactly three instances of C1 in (G,X(i−1)), or
exactly one instance of C2 in (G,X(i−1)); that is, these five
cases are mutually exclusive.

For each of the four mutually exclusive cases in which
J (q) contains an instance of C1 or C2, the algorithm com-
putes a set of sets denoted by B(q). The elements of B(q)

are called choices, and S(i) is chosen to be one of the ele-
ments of the choices. Table 1 describes the choices of B(q)

in each case, and Figs. 5–9 illustrates these cases. To choose
a subset S(i) ∈ B(q), the algorithm follows a simple rule
of choice: pick a choice, S(i), of B(q) such that (G,X(i))

does not contain any instance of C1 or C2 that is not also in
(G,X(i−1)). If there is more than one choice, pick the one
with smallest cardinality. If there is still a tie, break it at ran-
dom. Finally, if every choice is such that (G,X(i)) contains
an instance of C1 or C2 that is not in (G,X(i−1)), then pick
any S(i) at random.

It is straightforward to verify that J (q) cannot contain
any instance of C1 nor C2 in (G,X(i)) if, and only if,
S(i) ⊆ (X0 − X(i−1)) is one of the choices of B(q). To de-
cide whether a choice for S(i) is such that (G,X(i)) contains
an instance of C1 or C2 that is not in (G,X(i−1)), the al-
gorithm does not have to verify all configurations Nx(p),
Ny(p), Nz(p), and N (p), for every point p ∈ G. Since
X(i) = X(i−1) ∪ S(i), it suffices to consider the points that

Table 1 Description of the choices of B(q) for each of the four mu-
tually exclusive cases (and their sub-cases) in which C(p) contains an
instance of C1 or C2: case denomination (first column), number of in-
stances of C1 in J (q) (second column), number of instances of C2
in J (q) (third column), the choices of B(q) (fourth column), and the
number of the figure illustrating the choice (fifth column)

Case #C1 #C2 B(q) Figure

A1 1 0 {{a}, {b}} 5

A2 2 0 {{a}, {b, c}} 6

A3(1) 3 0 {{a}, {b, c, d}} 7

A3(2) 3 0 {{b, c}, {b, d}, {c, d}} 7

B(1) 0 1 {{a}, {b}} 8

B(2) 0 1 {{a}, {b}, {c}, {d}, {e}, {f }} 9

Fig. 5 Illustration of case A1 in Table 1. Points a and b are the two
background points of (G,X(i−1)) that belong to the instance of C1

are 26-adjacent to any point in N (q), or equivalently, the
points of the 4 × 4 × 4 grid

[q1 − 1, q1 + 2] × [q2 − 1, q2 + 2] × [q3 − 1, q3 + 2] ⊂ Z
3,

where (q1, q2, q3) are the coordinates of q . So, testing for
newly created critical configurations in (G,X(i)) can be
done in constant time. Finally, for each newly created criti-
cal configuration, J (p), in (G,X(i)), the point p is inserted
into Q.

A pseudo code for the step of elimination of critical con-
figurations is given below:

(01) P ← ∅
(02) while Q is not empty do
(03) q ← DEQUEUE(Q)

(04) if J (q) contains a critical configuration
of (G,X ∪ P) then

(05) compute B(q)

(06) choose S from B(q) according
to the rule of choice

(07) endif
(08) for each p ∈ G such that J (p) contains

a newly created critical configuration do
(09) ENQUEUE(p,Q)

J Math Imaging Vis (2008) 30: 249–274 257

Fig. 6 Illustration of all
occurrences of case A2 in
Table 1. The foreground and
background points of
(G,X(i−1)) that belong to the
two instances of C1 are shown
as open and solid circles,
respectively

Fig. 7 Illustration of the
sub-cases, (1) and (2), of case
A3 in Table 1. The foreground
and background points of
(G,X(i−1)) that belong to the
two instances of C1 are shown
as open and solid circles,
respectively

Fig. 8 Illustration of the sub-case (1) of case B in Table 1. Points a and
b are the background points of (G,X(i−1)) that belong to the instance
of C2

(10) endfor
(11) let P ← P ∪ S

(12) endwhile
(13) return X′ = X ∪ P

It remains to be discussed the fact that the queue Q will
eventually become empty, which implies the termination of
the algorithm. Indeed, this fact follows from the following
observations: (1) the while loop is entered if, and only if,
Q is not empty; (2) every loop iteration of the algorithm re-
moves exactly one point from Q and inserts none, one or

Fig. 9 Illustration of the sub-case (2) of case B in Table 1. Points a,
b, c, d , e, and f are the background points of (G,X(i−1)) that belong
to the instance of C2

more points into Q; (3) each point of G can be inserted into
Q at most four times. In particular, every time a point p of G

is inserted into Q, one element of J (p) is a newly created
critical configuration in (G,X ∪ P). But, each of Nx(p),
Ny(p), Nz(p), and N (p) can become a new critical con-
figuration only once, as the color of the points are changed
from 0 to 1 only. So, Q will eventually become empty, and
the algorithm will terminate.

Finally, observations (1), (2), and (3) also imply that the
loop cannot iterate more than 4 · |G| times. Since each loop
iteration runs in constant time, the time complexity of the

258 J Math Imaging Vis (2008) 30: 249–274

algorithm is O(|G|). The space complexity (i.e., the amount
of memory usage) is also clearly O(|G|). It is worth to re-
mark that we can also obtain a well-composed image from
(G,X) by executing our algorithm on (G,G − X). How-
ever, the resulting well-composed image is not necessarily
the same as the one obtained by executing the algorithm on
(G,X).

5.2 How Effective Is the Algorithm?

The randomized algorithm described in the previous section
does not necessarily find a smallest set P of background
points of (G,X) such that (G,X ∪ P) is well-composed.
Actually, the set P can in principle be the entire set X0 of
background points of (G,X). So, it is natural to ask our-
selves how effective the algorithm really is. Here, we derive
a probabilistic upper bound for the expected size of the set
P computed by the algorithm. The size |P | of P is bounded
above by m+ t , where m is the number of critical configura-
tions in (G,X) and t is the number of critical configurations
created by the algorithm to generate the well-composed im-
age (G,X′), where X′ = X ∪P . This is because the number
|S| of points of the set S ⊆ (X0 − P) computed by the al-
gorithm (see Line (06)) is always smaller than or equal to
the number of critical configurations in J (q). So, |P | can-
not exceed m + t . We can view m as an intrinsic feature of
(G,X). In contrast, we can view t as an intrinsic feature of
the algorithm, and hence we derive an upper bound for the
expected value of t , E[t], in terms of m.

Recall that before the while loop is entered, the queue Q

contains all points q ∈ G such that J (q) contains at least
one instance of a critical configuration of (G,X). Let R be
the set of points of Q before the loop is entered. The size,
|R|, of R is at most m. Let r(j) ∈ R be the point removed
from Q in the j -th iteration of the loop. Let C(r(j)) de-
note the number of new critical configurations of (G,X(j))

created by the algorithm in the j -th iteration (i.e., the num-
ber of critical configurations that are in (G,X(j)) but not
in (G,X(j−1))). Since Q is a queue, the point r will be re-
moved from Q before the removal of any point inserted into
Q in the end of the j -th iteration. Since Nx(p) �= Nx(s),
Ny(p) �= Ny(s), Nz(p) �= Nz(s), and N (p) �= N (s), for
any two points p, s ∈ G, with p �= s, the total number, t ′,
of critical configurations created by the algorithm until the
|R|-th iteration is then

t ′ =
|R|∑

j=1

C(r(j)).

Let us consider C(r(j)) as a random variable. Then, the
expected value, E[t ′], of t ′ is given by

E[t ′] = E

[|R|∑

j=1

C(r(j))

]
=

|R|∑

j=1

E[C(r(j))],

where E[C(r(j))] is the expected value of C(r(j)). By defi-
nition of expected value, E[C(r(j))] is given by

E[C(r(j))] =
N∑

i=0

i · P {C(r(j)) = i},

where P {C(r(j)) = i} is the probability that C(r(j)) is equal
to i, and N is the largest value of C(r(j)). So, if we are able
to compute P {C(r(j)) = i}, for each i ∈ {0, . . . ,N} and each
j ∈ {1, . . . , |R|}, we can compute E[t ′].

Recall that the set S = S(j), computed by the algorithm
in the j -th iteration of the loop, can only contain points from
the set N (r(j)). So, if any new instance of a critical config-
uration is created in (G,X(i)), this instance must belong to
the 4 × 4 × 4 grid,

G(r(j)) = [r(j)

1 − 1, r
(j)

1 + 2] × [r(j)

2 − 1, r
(j)

2 + 2]
× [r(j)

3 − 1, r
(j)

3 + 2] ⊂ Z
3,

where (r
(j)

1 , r
(j)

2 , r
(j)

3) are the coordinates of r(j). So, to
compute P {C(r(j)) = i}, we can restrict our attention to
G(r(j)). In what follows, we compute P {C(r(j)) = i} by
making the following three simplifying assumptions:

(1) The restriction of the input image (G,X) to G(r(j)) is
equally likely to be any of the 264 binary images in the
set

H = {(G(r(j),W) | W ⊆ G(r(j)}.

(2) Any choice of B(r(j)) is equally likely to be selected by
the algorithm to be the set S(j).

(3) The random variables, C(r(1)), . . . ,C(r(|R|)), are inde-
pendent.

The first assumption implies that the probability,
P {(G(r(j)) ∩ X) = W }, that the restriction of (G,X) to
G(r(j)) is equal to (G(r(j)),W) is 1/|H|. The third assump-
tion means that the elimination of all critical configurations
of C(r(j)) does not change the color of the points of (G,X)

in the grids G(r(j+1)), . . . ,G(r(|R|)). In turn, this means
that P {(G(r(j)) ∩ X(j)) = W } = P {(G(r(j)) ∩ X) = W } =
1/|H|.

