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Abstract Given a flow field parallel to isophote normals, a
normal flow field, we seek a unobservable tangential field
as the minimum of a general energy functional of the total
field. We generalize existing methods to any linear, differ-
ential operator order on the combined field while keeping
the projection onto the isophote normal constant. We dis-
cuss invariant flow fields, present a novel iterative solution
based on Euler-Lagrange equations, prove continuous con-
vergence, and give synthetic examples for common energy
functionals. Possible uses are: estimating physical flow in
image sequences, estimating human growth processes, and
co-warping textures in animation sequences.

Keywords Optical flow · Generalized energy
minimization · Euler-Lagrange · Aperture problem ·
Texture morphing

1 Introduction

Shape deformation and optical flow often relies on a nor-
mal flow. However, normal flow often has a loose relation
to ‘physical’ flow, see Fig. 1. The figure shows two snap-
shots of a deformation of a circle into an ellipse, and the
lines indicate the normals, at which a shape flow may occur.
It is evident, that the local metric on the circle is not uni-
formly scaled, and for computer graphics application, this
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implies that a texture deformed along the flow will be un-
evenly stretched as illustrated by the unevenly deformed tex-
ture of the Lena image. Similarly, in optical flow, the flow
may only be measured normal to isophotes. For a square
moving along a diagonal, such as depicted in Fig. 2(left),
the observable, normal flow seems to indicate, that the box
is deforming, and is even undefined at sharp corners. A typ-
ical solution both in morphing and optical flow is to select a
smooth flow such as indicated at the bottom right corner of
Fig. 2(right).

Normal flow is a projection of the physical flow onto the
isophote normal, and in the present article, we propose to
guess the tangential component by a general energy min-
imization formulation for any linear differential operator.
The result of our work inside a squarish, soft window is
demonstrated in Fig. 3. The figure shows two different vec-
tor fields, left being a vector field with one critical point as
generated by the gradients near a maximum, and right be-
ing the superposition of normal flow fields of a box moving
diagonally, which generates a critical edge. The first case is
left unchanged by our method, and the later case results in
a diagonally dominated vector field, which fits well with the
presupposed box moving diagonally.

1.1 Related Works

The majority of work related to deformations via flow fields
fall in three categories: warping, morphing, and optical flow.

Warping has recently received a lot of attention for reg-
istration and modeling flow. In [1] is given a method for
finding the simplest deformation field between two three di-
mensional shapes by a method of Gaussian smoothing of
the components of the vector field, that deforms one object
to another, followed by a projection back onto the second
object. In [2], the large deformation diffeomorphisms are
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Fig. 1 Warping along normals stretches the curves in an uneven manner

Fig. 2 Left: A black box is moved diagonally implying a diagonal,
physical flow on every point (thick arrows). Due to the aperture prob-
lem, only the normal flow is observable (thin arrows). Right: A typical
solution in Morphing and Optical flow—smooth solution

generated for landmark matching as solutions to the trans-
port equation, which has been applied to e.g. landmark reg-
istration in medical applications [3]. The diffeomorphisms
in [2] have later been interpreted as the solution to a sta-
tistical problem, [4] with application among other things to
optical flow [5].

Morphing is an application in computer graphics for
changing one shape into another. Many applications are
based on level-set methods on signed-distance maps [6, 7].
Most noteworthy is [8], which is based on driving the source
signed distance map towards the target signed distance map.
This is done by walking in the normal direction of the in-
terface with a distance proportional to the target signed dis-
tance map value. In [9] a level set approach for morphing
between signed distance maps is presented. Here signed dis-
tance maps are constructed from a characteristic scan con-
version algorithm, and a similarity measure is formulated as
a functional. Differentiating the functional wrt. variation re-
sults in a PDE, the solution of the PDE yields the optimal
similarity measure. In [10] an efficient numerical narrow-
band method is presented.

