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Abstract We present a simple and robust feature pre-

serving image regularization by letting local region mea-

sures to modulate the diffusivity. The purpose of this

modulation is to disambiguate low level cues in early

vision. We interpret the Ambrosio-Tortorelli approxima-

tion of the Mumford-Shah model as a system with mod-

ulatory feedback and utilize this interpretation to inte-

grate high level information into the regularization pro-

cess. The method does not require any prior model or

learning; the high level information is extracted from lo-

cal regions and fed back to the regularization step. An

important characteristic of the method is that both neg-

ative and positive feedback can be simultaneously used

without creating oscillations. Experiments performed with
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both gray and color natural images demonstrate the po-

tential of the method under difficult noise types, non-

uniform contrast, existence of multi-scale patterns and

textures.

Key words variational and PDE methods, feature pre-

serving diffusion, structure preserving diffusion, disam-

biguation in low level vision.

1 Introduction

The prevalent view in computer vision since Marr [53]

is to assume early vision as a data-driven, bottom-up

process. As the raw image data is processed in a feed-

forward fashion, a sequence of processes transforms low-

level cues into larger perceptual units. Over the years,

a variety of techniques for low-level vision has been de-

veloped using this paradigm. Most of these techniques

cannot easily cope with ambiguities since information

flow is in one direction and low-level cues are always
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presumed to be reliable. Hence, any misinterpretation in

the early stages greatly affects the later ones.

For example, consider edge detection from a noisy

image. When a low-pass filter denoising process is ap-

plied to the image, the process not only removes the

noise but also softens intensity discontinuities making

the edges difficult to detect. If the cut-off frequency of

the low-pass filter is set to a large value, then one cannot

eliminate noise. The noise, which is passed to the second

level in the hierarchy, is enhanced more than the signal

itself [39] by the edge detection process. About twenty

years ago, the dilemma in the one way information flow

between smoothing and edge detection, prompted emi-

nent researchers including Mumford and Shah to propose

methods that combine smoothing and edge detection [14,

41,56,59].

Mumford and Shah [56] formulated image segmen-

tation process as a functional minimization via which a

piecewise smooth approximation of a given image and an

edge set are to be recovered simultaneously. It aims to

decompose an image into cartoon and noise components.

The Mumford-Shah (MS) model is:

EMS(u, Γ ) = β

∫

R

(u− g)2dx + α

∫

R\Γ
|∇u|2dx

+length(Γ ) (1)

where

– R ⊂ <2 is connected, bounded, open subset repre-

senting the image domain,

– g is an image defined on R,

– Γ ⊂ R is the edge set segmenting R,

– u is the piecewise smooth approximation of g,

– α, β are the scale space parameters of the model.

The first term in EMS(u, Γ ) is the data fidelity term,

which forces the solution u to be close to the original

image g. The other two terms are regularization terms,

which encode a priori information about the solution and

give preference to piecewise smooth images with simple

edge sets [55].

The unknown edge set Γ of a lower dimension makes

the minimization difficult. A convenient approximation

is suggested by Ambrosio and Tortorelli [4] following the

Γ convergence framework [15]. The basic idea is to intro-

duce a smooth edge indicator function v which is more

convenient than the original edge indicator represented

by the characteristic function 1 − χΓ . The function v

depends on a parameter ρ, and as ρ → 0, v → 1 − χΓ .

That is, v(x) ≈ 0 if x ∈ Γ and v(x) ≈ 1 otherwise. The

cardinality of the edge set Γ can be approximated by

1
2

(
ρ|∇v|2 + (1−v)2

ρ

)
. The new functional is as follows:

EAT (u, v) =
∫

R

(
β(u− g)2 + α(v2|∇u|2)

+
1
2

(
ρ|∇v|2 +

(1− v)2

ρ

))
dx (2)

The most appealing property of the Ambrosio-Tortorelli

(AT) approximation is that one can apply gradient de-

scent to obtain the condition for minima in the form of
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a system of coupled PDEs:

∂u

∂t
= ∇ · (v2∇u)− β

α
(u− g);

∂u

∂n

∣∣∣∣
∂R

= 0 (3)

∂v

∂t
= ∇2v − 2α|∇u|2v

ρ
− (v − 1)

ρ2
;

∂v

∂n

∣∣∣∣
∂R

= 0 (4)

where ∂R denotes the boundary of R and n denotes the

direction normal to ∂R.

The coupled equations can be simultaneously solved

for u and v using standard numerical discretization tech-

niques such as Finite Differences. When these equations

are discretized using a modified explicit scheme (Ap-

pendix A), the iterations converge in the sense that the

rate of change is smaller than a threshold. In each iter-

ation, only one variable is updated while the other vari-

able is kept fixed.

Keeping v fixed, (3) minimizes a convex quadratic

functional given by

∫

R

(
αv2|∇u|2 + β(u− g)2

)
dx (5)

While the bias term in (3) or equivalently in (5) forces

u to be close to the original image g, the first term acts

as an edge preserving regularizer. It smoothes the image

with a smoothing radius proportional to the values of

v2 and α
β . If there is an edge (v ≈ 0), no smoothing

(diffusion) is carried out.

As v → 0, the smoothness constraint in the piecewise

smooth model is switched off. It is possible to interpret

v2 as an analog form of the line process introduced by

Geman and Geman [41]. As shown by Bar, Kiryati and

Sochen [7] and Teboul et al. [78], the AT approximation

of the MS functional defines an extended line process reg-

ularization where the regularizer has an additional con-

straint introduced by the term ρ|∇v|2. This term mildly

forces some spatial organization by demanding the edges

to be smooth. However, the reconstruction results are

still affected by the existing noise or texture (Fig. 1).

Over the years, a variety of modifications were pro-

posed for the AT model. Shah [72] considered replacing

the quadratic cost functions in both the data fidelity

and the regularizer with L1-functions. Erdem, Erdem

and Tari [36] considered incorporating prior shape in-

formation into the AT by introducing additional terms

that also make the minimization difficult. Esedoglu and

Shen [38] considered incorporating higher order geomet-

ric terms in the length functional in order to improve the

regularity of the edge sets found by the MS. An extreme

modification to the AT has been proposed by Tari, Shah

and Pien [77], by using large ρ values and interpreting

v as a smoothed distance function from which a skele-

tal analysis is performed. Recently, Aslan and Tari [5]

considered letting ρ → ∞. Whereas the latter method

can only handle silhouettes, the former one can handle

piecewise smooth images.

