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Abstract

Indisputably Normalized Cuts is one of the most pop-

ular segmentation algorithms in computer vision. It has

been applied to a wide range of segmentation tasks with

great success. A number of extensions to this approach

have also been proposed, ones that can deal with multiple

classes or that can incorporate a priori information in the

form of grouping constraints. However, what is common for

all these suggested methods is that they are noticeably lim-

ited and can only address segmentation problems on a very

specific form. In this paper, we present a reformulation of

Normalized Cut segmentation that in a unified way can han-

dle all types of linear equality constraints for an arbitrary

number of classes. This is done by restating the problem

and showing how linear constraints can be enforced exactly

through duality. This allows us to add group priors, for ex-

ample, that certain pixels should belong to a given class.

In addition, it provides a principled way to perform multi-

class segmentation for tasks like interactive segmentation.

The method has been tested on real data with convincing

results.

1. Image Segmentation

Image segmentation can be defined as the task of par-

titioning an image into disjoint sets. This visual grouping

process is typically based on low-level cues such as inten-

sity, homogeneity or image contours. Existing approaches

include thresholding techniques, edge based methods and

region-based methods. Extensions to this process includes

the incorporation of grouping constraints into the segmenta-

tion process. For instance the class labels for certain pixels

might be supplied beforehand, through user interaction or

some completely automated process, [8, 2].

Currently the most successful and popular approaches

for segmenting images are based on graph cuts. Here

the images are converted into undirected graphs with edge

weights between the pixels corresponding to some measure

of similarity. The ambition is that partitioning such a graph

will preserve some of the spatial structure of the image it-

self. These graph methods based were made popular first

through the Normalized Cut formulation of [9] and more

recently by the energy minimization method of [3]. This

algorithm for optimizing objective functions that are sub-

modular has the property of solving many discrete prob-

lems exactly. However, not all segmentation problems can

be formulated with submodular objective functions, nor is

it possible to incorporate all types of linear constraints.

The work described here concerns the former approach,

Normalized Cuts, the relevance of linear grouping con-

straints and how they can be included in this framework.

It is not the aim of this paper to argue the merits of one

method, or cut metric, over another, nor do we here con-

cern ourselves with how the actual grouping constraints are

obtained. Instead we will show how through Lagrangian re-

laxation one in a unified can handle such linear constrains

and also in what way they influence the resulting segmenta-

tion.

1.1. Problem Formulation

Consider an undirected graph G, with nodes V and

edges E and where the non-negative weights of each such

edge is represented by an affinity matrix W , with only non-

negative entries and of full rank. A min-cut is the non-trivial

subset A of V such that the sum of edges between nodes in

A and its complement is minimized, that is the minimizer

of

cut(A, V ) =
∑

i∈A
j∈V \A

wij (1)

This is perhaps the most commonly used method for split-

ting graphs and is a well known problem for which very

efficient solvers exist. It has however been observed that

this criterion has a tendency to produced unbalanced cuts,

smaller partitions are preferred to larger ones.
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In an attempt to remedy this shortcoming, Normalized

Cuts was introduced by [9]. It is basically an altered crite-

rion for partitioning graphs, applied to the problem of per-

ceptual grouping in computer vision. By introducing a nor-

malizing term into the cut metric the bias towards under-

sized cuts is avoided. The Normalized Cut of a graph is

defined as:

Ncut =
cut(A, V )

assoc(A, V )
+

cut(B, V )

assoc(B, V )
(2)

where A∪B = V , A∩B = ∅ and the normalizing term de-

fined as assoc(A, V ) =
∑

i∈A,j∈V wij . It is then shown in

[9] that by relaxing (2) a continuous underestimator of the

Normalized Cut can be efficiently computed. These tech-

niques are then extended in [11] beyond graph bipartition-

ing to include multiple segments, and even further in [12]

to handle certain types of linear equality constraints.

One can argue that the drawbacks of this, the classical

formulation, for solving the Normalized Cut are that firstly

obtaining a discrete solution from the relaxed one can be

problematic. Especially in multiclass segmentation where

the relaxed solution is not unique but consists of an entire

subspace. Furthermore, the set of grouping constraints is

also very limited, only homogeneous linear equality con-

straints can be included in the existing theory. We will show

that this excludes many visually relevant constraints. In [4]

an attempt is made at solving a similar problem with general

linear constraints. This approach does however effectively

involve dropping any discrete constraint all together, leav-

ing one to question the quality of the obtained solution.

2. Normalized Cuts with Grouping Constraints

In this section we propose a reformulation of the relax-

ation of Normalized Cuts that in a unified way can handle all

types of linear equality constraints for any number of parti-

tions. First we show how we through duality theory reach

the suggested relaxation. The following two sections then

show why this formulation is well suited for dealing with

general linear constraints and how this proposed approach

can be applied to multiclass segmentation.