Optical flow is the process of inferring the apparent mo-
tion from video sequences. The optical flow constraint is for-

mulated in [11] and forms a basis for most of the later work
on optical flow. Higher order structures in the optical flow
may be inferred such as e.g. the optical acceleration [12],
the structure of the motion parallax [13, 14] and polynomial
approximation of same [15]. Various regularization of the
measure flow has presented e.g. using a Bayes framework
[16]. Earlier work on tangential regularization is presented
in [17, 18]. A thorough review of optical flow algorithms
have been presented in [19, 20]. The most effective algo-
rithm to date is given in [21].

A major problem when inferring the apparent motion
from video sequences is the aperture problem: only motion
normal to isophotes may be measured. The work presented
in the present article is for inferring the underlying flow from
normal flows such as optical flow.

Almost all previous work considers normal flow alone.
We take an outset from the normal flows and estimate a tan-
gential counterpart. The purpose is to co-deform textures in
morphing systems, and improve the estimate of the under-
lying physical flow in optical flow estimation. According to
Weickert and Schnörr’s taxonomy [22], our method is a ho-
mogeneous, isotropic, and image driven method with side
information.

2 Guessing Tangent Component by Energy
Minimization

We consider time varying vector fields on the form:

V (x, t) = T (x, t) + N(x, t), (1)

where t ∈ R+, x ∈ R
D,V,T ,N : R

D × R+ → R
D , and

where T and N are orthogonal vector fields,

〈T (x, t),N(x, t)〉 = 0. (2)
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Fig. 3 (Color online) The result of our algorithm on two normal flows. The normal flow is shown in blue and the resulting flow by our method in
green. Left is already at minimum, and Middle and Right shows the same Normal flow for a gradient type and a Laplacian type energy functional

Given N(x, t) we wish to solve for T (x, t) as the minimum
of

E =
∫

�

∫
�

∑
i,j

〈LiV (x, t),Wij (x)LjV (x, t)〉dxdt, (3)

for some suitable domain �×�, finite number of spatial op-
erators on the class of smooth functions, Li : C(RD;R

D) →
C(RD;R

D), and weight matrices Wij : R
D → R

D×D . The
inner product, or squared two-norm, allows for a proba-
bilistic interpretation [5] as a Gaussian distribution, P =
1
Z

exp(−E), where Z is the normalization constant. Since
Wij is predefined, this is a homogeneous, isotropic, and im-
age driven method according [22] but with N as side infor-
mation.

To find the minimum of (3) as a function of the tan-
gent vector field T (x, t), we will use the Euler-Lagrange
formulation, but for mathematical convenience we reduce
the problem. Firstly, since the Li ’s are independent on time,
then E is minimal, when

E(t) =
∫

�

∑
i,j

〈LiV (x, t),Wij (x)LjV (x, t)〉dx, (4)

is minimized separately for each t ∈ �. Secondly, for sim-
plicity we choose spatially varying but isotropic norms,

Wij (x) = wij (x)1, (5)

where wij : R
D → [0,∞) with infx∈�0 wij (x) > 0 for every

closed subset �0 of the interior of �, and 1 is the iden-
tity matrix. The adjoint operator ·† is defined as, 〈v,Lu〉 =
〈L†v,u〉. Hence, moving the weight function inside the in-
ner product, writing L†

i as the adjoint of Li , and assuming
that wij (x) is zero on the boundary of the domain, we find

E =
∫

�

∑
i,j

〈L†
j

(
wij (x)LiV (x, t)

)
,V (x, t)〉dx (6a)

=
∫

�

〈KV (x),V (x)〉dx, (6b)

where the operator K is given by,

KV (x) =
∑
i,j

L†
j (wij (x)LiV (x)). (7)

We will in the following give 4 examples of the calculation
of K from L.