In this paper, we propose a simple yet very effec-

tive modification to the AT that will convert it to a

regularizer with much better feature preserving capa-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1 Images which cannot be handled by the AT model. (a)-(b) couple image corrupted with 5% salt and pepper noise
and its reconstruction using AT. (c)-(d) A noisy test image –70% of the pixels are degraded with uniform noise– and its
reconstruction using AT. (e)-(f) An animal image and its reconstruction using AT. (g)-(h) A texture mosaic image and its
reconstruction using AT.

bilities, without resorting to additional energies, prior

models and difficult to minimize cost functions. The new

model can cope with difficult noise types such as impulse

noise and preserve structures even in highly textured sit-

uations. Interesting non-linear and non-local behaviors

arise, while the computations are carried out in a locally

linear fashion.

Key to our approach is the link between regulariza-

tion and diffusion filters [13,55,57,68,71]. After casting

the AT as a biased diffusion filter, we use local measures

to steer the diffusion. The local measures are computed

from a collection of local neighborhoods that are not

necessarily centered on the pixel to be regularized. They

are referred as contextual feedback measures or simply

feedback measures throughout the paper.

1.1 Related Work

Contextual influences have been explored within both

computer vision and neuroscience community, e.g. [1,9,

10,33–35,44,50,52,69,73,75,76,79,83,85]. The notion of

context differs and typically means global image statis-

tics, nearby objects, nearby pixels or statistics of fea-

tures [74,83]. In our work, context is a collection of

nearby local neighborhoods or nearby local image patches

and contextual measures are aggregate quantities that

are computed from these collections. Our work differs

from the above efforts in the sense that we use a PDE

framework as the computational platform and we focus

on the MS regularization.

There are works which use the MS regularizer or its

modification [3,72] for restoration in the presence of im-
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pulse noise or textures [7,8,72,78]. In [7,8], Bar, Kiryati

and Sochen present a very promising approach. However,

the success of their method stems mostly from the use of

robust data fidelity by replacing the L2-norm with the

L1. Similarly, in [72], Shah uses the L1-norm for both the

data fidelity and the regularizer. This generates shocks

in u and thus object boundaries are recovered as actual

discontinuities without being much affected by noise or

texture. In fact, the use of non-smooth cost functions

such as the L1-norm for the data fidelity term in or-

der to deal with outliers is well motivated both theoreti-

cally and experimentally (e.g. [17,30,31,58,72]). Teboul

et al. [78] present a modification of (2), by replacing the

quadratic cost |∇v|2 with the L1-cost, which leads to

singular diffusivity. Numerical difficulties are the major

drawback of singular diffusivities [21]. The cost function

choice in [78] also leads to directional smoothing. As ex-

plored by Weickert [82], directional smoothing can offer

significant feature preserving capabilities. However, the

models get complicated and the numerics is not as sim-

ple as in the case of isotropic diffusion. Our effort can

be compared to that of Weickert [82] in the sense that

we also consider gray values in a local image region to

steer diffusion. Our contextual feedback measures are

more general and higher level. Moreover, we remain in

the isotropic setting.

Incorporation of high level knowledge to segmenta-

tion has been used in practice (e.g. [18,19,24,28,29,36,

45,47,49,51,60,62,65,80,84]). On the other hand, use of

priors in filtering is much less explored [64,67,86]. Our

approach differs from the latter works in the sense that

we do not employ any prior model or learning.

One of our contextual feedback measures (edge conti-

nuity - Section 2.2) is closely related to spatial organiza-

tion energy of Black and Rangarajan [11]. Rather than

introducing an additional energy term, we use spatial

organization to provide feedback that steers diffusion.

Our motivation in defining the texture edges feed-

back measure in Section 2.3 is to eliminate texture and

preserve structure. In this respect, our texture edges

feedback strategy is related to the work of Aleman-Flores,

Alvarez and Caselles [2]. Whereas they modify Perona-

Malik so that the diffusivity is a function of texture

gradient computed from Gabor feature space, we use a

measure computed from local patches as a modulatory

feedback.

We utilize the concept of spatially adaptive image

processing [32] which has also been investigated under

the computational frameworks of image algebra [63] and

mathematical morphology [70]. Our selection of neigh-

borhood in the computation of directional consistency

feedback measure in Section 2.1 is adaptive in the sense

defined in [32].

Our approach can also be related to the one in Gilboa

et al. [42] in the sense that both of the methods consider

contextual knowledge apart from the other variational

denoising frameworks that are based on the local fea-

tures of the image such as derivatives. While [42] is based
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on a non-local convex regularization term that depends

on the contextual similarity suggested in [20], we remain

in the local and simple framework of the AT.

2 Proposed Method

In the proposed method, as in the AT approximation,

there are two coupled processes: the image process u and

the edge process v. The edge process v evolves according

to the same dynamics as given in (4). On the other hand,

the image process u evolves according to

∂u

∂t
= ∇ · ((cv)2∇u)− β

α
(u− g);

∂u

∂n

∣∣∣∣
∂R

= 0 (6)

cv = φv + (1− φ)V

V ∈ {0, 1} and φ is a measure which takes values

in [0, 1] and it depends on u and/or v in a collection

of neighborhoods. Therefore φ is at a higher place, in

the visual hierarchy, than u and v. We discuss the role

played by the multiplier c, by considering an abstract

view (Fig. 2) of the discrete approximations of the cou-

pled PDEs which are given by (24) and (25) in Appendix

A.

For any image point i, the value of ut+1
i is computed

using ut
i, the neighborhood of ut

i, gi, and the feedback

which depends on φi. Notice that the direct connection

from v to u in AT is replaced by an indirect path; first

rising higher up in the visual hierarchy and coming back

to steer the diffusion of u.

