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Abstract In this paper, we propose a variational soft seg-
mentation framework inspired by the level set formulation
of multiphase Chan-Vese model. We use soft membership
functions valued in [0,1] to replace the Heaviside functions
of level sets (or characteristic functions) such that we get
a representation of regions by soft membership functions
which automatically satisfies the sum to one constraint. We
give general formulas for arbitrary N -phase segmentation,
in contrast to Chan-Vese’s level set method only 2m-phase
are studied. To ensure smoothness on membership func-
tions, both total variation (TV) regularization and H 1 reg-
ularization used as two choices for the definition of regu-
larization term. TV regularization has geometric meaning
which requires that the segmentation curve length as short
as possible, while H 1 regularization has no explicit geo-
metric meaning but is easier to implement with less para-
meters and has higher tolerance to noise. Fast numerical
schemes are designed for both of the regularization methods.
By changing the distance function, the proposed segmenta-
tion framework can be easily extended to the segmentation
of other types of images. Numerical results on cartoon im-
ages, piecewise smooth images and texture images demon-
strate that our methods are effective in multiphase image
segmentation.
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1 Introduction

Image segmentation is fundamental in computer vision. The
aim is to partition an image into several regions so that the
image within each region has uniform characteristics such
as edges, intensities, color and texture. Image segmenta-
tion is extensively studied by variational methods and par-
tial differential equations (PDE) in the past two decades
[3, 19, 21, 29]. Snake [13] and geodesic active contour [3]
models use edge detection functions and evolve the curve
towards sharp gradient. However, the edge based method is
sensitive to noise and therefore so a smoothing process is
usually needed. Region based methods incorporate region
and boundary information and are robust to noise. One of
the most famous region based methods is the Mumford-
Shah model [19], which approximates an image by piece-
wise smooth function with regular boundaries. It is diffi-
cult to implement the Mumford-Shad model in practice. The
special case of piecewise constant Mumford-Shah model is
studied by Chan and Vese in [4] and [5] using level set meth-
ods [20, 24]. The advantage of using the level set method is
that it is easy to formulate the regularization term. However,
the computation is somewhat expensive. Zhu et al. [29] pro-
posed a region competition method unifying snake, region
growing and Bayesian statistics. The model penalizes the
length of the boundaries and the Bayesian error estimated
by parametric probability distributions such as Gaussian
distribution within each region. Then piecewise constant
Mumford-Shah model can be regarded as a special case of
the region competition method.
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Multiphase segmentation is a more challenging problem
than two-phase segmentation. The main difficulty lies in the
effective representation of the regions and their boundaries.
There are several recent works related to the multiphase
Mumford-Shah model. Vese et al. [27] generalized the two-
phase model [4] to multiphase segmentation by using multi
level sets. Both piecewise constant and piecewise smooth
cases are studied. The advantage of using level sets to repre-
sent the multi regions is that it automatically avoids the prob-
lems of vacuum and overlap. Lie at al. [16] proposed to use
piecewise constant level set function in piecewise constant
Mumford-Shah model. The interfaces between regions are
represented by the discontinuities of the function. A smooth
convex functional with a quadratic constraint needs to be
minimized. Jung et al. [12] proposed a phase field method
to handle multiphase piecewise constant segmentation. The
method is based on the phase transition model of Modica
and Mortola with a sinusoidal potential. Since the model is
not quadratic or convex, a convex-concave procedure is used
in the implementation.

Different from the above mentioned methods which yield
hard segmentation result, soft (fuzzy) segmentation ap-
proaches are popular in data mining and medical image seg-
mentation [1, 28]. The soft segmentation method assumes
that each image pixel can be in several regions and the
probability in each region is represented by soft member-
ship function valued in [0,1]. Recently, many two-phase
soft segmentation models are proposed [2, 6, 10, 17, 18], in
which one soft membership function is used in the function-
als such that the functionals are convex with respect to the
membership. The convexity ensures that the new methods
are not sensitive to initialization and global minima can be
found. Another advantage is that Chambolle’s fast dual pro-
jection method [7] can be adopted in the implementation.
Recently, the split Bregman method is introduced to solve
the two-phase soft segmentation problem in [9] which is
also fast. However, only two-phase segmentation are stud-
ied. A general multiphase stochastic variational soft seg-
mentation model was proposed by Shen [26] based on the
Mumford-Shah model. The author used a double well poten-
tial related to phase field to regularize the soft membership
functions. The energy functional in this model is noncon-
vex with respect to each membership function. Numerically,
a set of PDEs has to be solved with the gradient descent
method, which makes the implementation computationally
expensive.

In this paper, we propose a variational soft segmentation
framework inspired by the level set formulation of multi-
phase Chan-Vese model. We use soft membership functions
valued in [0,1] to replace the Heaviside functions of level
sets such that we get a representation of regions by soft
membership functions which automatically satisfies the sum
to one constraint. Meanwhile, to ensure the smoothness of

membership, both TV regularization and H 1 regularization
are considered. TV regularization has geometric meaning
which requires that the segmentation curve length as short
as possible, while H 1 regularization has no explicit geomet-
ric meaning but is easier to implement with less parameters
and has higher tolerance to noise. Fast numerical schemes
are designed for the two regularization methods. By chang-
ing the distance function, the proposed segmentation frame-
work can be easily extended such that we can handle differ-
ent kinds of images. Numerical results on cartoon images,
piecewise smooth images and texture images demonstrate
that our methods are effective in multiphase image segmen-
tation.

The outline of this paper is as follows. In Sect. 2, we pro-
pose and analyze our models. In Sect. 3, we present fast al-
gorithms for both models. In Sect. 4, other distance func-
tions are introduced to deal with piecewise smooth, texture
and color images. In Sect. 5, experimental results are pre-
sented to illustrate the effectiveness of our model. Finally,
we conclude the paper in Sect. 6.

