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Abstract background, and Fig. 1b,c,d,e where all the points are sim-
ple. In fact, such a guarantee is not obvious to obtain, even
Critical kernels constitute a general framework in the cat- for the 2D case (see [10], where fifteen published parallel
egory of abstract complexes for the study of parallel ho- thinning algorithms are analyzed, and counter-exampkes ar
motopic thinning in any dimension. In this article, we shown for five of them). In the 2D case, a popular method
present new results linking critical kernels to minimal ron due to A. Rosenfeld [32] consists of dividing each thinning
simple sets (MNS) and P-simple points, which are notionsstep into substeps. In each substep, only simple points that
conceived to study parallel thinning in discrete grids. We have no neighbor belonging to the object in one of the four
show that these two previously introduced notions can bemain directions (north, south, east, west) are candidates f
retrieved, better understood and enriched in the framework deletion. In addition, two special configurations made of
of critical kernels. In particular, we propose new charac- two adjacent pixels (see Fig. 1c,d) must be preserved, as
terizations which hold in dimensions 2, 3 and 4, and which well as theirr;/2 rotations. This stategy prevents a whole
lead to efficient algorithms for detecting P-simple points object to vanish like in Fig. 1b, or to break like in Fig. 1a.
and minimal non-simple sets. However, it cannot be straightforwardly extended to 3D. In
this case, the six main directions are north, south, east, we
Key Words: Parallel thinning, topology preservation, criti- up and down. In Fig. 1e, the voxeksy are simple vox-
cal kernel, P-simple point, minimal non-simple set, cubica els that have no neighbor belonging to the object in the di-

complex, collapse, simple point, 4D space. rection “up”, but if we remove them in parallel, the object
splits.
Introduction C. Ronse introduced minimal non-simple sets [31] to

study the conditions under which points may be removed

Topology-preserving operators, such as homotopic Simultaneously while preserving topology of 2D objects.
skeletonization, are used in many applications of image This leads to verification methods for the topological secund
analysis to transform an object while leaving unchanged its ness of parallel thinning algorithms. Such methods have
topological characteristiés In discrete gridsZ?, Z2, Z*), been proposed for 2D algorithms by C. Ronse [31] and R.
such a transformation can be defined thanks to the notionHall [14], they have been developed for the 3D case by T.Y.
of simple point [22, 11]: intuitively, a point (or pixel in2D  Kong [23, 17] and C.M. Ma [28], as well as for the 4D case
voxel in 3D) of an object is called simple if it can be deleted by C-J. Gau and T.Y. Kong [12, 21]. Works dealing with
from this object while preserving topology. See for example 4D parallel homotopic thinning are indeed seldom, let us
Fig. 1a, where simple points are shown in gray. mention also the recent work of T.Y. Kong [20], and the

The most “natural” way to thin an object consists of re- work of A. Manzanerat al. [29]. For the 3D case, one of
moving some of its border points in parallel, in a symmet- the authors [2] introduced the notion of P-simple point as
rical manner. However, parallel deletion of simple points @ Verification method but also as a methodology to design
does not, in general, guarantee topology preservation: sedarallel thinning algorithms [3, 8, 26, 27].
for example Fig. 1a, where removing all simple points | oquced recently by one of the authors, critical ker-
would split the object and merge two components of the o5 [4] constitute a general framework in the category of

To be more precise, we say that a transformatiotpreserves topol- a_bstrac_t complexes for th?_StUdy of parallel thinning in any
ogy” if X is homotopy-equivalent t#(X) for any X. dimension. Thanks to critical kernels, one can easily de-




characterization of P-simple points in 4D.

Furthermore, we show the equivalence (up to 4D) be-
tween the notion of MNS and the notion of crucial clique,
= also derived from the framework of critical kernels. This
n equivalence (Th. 27) leads to the first characterization of
MNS which can be verified by using a polynomial method.
We also retrieve straightforwardly some previously estab-
lished properties of MNSs.

In order to ease the reading, proofs of new properties are
deferred to the Appendix.

1 Cubical Complexes

Abstract complexes have been promoted in particular by
(a) V. Kovalevsky [25] and E. Khalimsky [16] in order to pro-
vide a sound topological basis for image anaKsis this
framework, we retrieve in particular the main notions and
= results of digital topology, such as the notion of simple
point.

Intuitively, a cubical complex may be thought of as a set
of elements having various dimensioesy.cubes, squares,
edges, vertices) glued together according to certain rules
In this section, we recall briefly some basic definitions on
complexes, see also [5, 6]. The way we define cubical com-
plexes is purely discrete, whereas other authors adopt-a con
tinuous framework to define them (seqy.[15]). We con-
sider heren-dimensional complexes, withQ n < 4.

(b)

(d)

Figure 1. (a): The object is the set of all black

and gray pixels. The pixels in gray are sim- Let Sbe a set. IfT is a subset 0§, we writeT C S We
ple, but parallel removal of pixels  x,y for ex- denote by S| the number of elements &

ample would modify a topological character- Let Z be the set of integers. We consider the families
istic of the object. North pixels are marked of setsFg, F, such thafg = {{a} |ac Z}, Fi = {{a,a+
with the letter “n”. (b,c,d): All pixels are sim- 1} |a€ Z}. Asubsetf of Z", n > 2, which is the Cartesian
ple. (e): All voxels are simple, the voxels  x product of exactlynelements oF} and(n—m) elements of
and y are both “up” voxels. I} is called aface or an m-faceof Z", mis the dimension

of f, we write dim(f) =m.
Observe that any non-empty intersection of faces is a
face. For example, the intersection of two 2-fadeand

sign parallel thinning algorithms that produce new types of B may be either a 2-face (§ = B), a 1-face, a O-face, or the
skeletons, with specific geometrical properties, whilergua empty set.

anteeing their topological soundness [5, 6]. A new defini-
tion of a simple point is proposed in [4], based on the col-
lapse operation which is a classical tool in algebraic topol
ogy and which guarantees topology preservation. Then, the
notions of aressential facand of acore of a face are used

(a) (b) (€) (d) (e)

to define thecritical kernel K of a complexX. The most

fundamental result proved in [4] is that, if a sub¥edf X , , i

containsk, thenX collapses ontd’, henceX andY “have Figure 2. Graphical representations of: (a) a

the same topology”. O-face, (b) a 1-face, (c) a 2-face, (d) a 3-face,
(e) a 4-face.