Starting off with (2), the definition of Normalized Cuts,

the cost of partitioning an image with affinity matrix W into

two disjoint sets, A and B, can be written as

Ncut =

∑

i∈A
j∈B

wij

∑
i∈A
j∈V wij

+

∑

i∈B
j∈A

wij

∑

i∈B
j∈V

wij

. (3)

Let z ∈ {−1, 1}n be the class label vector, W the n×n-

matrix with entries wij , d the n × 1-vector containing the

row sums of W , and D the diagonal n×n-matrix with d on

the diagonal. A 1 is used to denote vectors of all ones. We

can write (3) as

Ncut =
P

i,j wij(zi−zj)
2

2
P

i(zi+1)di
+

P

i,j wij(zi−zj)
2

2
P

i(zi−1)di
=

= zT (D−W )z
2dT (z+1)

+ zT (D−W )z
2dT (z−1)

=

=
(zT (D−W )z)dT 1

1T ddT 1−zT dT dT z
=

(zT (D−W )z)dT 1

zT ((1T d)D−ddT )z
(4)

In the last inequality we used the fact that 1T d = zT Dz.

When we include general linear constraints on z on the form

Cz = b, C ∈ R
m×n, the optimization problem associated

with this partitioning cost becomes

inf
z

zT (D−W )z
zT ((1T d)D−ddT )z

s.t. z ∈ {−1, 1}n

Cz = b. (5)

The above problem is a non-convex, NP-hard optimization

problem. Therefore we are led to replace the z ∈ {−1, 1}n

constraint with the norm constraint zT z = n. This gives us

the relaxed problem

inf
z

zT (D−W )z
zT ((1T d)D−ddT )z

s.t. zT z = n

Cz = b. (6)

This is also a non-convex problem, however we shall see

in section 3 that we are able to solve this problem exactly.

Next we will write problem (6) in homogenized form, the

reason for doing this will become clear later on. Let L and

M be the (n + 1) × (n + 1) matrices

L =
[

(D−W ) 0
0 0

]
, M =

[
((1T d)D−ddT ) 0

0 0

]

, (7)

and

Ĉ = [C − b] (8)

the homogenized constraint matrix. The relaxed problem

(6) can now be written

inf
z

[ zT 1 ]L[ z
1 ]

[ zT 1 ]M[ z
1 ]

s.t. zT z = n

Ĉ [ z
1 ] = 0. (9)

Finally we add the artificial variable zn+1. Let ẑ be the ex-

tended vector
[
zT zn+1

]T
. Throughout the paper we will

write ẑ when we consider the extended variables and just z

when we consider the original variables. The relaxed prob-

lem (6) in its homogenized form is

inf
ẑ

ẑT Lẑ
ẑT Mẑ

s.t. ẑ2
n+1 − 1 = 0

ẑT ẑ = n + 1

Ĉẑ = 0. (10)



Note that the first constraint is equivalent to ẑn+1 = 1. If

ẑn+1 = −1 then we may change the sign of ẑ to obtain a

solution to our original problem.

The homogenized constraints Ĉẑ = 0 now form a lin-

ear subspace and can be eliminated in the following way.

Let NĈ be a matrix where its columns form a base of the

nullspace of Ĉ. Let k+1 be the dimension of the nullspace.

Any ẑ fulfilling Ĉẑ = 0 can be written ẑ = NĈ ŷ, where

ŷ ∈ R
k+1. As in the case with the z-variables, ŷ is the

vector containing all variables whereas y is a vector con-

taining all but the last variable. Assuming that the linear

constraints are feasible we may always choose that basis

such that ŷk+1 = ẑn+1 = 1. We put LĈ = NT

Ĉ
LNĈ ,

MĈ = NT

Ĉ
MNĈ . In the new space we get the following

formulation

inf
ŷ

=
ŷT L

Ĉ
ŷ

ŷT M
Ĉ

ŷ

s.t. ŷ2
k+1 − 1 = 0

ŷT NT

Ĉ
NĈ ŷ = ||ŷ||2N

Ĉ
= n + 1, (11)

we will use f(ŷ) to denote the objective function of this

problem. A common approach to solving this kind of prob-

lem is to simply drop one of the two constraints. This may

however result in very poor solutions. We shall see that we

can in fact solve this problem exactly without excluding any

constraints.

3. Lagrangian Relaxation and Strong Duality

In this section we will show how to solve (6) using La-

grange duality. To do this we start by generalizing a lemma

from [7] for trust region problems

Lemma 1. If there exists a y with yT A3y +2bT
3 y + c3 < 0,

then, assuming the existence of a minima, the primal prob-

lem

inf
y

yT A1y + 2bT
1 y + c1

yT A2y + 2bT
2 y + c2

, s.t yT A3y+2bT
3 y+c3 ≤ 0 (12)

and the dual problem

sup
λ≥0

inf
y

yT (A1 + λA3)y + (b1 + λb3)
T y + c1 + λc3

yT A2y + 2bT
2 y + c2

(13)

has no duality gap.