2 The Proposed Method and Mathematical Analysis

First we consider the special case for 2m-phase segmentation
with m characteristic functions. We assume {�i}mi=1 be m

subsets of image domain �, and 1�i
be the characteristic

function of region �i . Then we can take use of {1�i
}mi=1 to

split the image domain into 2m disjoint regions as follows.
For k = 1,2, . . . ,2m, let b

m,k−1
1 , b

m,k−1
2 , . . . , b

m,k−1
m be the

binary representation of k − 1 with m numbers, b
m,k−1
i =

0 ∨ 1, i = 1,2, . . . ,m. Define sm
k = ∑m

i=1 b
m,k−1
i , then

M2m

k = (−1)s
m
k

m∏

i=1

(1�i
− b

m,k−1
i ) (1)

is the characteristic function of the k-th region Dk , i.e.,
Mk = 1Dk

. It is easy to verify that
⋃2m

k=1 Dk = � and
Dk1 ∩ Dk2 = ∅ for any k1 �= k2, k1, k2 = 1, . . . ,2m. There-
fore, {Dk}2m

k=1 is a partition of the image domain.
Let us first consider the piecewise constant image seg-

mentation model whose idea is to approximate the image by
a piecewise constant function, i.e.,

I ≈
N∑

k=1

ck1Dk
.

To solve this problem, a classical criterion developed in [19]
is to minimize

N∑

k=1

Per(∂Dk) + λ

∫

�

(

I −
N∑

k=1

ck1Dk

)2

dx
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where Per(∂Dk) denotes the length of the boundary ∂Dk and
λ > 0 is a weight to balance the two terms. Equivalently, we
can minimize

N∑

i=1

Per(∂�i) + λ

N∑

k=1

∫

�

(I − ck)
21Dk

dx.

In the case of N = 2m, Chan and Vese used m level set
functions φi : � → R, i = 1, . . . ,m, such that
⎧
⎨

⎩

φi(x) > 0 if x ∈ �i,

φi(x) = 0 if x ∈ ∂�i,

φi(x) < 0 if x ∈ �̄i
c
.

Therefore 1�i
= H(φi) where H(φi) is the Heaviside func-

tion: H(φi) = 1 if φi ≥ 0 and H(φi) = 0 otherwise. With m

level sets, Chan-Vese energy functional is

E({φi}mi=1, {ck}2m

k=1)

=
m∑

i=1

∫

�

|∇H(φi)|dx + λ

2m
∑

k=1

∫

�

|I − ck|2M2m

k dx (2)

where

M2m

k = (−1)s
m
k

m∏

i=1

(H(φi) − b
m,k−1
i ). (3)

Specially, if N = 4,m = 2, by formula (1), we have
M4

1 = H(φ1)H(φ2),M
4
2 = H(φ1)(1 − H(φ2)),M

4
3 = (1 −

H(φ1))H(φ2),M
4
4 = (1−H(φ1))(1−H(φ2)). Remark that

only 2m-phase segmentation are studied by Chan and Vese.
In the numerical implementation, H(φi) is replaced by

a smoothed version Hε(φi). Inspired by this, we propose
to use soft smooth membership function ui ∈ [0,1] to re-
place 1�i

. Now we consider a general N -phase segmenta-
tion problem, if 2m−1 < N ≤ 2m, then we propose to solve
the segmentation problem by minimizing the energy

E1({ui}mi=1, {ck}Nk=1)

=
m∑

i=1

∫

�

|∇ui |dx + λ

N∑

k=1

∫

�

|I − ck|2MN
k dx (4)

where if N = 2m,

M2m

k = (−1)s
m
k

m∏

i=1

(ui − b
m,k−1
i ). (5)

Otherwise, if 2m−1 < N < 2m,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

MN
k = (−1)s

m
k

∏m
i=1(ui − b

m,k−1
i ),

for k = 1, . . . ,2k0

MN
k = (−1)

s
m1
k1

∏m1
i=1(ui − b

m1,k1−1
i ),

for k = 2k0 + 1, . . . ,N

(6)

where m1 = m − 1, k0 = N − 2m1, k1 = k − k0. More intu-
itively, we give the formulas of MN

i for N = 2,3,4,5,7,8
respectively.

2
{

M2
1 = u1, M2

2 = 1 − u1;
3

{
M3

1 = u1u2, M3
2 = u1(1 − u2), M3

3 = 1 − u1;

4

{
M4

1 = u1u2, M4
2 = u1(1 − u2),

M4
3 = (1 − u1)u2, M4

4 = (1 − u1)(1 − u2);

5

⎧
⎪⎨

⎪⎩

M5
1 = u1u2u3, M5

2 = u1u2(1 − u3),

M5
3 = u1(1 − u2), M5

4 = (1 − u1)u2,

M5
5 = (1 − u1)(1 − u2);

7

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M7
1 = u1u2u3, M7

2 = u1u2(1 − u3),

M7
3 = u1(1 − u2)u3, M7

4 = u1(1 − u2)(1 − u3),

M7
5 = (1 − u1)u2u3, M7

6 = (1 − u1)u2(1 − u3),

M7
7 = (1 − u1)(1 − u2);

8

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M8
1 = u1u2u3, M8

2 = u1u2(1 − u3),

M8
3 = u1(1 − u2)u3, M8

4 = u1(1 − u2)(1 − u3),

M8
5 = (1 − u1)u2u3, M8

6 = (1 − u1)u2(1 − u3),

M8
7 = (1 − u1)(1 − u2)u3,

M8
8 = (1 − u1)(1 − u2)(1 − u3).