Let P {S(j)} denote the probability that a given set S of
B(q) is chosen by the algorithm. Then, for any 0 ≤ i ≤ N ,
the probability that the algorithm will create exactly i new
critical configurations in (G,X(j)) is

P {S(j)} · I (S(j),W, i),

where I (S(j),W, i) is an indicator random variable that is
equal to 1 if the algorithm creates exactly i new critical con-
figurations in (G,X(j)), and is equal to 0 if no new critical

J Math Imaging Vis (2008) 30: 249–274 259

configuration is created. So,

P {C(r(j)) = i} =
∑

(G(r(j)),W)∈H
P {(G(r(j) ∩ X(j)) = W }

×
(∑

S∈B(r)

P {S(j)} · I (S(j),W, i)

)
.

By assuming that the third assumption holds, we built a
computer program to calculate the values of P {S(j)} and
I (S(j),W, i) for all possible binary images (G(r(j)),W) ∈
H, all sets of choices S ∈ B(r), and all values of i, with 0 ≤
i ≤ N , where N = 36 is the largest value of C(r(j)), which
can also be determined by a computer program. This is be-
cause G(r(j)) has only 264 points, and we can compute the
above unknowns by case enumeration. Our program com-
puted the following values for P {C(r(j)) = i}: P {C(r(j)) =
0} = 0.837498, P {C(r(j)) = 1} = 0.0916715, P {C(r(j)) =
2} = 0.0411385, P {C(r(j)) = 3} = 0.0160874,
P {C(r(j)) = 4} = 0.00726092, P {C(r(j)) = 5} =
0.0036895, P {C(r(j)) = 6} = 0.00173523, P {C(r(j)) =
7} = 0.00070917, P {C(r(j)) = 8} = 0.000186012,
P {C(r(j)) = 9} = 2.32515 × 10−5, and P {C(r(j)) = k} <

10−8, for all 9 < k ≤ 36. So, we get

E[C(r(j))] =
N=36∑

i=0

i · P {C(r(j)) = i} = 0.286775.

Now, we can derive an upper bound for

E[t ′] =
|R|∑

j=1

E[C(r(j))]

in terms of m. Since |R| ≤ m and E[C(r(j))] = 0.286775,
we have that

E[t ′] =
|R|∑

j=1

E[C(r(j))] = 0.286775 · |R|

≤ 0.286775 · m <
m

3
.

The above upper bound for E[t ′] can be used to find an up-
per bound for E[t], the expected number of new critical con-
figurations created during the entire execution of the algo-
rithm. In order to do that, we suppose that the assumptions
(1), (2), and (3) also hold for the t newly created critical
configurations.

Since our repairing algorithm uses a queue to keep track
of critical configurations, we can think of the whole process
of elimination of critical configurations as carried out in K

steps, for some positive integer K . More specifically, the
first step consists of the elimination of all critical config-
urations in the input image, (G,X). The second step con-
sists of the elimination of all critical configurations created

as a result of eliminating the critical configurations of the
first step, and so on. For each h ∈ {1, . . . ,K}, let mh denote
the total number of critical configurations created in the h-
th step. Note that mh = 0 for h = K , as the resulting im-
age (i.e., (G,X′)) has no critical configurations. We already
know that E[m1] < m/3. So, let {1, . . . ,Mh} be all possible
values of mh, and assume that each mh, for 2 ≤ h < K , takes
any value from {1, . . . ,Mh} with equal probability. Then, for
any integer i, with 2 ≤ i < K ,

E[mi] =
Mi−1∑

l=1

P {mi−1 = l}
(∑

q∈Ql

E[C(q)]
)

,

where Ql consists of all points q in Q that are removed from
Q during the i − 1 step, and J (q) contains a critical con-
figuration in the image produced by the while loop iteration
that precedes the iteration in which q is removed from Q.
Since mi−1 is any of 1, . . . ,Mi−1 with equal probability, we
have that

P {mi−1 = l} = 1

|{1, . . . ,Mi−1}| = 1

Mi−1
,

where |{1, . . . ,Mi−1}| = Mi−1 is the size of {1, . . . ,Mi−1}.
So, the expected value E[mi] of mi is given by

E[mi] = 1

Mi−1

Mi−1∑

l=0

(∑

q∈Ql

E[C(q)]
)

.

Using the argument for deriving E[m1] again, we get

∑

q∈Ql

E[C(q)] = 0.286775 · |Ql |,

where |Ql | is the size of Ql . Thus,

E[C(q)] ≤ 0.286775 · l <
l

3

and

E[mi] <
1

3
·
∑

l∈{1,...,Mi−1} l
Mi−1

.

But,
∑

l∈{1,...,Mi−1} l
Mi−1

is precisely the expected value of mi−1. So, E[mi] < 1
3 ·

E[mi−1], and

E[t] = E

[
K∑

k=1

mk

]
= E

[
K−1∑

k=1

mk

]
=

K−1∑

k=1

E[mk]

260 J Math Imaging Vis (2008) 30: 249–274

<

K−1∑

k=1

(
1

3

)k

· m <

∞∑

k=1

(
1

3

)k

· m = m

2
.

So, we have the following theorem:

Theorem 5.1 Let (G,X) be a 3D binary image with m criti-
cal configurations. If assumptions (1), (2), and (3) hold, then
the expected value E[t] of the number t of critical config-
urations created by our algorithm on input (G,X) is less
than m

2 .

At first glance, the third assumption may not seem rea-
sonable, but there are two reasons for making this assump-
tion. First, it makes it easier to compute a probability distrib-
ution for P {C(r(j)) = i}. Second, as j gets larger, the prob-
ability that G(r(j)) ∩ X(j) has more foreground than back-
ground points increases. So, P {C(r(j)) = i} will be larger
for smaller values of i. Since we are interested in an up-
per bound for E[t ′], assumption (3) is reasonable for the
purpose of obtaining this upper bound. Finally, since the
size, |P |, of the set P obtained by the repairing algorithm
is bounded above by m + t , Theorem 5.1 implies that the
expected size E[|P |] of P is bounded above by 3m

2 .

5.3 Topological Repairing and Morphological Operators

It is tempting to think that one can repair a 3D digital binary
image, which is not well-composed, using a combination of
dilations and erosions. Unfortunately, such a morphologi-
cal operation may not work, as a new critical configuration
may always arise as the result of the elimination of another
one. For the sake of clarity, we illustrate this fact using a
2D digital binary image (G,X) shown in Fig. 10(a), where
G = [1,7] × [1,7]. Figure 10(b) shows the image resulting
from a dilation of the image in Fig. 10(b) using a 2×2 neigh-
borhood as the structuring element, and Fig. 10(c) shows the
image resulting from an erosion of the image in Fig. 10(a)
using the same structuring element.

Although the only instance of C1 in the image in
Fig. 10(a) has been removed from the dilated image in

Fig. 10(b), another instance of C1 has been created. Sim-
ilarly, the only instance of C1 in the image in Fig. 10(b) has
been eliminated from the eroded image in Fig. 10(c), but
another one has been created. Note that we can obtain the
image in Fig. 10(b) by dilating the image in Fig. 10(c). Note
also that the images in Fig. 10(a) and (c) are the same, which
means that the image in Fig. 10(a) is invariant with respect
to the composition of dilation followed by erosion.

The counterexample just presented shows that the com-
position of dilation followed by erosion cannot repair any
given 2D digital binary images. A similar counterexample
can be built to show that the composition of erosion followed
by dilation cannot repair any given 2D digital binary images
either. Finally, analogous examples can be given for a 3D
digital binary images, which can be thought of as consist-
ing of three “stacked” copies of the 2D digital binary image
shown in Fig. 10(a).

6 An Algorithm for Repairing 3D Multivalued Images

This section describes an extension of the algorithm in
Sect. 5 to repairing 3D digital multivalued images, which
are assumed to be the result of multi-object segmentations.
More specifically, the input for the algorithm is the grid G

of a 3D digital multivalued image F : G → {c1, . . . , ck},
for some integer k, with k > 2, and the k sets X1, . . . ,Xk ,
where Xi = {p ∈ G | F(p) = ci}, for every i ∈ {1, . . . , k}.
The output consists of k sets, X′

1, . . . ,X
′
k , where X′

i = {p ∈
G |F ′(p) = ci} and F ′ : G → {c1, . . . , ck} is a 3D multival-
ued well-composed image, i.e., each binary image (G,X′

i) is
a well-composed image.

The motivation for extending our repairing algorithm
to 3D digital multivalued images is that such images may
represent the segmentation of other 3D digital multival-
ued images into more than just background and fore-
ground. This is particularly the case if fuzzy connected-
ness is employed as the segmentation paradigm [17, 37].
So, it is natural to think of a repairing approach that mod-
ifies the segmented multivalued image as a whole, so that

Fig. 10 a A 2D digital binary
image (G,X), where
G = [1,7] × [1,7] ⊆ Z

2. b The
2D digital binary image
resulting from a dilation of the
image in (a). c The 2D digital
binary image resulting from an
erosion of the image in (b).
Foreground and background
points are represented by open
circles and solid circles,
respectively

J Math Imaging Vis (2008) 30: 249–274 261

the repaired image could enjoy the same benefits as well-
composed binary images. Unfortunately, the application
of our repairing algorithm in Sect. 5 to each binary im-
age (G,X1), . . . , (G,Xm) does not necessarily yield well-
composed images, (G,X′

1), . . . , (G,X′
m). The reason is that

the repairing of one binary image (G,Xi) may affect a pre-
viously repaired image (G,Xj), for some i, j ∈ {1, . . . ,m},
with i �= j . Furthermore, the repeated application of the al-
gorithm in Sect. 5 to repair the previously repaired images
may never terminate.