Constant L: In the simplest case,

L0V (x) = cV (x), (8)

where c > 0, the energy E is given as,
∫

�

〈w00L0V,L0V 〉dx =
∫

�

〈w00cV, cV 〉dx

=
∫

�

〈w00c
2V,V 〉dx, (9)

corresponding to a smoothness term penalizing ‖V ‖2.
This is minimized by N , but for expository reasons we
conclude that L†

0 = c, and

KV (x) = w00(x)c2V (x). (10)

Gradient type L: For the more general case of constant and
first order derivatives,

L0V (x) = cV (x), LiV (x)
i=1,...,D= ∂iV (x), (11)

where c > 0. Choosing wij (x) = 1i=jw(x), we find a
weak string/membrane [23] smoothing term penalizing
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‖∇u‖2, where c determines the degree of smoothing.
The operator K is evaluated to be,

KV (x) = c2w(x)V (x) −
D∑

i=1

∂i

(
w(x)∂iV (x)

)
(12a)

= c2w(x)V (x) −
D∑

i=1

∂iw(x) ∂iV (x)

− w(x)

D∑
i=1

∂2
i V (x) (12b)

= c2w(x)V (x) − 〈∇xw(x),∇xV (x)〉
+ w(x)�V (x). (12c)

Laplacian type L: For a system of constant and second or-
der operators,

L0V (x) = cV (x), L�V (x) = �V (x), (13)

where c > 0. Choosing wij (x) = 1i=jw(x), we find a
weak rod/plate [23] smoothing term penalizing ‖�V ‖2,
where the amount of smoothing is controlled by c. To
evaluate the operator K , we use that the Laplace opera-
tor � is self-adjoint � = �†, and we find,

KV (x) = c2w(x)V (x) + �
(
w(x)�V (x)

)
. (14)

Statistical invariance type L: The general form of the
weight matrices Wij : R

D → R
D×D come into play,

when we want to use energies related to statistical in-
variant velocity fields in the sense of [24]. Assume that
the velocity field V : R

D → R
D is a Gaussian random

function with stationary increments, i.e. the distribution
of V (x) − V (y) only depends on x, y ∈ R

D via x − y.
Then the results of [24] imply that

cov
(
∂

α1
1 · · · ∂αD

D V (x), ∂
β1
1 · · · ∂βD

D V (x)
)

= (−1)
∑D

i=1(αi−βi)var
(
∂

α1+β1
2

1 · · · ∂
αD+βD

2
D V (x)

)
,

(15)

if the sums αi + βi of the differentiation orders are
even for every i = 1, . . . ,D, and that the covariance
on the left hand side of (15) vanishes otherwise. If Lα

for α = (α1, . . . , αD) denotes the differential operator
∂

α1
1 · · · ∂αD

D , then the covariance structure described in
(15) leads to the matrices

{
Wα,β(x)

}
α,β

=
{
(−1)

∑D
i=1(αi−βi)1α1+β1,...,αD+βD are even

× �(α1+β1,...,αD+βD)

}−1

α,β

w(x), (16)

where the �’s are a set of parameters and w(x) is the
weight function taking care of the boundary conditions.
We refer to [24] for a detailed analysis of statistical in-
variance properties of vector fields.

3 Invariance Properties

In the following we will discuss algebraic invariance of vec-
tor fields. Statistical invariance properties are discussed in
an accompanying article [24].

Consider a Gaussian type window functions,

wn(x) = exp

(
−1

2

(
x2 + y2

σ 2

)n)
, (17)

for some given n, and as an example consider the gradi-
ent type operator discussed above, applied to a linear vector
field,

V (x, y) =
[
a0 + a1x + a2y

b0 + b1x + b2y

]
. (18)

Applying (12), we find that

KV (x, y) = c2w(x,y)V (x, y)

−
[
a1 a2

b1 b2

][
wx(x, y)

wy(x, y)

]
. (19)

In the limit of c → 0 and n → ∞, the operator KV (x, y)

will be zero except at the border of the window, where
x2 + y2 = σ 2. The conclusion is that the Euler-Lagrange
derivative for Gradient type operators is zero for fields of
degree less than two except at the border at x2 + y2 = σ 2,
where w(x,y)V (x, y) acts as border conditions, and thus V

is an essential fixpoint for the gradient type energy function-
als.

This result can be generalized: Any operator L = ∂m,
m > 0, will result in an operator K = (−1)m∂m(w(x)∂m ×
V (x)). Thus we conclude, that for an analytical vector field
V and in the limit of c → 0 and n → ∞, the operator K
will be invariant to terms in V of order less than m2 except
at the border of the window, where w(x,y)V (x, y) acts as a
border condition.