Remark that in the existing soft segmentation models such
as [1, 26], they require that the soft membership functions
satisfy two constraints: each membership function valued
in [0,1] and the summation of all membership functions
be one. It is usually a difficult task to handle the sum to
one constraint. By design, with the formulas (5) and (6), the
proposed soft membership functions automatically satisfies
sum to one constraint, i.e.,

∑N
i=1 Mk = 1.

The total variation term in E1 ensures some regularity of
membership function ui . For more smoothness, H 1 regular-
ity should be considered which results in our second energy

E2({ui}mi=1, {ck}Nk=1)

= 1

2

m∑

i=1

∫

�

|∇ui |2dx + λ

N∑

k=1

∫

�

|I − ck|2MN
k dx. (7)

In the following, we will prove the existence of mini-
mizer of the proposed energy functionals.

We fix N and therefore m. For simplicity, we use the no-
tations Mk = MN

k ,U = {ui}mi=1 and c = {ck}Nk=1. Then

E1(U, c) =
m∑

i=1

∫

�

|∇ui |dx + λ

N∑

k=1

∫

�

|I − ck|2Mkdx. (8)

Under the assumption that the image I ∈ L∞(�), the en-
ergy E1(U, c) is well defined and finite for the admissible
set (U, c) ∈ BV[0,1](�)m × R

N where BV[0,1](�) denotes
bounded variation (BV) functions valued in [0,1].
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Theorem 1 (Existence of Minimizer to E1) Assume the im-
age I ∈ L∞(�). Then for fixed parameters N,λ > 0, there
exists a minimizer of the energy E1 in BV[0,1](�)m × R

N .

Proof Let u1 = 1, ui = 0, i = 2, . . . ,m, then there exist
some 1 ≤ k ≤ N such that Mk = 1 and Mj = 0,∀j �= k.
Hence ck = ∫

�
Idx/|�| and cj = 0,∀j �= k, then

E1(U, c) = ∫
�
(I − ck)

2dx < ∞. Therefore the infimum of
the energy must be finite. Let (Un, cn) ⊆ BV[0,1](�)m ×
R

N be a minimizing sequence for energy E1, that is,
E(Un, cn) → infE(U, c) as n → ∞. Then there exists a
constant C > 0, such that

E(Un, cn) =
m∑

i=1

∫

�

|∇un
i |dx +

N∑

k=1

λ

∫

�

(I − cn
k )2Mn

k dx

≤ C.

Then we have
∫

�

|∇un
i |dx ≤ C. (9)

Since un
i ∈ [0,1], ‖un

i ‖L1(�) = ∫
�

un
i dx ≤ |�|. Together

with (9) we get (un
i ) is uniformly bounded in BV (�) for

each i = 1, . . . ,m. By the compactness property of BV
space, up to a subsequence also denoted by (un

i ) after re-
labeling, there exists a function u∗

i ∈ BV (�) such that

un
i → u∗

i strongly in L1(�),

un
i → u∗

i a.e. x ∈ �,

∇un
i ⇀ ∇u∗

i in the sense of measure.

Then by the lower semicontinuity of total variation,
∫

�

|∇u∗
i |dx ≤ lim inf

n→∞

∫

�

|∇un
i |dx. (10)

Meanwhile since un
i ∈ [0,1], we get u∗

i ∈ [0,1].
It is easy to derive from the Euler-Lagrange equation of

energy E that

cn
k =

∫
�

I (x)Mn
k (x)dx

∫
�

Mn
k (x)dx

. (11)

Since Mn
k ∈ [0,1], we have

|cn
k | ≤ ‖I‖∞.

By the boundedness of sequence {cn
k }, we can abstract a sub-

sequence also denoted by {cn
k } and a constant c∗

k such that

cn
k → c∗

k .

Finally, since un
i → u∗

i , a.e. x ∈ � and cn
k → c∗

k , Fatou
Lemma gives
∫

�

(I − c∗
k )

2M∗
k dx ≤ lim inf

n→∞

∫

�

(I − cn
k )2Mn

k dx (12)

where M∗
k is defined by Mk from replacing ui in Mk by u∗

i .
Combining inequalities (10) and (12) for all i and k, on a
suitable subsequence, we have established that

E1(U∗, c∗) ≤ lim inf
n→∞ E1(Un, cn) = infE1(U, c), (13)

and hence (U∗, c∗) must be a minimizer. This completes the
proof. �

By a similar argument using the compactness of Sobolev
space H 1(�), we can prove the existence of minimizer of
the energy E2.

Theorem 2 (Existence of Minimizer to E2) Assume the im-
age I ∈ L∞(�). Then for fixed parameters N,λ > 0, there
exists a minimizer of the energy E2 in H 1[0,1](�)m × R

N .

3 Numerical Schemes

3.1 Minimizing E1

We will derive a fast numerical method to handle the total
variation term and the constraint ui ∈ [0,1]. For that end we
add auxiliary variables V = {vi}mi=1 and approximate E1 in
(8) by

E1r (U,V, c) =
m∑

i=1

∫

�

|∇vi |dx + 1

2θ

m∑

i=1

∫

�

(vi − ui)
2dx

+ λ

N∑

k=1

∫

�

dkMkdx (14)

where dk := |I − ck|2 and θ is small enough to ensure that
vi approximates ui in the sense of L2 norm.

Since E1 involves three groups of variables and E1 is
convex with respect to each variable ui, vi and ck , alterna-
tive minimization method can be used to find the numerical
solution.

3.1.1 Minimization with Respect to c

Fixing U and V, we calculate the derivative of E1r with re-
spect to ck and set the result to zero, then we obtain

ck =
∫
�

IMkdx
∫
�

Mkdx
, k = 1, . . . ,N. (15)

3.1.2 Minimization with Respect to V

Fixing U and c, the subproblem of vi can be rewritten as

min
vi

∫

�

|∇vi |dx + 1

2θ

∫

�

(vi −ui)
2dx, i = 1, . . . ,m. (16)

This is the well known Rudin-Osher-Fatemi (ROF) mo-
del [23]. Many newly proposed algorithms can solve this
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problem very fast, for example, Chambolle’s duality projec-
tion method [7], the Split-Bregman (SB) method [8], Jia’s
method [11] which is a convergence formulation of SB and
Shen’s method [25]. Here we follow Shen’s method in which
the operator splitting method is used.