The idea behind our extended algorithm is to repeatedly
apply a modified version of the algorithm in Sect. 5 to the
images (G,X1), . . . , (G,Xk), in this order. Every time the
algorithm repairs the image (G,Xi), for any i ∈ {1, . . . , k},
it can modify a previously repaired image, (G,Xj), for
some j ∈ {i + 1, . . . , k}. When (G,X1), . . . , (G,Xk) are all
well-composed images after the repairing of any of them
(which eventually happens), the algorithm lets X′

i = Xi , for
each i ∈ {1, . . . , k}, and terminates.

While repairing (G,Xi), for each i ∈ {1, . . . , k}, the al-
gorithm may insert or remove points from Xi . Each point
inserted into Xi is previously removed from a set Xj , where
j ∈ {i + 1, . . . , k}. Likewise, each point removed from Xi

is later inserted into a set Xj , where j ∈ {1, . . . , i − 1}. We
can view these insertion/removal operations as changing the
color assigned to a point from cj to ci (or from ci to cj). This
means that the resulting well-composed image depends on
the order of its colors in the sequence c1, . . . , ck . In partic-
ular, the components consisting of points assigned the color
c1 can only have their sizes increased, while the components
consisting of points assigned the color ck can only have their
sizes decreased. So, before using the algorithm, the color se-
quence c1, . . . , ck should be defined according to some rank
of importance of the color components of the input image.

The repairing of each (G,Xi) is carried out in two steps.
The first step finds all critical configurations of (G,Xi).
More specifically, for each point q ∈ G, if J (q) contains
a critical configuration of (G,Xi) then q is inserted into
a queue Qi , which is initially empty. So, (G,Xi) is well-
composed if, and only if, Qi is empty when the first step
is over. If at least one of Qi is not empty when the first
step is over, the second step is carried out. Otherwise, the
algorithm terminates with X′

i = Xi , for all i ∈ {1, . . . , k}.
The second step is a slight modification of the algorithm in
Sect. 5. The goal now is to compute a subset X′

i of G, for
each i ∈ {1, . . . , k}, such that the binary image (G,X′

i) is
well-composed. Each set X′

i is made equal to Xi before the
second step starts. To compute each X′

i , the algorithm re-
peatedly considers the queues Q1, . . . ,Qk , in this order. For
each Qi that is not empty, the algorithm iteratively removes
one point q at a time from Qi , modifies Qi and some of
X1, . . . ,Xk , and may eventually insert one or more points
from G into any of the sets Q1, . . . ,Qk .

Let Qi be the nonempty queue currently considered by
the algorithm, for some i ∈ {1, . . . , k}, and let q be the point
currently removed from Qi . If J (q) contains a critical con-
figuration of (G,X′

i), then the algorithm computes the set
B(q) in the same way the repairing algorithm for binary im-
age does. Next, the algorithm computes a subset of valid
choices of B(q), denoted by B ′(q), and defined as

B ′(q) = {S ∈ B(q) | (S∩X′
j) = ∅, for all j with 1 ≤ j < i}.

The set B ′(q) contains only the members S of B(q) whose
points are not foreground points of the images (G,X′

j), for
all j ∈ {1, . . . , i −1}. So, if the algorithm chooses a set from
B ′(q) to eliminate the critical configurations of J (q), it will
not change the color of a point from cj to ci with j < i.
Consequently, the images (G,X′

j), for all j ∈ {1, . . . , i −1},
will not be modified by the change of colors.

Unlike the set B(q), the set B ′(q) may be empty. This is
the case if, and only if, every set S of B(q) contains a point
that belongs to a set X′

j , with j < i. Whenever B ′(q) is not
empty, the algorithm chooses a set S from B ′(q) and lets
X′

i = X′
i ∪ S; that is, every point of S has its color changed

to ci . Next, the algorithm removes the points of S from the
corresponding sets X′

h, for h ∈ {i + 1, . . . , k}. The choice of
S is made by the same rule of choice used by the repairing
algorithm for binary images. If B ′(q) contains only one set,
S is this set. If B ′(q) has two or more elements, the algo-
rithms picks S such that (G,X′

i ∪ S) does not contain any
critical configuration that is not also in (G,X′

i). If there is a
tie or if there is no such set, the algorithm picks S at random.

If B ′(q) is empty then there is no point whose color can
be changed from cj to ci , with j > i, in order to eliminate
the critical configurations of J (q) in (G,X′

i). So, we are left
with the option of changing the color assigned with points of
X′

i from ci to some cj , with j < i; that is, we remove points

from X′
i , or equivalently, insert points into X′

i . To do that,

the algorithm computes B(q) for the image (G,X′
i). Since

G is a rectangular grid, any critical configuration (G,X′
i)

is also a critical configuration of (G,X′
i), and vice-versa.

Furthermore, every point of any set S ∈ B(q) is a point of
(G,X′

i). So, the algorithm can use the same rule of choice
used by the repairing algorithm in Sect. 5. Next, the algo-
rithm lets X′

i = X′
i −S and, for each critical configuration A

of (G,X′
i) in J (q), the algorithm lets X′

j = X′
j ∪S, where j

is the largest integer in {1, . . . , i−1} such that (X′
j ∩A) �= ∅.

The motivation for choosing j as the largest integer in
{1, . . . , i − 1} such that (X′

j ∩ A) �= ∅, for each critical con-
figuration A of (G,X′

i) in the set J (q), is two-fold. First,
we avoid creating “isolated” one-voxel, same-colored com-
ponents. Second, we replace ci with a color cj with the least
degree of “importance” that is larger than the one of ci . This
criterion is based on the assumption that cj is more similar
to ci than to any other color ch, with h < j . However, we

262 J Math Imaging Vis (2008) 30: 249–274

can easily incorporate other criteria for choosing cj into the
algorithm. For instance, we could choose cj to be the color
assigned to the majority of the points of A whose color index
is smaller than i. However, whatever criterion is chosen, the
resulting well-composed image will depend on the ordering
of the colors determined by the criterion.

After modifying X′
i and X′

j , the algorithm finds all points
p ∈ G such that J (p) contains a critical configuration of
(G,X′

i) (resp. (G,X′
j)), which did not exist before a point

of S is inserted or removed from X′
i (resp. X′

j). Next, the
algorithm inserts p into Qi (resp. Qj). Like the repairing al-
gorithm for binary images, the search for p is limited to the
grid [p1 − 1,p1 + 2] × [p2 − 1,p2 + 2] × [p3 − 1,p3 + 2],
where (p1,p2,p3) are the coordinates of p. So, each p can
be found in constant time. Whenever Qi becomes empty,
(G,X′

i) is well-composed, and the nonempty queue from
{Q1, . . . ,Qk} with the smallest index is considered. In what
follows, we present a pseudo code for the algorithm just de-
scribed:

(01) X′
1, . . . ,X

′
k ← ∅

(02) while any of Q1, . . . ,Qk is not empty do
(03) let i be the smallest integer in {1, . . . , k}

such that Qi is not empty
(04) while Qi is not empty do
(05) remove a point q from Qi

(06) if any J (q) contains a critical
configuration then

(07) compute B ′(q) for (G,X′
i)

(08) if B ′(q) �= ∅ then
(09) choose S from B ′(q) according

to the rule of choice
(10) let X′

i ← X′
i ∪ S

(11) let X′
j ← X′

j − S for all
j ∈ {i + 1, . . . , k}

(12) for each j ∈ {i, . . . , k}, for all p ∈ G,
find all new critical configurations
of (G,X′

j) in J (p), and insert
p into Qj

(13) else
(14) compute B(q) for (G,X′

i)

(15) choose S from B(q) according
to the rule of choice

(16) let X′
i ← X′

i − S

(17) for each A ∈ J (q), find the largest
l ∈ {1, . . . , i − 1} such that
(X′

l ∩ A) �= ∅
(18) let X′

l ← X′
l ∪ S

(19) find all new critical configurations
Nx(p), Ny(p), Nz(p), or N (p)

in (G,X′
j),

for j = l and j = i and p ∈ G,
and insert p into Qj

(19) endif
(20) endif
(21) endwhile
(22) endwhile
(23) return X′

1, . . . ,X
′
k

The algorithm above always terminates. This is obviously
true if the input image F is already well-composed. So,
assume otherwise. The outer while loop (Lines (01)–(22))
is entered whenever one of Q1, . . . ,Qk is not empty. In
each iteration of this loop, the nonempty Qi with the small-
est i ∈ {1, . . . , k} is selected, and the inner while loop on
(Lines (04)–(21)) iterates until Qi becomes empty. In each
iteration of the inner loop, the algorithm removes a point
from Qi and may eventually insert one or more points in Qi .
Since each point p inserted into Qi is a point from G and
G is finite, the algorithm cannot keep inserting points into
Qi indefinitely if each point p is inserted into Qi finitely
many times only. The outer while loop is executed when-
ever one of Q1, . . . ,Qk is not empty. In each iteration of
this loop, the nonempty Qi with smallest i ∈ {1, . . . , k} is
selected, and the inner while loop on line (03) iterates until
Qi becomes empty. In each iteration of the inner loop, the
algorithm removes a point q from Qi and may eventually
insert one or more points in Qi . Each point inserted into Qi

is a point from G. A point p is inserted into Qi if, and only
if, J (p) contains a critical configuration of (G,X′

i). Fur-
thermore, once a critical configuration is eliminated from
(G,X′

i) by inserting or removing points from X′
i , it can no

longer occur in (G,X′
i). The reason is that the following in-

sertion invariant holds: every point inserted into X′
i has been

removed from a set X′
j , with j > i, or dually, every point re-

moved from X′
i is inserted into a set X′

j , with j < i. So,
each p ∈ G can be inserted into Qi at most four times, each
of which corresponds to one of Nx(p), Ny(p), Nz(p), and
N (p) becoming a critical configuration. Since G is finite
and every iteration of the inner loop removes a point from
Qi , the queue Qi eventually becomes empty just before the
end of the n-th iteration of the loop, for some finite positive
integer n. However, Qi may become nonempty again as a
result of the repairing of (G,X′

j), for some j ∈ {1, . . . ,m},
with j �= i, which will force the outer while loop to be en-
tered again. However, since each p ∈ G can be inserted into
Qi at most four times, Qi cannot become nonempty indefi-
nitely, which means that the outer while loop will eventually
terminate with all the queues empty.