Fig. 2 Proposed architecture. Aggregate quantities com-
puted from a collection of neighborhoods are utilized to steer
the evolution of the processes u and v. See text.

Suppose that we wish to eliminate an accidentally

occurring feature such as a high gradient due to noise.

We can use edge gradient direction consistency (as in

the edge linking step of traditional boundary detectors)

as a feedback measure to modulate the diffusivity in (6)

as

(cv)2i = (φivi + (1− φi) 1)2 (7)

Notice that the higher the value of φi, the higher the

likelihood that the high gradient is meaningful. Thus,

the lower the value of φi, the higher the diffusivity shifts

to the maximum value 1. We call this type of modulation

negative feedback.

Suppose that we wish to prevent an accidental elimi-

nation of a feature of interest, e.g. preserving a fine tex-

ture or encouraging edge formation. One can define φi

such that it is low for meaningful occurrences, and let it
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modulate the diffusivity in (6) as

(cv)2i = (φivi + (1− φi) 0)2 (8)

Notice that the lower the value of φi, the higher the diffu-

sivity shifts to the minimum value 0 in order to preserve

the meaningful feature. We call this type of modulation

positive feedback.

A computational advantage of the proposed approach

is that both negative and positive feedbacks are imple-

mented as regularization. This provides robustness. An-

other source of robustness is the separate evolution of

the edge indicator vi from its modulated form (cv)i, even

though, they eventually seem to converge to each other.

The separate evolution of these variables prevents oscil-

lations in the edge indicator, and it allows us to effec-

tively use both positive and negative feedback. Finally,

notice that ci, as indicated by (7) and (8), is not explic-

itly computed. We can think of ci as an indirect measure

of feedback.

In the following subsections, we present different choices

of the contextual feedback measure φ, which are based on

directional consistency of the edges (φdc), edge continu-

ity (φh), texture edges (φte), and local scale (φls), respec-

tively. The ones presented in Section 2.1 and Section 2.3

are to be interpreted as negative feedback whereas the

ones presented in Section 2.2 and Section 2.4 are to be

interpreted as positive feedback.

Since the feedback measure induces a multiplier for

the diffusivity function, it is possible to consider a coali-

tion of contextual feedback measures by taking the mul-

tiplier c as the product of individual c values.

2.1 Directional Consistency: φdc

Traditionally, segmentation is defined as a sequential

bottom-up process composed of the following three steps:

smoothing, edge detection and edge linking. The purpose

of the edge linking step is to force global consistency to

locally detected edges in order to come up with a co-

herent edge set. In this step, the edge pixels that are

detected based on the magnitude of image gradients are

linked to give a connected edge set if their gradient di-

rections are in agreement. The unlinked edge pixels are

discarded. Interestingly, this last step is what the MS

model or its AT approximation lacks. We induce such

an effect in our diffusion model by increasing the relative

persistence of the edge pixels, which are consistent with

their neighbors, by increasing the diffusivity at inconsis-

tent ones. We consider a feedback measure φdc
i such that

φdc
i → 1 on the preferred configurations and φdc

i → 0 on

the incoherent configurations and let ci has the following

form:

ci = 1 + (1− φdc
i )

1− vi

vi
(9)

Firstly, notice that ci increases in proportion to the

image gradient |∇ui|, which is proportional to 1−vi

vi
(see

(26) in Appendix B). Secondly, notice that the overall
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diffusivity coefficient (cv)2i can be estimated as follows,

without explicitly computing the variable ci:

(cv)2i =
(
φdc

i vi +
(
1− φdc

i

)
1
)2

(10)

The value of the diffusivity is bounded by 1. It attains its

maximum as φdc
i → 0 and decays to a value determined

by the edge indicator vi as φdc
i → 1 . In the experiments,

we compute φdc
i as

φdc
i = exp


εdc


 1
|ηs|

∑

j∈ηs

∇ui · ∇uj − 1





 (11)

In (11), ηs represents the neighborhood of pixel i hav-

ing s neighbors and is defined as ±s pixels along the

orthogonal edge direction ∇ui
⊥. The parameter εdc is a

scalar, which determines the decay rate of the φdc
i func-

tion. If the neighboring pixels are coherent (having simi-

lar edge directions), then the average angle between ∇ui

and ∇uj ’s is close to 0, yielding φdc
i → 1. Therefore,

when φdc
i is high, occurrence of a low level feature (high

gradient) is not accidental and we can rely on our ed-

geness measure. On the other hand, as φdc
i approaches

to 0, an occurrence of the same low level feature is very

likely to be accidental and we warp the diffusivity value

towards 1.

The importance of directional consistency is best ob-

served if the input image contains impulse noise. Our

method can be related to the ones in [23,27] in the sense

that some regularization is performed on the noisy image

points. While [23,27] use hard decisions on noisy image

points and smooth out only these points, our method

uses a soft decision strategy by means of the local region

measure φdc to define the new diffusivity (cv)2 for each

image point.

2.2 Edge Continuity: φh

In boundary detection methods, the principle of edge

continuity is used to eliminate streaking or breaking up

of an edge contour due to noise or changing contrast.

This procedure is commonly referred as hysteresis due

to successful application of threshold retardation in the

Canny edge detector [22]. In our diffusion model, we

lower the diffusivity at pixels that correspond to the

broken parts of boundary segments to favor edge for-

mation. There may be various choices for the selection

of the feedback measure φh. The important point is to

decrease the modified diffusivity (cv)2i if the neighboring

site encourages formation of an edge, i.e., having a low v

value. As shown in Appendix B, there is a reciprocal rela-

tionship between vi and |∇ui| given by vi ≈ 1
1+2αρ|∇ui|2 .