The corresponding Euler-Lagrange equation of problem
(16) is

0 ∈ ∂(f ◦ L)(vi) + 1

θ
(vi − ui). (17)

By property of subgradient, ∂(f ◦L)(vi) = L∗∂f (Lvi). De-
fine L∗yi = L∗∂f (Lvi), then yi ∈ ∂f (Lvi) which is equiv-
alent to Lvi ∈ ∂f ∗(yi ). Hence vi satisfies (17) if and only if
there exists an auxiliary variable yi , such that

0 ∈ L∗yi + 1

θ
(vi − ui), (18)

0 ∈ ∂f ∗(yi ) − Lvi. (19)

We can now apply the operator splitting method with scalar
τ > 0 to (19) and obtain two equations

0 ∈ τ∂f ∗(yi ) + yi − ti , (20)

ti = yi + τLvi. (21)

(20) is also equivalent to

0 ∈ τyi + ∂f (yi − ti ),

which is the optimality condition of

min
yi

τ

2
‖yi‖2

2 + f (yi − t). (22)

It is easy to get that problem (22) has closed-form solution

yi = min

{

‖ti‖2,
1

τ

}
ti

‖ti‖2
. (23)

Sum up (18), (21) and (23), the minimization problem (16)
can be solved by the following alternative iteration:

vi = ui − θ∇T yi , (24)

yi = min

{
1

τ
,‖yi + τ∇vi‖2

}
yi + τ∇vi

‖yi + τ∇vi‖2
. (25)

3.1.3 Minimization with Respect to U

Fixing V and c, we consider the optimization problem

min
U

F(U) = 1

2θ

m∑

i=1

∫

�

(vi − ui)
2dx + λ

N∑

k=1

∫

�

dkMkdx

(26)

subject to

0 ≤ ui ≤ 1, i = 1, . . . ,m.

We use the notation DN := ∑N
k=1 dkMk and define rN

i :=
∂DN

∂ui
. By formulas of Mk in (5) and (6), we get that if N =

2m,

r2m

i =
2m
∑

k=1

(−1)s
m
k

m∏

j=1,j �=i

(uj − b
m,k−1
j ), i = 1, . . . ,m.

(27)

Otherwise, if 2m−1 < N < 2m, for i = 1, . . . ,m1,

rN
i =

2k0∑

k=1

(−1)s
m
k

m∏

j=1,j �=i

(uj − b
m,k−1
j )

+
N∑

k=2k0+1

(−1)
s
m1
k1

m1∏

j=1,j �=i

(uj − b
m1,k1−1
j ). (28)

For i = m,

rN
m =

2k0∑

k=1

(−1)s
m
k

m∏

j=1,j �=i

(uj − b
m,k−1
j ). (29)

For the special case of N = 3,4,5,7,8, the detailed formu-
las of rN

i are as follows:

3

{
r3

1 = d1u2 + d2(1 − u2) − d3,

r3
2 = (d1 − d2)u1;

4

{
r4

1 = (d1 − d3)u2 + (d2 − d4)(1 − u2),

r4
2 = (d1 − d2)u1 + (d3 − d4)(1 − u1);

5

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r5
1 = d1u2u3 + d2u2(1 − u3) + d3(1 − u2) − d4u2

− d5(1 − u2),

r5
2 = d1u1u3 + d2u1(1 − u3) − d3u1 + d4(1 − u1)

− d5(1 − u1),

r5
3 = (d1 − d2)u1u2;

7

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r7
1 = (d1 − d5)u2u3 + (d2 − d6)u2(1 − u3)

+ d3(1 − u2)u3 + d4(1 − u2)(1 − u3)

− d7(1 − u2),

r7
2 = (d1 − d3)u1u3 + (d2 − d4)u1(1 − u3)

+ d5(1 − u1)u3 + d6(1 − u1)(1 − u3)

− d7(1 − u1),

r7
3 = (d1 − d2)u1u2 + (d3 − d4)u1(1 − u2)

+ (d5 − d6)(1 − u1)u2;

8

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r8
1 = (d1 − d5)u2u3 + (d2 − d6)u2(1 − u3)

+ (d3 − d7)(1 − u2)u3

+ (d4 − d8)(1 − u2)(1 − u3),

r8
2 = (d1 − d3)u1u3 + (d2 − d4)u1(1 − u3)

+ (d5 − d7)(1 − u1)u3

+ (d6 − d8)(1 − u1)(1 − u3),

r8
3 = (d1 − d2)u1u2 + (d3 − d4)u1(1 − u2)

+ (d5 − d6)(1 − u1)u2

+ (d7 − d8)(1 − u1)(1 − u2).
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We simplify rN
i as ri in the following.

There exists a unique global minimizer of problem (26)
since the objective function is strictly convex and the feasi-
ble region is convex. Firstly, we derive the Euler-Lagrange
equation of (26) without considering the constraints, then
we obtain

1

θ
(ui − vi) + λri = 0. (30)

Hence

ui = vi − λθri .

Secondly, we apply the constraints and define

ûi := min{max{ui,0},1}. (31)

We have the following claim:

Proposition 1 By definition (31), Û = (û1, . . . , ûn) is the
exact closed-form solution of problem (26).

See the proof in the Appendix.