4 Solving Energy by Euler-Lagrange Equations

Once a set of operators Li has been chosen, and the cor-
responding K has been calculated, the energy formulation
is ready to be minimized. Remembering (1) and (2) we
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have that V (x, t) = T (x, t) + N(x, t), and that our solu-
tion is to be found in the subspace orthogonal to N(x, t),
〈T (x, t),N(x, t)〉 = 0. Thus we combine the energy and the
constraint into a Lagrange equation,

E =
∫

�

〈KV (x),V (x)〉dx

−
∫

�

λ(x)〈T (x),N(x)〉dx, (20)

and use the variational method to simultaneously solve,

δE

δT (x)
= 0,

δE

δλ(x)
= 0. (21)

The first term of E contains our variable field T on
both sides of the inner product. To find the solution, we
may use the adjoint of K satisfying 〈KV (x),V (x)〉 =
〈V (x),K†V (x)〉, such that when we find the derivative wrt.
the right V we use the left form and vice-versa. To simplify
matters further, K is self-adjoint, i.e. K = K†, which may
be seen by expanding K and moving terms from one side
of the inner product to the other. Using the above and super-
script to denote placeholders, we find the Euler-Lagrange
equations (21) to be,

0 = δE

δT (x)
(22a)

= δ
∫
�
〈KV 1(x),V 2(x)〉dx

δV 1(x)

δV 1(x)

δT (x)

∣∣∣∣
V 1=V 2=V

(22b)

+ δ
∫
�
〈KV 1(x),V 2(x)〉dx

δV 2(x)

δV 2(x)

δT (x)

∣∣∣∣
V 1=V 2=V

− δ
∫
�

λ(x)〈T (x),N(x)〉dx

δT (x)
(22c)

= δ
∫
�
〈V 1(x),KV 2(x)〉dx

δV 1(x)

∣∣∣∣
V 1=V 2=V

+ KV (x) − λ(x)N(x) (22d)

= 2KV (x) − λ(x)N(x). (22e)

The conclusion is that KV (x) is parallel to N(x). Introduc-
ing an orthonormal decomposition of the tangent space as,

T (x) =
D−1∑
b=1

Tb(x)μb(x), (23)

where Tb(x) ∈ R
D with ‖Tb(x)‖ = 1, μb(x) ∈ R, b =

1, . . . ,D − 1, the fact that KV (x) is parallel to N(x) may
be used directly in the orthogonality of the tangent space to
the normal (2), which gives us the following equations,

0 = 〈Tb(x),N(x)〉 = 〈Tb(x),KV (x)〉,

b = 1, . . . ,D − 1. (24)

For the gradient type examples this system of equations is an
elliptical second order partial differential equations, where
N(x) 	= 0, and such equations are simple to implement using
standard numerical methods as described in e.g. [25].

5 Numerical Solution by Parabolic Equivalent

To avoid inverting large matrix systems, a standard alterna-
tive is to seek the solution to an elliptical type partial dif-
ferential equation as the limit of a parabolic type differential
equation by introducing an artificial time, and evaluating the
result at infinity (or a very large iteration number). We adopt
this general principle by introducing τ as time, and we write
the non-optimal field of μb,τ (x) and the non-optimal vector
field Vτ as,

Vτ (x) =
D−1∑
b=1

Tb(x)μb,τ (x) + N(x). (25)

The iteration-time derivative of Vτ is given as,

∂Vτ (x)

∂τ
=

D−1∑
b=1

Tb(x)
∂μb,τ (x)

∂τ
, (26)

and we propose to seek the solution by letting,

∂μb,τ (x)

∂τ
= −〈Tb(x),KVτ (x)〉. (27)

The operator K is said to be coercive on the subdomain
�0 ⊆ �, if there exists c > 0, such that 〈U(x),KU(x)〉 ≥
c2‖U(x)‖2 for every vector field U(x) and every x ∈ �0. If
L0V (x) = cV (x) is included in the list of spatial operators,
and w00(x) only vanishes on the boundary of �, then K
is coercive on every closed subset �0 of the interior of �.
For such a K we will now prove that (27) leads to a set of
parameters μbTb , which are perpendicular to KV (x), hence
a solution to (21).