A decreasing diffusivity can be achieved by increasing

the estimate of the image gradient, which is used in es-

timating the diffusivity. Therefore, a natural choice is to

add an offset hi ∈ [0, 1] indicating a support in favor

of edge formation to the gradient term in the diffusivity
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estimate:

(cv)2i =
(

1
1 + hi + 2αρ|∇ui|2

)2

=
(

1
1 + 2αρ(|∇ui|2 + h∗i )

)2

(12)

We can rewrite

(cv)2i =
(
φh

i vi +
(
1− φh

i

)
0
)2

(13)

by letting

φh
i =

1
1 + hivi

(14)

There is a subtle difference between φdc discussed in the

previous subsection and φh. Whereas φdc is high for the

non-accidental occurrences of certain low level features

e.g., the gradient, φh is high for the accidental occur-

rences of the same feature. As φh approaches to 0, we

can rely on a non-accidental occurrence of the feature of

interest and warp our diffusivity towards 0. Therefore,

the modified edge indicator cv is a linear combination of

v, and the maximum edgeness value which is 0.

In the discrete implementation of (6), diffusivities are

estimated at mid-grid points. Hence, hi should be com-

puted as a support from a suitably chosen neighbor. For

example, a modified diffusivity (cv)2i+0.5,j at a mid point

between (i, j) and (i+1, j) may receive a support in the

form of either (1− vi+0.5,j−1) or (1− vi+0.5,j+1). Notice,

that the lower the value of edge indicator at a neighbor-

ing site, the higher the support it provides.

Adding spatial organization to energies defining regu-

larization with line process has been previously proposed

by Black and Rangarajan [11]. In [13], Black et al. de-

rived the necessary update equations. If we let v2
k+v2

l

2

define a line process between site k and site l, then our

development becomes equivalent to that of Black et al.

Thus, solving new coupled equations are qualitatively

equivalent to modifying the MS model with an additive

term favoring unbroken contours as in Black and Ran-

garajan [11] if the parameter h is employed within each

iteration.

2.3 Texture Edges: φte

The MS model relies on the image gradient to detect

edges. For textured images, a piecewise smoothness as-

sumption fails and large image gradients may result from

a texture inside a region rather than from a region bound-

ary. Hence, the MS model may not capture true object

boundaries (Fig. 1(e)-(h)).

In order to capture the true object boundaries of a

textured image, we need more higher level features than

the local derivatives. In the feed-forward step, we es-

timate the contextual feedback measure φte using the

probability map of the texture edges of the source im-

age. For computational concerns, this probability map

is extracted only once, at the beginning, using a simple

patch-based technique proposed by Wolf et al. [84]. The

probability of an image point being near a texture edge
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is computed using a non-parametric test of distributions

called Wilcoxon Mann-Whitney test.

For each point i, four distributions are sampled: Dup
i ,

Ddown
i , Dleft

i and Dright
i . These distributions correspond

to the contextual similarities between the patch cen-

tered at the point i and the patches which are ∆x pix-

els to the related direction. The similarities are simply

computed by using the Euclidean distance between the

n× n patches. If the point i lies on near a texture edge,

then sampled distributions Dup
i and Ddown

i , or Dleft
i

and Dright
i should be different from each other. To test

this hypothesis, the Wilcoxon Mann-Whitney test is em-

ployed. As in [84], the final probability is taken as the

minimum of the p-value’s p1
i and p2

i returned by this

test for the distributions Dup
i -Ddown

i and Dleft
i -Dright

i .

We use this probability value to define the function φte
i

as

φte
i = exp

(−εte
(
min(p1

i , p
2
i )

))
, (15)

where εte is again a scalar parameter that determines the

decay rate. For the points that do not correspond to the

texture edges, the estimated p-values are high, yielding

φte
i → 0 and (cv)i → 1.

This case is exactly equivalent to the case discussed

under directional consistency. Just like φdc, a low value

of φte indicates an accidental occurrence of a feature of

interest (again, it is high gradient). Therefore, we should

warp our diffusivity estimate towards a maximum value

of 1 in order to diffuse more at those locations where

the existence of a local feature is not supported by the

context. The modulated diffusivity is given by

(cv)2i =
(
φte

i vi +
(
1− φte

i

)
1
)2 (16)

2.4 Local Scale: φls

The MS model decomposes an image into two compo-

nents, cartoon and noise. During denoising, some im-

portant features of the image like textures or fine details

are also smoothed out; since they are treated as noise by

the model. This behavior is more apparent in the models

with more robust norms, e.g. [66,72]. In [43], a spatially

varying fidelity term is proposed for the Rudin-Osher-

Fatemi (ROF) model [66] to partly preserve local image

structures. The term is based on local variance measures

and determines the level of denoising.

Our framework can be also used to devise a texture

preserving denoising model by lowering the diffusivity at

the pixels inside textured regions. The contextual feed-

back measure φls determines whether a point lies on a

textured region or not, and controls the level of smooth-

ing accordingly.

We use robust statistics following [12] to determine

the textured regions. For an image point i, the local scale

is specified by

σi = medianj∈Ωi(|∇uj −medianj∈Ωi(|∇uj |)) (17)
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where higher values of σi means that the point i lies

on a textured image region. In deriving σi, we use an

n × n pixel patch around the image point i which is

represented by Ωi in (17). Considering σi, we define the

new contextual feedback measure φls
i as follows:

φls
i = exp

(−εls σi

)
(18)

For the pixel inside a textured region, the value of σi

is high, making φls
i → 0. Just as φh

i in Section 2.2, φls
i

is low for the non-accidental occurrences of high gra-

dient. When φls
i is low, we should warp our diffusivity

estimate towards minimum level of 0. That is, we com-

pute the modulated edge indicator (cv)i as the convex

combination of 0 and vi

(cv)2i =
(
φls

i vi +
(
1− φls

i

)
0
)2

(19)

In the experiments, the contextual feedback measure φls

is estimated at 0th, 10th and 20th iterations.