3.1.4 Algorithm Details

Based on (15), (24), (25) and (31), the algorithm can be sum-
marized in the following four steps:

– Initialization: u0
1 = I/max�(I), u0

i (i = 2, . . . ,m) be ran-
dom matrices following uniform distribution at [0,1],
v0
i = u0

i , c0
i = 0, yi = 0 for i = 1, . . . ,m.

– Iteration: for i = 1, . . . ,m, k = 1, . . . ,N, n = 0,1,2, . . .

cn+1
k =

∫
�

IMn
k dx

∫
�

Mn
k dx

,

vn+1
i = un

i − θ∇T yn
i ,

yn+1
i = min

{
1

τ
,‖yn

i + τ∇vn
i ‖2

}
yn
i + τ∇vn

i

‖yn
i + τ∇vn

i ‖2
,

un+1
i := min{max{vn

i − λθrn
i ,0},1}.

– Termination criterion:

‖cn+1 − cn‖ ≤ ε

where ‖ ·‖ denotes the Euclidean distance and ε is a small
positive number defined by the user.

3.2 Minimizing E2

Let us rewrite the problem as

min
ui∈[0,1]E2(U, c)

= 1

2

m∑

i=1

∫

�

|∇ui |2dx + λ

N∑

k=1

∫

�

|I − ck|2Mkdx. (32)

3.2.1 Minimization with Respect to c

It is obvious that minimizing E2 with respect to c is the same
as minimize E1 with respect to c.

3.2.2 Minimization with Respect to U

Similar to the analysis of E1, we can calculate the derivative
of the distance term with respect to ui , which is denoted as
ri . Then the Euler-Lagrange equation of E2 with respect to
ui is given by

−
ui + λri = 0. (33)

A fast approximated solution is provided by a Gauss-Seidel
iterative scheme, i.e.

(ui)p,q = 1

4
((ui)p+1,q + (ui)p−1,q + (ui)p,q+1

+ (ui)p,q−1 − λ(ri)p,q)

where p,q denote the grid. To handle the constraint, we can
project the solution onto [0,1] as done in [9]. Thus, the so-
lution is simplified as

ui = 1

4
(uso

i + uno
i + uea

i + uwe
i − λri),

ui = min{max{ui,0},1},
(34)

where uso
i , uno

i , uea
i , uwe

i means shift the matrix ui one pixel
in the south, north, east and west direction respectively.

3.2.3 Algorithm Details

Based on (15) and (34), the algorithm can be summarized in
the following steps:

– Initialization: u0
1 = I/max�(I), u0

i (i = 2, . . . ,m) be ran-
dom matrices following uniform distribution at [0,1],
c0
i = 0 for i = 1, . . . ,m.

– Iteration: for i = 1, . . . ,m, k = 1, . . . ,N, n = 0,1,2, . . .

cn+1
k =

∫
�

IMn
k dx

∫
�

Mn
k dx

,

un+1
i = min

{

max

{
1

4
(u

so,n
i +u

no,n
i +u

ea,n
i +u

we,n
i −λrn

i ),

0

}

,1

}

.

– Termination criterion:

‖cn+1 − cn‖ ≤ ε.
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4 Extension to Other Distance Functions

In the above modeling and analysis, we assume the distance
function be dk = (I − ck)

2. In fact, the above framework of
solving U(V) is adapted to general distance functions. The
changed part is only the region variables in distance func-
tion. However, the region variables are easy to solve since
they are only involved in the distance terms in the energy.
In the following, we list the distance functions adapted to
piecewise smooth images, texture images and vector-valued
images.

4.1 Piecewise Smooth Images

We assume the piecewise smooth images can be approxi-
mated by the product of a piecewise constant image and a
smooth function. That is

I (x) ≈ b(x)

(
N∑

k=1

ck1Dk
(x)

)

, (35)

where b is a smooth function. This assumption is satisfied at
least by medical images where intensity inhomogeneity of-
ten occurs from different modalities, such as X-ray radiog-
raphy/tomography and magnetic resonance images. Inten-
sity inhomogeneity is called bias field represented by b(x) in
(35). The bias field causes serious errors when using piece-
wise constant models such as Chan-Vese model or the pro-
posed models with dk = (I −ck)

2. To handle the smoothness
of bias field, [15] assumed that

b(x) =
l∑

i=1

wjGj (x),

that is, the bias field is a linear combination of some known
polynomial basis functions G = (G1, . . . ,Gl), and proposed
the following distance function

dk = (I − bck)
2. (36)

However, since there is no regularization technique in [15],
the method is sensitive to noise.

To overcome this drawback, we can consider total vari-
ation regularization or H 1 regularization on membership
functions. That is equivalent to using the distance term (36)
in our proposed segmentation framework. In [15], it has
been shown that w (and thus b) and ck have closed-form
solutions

ck =
∫
�

IbMkdx
∫
�

b2Mkdx
,

w = A−1v,

where

A =
∫

�

GGT

(
N∑

k=1

ckMk

)2

dx,

v =
∫

�

GI

(
N∑

k=1

ckMk

)

dx.

Hence the algorithm for piecewise smooth image segmen-
tation can be obtained by updating ck by the new formula
and adding a step of updating weight w in the alternating
iterative algorithms in Sect. 3.

4.2 Texture Images

For texture images, we choose to work on the probability
density function (pdf) but not the image intensity since the
consistency of texture can be well described by statistics like
pdf. Here we adopt the distance function introduced in re-
gion competition model [29]. Assume the pdf in region Dk

is Pk(x), then the distance function is given by

dk(x) = − logPk(I (x)). (37)

However, a parametric Gaussian pdf is used in [29]. Here
we note that a non-parametric pdf is better for texture im-
age. In this paper, the pdf Pk(I (x)) in region Dk is esti-
mated by Parzen window method in which the samples are
the intensities {I (x), x ∈ Dk}. Parzen window method is a
non-parametric kernel density estimation method. See [22]
for more details. Then the algorithm for texture image seg-
mentation can be obtained by replacing the updating of ck

by updating Pk(x) in the algorithms in Sect. 3.