In this article, we show the equivalence (up to 4D) be-
tween the notion of P-simple point and a notion close to the
one of CYUCIQI point, derived from the framework of_crltlcal 2An abstract complex is indeed a discrete topological spattesisense
kernels. This equivalence (Th. 21) leads to the first local of P.S. Alexandroff [1].




We denote byF" the set composed of aii-faces ofZ",
with 0 < m< n. An mface ofZ" is called apointif m=0,

a (unit) edgeif m= 1, a (unit) squareif m= 2, a (unit)
cubeif m= 3, a (unit) hypercubéf m= 4 (see Fig. 2).

_ Let f be a face if". We setf = {geF"|gC f} and
f*=f\{f}. Anyge fisafaceof fandanyge f*isa
proper face of f

If X is a finite set of faces ifi", we writeX~ = U{f | f ¢
X}, X~ is the closure of X

A setX of faces inF" is a cell or an m-cellif there exists
anmfacef € X, such thaiX = f. The boundary of a cell
f is the setf*.

A finite setX of faces inF" is a(discrete cubical) com-
plex (inF") if X = X~. In other words, a complex is a union
of cells. Any subseY of a complexX, which is also a com-
plex, is a subcomplex of XIn Fig. 3, some complexes are
represented.

LetX C IF9 be a set of faces. A sequere: (fo, ..., f;)
of faces ofX is a path in X (from § to f,) if either f;
is included infi;q1 or fi;1 is included inf;, for eachi
{0,...,4—1}.

Let X C F9. We say thaK is connectedf, for any two
facesf,gin X, there is a path fronfi to g in X; otherwise we
say thatX is disconnectedWe say thal is a(connected)
componentof Xf Y £ 0,Y C X, Y is connected and If is
maximal for these properties€., we haveZ =Y whenever
Y C Z C X andZ is connected). Notice that the empty set is
connected but has no connected component.

Let X C F". An mface f € X is an m-facet of X or
simply a facet of X if there is nog € X such thatf € §*.

Let X be a complex if", X # 0, the number dirtX) =
max{dim(f) | f is a facet 0fX} is the dimension of X We
say thatX is anm-complex if dim’X) = m.

We say thatX is pureif, for each facetf of X, we have
dim(f) =dim(X).

In Fig. 3, the complexes (a) and (f) are pure, while

(b,c,d,e) are not.

2 Collapse and simple sets

Intuitively a subcomplex of a complex is simple if its
removal fromX preserves topology. In this section we recall

a definition of a simple subcomplex based on the operation
of collapse introduced by J.H.C. Whitehead ([33], see also

[13, 9]), which is a discrete analogue of a retraction, that i
a continuous deformation of an object onto itself.

Let X be a complex irf" and letf € X. If there exists
one face € f* such thatf is the only face oK that strictly
includesg, theng is said to befree for Xand the paif f,g)
is said to be afree pair for X Notice that, if(f,g) is a
free pair, thenf is necessarily a facet of and we have
dim(g) = dim(f) — 1.

Let X be a complex. If f,g) is a free pair foX, then we
say that there is aelementary collapse from X to\X f,g}.
Let X, Y be two complexes. We say thdtcollapses onto Y
if Y = X or if there exists a&ollapse sequence from X tQ Y
i.e., a sequence of complexéxy, ..., X;) such thaiXo = X,

Xy, =Y, and that there is an elementary collapse figim
to X, foralli=1,....¢. If X collapses ont¥ andY is a
complex made of a single point, we say tKat collapsible

Fig. 3 illustrates a collapse sequence. Observe th&t, if
is a cell of any dimension, thexiis collapsible. It may eas-
ily be seen that the collapse operation preserves the number
of connected components.

(d)

42l

(f)

Figure 3. (a): A pure 3-complex X in F2, and
a 3-facet f € X. (f): A complex Y which is the
detachment of f from X. (a-f): A collapse se-
quence from Xto Y.

Let X,Y be two complexes. Lef such thatXNY is a
subcomplex oZ andZ is a subcomplex of, and letf,g €
Z\ X. The pair(f,qg) is a free pair forX U Z if and only if
(f,9) is a free pair forZ. Thus, by induction, we have the
following property.

Proposition 1 ([4]). Let X,Y be two complexes iif". The
complex XUY collapses onto X if and only if Y collapses
onto XNY.

The operation of detachment allows us to remove a sub-
set from a complex, while guaranteeing that the resultlis sti
a complex.

Definition 2 ([4]). Let X be a complex ifi” and let YC X.
We set XOY = (X\Y)~. The set XOY is a complex which
is thedetachmenofY from X.

In the following, we will be more particularly interested
in the case wher¥ is a single cell. For example in Fig. 3a,



we see a compleX containing a 3-cellf, andX © f is —
depicted in Fig. 3f. ]

Let us now recall here a definition of simplicity [4] based
on the collapse operation, which can be seen as a discrete 7
counterpart of the one given by T.Y. Kong [18].
Definition 3 ([4]). LetY C X; we say that Y isimple for vany
X if X collapses onto XY . (@)

The collapse sequence displayed in Fig. 3 (a-f) shows
that the cellf is simple for the complex depicted in (a).