Proof We seek 〈Tb(x),KV (x)〉 = 0 using ∂μb,τ (x)

∂τ
=

−〈Tb(x),KVτ (x)〉: Let �0 be a closed subset of the in-
terior of �, and choose c > 0 such that 〈U(x),KU(x)〉 ≥
c2‖U(x)‖2 for every x ∈ �0. We have

1

2

∂

∂τ

D−1∑
b=1

∫
�0

‖〈Tb(x),KVτ (x)〉‖2 dx (28a)

=
D−1∑
b=1

∫
�0

〈Tb,KVτ 〉�
〈
Tb,

∂KVτ

∂τ

〉
dx (28b)
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=
∫

�0

D−1∑
b=1

〈Tb,KVτ 〉�

×
〈
Tb,K

(
D−1∑
d=1

Td

∂μd,τ

∂τ

)〉
dx (28c)

= −
∫

�0

〈
D−1∑
b=1

Tb〈Tb,KVτ 〉, Td,

K

(
D−1∑
d=1

Td〈KVτ 〉
)〉

dx (28d)

≤ −c2
D−1∑
b=1

∫
�0

‖〈Tb(x),KVτ (x)〉‖2 dx, (28e)

and Grönwall’s inequality [26] gives

D−1∑
b=1

∫
�0

‖〈Tb(x),KVτ (x)〉‖2 dx

≤ const. · exp(−2τc2). (29)

We conclude that 〈Tb(x),KVτ (x)〉 → 0 as τ → ∞ for
every x in the interior of �. �

6 Results on Synthetic Motion Fields

In the remainder of this article we will give examples of
minimal vector fields for various prototypical normal fields
and parameter settings. The order of the operator implies
fixpoints in the Euler-Lagrange equations, such that first or-
der vector fields are fixpoints for first order operators up to
boundary conditions and zero order regularization and like-
wise for third order vector fields and second order operators.
This will be demonstrated in the following for two dimen-
sional fields, where (x, y) will denote the coordinates. As
discussed in (24), the Euler-Lagrange equation is optimal
when N(x,y) is parallel to KV (x, y). Hence for fixpoints
we must have that

KV (x, y) × V (x, y) = 0. (30)

In the following we will limit ourselves to show general vec-
tor fields which fulfills this equation by KV (x, y) = 0. In
our experiments we have used Gaussian type window func-
tions,

wn(x) = exp

(
−1

2

(
x2 + y2

σ 2

)n
)

, (31)

for some given n. In this and the remaining examples we
have used σ = M/4 for vector fields on an M × M domain.

6.1 Gradient Type

The regularized gradient type operator is defined using three
independent operators,

L0V (x, y) = cV (x, y), (32)

L1V (x, y) = ∂xV (x, y), (33)

L2V (x, y) = ∂yV (x, y), (34)

and we have shown in (12) that

KV (x, y) = c2w(x,y)V (x, y) − 〈∇xw(x, y),∇xV (x, y)〉
+ w(x,y)�V (x, y). (35)

The first term is due to the zeroth order regularizor, the sec-
ond term as consequence of our border condition, and third
term as a result of first order regularizors.

To solve the Euler-Lagrange equation by (27) we have
written a program, which implements von Neumann bound-
ary conditions at the image border, and is designed to termi-
nate as soon as the first minimal energy value is observed.
Near invariant flow fields are generated as the gradient of
second degree polynomials for a source and saddle type di-
vergent field, and by hand as a curl field. These and their
solutions are shown in Fig. 4. The normal vector field and
the minimal counterpart is shown in blue and green respec-
tively, we have used a window of exponent n = 4, and reg-
ularization constant c = 0.01. The fields are observed to be
essentially invariant to the gradient type functional.

A non-trivial example is shown in Fig. 5. This vector field
has a singular line as produced by the superposition of the
optical flow observed, when a box structure is moved diag-
onally down and to the right. The right images display the
values of μb in each pixel, and the energy plot. We con-
clude that the minimal energy is reached, and that the point
of minimum energy coincides with the interpretation of the
diagonal motion in spite that only the normal component is
given.