3 Multi-Channel Images

The straightforward way to smooth a multi-channel im-

age is to diffuse each channel independently. For an m-

channel image g = (g1, . . . , gm), this yields the following

PDEs:

∂ui

∂t
= ∇ · ((civi)2∇ui)− β

α
(ui − gi);

∂ui

∂n

∣∣∣∣
∂R

= 0

(i = 1, . . . , m) (20)

∂vi

∂t
= ∇2vi − 2α|∇ui|2vi

ρ
− (vi − 1)

ρ2
;

∂vi

∂n

∣∣∣∣
∂R

= 0

(i = 1, . . . , m) (21)

Notice that different edge points would be created

in different channels. To overcome this inconsistency, we

can diffuse each channel with a common edge indicator

function as proposed in [61] using the following PDEs 1:

∂ui

∂t
= ∇ · ((civ)2∇ui)− β

α
(ui − gi);

∂ui

∂n

∣∣∣∣
∂R

= 0

(i = 1, . . . , m) (22)

∂v

∂t
= ∇2v −

m∑

i=1

(
2α|∇ui|2v

ρ

)
− (v − 1)

ρ2
;

∂v

∂n

∣∣∣∣
∂R

= 0 (23)

Contextual feedback measures can be estimated in

various ways. First, each φi and consequentially (cv)i

may be computed directly from the ith channel of the

image. Second, a common feedback measure may be es-

timated. One possibility is to estimate a common mea-

sure from a weighted average of the multi-channel data.

For color images, the average readily corresponds to the

intensity image. Another possibility in estimating a com-

mon feedback measure is to consider individual channels

to form a statistical measure. When the latter strategy

is adopted in the experiments, the median of the indi-

vidually computed measures is used for the directional

consistency and the local scale. On the other hand, for

1 An alternative color image segmentation method was also
proposed in [16] that considers images as manifolds within
the AT regularization framework.
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the texture edges, the measure is estimated by consider-

ing the distribution of contextual similarities computed

from vector-valued image patches.

4 Experimental Results

In all experiments, discrete approximations of the cou-

pled equations are used (Appendix A (24) and (25)). The

homogeneous Neumann boundary condition is assumed

along the image boundary. The results are obtained by

using a convergence tolerance of ε = 5 × 10−4 unless

stated otherwise.

The importance of the directional consistency of the

edges is best observed if the image contains impulse

noise. The postprocessing of the noisy image shown in

Fig. 3(a) is illustrated in Fig. 3(b)-(f). Fig. 3(b) and (c)

illustrate smoothing obtained using the AT with differ-

ent values of smoothing radius, α
β . The result in Fig. 3(b)

is obtained with α = 0.75, β = 0.005, ρ = 0.01. When

we increase the smoothing radius by choosing β = 0.001,

diffusion is so strong that we even lose the upper body

part of the woman (Fig. 3(c)). Yet, the noise is still

present. If we use a regularization term which uses con-

textual feedback by means of directional consistency of

the edges, as discussed in Section 2.1, the image is de-

noised without blurring (Fig. 3(d) and (e)). The percep-

tual difference between Fig. 3(d) and (e) is in the sharp-

ness level. The result in Fig. 3(d) is obtained with the

segmentation parameters specified α = 1, β = 0.01, ρ =

0.01 and the contextual feedback parameters s = 2 and

εdc = 0.25 (these are the default values for the direc-

tional consistency parameters). For the result given in

Fig. 3(e), we use the same parameters except εdc = 0.1.

The variable εdc determines the decay rate of the co-

herency function used in the segmentation process and

therefore specifies the level of sharpness. For large εdc

value, the decay rate is high and the edges are more

smoothed out depending on the contextual feedback.

Hence, as observed, the resulting image is smoother. On

the other hand, for small εdc values, we get sharper re-

sults. The result given in Fig. 3(e) is also comparable to

that is obtained by Shah’s modification [72] (Fig. 3(f)),

which uses the L1-norm for both the data fidelity and

the regularizer (for the experiments a half-quadratic ap-

proximation of Shah’s modified energy proposed in [48]

is used). While both results are satisfactory, the recon-

struction using the model due to Shah is blockier. The

used robust norms attract the image towards the cartoon

limit and catches unintuitive regions such as the one at

the man’s right shoulder and the ones on the floor. Bet-

ter result can be obtained by merely replacing the data

fidelity term in the AT model with the L1-norm as in

[17,58].

Increasing the value of α while keeping α
β fixed means

decreasing the penalty of the length term, yielding more

detailed reconstruction. In Fig. 4, the proposed modifi-

cation is tested with again the image given in Fig. 3(a),

however, forcing the reconstruction to be more detailed

by the proper choice of parameters. Fig. 4(a) demon-
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(a) (b) (c)

(d) (e) (f)

Fig. 3 Considering directional consistency of the edges φdc as the contextual feedback measure eliminates impulse noise.
(a) Source image corrupted with 5% salt and pepper noise. (b)-(c) Reconstructions using AT with two different smoothing
radii. Notice that the noise is still present even when we lose the upper body part of the woman. (d)-(e) Reconstructions with
directional consistency with two different sharpness levels. Notice that at comparable scales noise is completely eliminated.
(f) L1-reconstruction catches unintuitive regions.

(a) (b)

(c) (d)

Fig. 4 u and 1−v functions computed with α = 1, β = 0.01 and α = 4, β = 0.04 respectively. Even in detailed reconstruction,
directional consistency feedback is sufficient to remove noise completely.
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strates the outcome of the proposed modification pre-

sented in the first experiment. The result displayed in

Fig. 4(c) is obtained by using the same parameters ex-

cept α = 4, β = 0.04. The corresponding edge indicator

functions are also shown in Fig. 4(b) and (d) respectively.

As they demonstrate, even the detailed reconstruction

with α = 4 is noise free.

The example presented in Fig. 5 illustrates the effect

of edge continuity as described in Section 2.2. The re-

constructions of the source image shown in Fig. 5(a) ,

which is taken from [13], are presented in Fig. 5(b) and

(c) together with the corresponding edge indicator func-

tions. Fig. 5(b) illustrates the outcome of AT whereas

Fig. 5(c) illustrates the result obtained by considering

edge continuity. Both results are obtained by using the

same scale space parameters, α = 1, β = 0.01, ρ = 0.01.

As it can be clearly seen from the enlarged indicator

functions given in Fig. 5(d), the modified scheme elimi-

nates broken contours.