The notion of attachment, as introduced by T.Y. Kong
[17, 18], leads to a local characterization of simple sets, R i
which follows easily from Prop. 1. Y /14
Let X be a complex irf" and letY be a subcomplex of (b)

X. Theattachmenbf Y for X is the complex defined by

AI(Y, X) =Y N(XOY). Figure 4. (a) Bing’s house with two rooms

Proposition 4 ([4]). Let X be a complex ifi" and letY be (classical representation). The four rectan-
a subcomplex of X. The complex Y is simple for X if and  gles in light gray are not part of the house,
only if Y collapses onto AfY, X). thus the lower room can be reached through

the upper chimney, and vice-versa. (b) A 3-
complex made of 24 cubes. The arrows sym-
bolize the order in which  3-collapse opera-
tions can be made in order to “carve” the
lower room of the house. By performing a
symmetrical operation for the upper room,
we obtain a 2-complex (Bing’s house) which
has no free face.

Let us recall two important properties proved in [11],
which will be used to establish the main results of this pa-
per. In [11], these properties where introduced for proving
new characterizations of 2D, 3D and 4D simple points.

Consider three complexésB,C. If A collapses ont&@
andA collapses ont®, then we know tha#, B andC “have
the same topology”. If in addition we ha@®C B C A, itis
tempting to conjecture thd& collapses ont&. Quite sur-
prisingly this is not always true. Classical counter-exéap
to this assertion are Bing's house and the dunce hat ([7, 34],
see also [11]). collapses onto D.

For example,_Bing’s h(_)use can be obtained _by collapse |tjs also proved in [11] that extensions of Th. 5 and Th. 6
from a full cuboid (see Fig. 4). Nevertheless, it does not 4 dimension 5 and higher do not hold. This is due to the

collapse onto any of its subsets: this object has no free pairpossibility to find, in ad-face withd > 5, counter-examples
Itis thus a counter-example for the above conjecture, with |ixe Bing’s house or the dunce hat.

A: a cuboidB: Bing's house, and: a point inB. In [11] Th. 7 and Cor. 8 (see below) constitute a key property

we show that a dunce hat can also be realized as a cubicaf;nich will be used to prove Prop. 19, Prop. 25 and Th. 21.
complex, and that it is also a counter-example for the same ’

assertion. Theorem 7. Let f be a d-face with & {2,3,4}, and let
In the two-dimensional discrete plaiid, such counter-  X,Y be two subcomplexes bf such that X is collapsible

examples cannot be found, consequently the above conjecand Y is collapsible. Then, XY is collapsible if and only

ture is true in this case. In [11] we show that, in the bound- if X NY is collapsible.

ary of ann-face withn < 4, there is “not enough room”

to build such counter-examples, and thus we have the two

following properties.

Cor. 8 generalizes Th. 7 to an arbitrary number of sub-
complexes.

_ Corollary 8. Let f be a d-face with & {2,3,4}, let ¢ be
Theorem 5([11]). Let f be a d-face with & {2,3,4}, let 5, integer strictly greater tha, let X, ..., X, be/ subcom-
A,B be two subcomplexes 6f such that BZ A, and Ais  jayes off. The two following assertions are equivalent:

collapsible. Then, B is collapsible if and only if A collapse i) Forall L C {1 £} such that L 0, Uje X; is collapsi-
onto B. - '
ble.

Theorem 6([11]). Let f be a d_Iace with & {2’ 3’4}' ang 3Notice that a similar property holds iR, in the framework of alge-
let C,D be two subcomplexes 6f such that DC C, and f braic topology, if we replace the notion of collapsibilitnto a point by the

collapses onto D. Therf, collapses onto C if and only if C  one of contractibility [19, 30].




iiyForallL C {1,...
ble.

,£} such that L# 0, Nic X is collapsi-

3 Critical kernels

Let us briefly recall the framework introduced by one of
the authors (in [4]) for thinning, in parallel, discrete ebjs

Fig. 5, where a compleX is depicted, helps us to illus-
trate these notions. The letteAsB,C,D, E,F indicate all
the facets (2-faces), the lettexd, c,d, e, f, g indicate some
of the 1-faces, and the letterau,v,w,X,y,z some O-faces.
The essential faces of the compkéxorm the seEsgX) =
{A,B,C,D,E,F, a,b,c,d.t,x,y,z} (essential O-faces and 1-
faces are highlighted in the figure). The coreldffor X
is the set{x,c,y,z}, the core ofE for X is {y,d,u}. We

with the warranty that topology is preserved. We focus here can see that a collapse sequence from thefcedl {y,d, u}

on the two-, three- and four-dimensional cases, but in factexists: e.g, (E, {v, f,w.g,y.d,u}, {w.g,y.d,u}, {y,d,u}).
some of the results in this section are valid for complexes Thus, the faceE is regular forX. On the other hand, we
of arbitrary dimension. This framework is based solely on can see that no collapse sequence fidro {x,c,y,z} ex-
three notions: the notion of an essential face which allows ists, since the latter complex is disconnected: the fRdst

us to define the core of a face, and the notion of a critical critical for X. We will see later that, as a consequence of

face.

Definition 9 ([4]). Let X be a complex ifi" and let fe X.
We say that f is aessential face foX if f is precisely the

Prop. 14, a facet is simple if and only if it is regular. Let
us now consider the case of face® andc, which are not
facets. We hav€ore(d,X) = {t}, Core(b, X) = {t,x} and
Core(€,X) = {x,y}. Thus,ais regular and,c are critical

intersection of all facets of X that contain f. We denote by for X. An M-critical face is a face that is critical and not in-
EsgX) the set composed of all essential faces of X. If f is ¢jyded in any other critical face, thus the fdxis M-critical

an essential face for X, we say thiais anessential cell for
X. IfY is a subcomplex of X and E¥3 C EsgX), then we
say thatY is arssential subcomplex of.

Observe that a facet of is necessarily an essential face
for X. Observe also that, iK andY are both puren-
complexes, thelY is an essential subcomplex &fwhen-
everY is a subcomplex oX.

Definition 10 ([4]). Let X be a complex i and let fe
EsgX). Thecore of f for X is the complex Coféd,X) =
U{g|ge EsgX)Nf*}.

Definition 11 ([4]). Let X be a complexif" and let fe X.
We say that f and areregular forX if f € EsgX) and if f
collapses onto Cofd, X). We say that f and are critical
for X if f € EsgX) and if f is not regular for X.