The time complexity of the algorithm is O(k · |G|). This
follows from the fact that a given point p ∈ G belongs to ex-
actly one set X′

i at any given time during the execution of the
algorithm, and p can be removed from a set X′

i and inserted
into a set X′

j at most k times, for any i, j ∈ {1, . . . , k}, with
i �= j . So, the combined number of iterations of the outer
and inner loops is O(k · |G|). However, the space complex-
ity (memory usage) of the algorithm is still linear in |G|.

J Math Imaging Vis (2008) 30: 249–274 263

Although the extended repairing algorithm was devised for
multivalued images, it can be applied to binary images as
well. Given a 3D binary digital image (G,X), if we run the
algorithm with X1 = X and X2 = (G − X), the output will
be the same well-composed image obtained by the repairing
algorithm in Sect. 5 when given (G,X).

7 Experimental Results

This section describes and discusses some results obtained
by running the algorithm in Sect. 5 and its extension in
Sect. 6 on several 3D digital binary and multivalued images,
respectively. To produce the results, we used the open source
and freely available implementations of our repairing algo-
rithms in the National Library of Medicine (NLM) Insight
Segmentation and Registration Toolkit (ITK).2 This toolkit
also has an implementation of the repairing algorithm in [16]
for 2D binary images (see [38]).

For the purpose of describing the aforementioned results,
we divided the images into three groups as follows:

G1. This group contains only one image: a 3D digital mul-
tivalued image corresponding to a multi-object seg-
mented normal brain image produced by the brain web
MR image simulator [39]. Each point of this image is
assigned one of 10 colors from the set {0,1, . . . ,9}.

G2. This group contains three 3D digital binary images,
each of which was obtained from the multivalued im-
age in G1. In particular, the foreground of the first bi-
nary image is the set of points of the multivalued image
in G1 that are assigned color 1 (CSF segmentation);
the foreground of the second binary image is the set of
points of the multivalued image in G1 that are assigned
color 2 (gray matter segmentation); and the foreground
of the third binary image is the set of points of the mul-
tivalued image in G1 that are assigned color 3 (white
matter segmentation).

G3. For each of the three binary images in G2, we created
four binary images with varying levels of noise as fol-
lows: For each image in G2 and each n ∈ {1, . . . ,4},
we created another binary image by adding Gaussian
noise with zero mean and standard deviation equal to
(n+1)

10 , and then thresholded the resulting image such
that voxel values less than or equal to 0.5 were reas-
signed a value of 0 and 1 otherwise. Figure 11(a)–(d)
shows an axial slice of the four binary, white matter
segmented images in G3 obtained by adding noise and
thresholding, as described before.

Table 2 shows the total number of instances of C1 and C2
in each binary image from the groups G2 and G3. By exam-
ining this table, we see that the total number of instances of

2http://www.itk.org.

C1 and C2 in some images from group G3 can be as large
as 15% of the number of points in the image grid, while
the total number of instances of C1 and C2 in any image
from group G2 is no larger than 0.24% of the number of
points in the image grid. We ran the ITK implementation
of our repairing algorithms in Sect. 5 on each binary image
from G2 and G3, ten times per image. For each execution,
we computed the minimum, maximum, and average values
of the point-wise color difference and Hausdorff distances
between the input and output images. We also computed
the standard deviation of the average values. The results are
shown in Tables 3 and 4.

If (G,X) and (G,X′) are the input and output images,
respectively, then the point-wise color difference (PWCD)
is equal to

PWCD(X,X′) =
∑

p∈G

d(p),

where d(p) = 0 if p ∈ ((X ∩ X′) ∪ ((G − X) ∩ (G − X′))),
and d(p) = 1 otherwise, and the Hausdorff distance (HD) is
equal to

HD(X,X′) = max(h(X,X′), h(X′,X)),

where

h(X,X′) = max
p∈X

min
q∈X′ ‖p − q‖,

and ‖p − q‖ is the Euclidean distance between p and q .
Intuitively, if the Hausdorff distance between (G,X) and
(G,X′) is δ ∈ R, then every point of X must be within a
distance δ of some point in X′, and vice-versa.

From Theorem 5.1, we know that the average point-wise
color difference is expected to be no larger than one and a
half the number of instances of C1 and C2 in the input im-
age. From Tables 3 and 2, we can see that the average point-
wise color difference for the binary images in G2 and G3 is
actually smaller than the number of critical configurations
of the input image for most of the images, and it never ex-
ceeds the upper bound in Theorem 5.1. Table 3 also shows
that the average PWCD is smaller than 5% and 0.25% of the
number of foreground points and grid points for the images
in group G2. In contrast, the average PWCD can be as large
as 91% and 18% of the number of foreground points and
grid points, respectively, for the G3 images with high level
of noise. This is particularly the case for the CSF segmented,
binary image with high level of noise, G3, 1.

From Table 4, we can see that the maximum Hausdorff
distance between any image in G3 and its well-composed
counterpart is no larger than

√
3. Since the grid spacing of

all images used in our experiments is 1, we have that every
point added to the foreground of the output image must be
26-adjacent to some foreground point of the input image.

264 J Math Imaging Vis (2008) 30: 249–274

Fig. 11 Axial slices of the
binary, white matter segmented
images in group G3, which were
obtained by adding noise with
zero mean and standard
deviation a 0.2, b 0.3, c 0.4, and
d 0.5

Furthermore, it is highly unlikely that the algorithm intro-
duced a “hole” in the surface of the well-composed images.
For the images in group G3, the maximum Hausdorff dis-
tance may reach 2.24. So, in this case, the repairing algo-
rithm is likely to introduce undesirable topological artifacts,
such as small cavities or “holes” in the well-composed im-
age. However, the distance value is still small, and it basi-
cally does not scale up with the level of noise. This is an
indication that the addition of a large amount of noise to an
image does not force the repairing algorithm to relabel many
points of the image in order to generate a well-composed
one.

Although the CSF segmented image (image G2, 1 in Ta-
ble 2) has about half the number of foreground points as the

white matter segmented image (image G2, 3 in Table 2), the
former image has about five times more critical configura-
tions than the latter image. Consequently, the ratio between
the average PWCD and the number of foreground points is
about five times larger for the CSF segmented image (see
Table 3). The large number of critical configurations of the
CSF segmented image (compared to its number of fore-
ground points) is due to the fact that the cerebrospinal fluid
has very limited thickness, and therefore its topology can of-
ten be incorrectly captured by the digitization process. This
also explains why the CSF segmented images with varying
levels of noise have the larger statistical measures for the
PWCD and HD in Tables 3 and 4, respectively.

J Math Imaging Vis (2008) 30: 249–274 265

Table 2 Color value (resp.
standard deviation of Gaussian
noise) defining the image
foreground in group G2 (resp.
G3) (second column), total
number of instances of C1 and
C2 (third, fourth and fifth
columns), and number of
foreground points and grid
points (sixth and seventh
columns) of the binary images
in the groups G2 and G3

Image Color or Noise #C1 #C2 # C1 + #C2 # Fore. # Points

G2, 1 1 12,939 3,883 17,778 371,945 7,109,137

G2, 2 2 10,708 2,831 13,539 902,912 7,109,137

G2, 3 3 3,038 633 3,671 674,777 7,109,137

G3, 1 0.2 17,709 5,549 23,258 411,345 7,109,137

G3, 1 0.3 120,219 52,674 172,893 677,089 7,109,137

G3, 1 0.4 418,152 159,883 578,035 1,043,984 7,109,137

G3, 1 0.5 792,005 245,073 1,037,078 1,380,349 7,109,137

G3, 2 0.2 17,467 4,946 22,413 935,915 7,109,137

G3, 2 0.3 129,109 53,136 182,245 1,157,080 7,109,137

G3, 2 0.4 437,460 158,859 596,319 1,463,816 7,109,137

G3, 2 0.5 811,702 242,952 1,054,654 1,743,108 7,109,137

G3, 3 0.2 7,485 2,350 9,835 710,587 7,109,137

G3, 3 0.3 108,457 50,470 158,927 950,657 7,109,137

G3, 3 0.4 406,008 158,954 564,962 1,283,543 7,109,137

G3, 3 0.5 784,443 245,995 1,030,438 1,589,396 7,109,137

Table 3 Color value (resp.
standard deviation of Gaussian
noise) defining the image
foreground in group G2 (resp.
G3) (second column), average
PWCD (third column),
minimum PWCD (fourth
column), maximum PWCD
(fifth column), and standard
deviation (sixth column) for the
images in Table 2. The seventh
and the eighth columns show
the average PWCD divided by
number of foreground points
and by the number of grid
points, respectively, multiplied
by 100

Image Color or Noise Average Min. Max. St. Dev. % F. P. % G. P.