4.3 Vector-Valued Images

We use the simplest one defined based on each channel. As-
sume I : � → R

p be the vector-valued image, we define the
distance at each gray image Il as dkl , l = 1, . . . , p by one
of the above mentioned methods. Then we can define the
distance dk for vector-valued image I as

dk = 1

p

p∑

l=1

dkl. (38)

All the involved region variables (if there are any) can be
solved as above for each gray image Il, l = 1, . . . , p.

For instance, the Chan-Vese distance term for vector-
valued image I is defined as

dk(I, ck) = 1

p

p∑

l=1

dkl(Ik, ckl), (39)
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where

dkl(Ik, ckl) = (Ik − ckl)
2,

and ck = (ck1, . . . , ckp). It is easy to derive the formula of
ckl , which is

ckl =
∫
�

Ik(x)u
p
l (x)dx

∫
�

u
p
l (x)dx

.

Then the algorithm for vector-valued image segmentation
can be obtained by using the new formulas of ck and dk in
the algorithms in Sect. 3.

5 Experimental Results

We tested our algorithm on piecewise constant images,
piecewise smooth MR images and texture images. Both gray
scale and color images are tested. We choose different dis-
tance terms for different kinds of images. Some parameters
are fixed as follows: θ = 0.1, τ = 0.1, ε = 10−4. The para-
meter λ is required to be tuned for each image. The default
initialization of membership functions is: u0

1 = I/max�(I),
u0

i (i = 2, . . . ,m) be random matrices follow uniform dis-
tribution at [0,1]. For texture images in Fig. 6(a), special
initialization is required for good result. We draw m cir-
cles on the image and set the membership function u0

i = 1
(i = 1, . . . ,m) inside the circle and u0

i = 0 (i = 1, . . . ,m)

outside. In all the experiments, the final segmentation results
are obtained by checking the class where its membership
function value at the pixel is the largest among all member-
ship functions. The experiments are performed under Win-
dows XP and MATLAB v7.4 with Intel Core 2 Duo CPU at
1.66 GHz and 2 GB memory.

5.1 Gray Scale Cartoon Image Segmentation

In Fig. 1, we compare the Chan-Vese level set method and
our methods with T V and H 1 regularization. The solu-
tions of the three methods are displayed in Fig. 1(b)–(d).
In Fig. 1(b), the contours of zero level sets (φ1 = 0, φ2 = 0)
are displayed in red and green color. In Fig. 1(c)–(d), the
contours of u1 = 0.5 and u2 = 0.5 are displayed. Although
in our methods we allow the membership functions val-
ued between 0 and 1, in this example, we observe that the
final u1, u2,M1,M2,M3,M4 in the proposed two meth-
ods are in fact characteristic functions valued as 0 and 1.
Numerically, we can check that u1 = H(φ1), u2 = H(φ2),
M1 = H(φ1)H(φ2), M2 = H(φ1)(1 − H(φ2)), M3 =
(1 − H(φ1))H(φ2), M4 = (1 − H(φ1))(1 − H(φ2)) where
φ1, φ2 are the level set functions in Chan-Vese method, and
so the three methods give the same solution. Our meth-
ods converge with less computational time than Chan-Vese

Fig. 1 Comparison of the Chan-Vese level set method and the pro-
posed methods with four-phase segmentation. (a) the test image;
(b) the segmentation by Chan-Vese method [λ = 1, computational
time = 2.1 seconds, number of iterations = 12]; (c) the segmentation
by the proposed method with T V regularization [λ = 10, computa-
tional time = 0.5 seconds, number of iterations = 7]; (d) the segmen-
tation by the proposed method with H 1 regularization [λ = 10, com-
putational time = 0.2 seconds, number of iterations = 6]; (e)–(h) the
four phases by the Chan-Vese method; (i)–(l) the membership func-
tions M1, . . . ,M4 by the proposed method with T V regulariza-
tion; (m)–(p) the membership functions M1, . . . ,M4 by the proposed
method with H 1 regularization

method. We remark that although we use four-phase seg-
mentation model (N = 4), the final segmentation contains
three meaningful phases (Fig. 1(e)–(g), Fig. 1(i)–(k) and
Fig. 1(m)–(o)) and one empty phase (Fig. 1(h), Fig. 1(l) and
Fig. 1(p)). We also remark that the proposed models with
N = 3 give the same meaningful phases.

In Fig. 2, we compare the piecewise constant level set
method (PCLSM) in [16] and our methods with T V and H 1

regularization. Both of our methods give better segmenta-
tion results (in which each class is indicated by one color)
with less computational time than PCLSM method. Among
them, our method with T V regularization gives the best seg-
mentation result in Fig. 2(d), and our method with H 1 regu-
larization consumes the shortest time. The phases and mem-
bership functions of all the three methods are displayed in
the last three rows. We get that the PCLSM gives almost
hard phases valued as 0 and 1 while our methods give soft
membership functions valued between [0,1].
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Fig. 2 Comparison of the PCLSM method and the proposed methods
with four-phase segmentation. (a) the noisy test image; (b) the seg-
mentation by PCLSM method [computational time = 76.2 seconds];
(c) the segmentation by the proposed method with T V regularization
[λ = 0.0008, computational time = 1.9 seconds]; (d) the segmentation
by the proposed method with H 1 regularization [λ = 0.0003, compu-
tational time = 0.4 seconds]; (e)–(h) the four phases by the PCLSM
method; (i)–(l) the membership functions M1, . . . ,M4 by the proposed
method with T V regularization; (m)–(p) the membership functions
M1, . . . ,M4 by the proposed method with H 1 regularization

In Fig. 3, we compare the performance of our methods
with T V and H 1 regularization on a synthetic image with
different noise levels. The first row in Fig. 3 gives the im-
ages contaminated by Gaussian noise with standard devi-
ation 15, 20, 25 and 30. The second and third rows show
the segmentation results by T V regularization and H 1 regu-
larization respectively, and each column corresponds to one
noise level. In order to quantify the segmentation results, we
use segmentation accuracy which is defined as the ratio of
the number of rightly classified pixels and the total number
of pixels. Table 1 demonstrates the performance of the two
methods includes computational time, iteration and segmen-
tation accuracy. We can conclude from Table 1 that H 1 reg-
ularization consumes less time in each case. In the aspect of
segmentation accuracy, T V regularization has higher accu-
racy than H 1 regularization when the noise standard devia-
tion is 15, however, as the noise increased, H 1 regularization
has higher accuracy. It shows that H 1 regularization is more
robust to noise than T V regularization.