If X be a complex i, we set Criti¢X) = U{f | f is criti-
cal for X}, we say that CriticX) is thecritical kernel ofX.
A face f in X is amaximal critical face or an M-critical
face (forX), if f is a facet of CritigX).

Ve ]

Figure 5. A complex X for the illustration of
the notions of essential face, core, critical
and M-critical face (see text).

(as it may be seen that bdBandC are regular), but the face
cis not M-critical, since it is included in the critical faé®
See also Fig. 6a for an illustration of critical faces in 3D.

The following properties of the core of a cell will be use-
ful in the sequel.

Proposition 12 ([4]). Let X be a complex ifi™", and let
f € EsgX). LetK={ge X | f C g}, and let Y=XOK.
We have: Coréf , X) = Att(f,Yuf) = fny.

Corollary 13 ([4]). Let X be a complexAiii?“, and let f be
afacet of X. We have: Cofé, X) = Att(f, X).

As shown below, there is a strong link between the no-
tions of regular and simple face.

Proposition 14 ([4]). Let X be a complex iff", and let
f € EsgX). LetK={ge X | f C g} and Z= [XOK]JU .
The face f is regular for X if and only if is simple for Z.

In particular, whenevef is a facet,f is regular forX if
and only if f is simple forX (since, in this case, we have
K ={f} and thusZ = X).

The following theorem is the most fundamental result
concerning critical kernels. We will use it in the sequel of
this paper in dimension 4 or less, but notice that the theorem
holds whatever the dimension.

Theorem 15([4]). Letne N, let X be a complex ifi", and
let Y be an essential subcomplex of X.

i) The complex X collapses onto its critical kernel.

i) If Y contains the critical kernel of X, then X collapses
ontoY.

iii) If Y contains the critical kernel of X, and if Z is an es-
sential subcomplex of X such that®YZ, then Z collapses
ontoY.



(@) (b)
(€) (d)

Figure 6. (a): A 3-complex X, made of 12
cubes, and its critical faces (highlighted).
(b): The critical kernel X; = Critic(X). (c): Xp =
Critic (X1). (d): X3 = Critic(X2) = Critic(X3).

In Fig. 6, we show that the very notion of critical kernel
can be seen as a powerful thinning algorithm, which con-
sists of computing iteratively the critical kernel of theepr
ceding computation. Furthermore, Th. 15ii tells us that any
essential subcomplex of X that is “between’X (Fig. 6a)
andXj (Fig. 6b) is such thaX collapses ont'. This true,
in particular, of any subcomplékthat is a pure 3-complex
containingX;. This property gives birth to a wide class
of parallel thinning algorithms, where different critenis
basede.g. on geometrical notions, can be used in order to
choose a particular set as the result of a single thinnirg ste
(see Sec. 4).

4 Crucial kernels

In the image processing literature, a digital image is of-
ten considered as a set of pixels in 2D, voxels in 3D, or
4-xels in 4D. A pixel (resp. voxel, 4-xel) is an elemen-

(see Fig. 6b). The notion of crucial clique, introduced ih [6
allows us to recover a puksubcomplex of an arbitrary
pure d-complex X, under the constraint thaf collapses
ontoY.

Definition 16 ([6]). Let X be a pure d-complex if¢, and
let f be an M-critical face for X. The set K of all the facets
of X that contain f is called arucial clique (forX). More
precisely, K is therucial clique induced by.

]

gl
gl

piitl

(@) (b)
RoRsr lais
(d) (e) ®

Figure 7. Crucial cliques in 3 (represented
in light gray): (a) induced by an M-critical
O-face; (b,c) induced by an M-critical  1-face;
(d,e,f) induced by an M-critical 2-face. The
considered M-critical faces are in dark gray,
the core of these M-critical faces (when non-
empty) is represented in black.

tary square (resp. cube, hypercube), thus an easy corre-
spondence can be made between this classical view and the

framework of cubical complexes. From now on, we con-
sider only complexes that are unionsatells, i.e., pure
d-complexes.

Notice that, ifX is a pure complex iff? and if fisa
d-cell of X, thenX © f is a pure complex iffd. There is

Some 3D crucial cliques are illustrated in Fig. 7. Ob-
serve that Fig. 7e depicts precisely the configuration of vox
elsx,y in Fig. 1le. It may be easily seen that, informally
speaking, a thinning step that preserves all non-simple vox
els and at least one voxel in each crucial clique, preserves

indeed an equivalence between the operation on complexesopology.

that consists of removing (by detachment) a singpieell,
and the removal of an 8-simple (resp. 26-simple, 80-simple)
point in the framework of 2D (resp. 3D, 4D) digital topol-
ogy (see[17, 18]).

If X is a pured-complex €.g, a union of voxels irF®),
the critical kernel ofX is not necessarily a pugkcomplex

The following parallel thinning scheme takes as input an
“object” X that is a purel-complex, and a sé&, calledcon-
straint set composed of facets of that must be preserved
during the thinning.



Scheme 1:CrucialThinning

Data :de€ {2,3,4}, apured-complexX in F9,
a setK of facets ofX
Result : X
1 repeat
2 D := set of facets oK that are critical foiX or that
are inK;
3 T :=set of facets oK that belong to a crucial
clique included inX \ D;
4 X:=[DUT];
5 until stability;

For each single step of Scheme 1, it may easily be seen
that any critical face ofX, if not contained inK or in a
critical facet ofX, is contained inl. Thus, by Th. 15, we
deduce that the sef at stepi collapses onto the set at
stepi + 1, and that Scheme 1 preserves topology.

Scheme 1 is very general, since any isemay be used Figure 8. lllustration of Scheme 1in 2D, K =0.
to constrain the thinning. Below, we give three examples of
thinning methods based on this scheme, which illustrate the
versatility of the critical kernels framework. Other exam-
ples may be found in [5, 6].

Example 1. symmetrical thinning without constraint
set.