G2, 1 1 17,778.8 17,738 17,856 35.6 4.78 0.25

G2, 2 2 14,468.3 14,364 14,566 56.4 1.60 0.20

G2, 3 3 3,810.5 3,782 3,840 20.2 0.56 0.05

G3, 1 0.2 24,830.1 24,758 24,888 50.7 6.04 0.35

G3, 1 0.3 214,796.0 213,983 215,279 428.2 31.78 3.02

G3, 1 0.4 732,630.3 731,270 733,473 694.5 70.18 10.31

G3, 1 0.5 1,249,342.1 1,246,763 1,252,529 1,695.7 90.51 17.57

G3, 2 0.2 23,230.3 23,144 23,278 40.4 2.48 0.33

G3, 2 0.3 211,953.9 211,412 212,412 353.4 18.32 2.98

G3, 2 0.4 709,239.8 708,294 709,996 591.2 48.45 9.98

G3, 2 0.5 1,200,595.6 1,198,866 1,203,269 1,324.8 68.88 16.89

G3, 3 0.2 10,600.2 10,516 10,629 30.9 1.49 0.15

G3, 3 0.3 196,828.6 196,349 197,135 266.5 20.70 2.77

G3, 3 0.4 703,754.8 702,654 704,725 701.0 54.83 9.90

G3, 3 0.5 1,214,396.8 1,212,939 1,216,030 1,025.7 76.41 17.08

Figure 12 shows the surface of the continuous analog of

the foreground of the well-composed image obtained from

image G3, 3. The faces of the voxels corresponding to points

whose assigned colors were changed by the repairing algo-

rithm are shown in yellow. Note that the “yellow” voxels are

grouped together in small neighborhoods, which are scat-

tered throughout the surface. This tells us that the elimina-

tion of any given critical configuration from the input image

did not give rise to a long sequence of change of color of

neighboring points. This observation supports the adoption

of assumption 3 in the probabilistic analysis of our repairing
algorithm for binary images (see Sect. 5.2).

Table 5 shows the average frequency of cases A1, A2,
A3, B(1), and B(2) of the rule of choice of the repairing al-
gorithm (see Sect. 5) when given the images in groups G2
and G3. By examining this table, we see that the number
of times that A1 is applied is larger than the total number
of times that the remaining cases are applied. Furthermore,
we verified that the average number of instances of C1 and
C2 eliminated and created by each application of case A1 is
typically about 1.15 and 0.21, 1.23 and 0.18, and 1.12 and

266 J Math Imaging Vis (2008) 30: 249–274

Table 4 The average Hausdorff distance (HD) between the images in
Table 2 and their well-composed counterparts

Image Color or Noise Average Minimum Maximum St. Dev.

G2, 1 1 1.45 1.41 1.73 0.10

G2, 2 2 1.45 1.41 1.73 0.10

G2, 3 3 1.41 1.41 1.41 0.00

G3, 1 0.2 1.57 1.41 1.73 0.17

G3, 1 0.3 2.17 2.00 2.24 0.11

G3, 1 0.4 2.17 2.00 2.24 0.11

G3, 1 0.5 2.24 2.24 2.24 0.00

G3, 2 0.2 1.65 1.41 2.00 0.27

G3, 2 0.3 2.09 2.00 2.24 0.12

G3, 2 0.4 2.24 2.24 2.24 0.00

G3, 2 0.5 2.24 2.24 2.24 0.00

G3, 3 0.2 1.54 1.41 1.73 0.16

G3, 3 0.3 2.12 2.00 2.24 0.12

G3, 3 0.4 2.24 2.24 2.24 0.00

G3, 3 0.5 2.24 2.24 2.24 0.00

Fig. 12 (Color online) Continuous analog of the digital boundary be-
tween foreground and background of the well-composed image gener-
ated by our repairing algorithm for the white matter segmentation of
the normal brain image in group B1. The faces of the voxels corre-
sponding to points whose colors have been changed by the algorithm
are shown in yellow

0.12 for the CSF, gray matter, and white matter segmented,
binary images in G2, respectively. Since each application of
case A1 changes the color of only one point, we can say
that our algorithm either generates a well-composed image
that is very close to the “optimal” one (i.e., that minimizes
the PWCD) or it is very conservative regarding the num-

Table 5 Frequency of occurrence of the cases of the rule of choice of
the algorithm in Sect. 5 when given the images in G2 and G3

Image A1 (%) A2 (%) A3 (%) B(1) (%) B(2) (%)

G2, 1 61.67 4.16 0.39 13.21 3.09

G2, 2 68.19 4.78 0.64 17.97 8.42

G2, 3 70.70 4.22 0.56 20.53 3.99

G3, 1 64.80 3.87 0.47 22.80 8.37

G3, 1 69.48 3.94 0.68 3.96 23.15

G3, 1 69.11 4.03 1.10 4.17 21.59

G3, 1 69.04 5.18 1.44 5.90 18.44

G3, 2 69.61 4.51 0.62 14.04 11.22

G3, 2 69.83 3.04 0.74 4.76 21.62

G3, 2 69.22 4.14 1.13 5.14 20.36

G3, 2 69.03 5.29 1.46 6.68 17.53

G3, 3 71.05 3.56 0.49 10.77 14.13

G3, 3 69.80 2.51 0.66 3.27 23.76

G3, 3 69.03 3.94 1.12 4.46 21.46

G3, 3 68.94 5.17 1.45 6.28 18.15

ber of critical configurations eliminated per change of color.
In Sect. 8, we discuss simple heuristics to increase (resp.
decrease) the number of critical configurations eliminated
(resp. created) per change of color.

Table 5 also shows that the frequency of case B(2) in-
creases as the level of noise increases. This is because an
increase in the level of noise introduces several foreground
points scattered throughout the background of the image
(see Fig. 11), which in turn increases the likelihood that each
2 × 2 × 2 neighborhood, J (p), of a grid point, p, contains
an instance of C2 with two foreground points and six back-
ground points.

To evaluate the effect of our repairing algorithm on the
global topology of the input image, we compared the con-
tinuous analog of the digital surface between the foreground
and background of the input image with the continuous ana-
log of the digital surface between the foreground and back-
ground of its well-composed counterpart. To do so, we first
approximated the former continuous analog by a surface and
then compared the Euler characteristics of this surface with
the Euler characteristics of the surface corresponding to the
latter continuous analog. This is because the continuous ana-
log of the digital surface between the foreground and back-
ground of the input image is not a surface. Thus, the notion
of Euler characteristic is not applicable to it. Although we
are not using the “true” continuous analog in this compari-
son, the approximate surface should give us a good idea of
the topology of the large structures in the image. To generate
the approximate surface and to extract the surface from the
well-composed image, we used the Marching Cubes (MC)
algorithm [4].

J Math Imaging Vis (2008) 30: 249–274 267

Table 6 The number of connected components of the approximate
surfaces obtained by the MC algorithm when given the images in group
G2 (second column), and the number of vertices (third column), edges
(fourth column), faces (fifth column), and holes (sixth column) of the
largest connected component

Image # CC # Vertices # Edges # Faces # Holes

G2, 1 34 467,678 1,417,236 944,824 2,368

G2, 2 31 719,096 2,164,974 1,443,316 1,282

G2, 3 11 393,798 1,183,266 788,844 313

Table 6 shows the number of components, vertices,
edges, faces, and holes of the approximate (triangulated)
surfaces generated by the MC algorithm from the CSF, gray
matter, and white matter segmented, binary images in group
G2. The other components of the surfaces are really small
compared to the largest ones. Furthermore, almost all of the
remaining components are homeomorphic to a sphere. In
turn, the Euler characteristics of the surfaces extracted by
the MC algorithm from the well-composed counterparts of
the images in G2 (in each of the ten executions per image)
disclosed two facts:

1. The number of vertices, edges, faces, and holes of the
largest component of the extracted surfaces is smaller
than the corresponding numbers in the largest component
of the approximate surfaces. This is particularly the case
for the surfaces extracted from the well-composed coun-
terparts of the CSF segmented, binary image, as the num-
ber of holes of the largest component is about three times
smaller than the number of holes of the largest compo-
nent of the approximate surface.

2. The number of connected components of the extracted
surfaces is larger than the one of the approximate
surfaces. In particular, the extracted surfaces contains
several small connected components (e.g., an average
around 55, 123, and 15 connected components for the
surfaces extracted from the well-composed images ob-
tained from the CSF, gray matter, and white matter seg-
mented, binary images in group G2, respectively.) These
“extra” components are very small (e.g., 6 vertices, 12
edges, 8 faces, and 0 holes) and are all homeomorphic to
a sphere.

The first fact indicates that the repairing algorithm thick-
ens and smooths out the connected components of the input
image (see Figs. 14 and 13). The second fact tells us that
the algorithm tends to introduce small “sphere-like com-
ponents” in the resulting image. Luckily, these sphere-like
components are really small, and they can be easily filtered
out from the resulting image using an algorithm for remov-
ing small connected components. Such an algorithm will
never introduce critical configurations back in the image. So,
we can definitely incorporate such an algorithm as a post-
processing step in our repairing algorithm.

Table 7 Each of the ten structures of the multivalued image in group
G1 (first column), the color associated with each structure (second col-
umn), the number of grid points associated with each color (third col-
umn), the number of critical configurations in the binary image ob-
tained from G1 by considering the foreground the points assigned the
color in the second column (fourth column), and the ratio correspond-
ing to the quantity in the fourth column divided by the quantity in the
third column (fifth column)

Structure Color # Points # CC % (# CC / # points)

Background 0 3,001,960 384 0.012

CSF 1 371,945 16,822 4.523

Grey matter 2 902,912 13,539 1.500

White matter 3 674,777 3,671 0.544

Fat 4 146,514 6,087 4.155

Muscle/Skin 5 617,482 75,783 12.273

Skin 6 726,649 63,245 8.704

Skull 7 362,561 9,271 2.557

Glial matter 8 5,987 3,292 54.985

Connective 9 298,350 51,002 17.095

The number of instances of C1 (resp. C2) in the multival-
ued image in group G1 is 169,828 (resp. 26,858), which give
us a total of 196,686 critical configurations. This total num-
ber of critical configurations is equal to the sum of the num-
ber of instances of C1 and C2 in each binary image that can
be obtained by letting the foreground be the set of points of
the multivalued image assigned the same color. On comput-
ing the total number of instances of C1 and C2, the instances
that occur in more than one binary image are counted only
once. Note that the total number of critical configurations in
G1 is about 2.77% of the number of points in the image grid,
which is equal to 7,109,137.