In Fig. 6, we demonstrate the results obtained with a

regularization considering the coalition of edge continu-

ity and directional consistency of the edges as the con-

textual feedback measure via the product of individual

c functions. Recall that a combination can be achieved

by multiplying individual c values. In the case of direc-

tional consistency, the multiplier cdc is given by (9). In

the case of edge continuity, the multiplier ch is equal

to φh as indicated by (13). The reconstruction results

of the source image corrupted with 10% salt and pep-

per noise (Fig. 6(a)) are given in Fig. 6(b)-(d). They are

obtained using the scale space parameters specified in

the previous experiment. Fig. 6(b) is the result obtained

with edge continuity. As it can be clearly seen, the noise

is not eliminated. Fig. 6(c) is obtained with the modi-

fication which considers directional consistency. Finally,

Fig. 6(d) is the outcome of the combined framework that

considers the coalition of edge continuity and directional

consistency of the edges, which is not only noise free but

also has stronger edges.

In Fig. 7, the framework considering the coalition of

directional consistency of the edges and edge continu-

ity is tested on a noisier image (Fig. 7(a)). Fig. 7(b)-(c)

are the outcomes of the AT approximation considering

α = 2.5, β = 0.0001, ρ = 0.01. Fig. 7(b) is obtained

with a convergence tolerance of ε = 4.8× 10−4 whereas

Fig. 7(c) is obtained with ε = 1.6 × 10−4. The effect

of decreasing β dramatically, is to shut off the data fi-

delity term and to increase the relative importance of

the length term. Notice that the relative increase (α/β)

in the weight of the second term of the AT model is

less than the relative increase (1/β) in the weight of

the third term. Our goal is to compare the effect of the

length term –which is a part of the original model– to

the effect of φdc. As it can be seen in Fig. 7(c), elimi-

nating the noise entirely results smoothing out the whole

rectangular region. This is mainly due to the perceived

difference in the contrast. Fig. 7(d)-(f) are the outcomes

of the proposed framework that are produced by using
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(a) (b) (c) (d)

Fig. 5 Considering edge continuity φh as the contextual feedback measure eliminates broken contours. (a) Source image.
(b) Reconstruction using AT (u and 1 − v). (c) Reconstruction with the new method forcing edge continuity (u and 1 − v)
(d) Details from the edge indicator functions given in (b) and (c) respectively.

(a) (b)

(c) (d)

Fig. 6 Considering a framework that uses the coalition of φdc and φh as the contextual feedback measure eliminates both
noise and the broken contours. (a) Source image corrupted with 10% salt and pepper noise. (b) Reconstruction with edge
continuity. (c) Reconstruction with directional consistency of the edges. (d) Reconstruction using both edge continuity and
directional consistency of the edges.
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 7 A difficult denoising case. (a) Source image, 70% of the pixels are degraded with uniform noise. (b)-(c) Reconstructions
using AT with different choices of convergence tolerance. (d) Reconstruction considering directional consistency. (e) Recon-
struction using the coalition of φdc and φh. (f) Reconstruction considering directional consistency with a larger neighborhood
size. (g) Reconstruction using the ROF model.

the scale space parameters α = 1, β = 0.01, ρ = 0.01.

Fig. 7(d) is obtained by using directional consistency

with ε = 2.5 × 10−4. Fig. 7(e) is the outcome of the

coalition of φdc and φh with ε = 1.25 × 10−4. Notice

that the results given in Fig. 7(d) and (e) are visually

similar. This is due to the fact that the contrast is al-

most constant in the image. Hence, broken lines do not

occur. Fig. 7(f) is obtained by using directional consis-

tency with a larger neighborhood size, s = 10, and a

convergence tolerance of ε = 1.6× 10−4. The perceptual

difference between Fig. 7(d) and (f) is clearly evident.

Imposing coherency in a large neighborhood produces

smoother object boundaries, however, at the expense of

losing sharpness. Both reconstructions are qualitatively

comparable to the one obtained by the ROF model[66]

(Fig. 7(g)). Note that the control parameters of ROF

were tuned to eliminate the noise and to capture the

shape boundaries.

Fig. 8-10 demonstrate the use of texture edges mea-

sure φte described in Section 2.3 for smoothing textured

images. We observe that this measure, if used together

with the other feedback measures, captures the actual

object boundaries. Note that in our formulation we do

not decompose the original image into structure, texture

and noise components as in [6,81], we only retain the

structure. We do so without using complicated norms.

Fig. 8 and Fig. 9 includes two texture mosaic im-

ages [46] as the source images. Fig. 8(b) and Fig. 9(b) are

the outcomes of our proposed method. Fig. 8(b) is ob-

tained by considering φte as the only contextual feedback
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8 Actual region boundaries are captured by considering φte as the feedback measure. (a) Source image. (b) Reconstruction
result with contextual feedback. (c) Texture edges measure φte. (d) Final edge indicator function. (e)-(f) Reconstructions
using Shah’s modification with different scale parameters. (g)-(h) Reconstructions using the ROF model with different scale
parameters.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9 Coalition of three feedback measures. (a) Source image. (b) Reconstruction result with contextual feedback.
(c) Textures edges measure φte. (d) Final edge indicator function. (e)-(f) Reconstructions using Shah’s modification with
different scale parameters. (g)-(h) Reconstructions using the ROF model with different scale parameters.
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(a) (b) (c)

(d) (e) (f)

Fig. 10 Coalition of three feedback measures. (a) Source image. (b) Reconstruction result with contextual feedback (c) Final
edge indicator function. (d) Texture edges measure φte. (e) Reconstruction using Shah’s modification. (f) Reconstruction using
the ROF model.

measure with the segmentation parameters α = 100, β =

0.0075, ρ = 0.01 and feedback parameters n = 5, ∆x =

15 and εte = 1000 (these are the default values for the

texture edges). On the other hand, Fig. 9(b) is obtained

by considering φte together with φdc and φh measures by

using the same parameters except α = 300, β = 0.005,

ρ = 0.001 and εte = 100. For each texture mosaic image,

the texture edges measure and the resulting edge indi-

cator function are also given. As it can be clearly seen

in Fig. 8(c)-(d) and Fig. 9(c)-(d), while the estimated

texture edges measures computed using the method pro-

posed in [84] are noisy, the resulting edge indicator func-

tions succeed to capture the actual object boundaries.