In Fig. 8 and Fig. 9, we illustrate the steps of Scheme 1
with no constraint K = 0). The original objects are the
same as in Fig. 1la and Fig. 1le respectively. In Fig. 8, three [
steps are needed to reach stability, and in Fig. 9 only two , P
steps are necessary.
Such minimal skeletons may be used in some applications
where we are not interested to keep the branches of a skele-

ton.
Figure 9. lllustration of Scheme 1in 3D, K=0.

Example 2 symmetrical thinning with medial axis.

A ball B is maximalfor an objectX if B is included inX
and is not strictly included in any other ball includeddn  has a “natural extension” to 3D was cited among three open
The set of all the centers of its maximal balls is often called questions relative to digital topology by Kong, Litherland
themedial axisof the object. and Rosenfeld in [24] (question 547). We show here that
In Fig. 10, we show an example of curvilinear skeleton in the critical kernels framework indeed offers a direct way to
2D and surface skeleton in 3D, obtained by the above paral-extend the directional strategy to dimensions higher than 2
lel thinning scheme. The constraint set K is the medial axis A 5|ight variant of Scheme 1 consists of Computing the set
based on the Manhattan distance in the 2D case, and th& dynamically, at each iteration, from the current state of
subset of the medial axis representing the locus of centerghe seiX.
of maximal balls with radius greater than a chosen threshold To implement in 3D the directional method, let us take as
(3) in the 3D case. constrainK the set of all points that are not “up” voxels, let-
ting as candidates for deletion only those voxels that have
no neighbor belonging to the object in the “up” direction:

We have seen in the introduction that the directional see the result in Fig. 11b. Repeating this procedure with
strategy for parallel thinning, proposed by Rosenfeld in down, north, south, east, and west voxels achieves one step
2D [32], cannot be straightforwardly extended to the 3D of directional thinning, as illustrated in Fig. 11. Notidet
case. In fact, the question of knowing whether this strategy no “special configuration” (like the ones of Fig. 1c,d) need

Example 3 thinning with directional strategy.



Figure 11. Directional thinning. Voxels
marked u,d.,n,s are respectively up, down,
north and south voxels.

pers related to parallel thinning.

Now, let us state two properties of crucial cliques which
are essential for the proof of one of our main results
(Th. 27).

Proposition 17. Let X be a pure d-complex iff', with d €
{2,3,4}, let f be an M-critical face of X, letK be the crucial
clique induced by f, and let k be any facet of K. Léthk
such that KC K\ {k} and K # K\ {k}.

Then, k is a simple face of the comple®X’.

Figure 10. A 2D curvilinar skeleton (top),

and a 3D surface skeleton (bottom), obtained

thanks to the CrucialThinning scheme. Proposition 18. Let X be a pure d-complex iff', with d
{2,3,4}, let f be an M-critical face of X, let K be the crucial
cligue induced by f, and let k be any facet of K.

Then, k is not a simple face of the comg® K] Uk.
to be introduced, in 2D as in 3D. Such configurations are in-

deed crucial cliques, thus Scheme 1 automatically preserve  Prop- 19, below, plays a role in the proofs of Prop. 25
them. Notice also that similar extensions may be done in di- (Nence also Th. 27) and Th. 20.

mensions higher than 3. Proposition 19. Let X be a pure d-complex iff, with d
In addition to these three examples, let us notice that by {2 3 4}, let K be a set of facets of X, letkK, such that

way of such constraint sets, some geometric conditions suctk is not simple fofX © K] Uk and k is simple fofX © K’]

as curve end or surface border detection may also be introawhenever KC K\ {k} and K’ # K\ {k}. Then,n{h € K}

duced [5, 6], both with the symmetrical and with the direc- is a face.

tional strategy. Let us mention that for the 3D case, a more

powerful thinning scheme has been proposed in [5], based Some crucial cliques have a particularly simple structure:
on a variant of the notion of crucial clique those which are reduced to a small connected component,

It should be noted that in 2D and 3D, the methodology yvhe_re each element is adjacent to each oth_er (ke those
. . in Fig. 7a,b,d). We show that those are precisely the cru-
based on crucial cliques does not need to handle the struc- . ; . L .
) cial cliques that are induced by an M-critical face having an
ture of abstract complexes. In fact, we showed in [6] that embty core
2D crucial cligues may be characterized through a set of Py '

patterns defined in the classical square grid, as in most paTheorem 20. Let X be a pure d-complex i, with d €



{2,3,4}, let K be a crucial clique for X induced by an M-
critical face f. Then, K is a connected component of X if
and only if Coréf,X) = 0.

k € C, the facet k is P-simple fdX,C) if and only if k does
not contain any face f that is critical for X, and such that
all the facets of X containing f are in C.

Thus, any facet that is P-simple fOX,C) is not crucial
for (X,D). The converse is not true. For examplefify if
we consider a seX that consists of a two-pixels width rib-

5 P-simple points

In the framework of digital topology, one of the authors
introduced the notion of P-simple point [3]. P-simple psint

bon (see Fig. 1b), and if we denote Bythe set of all facets
of X, it may be seen that the four pixels at the extremities of

can be used as a verification method, but also as a methodthe ribbon are not crucial fofX, D), but also not P-simple

ology to design parallel thinning algorithms [3, 8, 26, 27].

for (X,C).

We show in this section that there exists an equivalence _Ndeed, itis possible to remove more facets with a thin-
between the notion of P-simple points and a notion derived "iN9 sgheme that deletes S|mple facets that are not crucial
from the one of crucial clique. This equivalence has been than with one that deletes P-simple facets. In other words,

stated for the 2D case in [6], here we show that it extendsthe scheme CrucialThinning is more powerful than PSim-
up to 4D. pleThinning. To illustrate this, consider again the exampl

First, we recall the definition of P-simple points. In this ©f Fig- 1D, with no constraint seK(= 0). One step of Cru-
definition, the se€ is a set of points that are “candidates for Ci@/Thinning deletes four pixels, and three steps reduees t

deletion”.