We ran the ITK implementation of our repairing algo-
rithm for multivalued images (see Sect. 6) on the image in
group G1 using six distinct sequences for the rank of colors
of the image. For each distinct sequence, we ran the algo-
rithm ten times and computed the average PWCD and the
average HD with respect to the input image and its result-
ing well-composed counterpart. Since the CSF, gray matter,
and white matter are the most “important” structures in the
image G1, each of the six color sequences started with a
permutation of the values in {1,2,3}, which are the CSF,
gray matter, and white matter values in G1. The order of the
remaining colors in the sequence was the same for all se-
quences, namely, 8, 5, 7, 4, 9, 6, 0. Table 7 shows the name
of the structure associated with each color of the image in
G1, the number of grid points assigned each color, the num-
ber of critical configurations in each binary image obtained
from G1 by letting the foreground be the set of points associ-
ated with one color, and the ratio of the two previous quanti-
ties. Recall that the same instance of a critical configuration
may show up in more than one of these binary images. So,

268 J Math Imaging Vis (2008) 30: 249–274

Fig. 13 Surface extracted by
the MC algorithm [4] from a
well-composed image, which
was in turn obtained by the
repairing algorithm in Sect. 5
from the CSF segmented, binary
image in group G2

Fig. 14 Approximate surface
produced by the MC
algorithm [4] from the CSF
segmented, binary image in
group G2

the total number of critical configurations is not equal to the
sum of the figures in the fourth column of Table 7.

Table 8 shows the average, minimum, and maximum
PWCD for the ten executions of our algorithm on the im-
age in G1 with color sequence 1, 2, 3, 8, 5, 7, 4, 9, 6, 0.
Table 8 also shows the standard deviation from the average
PWCD and the ratio PWCD divided by the number of grid
points associated with each color. From Tables 7 and 8, we
can see that the average PWCD depends mostly on (1) the
rank of the color in the input color sequence (the larger the
rank the larger the average PWCD), and (2) the ratio in the
fifth column of Table 7 (the larger the ratio the larger the
average PWCD.) More specifically, a structure whose asso-
ciated color has a larger rank will “lose” points during the
repairing. Moreover, the larger the number of critical config-
urations of a structure associated with a color, c, the larger
the amount of grid points whose assigned color changes to
or from c.

The results obtained by executing our repairing algorithm
with the five remaining permutations were very similar to

the ones in Table 8, with respect to the structures with colors
8, 5, 7, 4, 9, 6, and 0. So, we only show the same measure-
ments of Table 8 to the structures associated with the colors
1, 2, and 3 (see Table 9). By examining Table 9, we can no-
tice an intricate effect of the strategy of color change used by
our algorithm: the average PWCD for the white matter struc-
ture is smaller for the results associated with permutation 1,
2, 3 than it is for the results associated with permutation 1,
3, 2. Since color 3 ranks second in 1, 3, 2 and third in 1,
2, 3, this may seem odd. However, recall from Sect. 6 that
whenever the algorithm eliminates a critical configuration
in a 2 × 2 × 2 neighborhood, J (p), without creating new
ones, the algorithm changes the color of a point in J (p)

to its “nearest” input sequence color among the colors as-
signed to all points in J (p). So, when the algorithm takes
in the color sequences with permutation 1, 3, 2, the criti-
cal configurations associated with the CSF structure will be
mostly eliminated by changing color values from 1 to 3 and
from 3 to 1.

J Math Imaging Vis (2008) 30: 249–274 269

Table 8 The average (second column), minimum (third column), and
maximum (fourth column) PWCD between each structure in the image
in group G1 and the same structure in the well-composed image gen-
erated by our repairing algorithm using the color sequence 1, 2, 3, 8,

5, 7, 4, 9, 6, 0; the standard deviation (fifth column); and the ratio of
the average PWCD and the number of grid points associated with the
color (first column) of each structure in the image in group G1 (sixth
column)

Color Average Minimum Maximum St. Dev. %(PWCD / # Points)

1 17,871.0 17,741 17,871 38.76 4.79

2 20,085.5 19,988 20,206 59.37 2.22

3 11,760.8 11,688 11,794 30.69 1.74

8 2,649.1 2,632 2,662 11.86 44.25

5 114,303.8 114,009 114,545 184.98 18.51

7 37,186.9 36,940 37,396 138.96 10.26

4 9,622.6 9,525 9,713 59.28 6.57

9 73,038.1 72,793 73,413 196.06 24.48

6 102,122.8 101,837 102,390 207.59 14.05

0 18,441.9 18,281 18,624 94.62 0.61

Table 9 The color of the
structure (first column), the
permutation, π , of the colors 1,
2, and 3 (second column), the
average (third column),
minimum (fourth column), and
maximum (fifth column) PWCD
between each structure in the
image in group G1 and the same
structure in the well-composed
image generated by our
repairing algorithm using the
color sequence π(1), π(2),
π(3), 8, 5, 7, 4, 9, 6, 0; the
standard deviation (sixth
column); and the ratio of the
average PWCD and the number
of grid points associated the
color (first column) of each
structure in the image in group
G1 (seventh column)

Color Perm. Average Min. Max. St. Dev. %(PWCD / # Points)

1 1, 2, 3 17,871.0 17,741 17,871 38.76 4.79

2 1, 2, 3 20,085.5 19,988 20,206 59.37 2.22

3 1, 2, 3 11,760.8 11,688 11,794 30.69 1.74

1 1, 3, 2 17,790.4 17,709 17,824 39.30 4.78

2 1, 3, 2 20,760.8 11,688 11,794 92.09 2.29

3 1, 3, 2 12,303.1 12,200 12,425 83.39 1.82

1 2, 1, 3 21,228.5 21,148 21,299 50.19 5.71

2 2, 1, 3 14,623.4 14,567 14,662 32.63 1.62

3 2, 1, 3 8,823.0 8,751 8,905 50.84 1.31

1 2, 3, 1 21,289.8 21,187 21,399 75.99 5.72

2 2, 3, 1 14,606.2 14,528 14,662 53.64 1.62

3 2, 3, 1 8,828.3 8,729 8,896 48.25 1.31

1 3, 1, 2 18,008.2 17,929 18,099 50.62 4.84

2 3, 1, 2 20,609.1 20,458 20,730 87.50 2.28

3 3, 1, 2 12,300.3 12,156 12,408 89.66 1.82

1 3, 2, 1 24,615.6 24,546 24,705 53.97 6.62

2 3, 2, 1 15,532.4 15,474 15,652 50.99 1.72

3 3, 2, 1 6,335.0 6,294 6,391 28.32 0.94

From Table 9, we can also see that the average PWCD for
the grey matter structure is much smaller for the permutation
3, 2, 1 than it is for the permutation 1, 2, 3, even though
color 2 ranks second in both permutations. This is because
the algorithm never changes a color value from 2 or 3 to 1
when given a color sequence with permutation 3, 2, 1. So,
for this permutation, many critical configurations associated
with color 1 must have been eliminated by changing color
values from 1 to c and from c to 1, where c > 3. Moreover,
since the number of critical configurations associated with

the white matter structure (color 3) is much smaller than the
one associated with the color 1 (CSF structure in Table 7),
the number of changes of color from 2 to 3 is smaller than
the number of changes of color from 2 to 1 in the executions
of the algorithm that take in permutations 3, 2, 1 and 1, 2, 3,
respectively.

From the above discussion, we can conclude that the re-
sults of our repairing algorithm for multivalued images also
depend on the adjacency relations of the structures in the im-
age and their number of critical configurations. So, in many

270 J Math Imaging Vis (2008) 30: 249–274

Table 10 The average (second column), minimum (third column), and
maximum (fourth column) HD between each structure in the image in
group G1 and the same structure in the well-composed image generated
by our repairing algorithm using the color sequence 1, 2, 3, 8, 5, 7, 4,
9, 6, 0; and the standard deviation (fifth column)

Color Average Minimum Maximum St. Dev.

1 1.45 1.41 1.73 0.10

2 2.53 1.45 2.83 0.16

3 12.33 12.12 12.53 0.21

8 3.47 3.00 3.74 0.25

5 14.34 14.18 15.00 0.35

7 7.81 7.81 7.81 0.00

4 9.66 8.25 11.18 0.85

9 7.60 7.55 8.06 0.16

6 7.07 7.07 7.07 0.00

0 20.83 20.64 21.02 0.20

cases, it might be very hard, if not impossible, to specify an
input color sequence that will enable the algorithm to pro-
duce a well-composed image that minimizes the PWCD and
yet favors certain structures. Furthermore, while the average
PWCD for the CSF, grey matter, and white matter structures
are still small (see Table 9) and relatively close to the aver-
age PWCD for the binary images with the same structures
(see Table 3), the average PWCD for the structures asso-
ciated with larger color ranks may be too large for certain
applications. This is the case for structures with a large num-
ber of critical configurations (compared to their number of
points) and with medium to high color ranks, e.g., the glial
matter structure (see Tables 7 and 8).

Table 10 shows the average, minimum, and maximum
HD, as well as the standard deviation, for the ten execu-
tions of our algorithm on the image in G1 and color se-
quence 1,2,3,8,5,7,4,9,6,0. Unlike the average PWCD,
the average HD gets larger very quickly as the color rank
gets larger. However, it is also mostly dependent on the
color rank and the number of critical configurations of the
structure (relative to its number of points). The effect of
the “change to the nearest color” strategy used by our re-
pairing algorithm can also explain why the average HD gets
larger very quickly as the color rank gets larger. Once a grid
point has its assigned color changed to a color, say c, the
color c may become an option for the set of color choices
in a 2 × 2 × 2 neighborhood that did not have any point as-
signed c. So, the algorithm may create a small path of points
assigned the color c, diverging from the color component as-
sociated with c. Since the HD measure is very sensitive to
the presence of such paths, we observe the large variations
in the averages shown in Table 10.