Changing window exponent influences the focus of the
method. The result of running our method on the singular
line example with 3 different exponents is shown in Fig. 6.
The numerical implementation does not seem to be dis-
turbed by the fact that low order exponents results in de-
facto non-zero values of the window at the border. We at-
tribute this result to the von Neumann border conditions.

Various values of the regularization constant c on the sin-
gular line problem is shown in Fig. 7. Large values of c

implies that the resulting vector field is close to the original
normal field, while low values allow for the gradient term to
be dominating.
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Fig. 4 (Color online) Different normal flows and their minimum for Gradient type functionals. Left and middle are gradient fields of a second
degree polynomial for a minimum and a saddle respectively, and right shows a curl field. We have used c = 0.01 and n = 4

Fig. 5 (Color online)
Minimizing Ridge normal flow
with gradient type operators.
Left shows the original and
resulting flow, and right shows
the resulting tangential
parameter, and the energy
evolution during minimization

Fig. 6 (Color online) Result of varying exponent in Gaussian type window. From left to right: n = 1,2,4
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Fig. 7 (Color online) Result of varying regularization constant c. From left to right: c = 1,0.1,0.01

Fig. 8 (Color online)
Minimizing Ridge normal flow
with Laplace type operators.
Left shows the original and
resulting flow, and right shows
the resulting tangential
parameter, and the energy
evolution during minimization

6.2 Laplace Type

We have defined a regularized Laplacian type by two inde-
pendent operators,

L0V (x, y) = cV (x, y), (36)

L1V (x, y) = �V (x,y), (37)

where c > 0, which by (14) was seen to be equivalent to

KV (x, y) = c2w(x,y)V (x, y)

+ �
(
w(x,y)�V (x, y)

)
(38a)

= c2w(x,y)V (x, y) + �w(x,y)�V (x, y)

+ 2 (∇x�V (x, y))∇xw(x, y)

+ w(x,y)��V (x, y). (38b)

Using the same argument as from the Gradient type op-
erator we conclude, that when c → 0 and n → ∞, then
KV (x, y) → w(x,y)��V (x, y) almost everywhere, and
this is zero for vector fields of degree smaller than four. The
effective border condition is again found at x2 + y2 = σ 2.

Low order normal vector fields are invariant under the
Laplace type functionals as shown algebraically above, and
solutions by our program on gradient fields of a second de-
gree polynomial for a minimum, saddle respectively, and
curl field for c = 0.01 and n = 4 are identical to Fig. 4. The
Laplace type operators allows for more smoothly varying
flow fields as shown on the singular line field in Fig. 8. In
these experiments we have used n = 6 and c = 0.01. The in-
fluence of the window exponent on the singular line example
is shown in Fig. 9. Compared to the Gradient type operators,
these fields are more smoothly varying. The dependency on
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Fig. 9 (Color online) Result of varying exponent in Gaussian type window. From left to right: n = 1,2,4

Fig. 10 (Color online) Result of varying regularization constant c. From left to right: c = 1,0.1,0.01

the regularization constant c on the singular line problem is
shown in Fig. 10.

7 Conclusion

Several problems in Computer Vision and Graphics involve
normal flows. The aperture problem in optical flow dictates
that only the motion parallel to the isophote normal is ob-
servable in video sequences. However, the normal flow is a
projection of the physical flow onto the isophote normals
and may be far from the projection of the physical flow
onto the image. The later being the important information
in tracking applications etc. Likewise, shape-morphing is
typically only concerned with shape deformations, and thus
only expressed in the shape normals. However, since many
shapes in computer graphics have textures, the warped tex-
ture will be unnatural and difficult to control in this man-
ner.

In this paper we have extended the formalism for reg-
ularizing normal flows by an energy minimization tech-
nique on the inner product of spatial operators on the flow
field. We have given a thorough mathematical descrip-
tion to great generality, we have presented a very sim-
ple, iterative, and parabolic-type algorithm, and we have
proven convergence for this algorithm in the continuous set-
ting.