Let X be a pured-complex inF", and letC be a set of
facets ofX. A facetk € Cis said to bd>-simple for(X,C) if
k is simple for all complexeX © T, such thar C C\ {k}.

For example, consider Fig. 1a and Fig. 1b, and assum

in each case tha& is the set of all simple facets (in gray).

Then, no facet in Fig. 1b is P-simple, and all simple facets
in Fig. 1a, except the ones that are delineated in bold, ar

P-simple for(X,C).

The following parallel thinning scheme based on P-
simple points takes as input, as CrucialThinning (see

Sec. 4), an “object’X which is a pured-complex, and a
setK, called constraint set, composed of facets<othat
must be preserved during the thinning.

Scheme 2:PSimpleThinning

Data :de€ {2,3,4}, a pured-complexX in F9,
a setK of facets ofX
Result : X
1 repeat

2 U := set of facets oK that are simple fokK;

3 V := set of facets oK that are P-simple for
(X, U\K);

4 X:=X0OV;

5 until stability;

For the 3D case, a local characterization that leads to
a linear algorithm for testing P-simplicity has been proved
in [3]. Until now, such a characterization was not available

in 4D.

The following equivalence leads, in particular, to a lo-

cal characterization and to the first algorithm for testing P
simplicity in 4D.

Theorem 21. Let X be a pure d-complex iR, with d €
{2,3,4}, let C be a set of facets of X, letBX OC. Let

e

e

ribbon to just two pixels, while PSimpleThinning leavesthi
object unchanged.

Let X be a pured-complex inF9, and letY be a pure
d-subcomplex ofX. We say thaly is acrucial retraction
of X if Y contains all the critical facets of, and at least
one facet of each crucial clique fof. By Th. 15, ifY is
a crucial retraction oX thenX collapses onte'. In fact,
despite the appearance, it is possible to check only with the
notion of P-simple points whether the result of one step of
a given algorithm is a crucial retraction or not. Since every
critical face is included in an M-critical face, by Th. 21, we
have the following.

Proposition 22. Let X be a pure d-complex iff, with d
{2,3,4}, let T be a set of facets of X. Let U be the set of all
facets of X that are not in T. The complex Ts a crucial
retraction of X if and only if each element of U is P-simple
for (X,U).

6 Minimal non-simple sets

In the preceding section, we saw that critical kernels,
which are settled in the framework of abstract complexes,
allow us to retrieve the notion of P-simple point proposed
in the context of digital topology. Now, we show that the
notion of minimal non-simple set can also be retrieved in
the framework of critical kernels.

C. Ronse introduced in [31] the minimal non-simple sets
(MNS) to propose some conditions under which simple
points can be removed in parallel while preserving topol-
ogy. This leads to verification methods for the topological
soundness of 2D thinning algorithms [31, 14], 3D thinning
algorithms [23, 17, 28], the 4D case has even been consid-
eredin[12, 19, 21].

The main result of this section (Th. 27) proves the equiv-
alence between MNS and crucial cliques in dimensions 2, 3



and 4. This equivalence leads to the first characterizafion o Theorem 27. Let X be a pure d-complex if¢, with d €
MNS which can be verified using a polynomial method. In {2,3,4}, and let K be a set of facets of X. Then K is a
contrast, the very definition of a MNS (see below), as well minimal non-simple set for X if and only if it is a crucial
as the characterization of Th. 23, involves the examination clique for X.

of all subsets of a given candidate sely, a subset of a
2x2x2x2blockin 4D.

Let X be a pured-complex inF9, with d € {2,3,4}. A
sequenceko, ...,ky) of facets ofX is said to be asimple
sequence for Xf kg is simple forX, and if, for anyi €
{1,...,¢}, ki is simple forX © {k; | 0< j < i}. LetK be a Proposition 28 (adapted from Kong [19], theorem 3:2)
set of facets oK. The selK is said to beF-simple(where ~ Let X be a pure d-complex i, with d € {2,3,4}, let K
“F” stands for facet) foX if K is empty, or if the elements  be a set of facets of X, such that Ks a connected compo-
of K can be ordered as a simple sequenceXforThe set  nent of X, and such that the intersection of all its facets is
K is minimal non-simple for Xf it is not F-simple forX non-empty. Then, K is a minimal non-simple set for X.
and if all its proper subsets are F-simple. The following
characterization will be used in the sequel.

We retrieve thanks to Th. 20, and by inspection of all
possible configurations, a previously established prgpert
about MNSs that are connected components [31, 14, 17,
19], its most general formulation being found in [19].

We also retrieve thanks to Th. 20, and from the obser-
vation that a face with a non-empty core has necessarily a
Theorem 23(adapted from Gau and Kong [12], theorem 3)  dimension that is at least 1, the following property.

Let X be a pure d-complex iff, with d € {2,3,4}, and let Proposition 29 (adapted from Gau and Kong [12], theorem

K be a sgt of facets_of X. Then K is a m|nm_1§1I non-simple 8-2). Let X be a purel-complex inF* (resp. 3-complex in

get for X if anq only if t_he two following conditions hold: T3, 2-complex ifF2), let K be a MNS such thatKis not a

i) Each k of K 'is non-simple fdiX © K] Uk. connected component of X. Then, K is a non-empty subset
ii) Each k of K is simple fofX © K'] whenever KC K\ {k} 5 55 2« 2 block of eight4-faces (resp. @ x 2 block of

and K' # K\ {k}. four 3-faces, a set of tw-faces having an intersection that

For example, it may be seen that the §ety} in Fig. 1a,  is al-face).
the set{x,y} in Fig. 1le, as well as the sets displayed in Fig. 7

in light gray, are indeed minimal non-simple sets. Conclusion
From Th. 23 and Prop. 19, we can directly retrieve are-  Critical kernels constitute a powerful framework to study
sult previously established by Gau and Kong. parallel homotopic thinning in any dimension. Indeed,

Theorem 24 (adapted from Gau and Kong [12], theorem the very notion of critical kernel may be seen as thinning
5). Let X be a pured-complex inF* (resp. 3—com,plex in scheme, which consists of iteratively computing the criti-

73,2 complexifi?) and let K be a set of facets of X. If K cal kernel of the result of the previous step. Critical kdsne
is a minimal non-simple set for X, then K is a non-empty May also be used to design new algorithms, as well as to
subset of som2 x 2 x 2 x 2 block of sixteert-faces (resp. ~ check the topological validity of existing ones.