Fig. 3 Comparison of the proposed methods on different noise lev-
els. (a) the clean piecewise constant image; (b)–(e) images conta-
minated by zero mean Gaussian noise with standard device 15, 20,
25 and 30 respectively; (f)–(i) the classification results of the pro-
posed model with TV regularization corresponding to (b)–(e) with
λ = 0.001,0.0007,0.0005,0.00045 respectively; (j)–(m) the classifi-
cation results of the proposed model with H 1 regularization corre-
sponding to (b)–(e) with λ = 0.0006,0.0004,0.0003,0.0002 respec-
tively

Table 1 The performance of T V regularization vs H 1 regularization

Regularization
method

Noise
standard
device

Iterations Computational
time

Classification
accuracy

TV 15 85 1.35 s 99.42%

20 133 1.76 s 98.31%

25 174 2.72 s 97.28%

30 206 3.21 s 95.24%

H 1 15 67 0.34 s 99.36%

20 128 0.71 s 98.44%

25 174 0.82 s 97.63%

30 329 1.96 s 96.11%

5.2 Brain MR Image Segmentation

For brain MR images, we use the distance function (36).
In Fig. 4, we use our method with T V regularization. Fig-
ure 4(b) is the bias corrected image obtained by I/b. The
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Fig. 4 Four-phase
segmentation of a real brain
MRI image by T V

regularization. (a) the noisy
MRI image; (b) the bias
corrected image; (c) the
segmentation result,
λ = 0.0015; (d) the estimated
bias field; (e)–(h) the
membership functions
M1, . . . ,M4

Fig. 5 Four-phase
segmentation of a brain MRI
image with noise 9% by H 1

regularization. (a) the noisy
MRI image; (b) the bias
corrected image; (c) the
segmentation result, λ = 0.001;
(d) the estimated bias field;
(e)–(h) the membership
functions M1, . . . ,M4

segmentation result is showed in Fig. 4(c) by red and blue
contours. Figure 4(d) shows the estimated bias field which
is smooth. The membership functions in Fig. 4(e)–(h) corre-
sponds to the white matter (WM), gray matter (GM), cere-
brospinal fluid (CSF) and the background. The results are
satisfactory.

In Fig. 5, a brain MR image with serious intensity in-
homogeneity and with simulated noise 9% is tested by our
method with H 1 regularization. The bias corrected image in
Fig. 5(b), the segmentation in Fig. 5(c) and the estimated
bias field in Fig. 5(d) are good. The membership functions
M1, . . . ,M4 in Fig. 5(e)–(h) correspond to WM, GM, CSF
and background respectively.

5.3 Texture Image Segmentation

We use the distance function (37) for texture image seg-
mentation. Figure 6 gives a three phase segmentation exam-
ple. Both T V and H 1 regularization are tested. Though the
membership functions of the two methods (the second row
is for T V , the third row is for H 1) seem something differ-
ent, the final maximum membership segmentation results in
Fig. 6(b)–(c) are similar and satisfactory.

Fig. 6 Three-phase segmentation of a texture image. (a) the texture
image; (b) the segmentation result by T V regularization, λ = 0.2;
(c) the segmentation result by H 1 regularization, λ = 0.0001;
(d)–(f) the membership functions M1, . . . ,M3 by T V regularization;
(g)–(i) the membership functions M1, . . . ,M3 by H 1 regularization
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Figure 7 gives a texture image with five-phase segmenta-
tion. Special initialization of membership functions are used
as in Fig. 7(a). The results of T V in Fig. 7(b)–(c) and the

Fig. 7 Five-phase segmentation of a texture image: (a) the texture with
initialization circles; (b)–(c) the segmentation results by T V regular-
ization, λ = 0.12; (d)–(e) the segmentation results by H 1 regulariza-
tion, λ = 0.03; (f)–(j) the membership functions M1, . . . ,M5 by T V

regularization; (k)–(o) the membership functions M1, . . . ,M5 by H 1

regularization

results of H 1 regularization in Fig. 7(d)–(e) are competitive
and satisfactory. The membership functions of T V and H 1

regularization are displayed in the second and the third rows
respectively.

5.4 Color Image Segmentation

For color image, we use the distance function in (39). Fig-
ures 8 and 9 display the results of two color images with
four and six phase segmentation.