The results of Shah’s modification and the ROF model

with different scale parameters are also provided in Fig. 8

and Fig. 9 for comparison.

In Fig. 10, the framework considering the coalition

of directional consistency, edge continuity and texture

edges is tested with a natural animal image. The source

image Fig. 10(a) is taken from [40]. Fig. 10(b) is the out-

come of the combined framework with the segmentation

parameters α = 200, β = 0.05, ρ = 0.001 and the default

contextual feedback parameters except εte = 20.

As discussed in Section 2.4, the MS model does not

distinguish textures and fine details from noise. Hence,

they are smoothed out during denoising. Fig. 11 depicts

how contextual feedback measure based on local scale

affects the reconstruction results. For the source image

given in Fig. 11(a), the outcomes of the AT approxi-
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(a) (b) (c)

(d) (e)

Fig. 11 Texture preserving denoising with local scale measure φls. (a) Source image. (b)-(c) Reconstructions using AT with
different choices of smoothing levels. (d) Reconstruction result with contextual feedback. Notice that texture in the fabric is
preserved. (e) Local scale measure φls.

mation are presented in Fig. 11(b)-(c). Fig. 11(b) is ob-

tained by using the parameters α = 10, β = 2.5, ρ =

0.001 with a convergence tolerance of ε = 1×10−4 while

Fig. 11(c) is obtained using α = 15, β = 1, ρ = 0.001.

Fig. 11(d) is the outcome of the proposed method that is

estimated using α = 10, β = 0.1, ρ = 0.001, εls = 0.25,

n = 25 and the local scale measure depicted in Fig. 11(e)

as the contextual feedback measure. The L2-norms of the

differences between the original image and the recon-

structions presented in Fig. 11(b)-(d) are 6.0954 × 103,

7.6363 × 103 and 6.0735 × 103, respectively. Although

the amount of signal eliminated from the source image

in Fig. 11(b) and (d) is approximately the same and the

reconstructions are in a visually similar scale, Fig. 11(b)

is not entirely smooth and contains noisy pixels whereas

the source image is denoised while preserving textures in

Fig. 11(d). Increasing the level of smoothing in the AT

model results noise-free results as presented in Fig. 11(c),

however the textured regions are also smoothed out dur-

ing the process. Fig. 12 illustrates the results of two more

texture preserving denoising experiments. Fig. 12(c) and

(d) are obtained using the parameters α = 20, β = 0.1,

ρ = 0.001, εls = 0.125, n = 15 and α = 4, β = 0.1,

ρ = 0.001, εls = 0.125, n = 25 respectively. Fig. 12(b)

is taken from Berkeley Segmentation Dataset [54]. Note

that the basic idea is just to lower the diffusion at tex-
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tured locations. The measure φls does not make a dis-

tinction between noise and texture.

Finally, we apply our method to color images as de-

scribed in Section 3. We use the RGB channels as our

multi-channel data. For Fig. 13, we have repeated the

texture preserving denoising experiment using now col-

ored versions of Fig. 11(a) and Fig. 12(b). The denoising

results presented in Fig. 13(b) are obtained by diffusing

each channel separately with a common feedback mea-

sure estimated from the intensity image.

Fig. 14 illustrates the results of using different strate-

gies for color image smoothing of the source image pre-

sented in Fig. 14(a) (image taken from Berkeley Seg-

mentation Dataset [54]). All smoothing results given in

Fig. 14(b)-(d) are obtained by considering the coalition

of directional consistency, edge continuity and texture

edges with the segmentation parameters α = 100, β = 0.1,

ρ = 0.001 and the default contextual feedback param-

eters except εdc = 0.05. Fig. 14(b) is the result ob-

tained by diffusing each channel separately by using the

feedback measures estimated from corresponding multi-

channel data. Fig. 14(c) is obtained by again diffus-

ing each channel separately but with a common feed-

back measure estimated from the intensity image. Fi-

nally, Fig. 14(d) is the outcome of the color image smooth-

ing with a common edge strength function and a feed-

back measure estimated from intensity image.

In Fig. 15, we demonstrate a case where using con-

textual feedback measures estimated from the intensity

image yields an inaccurate smoothing result. The recon-

structions of the color image shown in Fig. 15(a), which

is reproduced from [26], are given in Fig. 15(c) and (e) to-

gether with the corresponding edge indicator functions

provided in Fig. 15(d) and (f). All smoothing results

are obtained by considering the coalition of directional

consistency, edge continuity and texture edges with the

segmentation parameters α = 100, β = 0.1, ρ = 0.001

and the default contextual feedback parameters except

εdc = 0.05. Fig. 15(c) is the outcome of the color im-

age smoothing with a common edge strength function

and a feedback measure estimated from intensity im-

age. Since transforming the color image into intensity

image makes the upper and the lower objects disappear

(Fig. 15(b)), these objects are smoothed out during pro-

cessing and the reconstruction fails to capture the actual

object boundaries. On the other hand, when the feed-

back measures are estimated by considering each channel

simultaneously, we get a fairly good result (Fig. 15(e)).

Fig. 16 shows some typical smoothing results of nat-

ural color images obtained with the proposed method.

In all the cases, textured regions are smoothed out and

the structures are preserved.

5 Summary and Discussion

Diffusivity modulated by the context is the key mecha-

nism behind the proposed method. The modulated dif-

fusivity (cv)2 is a square of a convex combination of

the edge indicator v and a fixed value which is either 1
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(a) (b)

(c) (d)

Fig. 12 Some more experiments on texture preserving denoising. Notice the difference between non-textured and textured
regions. (a)-(b) Source images. (c)-(d) Smoothed images.

(a) (b)

Fig. 13 Texture preserving denoising on a color image. Notice the difference between non-textured and textured regions.
(a) Source images. (b) Smoothed images.