The partial differential equations developed are not de-
fined in points, where the normal flow vanishes. One so-
lution could be to use the window function to mask out
regions of vanishing normal flows. However, in the exam-
ples we have studied, we have not needed such interven-
tions, which we attribute to the usual stability of parabolic
schemes. Future work include, investigating examples in
higher dimensional domains, producing coarse to fine con-
tinuation schemes to improve convergence rates, benchmark
the method against existing optical flow algorithms, and fur-
ther studies into the space of useful operators for computer
vision and graphics problems.



204 J Math Imaging Vis (2008) 31: 195–205

References

1. Nielsen, M., Andresen, P.: Feature displacement interpolation.
In: IEEE 1998 International Conference on Image Processing
(ICIP’98), pp. 208–212 (1998)

2. Joshi, S.C., Miller, M.I.: Landmark matching via large deforma-
tion diffeomorphisms. IEEE Trans. Image Process. 9, 1357–1370
(2000)

3. Christensen, G.E., Yin, P., Vannier, M.W., Chao, K.S.C., Dempsey,
J.F., Williamson, J.F.: Large-deformation image registration using
fluid landmarks. In: SSIAI Archive Proceedings of the 4th IEEE
Southwest Symposium on Image Analysis and Interpretation, pp.
269–273 (2000)

4. Nielsen, M., Markussen, B.: From Bayes to PDEs in image warp-
ing. In: Faugeras, O., Paragios, N., Chen, Y. (eds.) Mathemati-
cal Models in Computer Vision: The Handbook, pp. 259–272.
Springer, Berlin (2005), Chap. 16

5. Markussen, B.: Large deformation diffeomorphisms with applica-
tion to optic flow. Comput. Vis. Image Underst. (2006, to appear)

6. Sethian, J.A.: Level Set Methods and Fast Marching Methods, 2nd
edn. Cambridge University Press, Cambridge (1999)

7. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit
Surfaces. Springer, Berlin (2003)

8. Whitaker, R.T., Breen, D.E.: Level-set models for the deformation
of solid objects. In: Saupe, D., Bloomenthal, J. (eds.) Implicit Sur-
faces 98 Proceedings, Eurographics/ACm Workshop, pp. 19–35
(1998)

9. Breen, D.E., Mauch, S., Whitaker, R.T., Mao, J.: 3d metamorpho-
sis between different types of geometric models. Comput. Graph.
Forum 20(3) (2001)

10. Breen, D.E., Whitaker, R.T.: A level-set approach for the meta-
morphosis of solid models. IEEE Trans. Vis. Comput. Graph. 7(2),
173–192 (2001)

11. Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 23,
185–203 (1981)

12. Arnspang, J.: Optic acceleration. In: International Conference on
Computational Vision, pp. 364–373 (1989)

13. Koenderink, J.J., van Doorn, A.J.: Local structure of movement
parallax of the plane. J. Opt. Soc. Am. 66(7), 717–723 (1976)

14. Sporring, J., Nielsen, M.: Direct estimation of first order optic
flow. In: Borgefors, G. (ed.) Theory And Applications of Image
Analysis II—Selected Papers from the 9th Scandinavian Confer-
ence on Image Analysis, pp. 225–238. World Scientific, Singapore
(1995)

15. Pedersen, K.S., Nielsen, M.: Computing optic flow by scale-
space integration of normal flow. In: Kerckhove, M. (ed.) Scale-
Space and Morphology in Computer Vision: Proceedings of
Scale-Space’01. Lecture Notes in Computer Science, vol. 2106,
pp. 14–25. Springer, Berlin (2001)

16. Weiss, Y., Adelson, E.H.: Slow and smooth: a Bayesian theory for
the combination of local motion signals in human vision. Tech-
nical Report A.I. Memo No. 1624 and C.B.C.L. Paper No. 158,
Massachusetts Institute of Technology, Artificial Intelligence Lab-
oratory and Center for Biological and Computational Learning,
Department of Brain and Cognitive Sciences (1998)