In Fig. 8, we compare our methods with Chan-Vese
level set method. For the four-phase Chan-Vese model, two
level sets φ1, φ2 are needed. Figures 8(b) and 8(c) display
the initial and the final zero level sets. Figure 8(d) shows
the piecewise constant image given by formula

∑4
i=1 ciχ�i

where χ�i
are the characteristic functions of the follow-

ing four regions: �1 = {x|φ1(x) ≥ 0, φ2(x) ≥ 0}, �2 =
{x|φ1(x) ≥ 0, φ2(x) < 0}, �3 = {x|φ1(x) < 0, φ2(x) ≥ 0},
�4 = {x|φ1(x) < 0, φ2(x) < 0}. Figures 8(e)–(f) are the ini-
tialization of the proposed methods. It is obvious that our
segmentation results in Fig. 8(g) (by T V regularization) and
Fig. 8(h) (by H 1 regularization) are more accurate than the
result in Fig. 8(d). We also compare the computational times
of the three methods. Our algorithm with H 1 regularization

Fig. 8 Comparison of the Chan-Vese level set method and the pro-
posed two methods. (a) the test color image; (b) the initial zero level
sets by the Chan-Vese method; (c) the final zero level sets by the Chan-
Vese method; (d) the piecewise constant segmentation by the Chan-
Vese method [λ = 0.01, computational time = 14.5 seconds, number
of iterations = 100]; (e)–(f) initial u1 and u2 in our methods; (g) the

piecewise constant segmentation by T V regularization [λ = 0.0004,
computational time = 5.2 seconds, number of iterations = 58]; (h) the
piecewise constant segmentation by H 1 regularization [λ = 0.0005,
computational time = 3.0 seconds, number of iterations = 35]; (i)–
(l) the membership functions M1, . . . ,M4 by T V regularization; (m)–
(p) the membership functions M1, . . . ,M4 by H 1 regularization
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Fig. 9 Six-phase color image
segmentation by T V and H 1

regularization. (a) the noisy
image contaminated by zero
mean Gaussian noise with
standard device 50; (b) the
piecewise constant segmentation
by T V regularization,
λ = 0.0003; (c) the piecewise
constant segmentation by H 1

regularization, λ = 0.0001;
(d)–(i) the membership
functions M1, . . . ,M6 by T V

regularization; (j)–(o) the
membership functions
M1, . . . ,M6 by H 1

regularization

is the fastest among the three which takes 3.0 seconds while
Chan-Vese level set method is the slowest which takes 15.2
seconds. Remark that in our implementation of Chan-Vese
model, in order to make the Chan-Vese algorithm more effi-
cient, we use |∇φi | instead of δε(φi) in the evolution equa-
tions. The membership functions of T V and H 1 regulariza-
tion are displayed in the second and the third rows respec-
tively.

In Fig. 9, we test a synthetic image Fig. 9(a) contam-
inated by zero mean Gaussian noise with standard devia-
tion 50. Figures 9(b) and 9(c) show the piecewise constant
segmentation results of the test image by our methods with
T V and H 1 regularization which are satisfactory. The corre-
sponding membership functions of T V and H 1 regulariza-
tion are displayed in the second and the third rows respec-
tively.

6 Conclusion

Inspired by the level set formulation of multiphase Chan-
Vese model, we have proposed a variational soft segmen-
tation framework. We have designed a general represen-
tation of regions by soft membership functions which au-
tomatically satisfies the sum to one constraint. To ensure
the smoothness of membership, both TV regularization and
H 1 regularization are considered. The two regularization
methods have their own advantages. Fast numerical schemes
are designed for the two regularization methods. By chang-
ing the distance function, the proposed segmentation frame-
work can be easily extended such that we can handle differ-
ent kinds of images. Numerical results on cartoon images,
piecewise smooth images and texture images are promising.

Mathematically, our methods are relaxations of Chan-
Vese method which enlarged the solution space, so we can
hope that in some cases our methods and Chan-Vese method

would give the same solution. Figure 1 is such an example.
In the future work, we will make a more insightful compari-
son between these models, both from a purely mathematical
point of view (i.e. proving when they provide the same so-
lution) and from an experimental point of view, and we will
also study the convergence of the numerical algorithms.
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Appendix

Proof of Proposition 1 The problem (26) is a convex pro-
gram (CP) problem which admits a unique global mini-
mizer. Assume Ū∗ = (u∗

1, . . . , u
∗
m) is the unique solution

of (26), then the following Karush-Kuhn-Tucker (KKT)
conditions [14] are both necessary and sufficient:

(a) u∗
i (x) ≥ 0, 1 − u∗

i (x) ≥ 0
(b) There exist Lagrange multipliers β∗

i (x) and γ ∗
i (x) for

each point x ∈ � such that

∂F (U)

∂u∗
i (x)

= 1

θ
(u∗

i (x) − vi(x)) + λri(x) = β∗
i (x) − γ ∗

i (x)

(c) β∗
i (x)u∗

i (x) = 0, γ ∗
i (x)(1 − u∗

i (x)) = 0

(d) β∗
i (x) ≥ 0, γ ∗

i (x) ≥ 0
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for i = 1, . . . ,m.
Define ηi(x) = 1

θ
(ui(x) − vi(x)) + λri(x) and η̂i (x) =

1
θ
(ûi(x) − vi(x)) + λri(x). Since ui satisfies (30), we have

ηi(x) = 0. For each x ∈ �, we choose β̂i (x) and γ̂i (x) as
follows:

If ûi (x) ∈ (0,1), then ui(x) ∈ (0,1) and ui(x) = ûi (x),
hence η̂i (x) = ηi(x) = 0. Set β̂i (x) = 0 and γ̂i (x) = 0;

If ûi (x) = 0, then ui(x) ≤ 0 and ûi (x) ≥ ui(x), hence
η̂i (x) ≥ ηi(x) = 0. Set β̂i (x) = η̂i (x) and γ̂i (x) = 0;

If ûi (x) = 1, then ui(x) ≥ 1 and ûi (x) ≤ ui(x), hence
η̂i (x) ≤ ηi(x) = 0. Set β̂i (x) = 0 and γ̂i (x) = −η̂i (x).

It is easy to verify that {ûi , β̂i , γ̂i} satisfies KKT condi-
tions (a)–(d). Therefore Û is a minimizer of problem (26)
and by uniqueness U∗ = Û . Hence we conclude that Û is
the exact closed-form solution of problem (26). �
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