(negative feedback) and 0 (positive feedback). Four dif-

ferent possibilities for contextual feedback measure are

presented, in order to perform several seemingly differ-

ent tasks: elimination of unintuitive edges due to noise

or texture, preserving texture, catching texture bound-

aries, and enhancing weak edges. Experimental results
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(a) (b)

(c) (d)

Fig. 14 Color image smoothing. (a) Source Image. (b) Result of channel-by-channel smoothing. (c) Result of channel-by-
channel smoothing with a common feedback measure estimated from intensity image. (d) Color image smoothing with a
common edge strength function and a feedback measure estimated from intensity image.

(a) (b)

(c) (d) (e) (f)

Fig. 15 Coalition of measures in color image smoothing. (a) Source Image. (b) Corresponding intensity image. (c)-(d) Re-
construction result of color image smoothing with a common edge strength function and a feedback measure estimated from
the intensity image (u and 1-v). (e)-(f) Reconstruction result of color image smoothing with a common edge strength function
and a feedback measure estimated from all channels (u and 1-v).
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(a) (b)

Fig. 16 Smoothing of natural color images. (a) Source images Devin, twins, dog, baboon and boat. (b) Smoothing results.
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demonstrate that the proposed regularization is able to

remove difficult noise types, capture texture boundaries

and produce almost segmentation like results without us-

ing singular diffusivities that arose from non-quadratic

cost functions.

In the same computational frame, the measures can

be combined and the list can be extended. As an exam-

ple, continuous measures by Kokkinos, Evangelopoulos

and Maragos [49] that allow probabilistic discrimination

between edges, textured and smooth areas can be di-

rectly utilized in our framework. Moreover these type of

measures can be used as weights in combining the effects

of various feedback measures.

In the proposed approach, both negative and pos-

itive feedback are implemented as regularization. This

may have the disadvantage that if a feature does not ex-

ist in the data (e.g. illusory contour), it will not emerge.

There may be two solutions. Firstly, an occasional ran-

dom noise may be added in order to generate spurious

edges. If these edge hypothesis do not get sufficient sup-

port from the context, they will be eliminated during the

regularization process. Secondly, the information rising

up in the hierarchy may get connected to a database

object whose shape is known and impose top-down con-

straints to the regularization process. Both solutions are

currently being investigated by the authors.

Appendix A

We first discretize the coupled system w.r.t. spatial vari-

ables. The discrete approximation of (6) and (4) used in

our computations are as follows:

d

dt
ui,j(t) = ∇ · (di,j(t)∇ui,j(t))

−β

α
(ui,j(t)− gi,j)

d

dt
vi,j(t) = ∇2vi,j(t)− 2α|∇ui,j(t)|2vi,j(t)

ρ

− (vi,j(t)− 1)
ρ2

where di,j(t) = (vi,j(t))2 for AT and di,j(t) = ((cv)i,j(t))2

for the proposed method.

We discretize the time derivative using forward dif-

ference. Regularization terms on the right hand side of

each equation are evaluated at time t. Bias terms in the

right hand side of each equation are evaluated at time

t+1. Hence the scheme is neither fully explicit nor fully

implicit. However, as in an explicit scheme, we can eval-

uate ut+1 and vt+1 explicitly using forward recursion.

Let h be the space step, ∆t be the time step, and

(xi, yi) = (ih, jh) be the space coordinates. The finite

differences are

∆x
+ui,j = ui+1,j − ui,j , ∆x

−ui,j = ui,j − ui−1,j

∆y
+ui,j = ui,j+1 − ui,j , ∆y

−ui,j = ui,j − ui,j−1
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The values at mid points are estimated using the av-

erages

di± 1
2 ,j =

di±1,j + di,j

2
, di,j± 1

2
=

di,j±1 + di,j

2

ut+1
i,j − ut

i,j

∆t
=

1
h2

(
dt

i+ 1
2 ,j∆

x
+ut

i,j − dt
i− 1

2 ,j∆
x
−ut

i,j

+ dt
i,j+ 1

2
∆y

+ut
i,j − dn

i,j− 1
2
∆y
−ut

i,j

)

− β

α

(
ut+1

i,j − gi,j

)

vt+1
i,j − vt

i,j

∆t
=

1
h2

(
∆x

+vt
i,j −∆x

−vt
i,j + ∆y

+vt
i,j −∆y

−vt
i,j

)

− 2α

ρ

[
(ut+1

i,j+1−ut+1
i,j−1)+(ut+1

i+1,j−ut+1
i−1,j)

(2h)2

]
vt+1

i,j

− (vt+1
i,j − 1)

ρ2

ut+1
i,j = 1

1+ ∆tβ
α

[
ut

i,j +
∆tβ

α
gi,j

+
∆t

h2

(
dt

i+ 1
2 ,j∆

x
+ut

i,j − dt
i− 1

2 ,j∆
x
−ut

i,j

+ dt
i,j+ 1

2
∆y

+ut
i,j − dn

i,j− 1
2
∆y
−ut

i,j

)]
(24)

vt+1
i,j =

[
1 + ∆t

(
2αρA + 1

ρ2

)]−1

·
[
vt

i,j +
∆t

ρ2

+
∆t

h2

(
∆x

+vt
i,j −∆x

−vt
i,j + ∆y

+vt
i,j −∆y

−vt
i,j

)
]

(25)

where A =

[
(ut+1

i,j+1 − ut+1
i,j−1)

2 + (ut+1
i+1,j − ut+1

i−1,j)
2

(2h)2

]
.

Iterations stop if |ut+1 − ut| < ε|ut|.

Appendix B

Keeping u fixed, (4) minimizes a convex quadratic func-

tional given by

∫

R

(
ρ|∇v|2 +

1 + 2αρ|∇u|2
ρ

(
1

1 + 2αρ|∇u|2 − v

)2
)

dx

The reciprocal relationship between v and |∇u|2 can be

best observed in the above functional. Clearly, it as-

serts that the function v is nothing but a smoothing of

1
1+2αρ|∇u|2 with a blurring radius proportional to ρ and

reciprocal to |∇u|. Ignoring the smoothing, by letting

ρ → 0 [25,72],

v ≈ 1
1 + 2αρ|∇u|2 (26)
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29. D. Cremers, F. Tischhäuser, J. Weickert, and C. Schnörr.
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