The results obtained by executing our repairing algorithm
with the remaining five permutations were very similar to
the ones in Table 10, with respect to the structures with asso-

Table 11 The color of the structure (first column); the permutation, π ,
of the colors 1, 2, and 3 (second column), the average (third column),
minimum (fourth column), and maximum (fifth column) HD between
each structure in the image in group G1 and the same structure in the
well-composed image generated by our repairing algorithm using the
color sequence π(1), π(2), π(3), 8, 5, 7, 4, 9, 6, 0; and the standard
deviation (sixth column)

Color Perm. Average Min. Max. St. Dev.

1 1, 2, 3 1.45 1.41 1.73 0.10

2 1, 2, 3 2.53 1.45 2.83 0.16

3 1, 2, 3 12.33 12.12 12.53 0.21

1 1, 3, 2 1.41 1.41 1.41 0.00

2 1, 3, 2 4.99 4.12 5.92 0.91

3 1, 3, 2 3.19 2.83 4.12 0.50

1 2, 1, 3 1.41 1.41 1.41 0.00

2 2, 1, 3 4.95 4.24 5.83 0.77

3 2, 1, 3 1.88 1.41 2.45 0.28

1 2, 3, 1 5.15 4.47 5.83 0.72

2 2, 3, 1 1.77 1.41 2.24 0.25

3 2, 3, 1 9.61 8.54 12.12 1.72

1 3, 1, 2 1.71 1.41 3.16 0.55

2 3, 1, 2 4.84 3.61 5.83 1.00

3 3, 1, 2 3.20 2.45 4.12 0.55

1 3, 2, 1 5.37 4.36 7.21 1.21

2 3, 2, 1 4.51 3.61 5.10 0.65

3 3, 2, 1 2.64 2.24 3.16 0.39

ciated colors 8, 5, 7, 4, 9, 6, and 0. Therefore, in Table 11, we
only provide the measurements associated with the colors 1,
2, and 3 (see Table 11). Note that the values of the average
HD and the values of the average PWCD (see Table 9) for
the CSF, grey matter, and white matter structures agree: the
larger the average PWCD the larger the average HD. Fig-
ure 15 shows an axial slice of the resulting well-composed
image from one of the ten executions of the algorithm on the
image in G1 and color sequence 1, 2, 3, 8, 5, 7, 4, 9, 6, 0.

8 Conclusion and Future Work

We described a new repairing algorithm for generating a 3D
well-composed image from a given 3D digital binary im-
age. Our algorithm is randomized and its time and space
complexities are linear in the size of the input image grid.
The algorithm produces its output by iteratively modifying
the input image, changing the color of its background points
so that these points become foreground points. Each color
change eliminates a critical configuration from the currently
modified input image. We derived an upper bound on the ex-
pected number of background points of the input image that

J Math Imaging Vis (2008) 30: 249–274 271

Fig. 15 The top left image is an
axial slice of the multivalued
image in G1 whereas the top
right image is the same slice in
the well-composed image
produced by our repairing
algorithm in Sect. 6 from the
image in G1. The bottom images
are close-up views of the
ventricles in the top images

are made into foreground points in the output image. This
upper bound is a theoretical guarantee for the similarity be-
tween the input and output images. We also showed the re-
sults of an experiment in which our algorithm was executed
on human brain images with and without varying levels of
noise.

We also introduced an extension of our algorithm for the
repairing of 3D digital multivalued images. This extended
algorithm can be used for generating a 3D well-composed
multivalued image from a given 3D digital multivalued im-
age, which is assumed to be the result of a multi-object seg-
mentation of another 3D digital multivalued image [17]. We
also presented results from an experiment in which our ex-
tended repairing algorithm was tested against a 3D multival-
ued digital image of the human brain.

The applicability of both algorithms depends on how sen-
sitive the target application is to the point-wise color dif-
ference between the input and output images. On the one

hand, our experiments showed that our repairing algorithm
for binary images seems to produce images for which the
point-wise color difference is about the same as the num-
ber of critical configurations in the input image. Since the
number of instances of C1 and C2 in images encountered
in practical applications is typically a small percentage of
the image grid size, we strongly believe that our algorithm
can be successfully used by many practical applications that
can be simplified or optimized for speed whenever the input
is a well-composed image. On the other hand, our repairing
algorithm for multivalued images seems to largely modify
the image structures associated with least “important” col-
ors. So, it may be more appropriate for a situation in which
the input image has only a few important structures (e.g.,
the human brain), and we do not care for the modifications
in the least important ones.

As we mentioned in Sect. 5, there is a trivial algorithm for
producing the most similar 3D well-composed image from

272 J Math Imaging Vis (2008) 30: 249–274

a given 3D digital binary image, but its time complexity is
exponential in the size of the input image grid, which rules
out its practical use. So, it is natural to ask if there is a poly-
nomial time algorithm that computes the most similar well-
composed image. Currently, we do not know if such an al-
gorithm exists, and we still have not ruled out the possibility
that the equivalent decision problem may be NP-complete:
given a 3D digital binary image and a positive integer k,
is there a 3D well-composed image whose point-wise color
difference from the given image is less than or equal to
k? We are currently looking at this decision problem. Re-
call that our repairing algorithm for binary images can only
change the color of background points. The purpose of this
restriction is to guarantee the termination of the algorithm.
If we remove this restriction and find a way of guarantee-
ing the termination of the modified algorithm, the resulting
well-composed images may have smaller point-wise color
difference than the ones generated by our current algorithm.

There are two simple heuristics that can be incorporated
into our algorithms to increase (resp. decrease) the number
of critical configurations eliminated (resp. created) by one
change of color. First, to increase the number of critical con-
figurations eliminated by one change of color, we can scan
the image grid for background points only. Then, for each
background point, p, such that (1) p is part of a critical con-
figuration and (2) no new critical configurations is created
by changing the color of p to 1, we place p in a dynamic
max-heap, where the key of p is the number, n(p), of crit-
ical configurations eliminated by changing the color of p

to 1. Finally, we remove a point from the heap at a time,
change its color, and then update the key of each point, q , in
the heap for which n(q) changed. So, we change the colors
of the background points that eliminate more critical con-
figurations first, and yet do not create any new critical con-
figuration. This heuristic is not randomized. Second, to de-
crease the number of new critical configurations created by
one change of color, we can use a branch-and-bound strat-
egy that looks ahead at the number of new critical configu-
rations created by the algorithm in a bigger grid neighbor-
hood. Then, the algorithm can choose among a small set of
“sequences” of color changes, as opposed to small sets of
points. We plan to incorporate both heuristics in the next
version of the current implementations of our algorithms in
the ITK library [38].

We also believe that the application of a topology simpli-
fication algorithm (e.g., [33]), followed by the application
of a repairing algorithm, may produce a well-composed (bi-
nary) image with very few topological artifacts. The reason
is that the application of a topology simplification algorithm
will produce a binary image with a few (or none) topologi-
cal artifacts (i.e., very tiny handles), and our repairing algo-
rithm is very unlikely to add tiny handles to the image, as
shown by the Hausdorff distance measurements in Table 4.

We intend to perform some experimental tests to validate
our assumption.

A major drawback of both of our repairing algorithms is
that they are solely based on topological information. Fur-
thermore, they make decisions regarding the elimination of
critical configurations that do not take into account neither
the local nor the global topology of the color components of
the image. Some of the most recent algorithms for correct-
ing topology [27, 28] incorporate statistical, topological and
geometric information into their decision making process.
We believe that our repairing algorithms can leverage some
of the features of these algorithms. In particular, the first au-
thor of this manuscript is currently collaborating with some
other researchers on the modification of the segmentation
algorithm in [17]. The goal is to incorporate the topological
repairing into the segmentation process, so that we can gen-
erate well-composed images as a result of the segmentation
process. By using the statistical and geometric information
available for the algorithm in [17], we hope to improve the
decision making process of the repairing. Some preliminar-
ies results have already been obtained.

References

1. Latecki, L.J., Conrad, C., Gross, A.: Preserving topology by a dig-
itization process. J. Math. Imaging Vis. 8(2), 131–159 (1998)

2. Stelldinger, P., Köthe, U.: Towards a general sampling theory for
shape preservation. Image Vis. Comput. J. 23(2), 237–248 (2005)

3. Latecki, L.J.: 3d well-composed pictures. Graph. Models Image
Process. 59(3), 164–172 (1997)

4. Lorensen, W., Cline, H.: Marching cubes: a high resolution 3d sur-
face construction algorithm. In: Computer Graphics, Proceedings
of ACM SIGGRAPH 87, vol. 21, pp. 163–169 (1987)

5. Lachaud, J.-O., Montanvert, A.: Continuous analogs of digital
boundaries: a topological approach to iso-surfaces. Graph. Models
62(3), 129–164 (2000)

6. Nielson, G.M., Hamann, B.: The asymptotic decider: resolving the
ambiguity in marching cubes. In: Proceedings of the 2nd IEEE
Conference on Visualization (Visualization’91), pp. 83–91, San
Diego, California, USA, 22–25 October 1991

7. Natarajan, B.: On generating topologically consistent isosurfaces
from uniform samples. Vis. Comput. 11(1), 52–62 (1994)

8. Chernyaev, E.: Marching cubes 33: Construction of topologically
correct isosurfaces. Technical Report CN/95-17, CERN (1995)

9. Lewiner, T., Lopes, H., Vieira, A., Tavares, G.: Efficient imple-
mentation of marching cubes’ cases with topological guarantees.
J. Graph. Tools 8(2), 1–15 (2003)

10. Lopes, A., Brodlie, K.: Improving the robustness and accuracy of
the marching cubes algorithm for isosurfacing. IEEE Trans. Vis.
Comput. Graph. 9(1), 16–27 (2003)

11. Latecki, L.J., Eckhardt, U., Rosenfeld, A.: Well-composed sets.
Comput. Vis. Image Underst. 61(1), 70–83 (1995)

12. Marchadier, J., Arques, D., Michelin, S.: Thinning grayscale well-
composed images. Pattern Recognit. Lett. 25(5), 581–590 (2004)