2% 2 x 2 block of eighB-faces2 x 2 block of four2-faces). We demonstrated i_n this article that the main conce_pts
previously introduced in order to study topology-presegyi

Prop. 25 and Prop. 26 are steps for the proof of the mainparallel thinning in the framework of digital topology,
result of this section, Th. 27. namely P-simple points and minimal non-simple sets, may

Proposition 25. Let X be a pure d-complex iff, with d be not only retrieved in the framework of critical kernels,
{2,3,4}, let K be a minimal non-simple set fc;r X and let Put also better understood and enriched. Critical kernels

f be the intersection of all the elements of K. Then, f is a thUS appear to constitute a unifying framework which en-

critical face for X. compasses previous works on parallel thinning.
N _ Furthermore, in contrast with minimal non-simple sets,
Proposition 26. Let X be a pure d-complex iff, with d € critical kernels provide a methodology to produce thinning

{2,3,4}, let K be a minimal non-simple set for X, and let algorithms which preserve topology “by construction”, and
f be the intersection of all the elements of K. Then, fis we showed in this paperthat these a|gorithms are more pow-
an M-critical face for X and K is the crucial clique induced  erful than those which may be designed on the basis of P-
by f. simple points.

If K is a crucial clique foiX, then from Th. 23, Prop. 17
and Prop. 18K is a minimal non-simple set fok. Con-  Appendix
versely, if K is a minimal non-simple set foX, then by
Prop. 26K is a crucial clique. Thus, we have the following In the sequel, we denote b§" the set of all facets of a
theorem. complexX.
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Proof of Th. 7. Suppose thaX UY is collapsible. By ap-
plying Th. 5 withA= X UY andB = X, we deduce that
XUY collapses ontX. By Prop. 1, we deduce th¥tcol-
lapses ontX NY. And by applying Th. 5 withA=Y and
B=XnNY, we deduce thaxNY is collapsible.

Now, suppose that NY is collapsible. By applying Th. 5
with A= X andB = XNY, we deduce thaX collapses
ontoXNY. By Prop. 1, we deduce thatUY collapses
ontoY. And sinceY is collapsible, by transitivity UY is
collapsible.™d

Proof of Cor. 8. By Th. 7, the property holds whenever
¢ =2. Suppose that it holds unti- 1 > 2, and let us prove
it for £. o

i = ii. Foranyje {1,....0}, letZj =n_1%. For any
L C{1,...,4}, 0< [L] < ¢, the recurrence hypothesis im-
plies thatnjc X is collapsible, in particulaZ,_; is col-
lapsible. It remains to prove tha is collapsible. For any
je{l,... . 0—1}, letY;=X;UX,. ForallLC {1,...,/—1},

L # 0, we see thaticY; is collapsible. From the recur-
rence hypothesis, we deduce tiidt 1Y, is collapsible.
But, ﬂ:z?lei =2Zy_1UX,. SinceZ,_1UXy, Z,_1 andX; all
are collapsible, from Th. 7 we deduce t@at 1 N X, = Zy is
collapsible.

ii = i. The proof is obtained by exchanging intersection
and union in the previous reasonirng.

Proof of Prop. 17. LetZ = [X O K] andY = [X ©K'] © k
(see an illustration in Fig. 12). By definition of a crucial
cligue, the facef is included in any facet oK, thusf is
contained in botlZ andY. Suppose thag is also an M-

O OF
i EY

X
Figure 12. lllustration (in ) for the proof of

Prop. 17.

P

z

critical face forX which is in [K']~, and letK” be the cru-
cial clique forX induced byg. If K” ¢ [K'U{k}], then by
definition of Y, g must be included in a facet which is in
Y. OtherwiseK” C K, hencef C g, and by definition of an
M-critical face, f = g. From this we see that contains the
critical kernel ofX. FurthermoreZ is an essential subcom-
plex of X (sincez™ C X* C EsgX)) andY is an essential
subcomplex o (idem). From Th. 15iii, we deduce thAt
collapses ontd, in other wordsk is simple forZ. O

Proof of Prop. 18. LetW = [X © K], Y =W Uk, and
Z=WU T (see an illustration in Fig. 13). We know thét
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X

Figure 13. lllustration (in
Prop. 18 and Prop. 25.

IF3) for the proofs of

is an essential subcomplexXxf(sinceY™ C X C EsgX))
and we can see thatis an essential subcomplexXf since
f is M-critical, thus essential faX. From Th. 15, we de-
duce thaty collapses ont@, and by Prop. 1k collapses
ontokNZ (i).

Suppose _thak is simple for Y, that is, Y collapses
ontoY © k=W, thus by Prop. 1k collapses ont&NW
(ii). By definition of Z andW, kNnW is a subcomplex of
knZ. Thus from (i), (i) and Th. 6, we deduce thiat Z
collapses ont&NW. A A

Remark thaknNZ = [knW]U f, thus by Prop. 1f collapses
onto f N[kNW] = f N"W. Again by Prop. 1, we deduce that
Z=WuU fcollapses ontwv, i.e, f is simple forZ, a contra-
diction with Prop. 14 and the fact théatis critical for X. OJ