17. Nagel, H.-H., Enkelmann, W.: An investigation of smoothness
constraints for the estimation of displacement vector fields from
image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 8, 565–
593 (1986)

18. Nagel, H.-H.: Extending the ‘oriented smoothness constraint’ into
the temporal domain and the estimation of derivatives of opti-
cal flow. In: European Conference on Computer Vision—ECCV
’90. Lecture Notes in Computer Science, vol. 427, pp. 139–148.
Springer, Berlin (1990)

19. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical
flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)

20. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets
Horn/Schunck: Combining local and global optic flow methods.
Int. J. Comput. Vis. 61(3), 211–231 (2005)

21. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy
optical flow estimation based on a theory for warping. In: Pajdla,
T., Matas, J. (eds.) Proceedings of the 8th European Conference
on Computer Vision, Prague, Czech Republic, vol. 4, pp. 25–36.
Springer, Berlin (2004)

22. Weickert, J., Schnörr, C.: A theoretical framework for convex reg-
ularizers in pde-based computation of image motion. Int. J. Com-
put. Vis. 45, 245–264 (2001)

23. Blake, A., Zisserman, A.: Visual Reconstruction. MIT Press, Cam-
bridge (1987)

24. Markussen, B., Pedersen, K.S., Loog, M.: Second order structure
of scale-space measurements. J. Math. Imag. Vis. (2008, this is-
sue)

25. Morton, K.W., Mayers, D.F.: Numerical Solution of Partial Dif-
ferential Equations, 2nd edn. Cambridge University Press, Cam-
bridge (2005)

26. Grönwal, T.H.: Note on the derivative with respect to a parameter
of the solutions of a system of differential equations. Ann. Math.
20, 292–296 (1919)

Bo Markussen received the Cand.
Scient and Ph.d. degrees in mathe-
matical statistics from University of
Copenhagen, Denmark. From No-
vember 2001 to September 2003 he
worked as post doc in Copenhagen
and Berlin, and from October 2003
to December 2005 he was enrolled
in the "Computing Natural Shape"
project at the Department of Com-
puter Science, University of Copen-
hagen. In January 2006 he joined
the Deparment of Natural Sciences
at the Royal Veterinary and Agricul-
tural University (KVL), Denmark,

as an Assistent Professor of statistics. KVL has now been merged into
the University of Copenhagen as the Faculty of Life Sciences. The re-
search interests of Bo Markussen includes applied statistics, stochastic
calculus and applications to image analysis.

Jon Sporring received his Master
and Ph.D. degree from the Depart-
ment of Computer Science, Univer-
sity of Copenhagen, Denmark in
1995 and 1998, respectively. Part
of his Ph.D. program was carried
out at IBM Research Center, Al-
maden, California, USA. Follow-
ing his Ph.D, he worked as a vis-
iting researcher at the Computer Vi-
sion and Robotics Lab at Founda-
tion for Research & Technology -
Hellas, Greece, and as assistant re-
search professor at 3D-Lab, School
of Dentistry, University of Copen-

hagen. Since 2003 he has been employed as associate professor at
the Department of Computer Science, University of Copenhagen, and
since 2008 he has been Vice-Chair for Research at Department of Com-
puter Science. His main topics of research are medical image process-
ing, medical computer graphics, and information theory.



J Math Imaging Vis (2008) 31: 195–205 205

Kenny Erleben After his studies Er-
leben was employed as full time re-
searcher in the Company 3DFacto
A/S for a period of 10 months. In
2001 Erleben started on his Ph.D.
studies. During 2004 Erleben stayed
3 months at the Department of Math-
ematics, University of Iowa. Here-
after he received his PhD degree in
the begining of 2005 and finally late
2005 Erleben was employed as an
Assistant Professor at the Depart-
ment of Computer Science, Univer-
sity of Copenhagen.


	Guessing Tangents in Normal Flows
	Abstract
	Introduction
	Related Works

	Guessing Tangent Component by Energy Minimization
	Invariance Properties
	Solving Energy by Euler-Lagrange Equations
	Numerical Solution by Parabolic Equivalent
	Results on Synthetic Motion Fields
	Gradient Type
	Laplace Type

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