13. Stokely, E.M., Wu, S.Y.: Surface parametrization and curva-
ture measurement of arbitrary 3-d objects: five practical meth-
ods. IEEE Trans. Pattern Recognit. Mach. Intell. 14(8), 833–840
(1992)

J Math Imaging Vis (2008) 30: 249–274 273

14. Delingette, H.: Initialization of deformable models from 3d data.
In: Proceedings of the 6th International Conference in Computer
Vision (ICCV’98), pp. 311–316, Bombay, India, 4–7 January
1998

15. Krahnstoever, N., Lorenz, C.: Computing curvature-adaptive sur-
face triangulations of three-dimensional image data. Vis. Comput.
20(1), 17–36 (2004)

16. Latecki, L.: Discrete Representation of Spatial Objects in Com-
puter Vision. Kluwer Academic, Dordrecht (1998)

17. Herman, G., Carvalho, B.M.: Multiseeded segmentation using
fuzzy connectedness. IEEE Trans. Pattern Anal. Mach. Intell.
23(5), 460–474 (2001)

18. Stelldinger, P., Latecki, L.J., Siqueira, M.: Topological equiva-
lence between a 3d object and the reconstruction of its digital
image. IEEE Trans. Pattern Anal. Mach. Intell. 27(1), 126–140
(2007)

19. Rosenfeld, A., Kong, T.Y., Nakamura, A.: Topology-preserving
deformations of two-valued digital pictures. Graph. Models Im-
age Process. 60(1), 24–34 (1998)

20. Mangin, J.-F., Frouin, V., Bloch, I., Regis, J., Lopez-Krahe, J.:
From 3d magnetic resonance images to structural representations
of the cortex topography using topology preserving deformations.
J. Math. Imaging Vis. 5, 297–318 (1995)

21. MacDonald, D., Kabsni, N., Avis, D., Evans, A.C.: Automated 3-d
extraction of inner and outer surfaces of cerebral cortex from MRI.
Neuroimage 12(3), 340–355 (2000)

22. Fischl, B., Liu, A., Dale, A.M.: Automated manifold surgery: Con-
structing geometrically accurate and topologically correct models
of the human cerebral cortex. IEEE Trans. Med. Imaging 20(1),
70–80 (2001)

23. Shattuck, D.W., Leahy, R.M.: Automated graph-based analysis
and correction of cortical volume topology. IEEE Trans. Med.
Imaging 20(11), 464–472 (2001)

24. Han, X., Xu, C., Braga-Neto, U., Prince, J.L.: Topology correc-
tion in brain cortex segmentation using a multiscale, graph-based
approach. IEEE Trans. Med. Imaging 21(2), 109–121 (2002)

25. Han, X., Xu, C., Prince, J.L.: A topology preserving level set
method for geometric deformable models. IEEE Trans. Pattern
Anal. Mach. Intell. 25(6), 755–768 (2003)

26. Bischoff, S., Kobbelt, L.: Sub-voxel topology control for level-set
surfaces. Comput. Graph. Forum 22(3), 273–280 (2003)

27. Bazin, P.-L., Pham, D.L.: Topology correction using fast march-
ing methods and its application to brain segmentation. In: Dun-
can, J.S., Gerig, G. (eds.) Proceedings of the 8th International
Conference on Medical Image Computing and Computer-Assisted
Intervention (MICCAI). Lecture Notes in Computer Science,
vol. 3750, pp. 484–491. Palm Springs, California, USA, 26–29
October 2005

28. Segonne, F., Grimson, E., Fischl, B.: A genetic algorithm for
the topology correction of cortical surfaces. In: Christensen,
G., Sonka, M. (eds.) International Conference on Information
Processing in Medical Imaging. Lecture Notes in Computer Sci-
ence, vol. 3565, pp. 393–405. Glenwood Springs, Colorado, USA,
10–15 July 2005

29. Kriegeskorte, N., Goeble, R.: An efficient algorithm for topolog-
ically segmentation of the cortical sheet in anatomical MR vol-
umes. Neuroimage 14(2), 329–346 (2001)

30. Leemput, K.V., Maes, F., Vandermeulen, D., Suetens, P.: Au-
tomated model-based tissue classification of MR images of the
brain. IEEE Trans. Med. Imaging 18(10), 897–908 (1999)

31. Guskov, I., Wood, Z.: Topological noise removal. In: Proceedings
of the 2001 Conference on Graphics Interface, pp. 19–26, Ottawa,
Ontario, Canada, 7–9 June 2001

32. Aktouf, Z., Bertrand, G., Perroton, L.: A three-dimensional holes
closing algorithm. Pattern Recognit. Lett. 23(5), 523–530 (2002)

33. Szymczak, A., Vanderhyde, J.: Extraction of topologically sim-
ple isosurfaces from volume datasets. In: Proceedings of the

14th IEEE Conference on Visualization 2003 (Visualization’03),
pp. 67–74, Seattle, WA, USA, 19–24 October 2003

34. Wood, Z., Hoppe, H., Desbrun, M., Schröder, P.: Removing excess
topology from isosurfaces. ACM Trans. Graph. 23(2), 190–208
(2004)

35. Herman, G.: Geometry of Digital Spaces. Birkhäuser, Boston
(1998)

36. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods
for Digital Picture Analysis. Morgan Kaufmann, San Francisco
(2004)

37. Rosenfeld, A.: Fuzzy digital topology. Inf. Control 40, 76–87
(1979)

38. Tustison, N., Siqueira, M., Gee, J.: Well-composed image filters
for repairing 2-d and 3-d binary images. The Insight Journal, July–
December 2006, http://hdl.handle.net/1926/305

39. Collins, D., Zijdenbos, A., Kollokian, V., Sled, J., Kabani, N.,
Holmes, C., Evans, A.: Design and construction of a realistic dig-
ital brain phantom. IEEE Trans. Med. Imaging 17(3), 463–468
(1998)

Marcelo Siqueira received the BSc degree in
computer science from the Universidade Fed-
eral do Rio Grande do Norte, Brazil, in 1992,
and the MSc degree in computer science from
the Universidade de São Paulo, Brazil, in 1994.
In 2006, he received the PhD degree in com-
puter science from the University of Pennsylva-
nia, under the supervision of Jean Gallier. He is
currently an associate professor at the Universi-
dade Federal de Mato Grosso do Sul in Brazil.

His main research interests are in geometric modeling of curves and
surfaces, digital geometry and topology, and mesh generation.

Longin Jan Latecki is the winner of the Pat-
tern Recognition Society Award together with
Azriel Rosenfeld for the best article published
in Pattern Recognition in 1998. He received
the main annual award from the German Soci-
ety for Pattern Recognition (DAGM), the 2000
Olympus Prize. He is an Editorial Board Mem-
ber of Pattern Recognition. He co-chairs the
IS&T/SPIE annual conference series on Vision
Geometry. He published over 150 research pa-

pers and books. He is an associate professor for computer science at
Temple University in Philadelphia. He received a PhD in Computer
Science from the Hamburg University in Germany in 1992. His main
research areas are shape representation and similarity, robot perception,
and digital geometry and topology.

Nicholas Tustison received the B.S. degree
in Applied Physics from Brigham Young Uni-
versity in 1998, the M.S. degree in Biomed-
ical Engineering from the University of Vir-
ginia in 2000, and the D.Sc. degree in Biomed-
ical Engineering from Washington University in
St. Louis in 2004. He is currently at the Univer-
sity of Pennsylvania working at the Penn Im-
age Computing and Science Laboratory. His re-
search interests include image registration and

open source software development.

274 J Math Imaging Vis (2008) 30: 249–274

Jean Gallier graduated in 1972 from the Ecole
Nationale des Ponts et Chaussees, one of the
top of France’s “Grandes Ecoles.” In 1978, he
received his Ph.D. in Computer Science from
the University of California, Los Angeles, un-
der the supervision of Sheila Greibach. After a
nine-month PostDoc at UCSB in the Mathemat-
ics Department, Dr. Gallier joined the faculty
of the University of Pennsylvania in 1978 as an
Assistant Professor in the Department of Com-

puter and Information Science, where he rose to Associate Professor in
1984 and to Professor in 1990. Since 1994, Dr. Gallier has a secondary
appointment in the Department of Mathematics. Dr. Gallier’s research
interests include geometric modeling, computer aided geometric de-
sign, medical imaging, computer graphics and differential and alge-
braic geometry. He is the author of over sixty original papers and has
written three books, “Logic for Computer Science” (1986), “Curves
and Surfaces in Geometric Modeling” (1999), and “Geometric Meth-
ods and Applications” (2000).

James Gee received the dual B.S. degree in
Computer Science and Electrical Engineering
and the M.S. degree in Electrical Engineering
from the University of Washington, Seattle, in
1987 and 1989, respectively. In 1996, he re-
ceived the PhD degree in Computer and Infor-
mation Science from the University of Pennsyl-
vania, Philadelphia. He was a visiting scholar
at the Faculte de Medecine of the Universite de
Rennes I, Rennes, France, in 1995, and a post-

doc in Computer and Information Science and Neurology at the Uni-
versity of Pennsylvania, Philadelphia, in 1997. In the following year,
he joined the University of Pennsylvania, Philadelphia, as a faculty
member, where he is currently an associate professor of radiologic sci-
ence and computer and information science, director of the Penn Image
Computing and Science Laboratory (PICSL), and program codirector
of the HHMI-NIBIB Integrated Graduate Training Program in Clinical
Imaging and Informational Sciences. His main research interests are
computational and statistical anatomy, biomedical image analysis, and
image registration and segmentation.

	Topological Repairing of 3D Digital Images
	Abstract
	Introduction
	Related Work
	Preliminaries
	3D Well-Composed Images
	A Repairing Algorithm for 3D Binary Images
	The Elimination of Critical Configurations
	How Effective Is the Algorithm?
	Topological Repairing and Morphological Operators

	An Algorithm for Repairing 3D Multivalued Images
	Experimental Results
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