Proof of Prop. 19. Notice that the property trivially holds
when |[K| = 1, suppose now thaK| =¢ > 1. Let us
write K = {k = kq,kz,...,k/}. By hypothesisk is sim-
ple for Uiel {[X © K]UkUK}, YL C {2,...,¢} such that
L # 0. By Prop. 4k collapses Ont(DJ|eL{[X OKJUk}nk
= Uil {(X OK]Uk) Nk}, VL C {2,.. .,£} such that. #
0 By Cor. 8 and Th. 5 (withA = k) k cqllagsesA onto
NES{(IX O KJUK) Nk} = (X O K] NK) U (NZ5k] k) =
([X OKNk U, ‘wheref =nN{heK}. Thusf cannot be
empty, otherwisé would collapse ontdX © K] N k, a con-
tradiction with Prop. 4 and the fact thkis not simple for
[X©K]JUk. Sincef is a non-empty intersection of facefs,
is a face

Proof of Th. 20. Let us denote byC(Z)| the number of
connected components of any set of faged'he property
is straightforward whefK| = 1, suppose now thakK| > 1.
LetY =X OK. Suppose the~ is a connected component
of X, thusk~nNY = 0. Sincef C K~, we havef NY = 0.
By Prop. 12,f nY = Core(f, X), henceCore(f,X) = 0.
Conversely, suppose th@ore(f,X) = 0, hencef NY = 0
and|C(YU )| =|C(Y)|+1. Sincef is M-critical for X, the
critical kernel ofX is contained iry U f, furthermorey U f
is an essential subcomplex ¥f By Th. 15ii, X collapses
ontoY U f, hence C(YU f)| = |C(X)| =|C(Y)|+1, and by
definition ofY, K~ is a connected componentXf [

The proof of Th. 21 will be given after the one of
Prop. 25 for a more comfortable reading, as the two proofs



share a common argument.

Proof of Prop. 25. From Th. 23 and Prop. 19, we deduce
that f is a face ofX. Let /¢ = |K]|, if £ = 1 the property
follows straightforwardly from the definitions. From now,
suppose thaf > 2. Let us writeK = {k = ki, k,..., K¢},
W =[XOK],Y =WuUk, andZ=WU f (see Fig. 13foran
illustration). LetL be any non-empty subset ¢2,...,¢},
and let us writey, = WU {k [i € L}~. From Th. 23|| k

is simple fory, U k, that i is,YL U k collapses onta. From
Prop. 1, k collapses ontknNY, = km WuU{ki[ieL}]
—knu{Wuk |iel}] = U{[Wuk.]mk| €L} From
Cor. 8 and Th. 5 (withA = k) we deduce tbak collapses
onto N{WUkJNk|2<i </} =kN[N{WUk; | 1<i < /}]
=knZ; and by Prop. 1Y = kU Z collapses ont&. Sup-
pose thatf is not a critical face forX, i.e., f collapses
onto Core(f,X). From Prop. 12, we havé:ore(f X) =

f N\W. Thus, sincey collapses ontoWu f and f collapses
onto f "W (hence by Prop. WU f collapses ontdV), we
deduce thaY collapses ont®V, which means that is sim-
ple forY, a contradiction with Th. 23]

Proof of Th. 21. Suppose thdt is P-simple for(X,C). Let
f be any face irk such thatf # k and such that the sét
of all facets ofX containingf is included inC. Let us write
K = {k=ki,ke,...,k:}. By definition of a P-simple facet,
we know thak is S|mple for[X © K] Uk, thus by Prop. 4k
collapses ontfX © K]N k (1). We also know thdtis simple
for U.eL{[X®K]UkUk.} VL C{2,...,¢} such that # 0.
By Prop. 4,k collapses ontaic {[X S K]Uki} Nk, VL C
{2,...,¢} such that # 0. By Cor. 8 and Th. 5k collapses
ontom' g{[x®K]ulq}mk (km[x®K]) (Ni=5{kiNk})
= (XOK]nkyu f (2). Furthermoref is coIIapS|bIe 3)
sincef is a cell. From (1), (2), (3), Th. 7 and Th. 5, we
deduce thak collapses ontg[X ©K]N knf= [XOK]N f,
henceg X ©K]nN f is collapsible (by Th. 5), andl collapses
onto [X © K]N f (again by Th. 5). Thus by Prop. 14,is
not critical for X. Since this holds for any such fadethe
forward implication is proved.
Suppose now thadt is not P-simple forX,C). Thus, there
exists a seT C C\ {k} such thak is not simple forX © T.
Without loss of generality, we suppose tfias minimal for
this propertyj.e., k is simple forX © T’ whatever the sef’
strictly included inT. Let f denote the intersection of all
the facets off U {k}. From Prop. 19, we deduce thkis a
face of X. From now on, the proof is essentially the same
as the proof of Prop. 25, showing thiats a critical face ]

Proof of Prop. 26. See Fig. 14 for an illustration. From
Prop. 25 we know thaf is critical for X, suppose that
there exists a critical fac€’ for X which strictly contains
f. We may assume thdt is M-critical for X (otherwise
there would exist an M-critical face containing bdthand
f, and this face should be chosen). Két= {ke X | f' Ck}
(by construction we havil’ C K), Y = [X©K'], andY’ =

12

Y U f'. We haveK’ # K, otherwise we would havé’ = f.
Letk € K’ and letY” =Y Uk. From Th. 23ii we deduce that

=T ] P
f f ]

—t= & Eék
X Y Y Y

Figure 14. lllustration (in  F3) for the proof of

Prop. 26.

Y" collapses ontd. By Prop. 1, it follows thak collapses
ontokNY (1). The complexY’ contains, by construction,
the critical kernel ofX. Furthermore, since it can be seen
that bothk and f’ are essential fox, we know thaty” is
an essential subcomplex &f andY’ is an essential sub-
complex ofX. By Th. 15iii, we deduce that” collapses
ontoY’. By Prop. 1, it follows thak collapses ontéxNY’
(2). From (1), (2) and Th. 6, we deduce thaty’ collapses
qntoka ie., (kﬂY)Uf’coIIapses ontde By Prop. 1,
f’ thus collapses onttknY)N f* =Y N " and by Prop. 12,
Y N f/ = Corg(f/,X), hence a contradiction with the initial
assumption that’ is critical for X. O
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