Proof. The primal problem can be written as

inf γ1

s.t yT (A1 − γ1A2)y + 2(b1 − γ1b2)
T y + c1 − γ1c2 ≤ 0

yT A3y + 2bT
3 y + c3 ≤ 0

(14)

Let M(λ, γ) be the matrix

M(λ, γ) =
[

A1+λA3−γA2 b1+λb3−γb2

(b1+λb3−γb2)
T c1+λc3−γc2

]

(15)

The dual problem can be written

supλ≥0 infγ2,y γ2

s.t

[
y

1

]T

M(λ, γ2)

[
y

1

]

≤ 0
(16)

Since (16) is dual to (14) we have that for their optimal val-

ues, γ∗
2 ≤ γ∗

1 must hold. To prove that there is no duality

gap we must show that γ∗
2 = γ∗

1 . We do this by considering

the following problem

supγ3,λ≥0 γ3

s.t M(λ, γ3) � 0
(17)

Here M(λ, γ3) � 0 means that M(λ, γ3) is positive

semidefinite. We note that if M(λ, γ3) � 0 then there is

no y fulfilling

[
y

1

]T

M(λ, γ3)

[
y

1

]

+ ǫ ≤ 0 (18)

for any ǫ > 0. Therefore we must have that the optimal

values fulfills γ∗
3 ≤ γ∗

2 ≤ γ∗
1 . To complete the proof we

show that γ∗
3 = γ∗

1 . We note that for any γ ≤ γ∗
1 we have

that

yT A3y + 2bT
3 y + c3 ≤ 0 ⇒

yT (A1 − γA2)y + 2(b1 − γb2)
T y + c1 − γc2 ≥ 0

(19)

However according to the S-procedure [1] this is true if and

only if there exists λ ≥ 0 such that M(λ, γ) � 0. Therefore

(γ, λ) is feasible for problem (17) and thus γ3 = γ1.

We note that for a fixed γ the problem

infy yT (A1 − γA2)y + 2(b1 − γb2)
T y + c1 − γc2

s.t. yT A3y + 2bT
3 y + c3 ≤ 0

(20)

only has an interior solution if A1−γA2 is positive semidef-

inite. If A3 is positive semidefinite then we may subtract

k(yT A3y +2bT
3 y + c3) (k > 0) from the objective function

to obtain boundary solutions. This gives us the following

corollary

Corollary 1. Let A3 be positive semidefinite. If there exists

a y with yT A3y + 2bT
3 y + c3 < 0, then the primal problem

inf
y

yT A1y + 2bT
1 y + c1

yT A2y + 2bT
2 y + c2

, s.t. yT A3y + 2bT
3 y + c3 = 0

(21)

and the dual problem

sup
λ

inf
y

yT (A1 + λA3)y + (b1 + λb3)
T y + c1 + λc3

yT A2y + 2bT
2 y + c2

(22)

has no duality gap, (once again assuming that a minima

exists for the primal problem).



Next we will show how to solve a problem on a form

related to (11). Let

Â1 =
[

A1 b1
bT
1 c1

]

, Â2 =
[

A2 b2
bT
2 c2

]

, Â3 =
[

A3 b3
bT
3 c3

]

Theorem 1. Assuming the existence of a minima, if Â3 is

positive definite, then the primal problem

inf
yT A3y+2bT

3
y+c3=n+1

yT A1y + 2bT
1 y + c1

yT A2y + 2bT
2 y + c2

=

= inf
ŷT Â3ŷ=n+1

y2
n+1=1

ŷT Â1ŷ

ŷT Â2ŷ
(23)

and its dual

sup
t

inf
ŷT Â3ŷ=n+1

ŷT Â1ŷ + ty2
n+1 − t

ŷT Â2ŷ
(24)

has no duality gap.

Proof. Let γ∗ be the optimal value of problem (11). Then

γ∗ = inf ŷT Â3ŷ=n+1

y2
n+1=1

ŷT Â1ŷ

ŷT Â2ŷ

= supt inf ŷT Â3ŷ=n+1

y2
n+1=1

ŷT Â1ŷ+ty2
n+1−t

ŷT Â2ŷ

≥ supt inf ŷT Â3ŷ=n+1

ŷT Â1ŷ+ty2
n+1−t

ŷT Â2ŷ

≥ supt,λ inf ŷ
ŷT Â1ŷ+ty2

n+1−t+λ(ŷT Â3ŷ−(n+1))

ŷT Â2ŷ

= sups,λ inf ŷ

ŷT Â1ŷ+sy2
n+1−s+λ(yT A3y+yn+12bT

3 y+c3−(n+1))

ŷT Â2ŷ
=

= supλ infy2
n+1

=1
ŷT Â1ŷ+λ(yT A3y+2bT

3 y+c3−(n+1))

ŷT Â2ŷ

= supλ infy
yT A1y+2bT

1 y+c1+λ(yT A3y+2bT
3 y+c3−(n+1))

yT A2y+2bT
2

y+c2

= γ∗ (25)

Where we let s = t+c3λ. In the last two equalities corollary

1 was used twice. The third row of the above proof gives us

that

µ∗ = sup
t

inf
ŷT Â3ŷ=n+1

ŷT Â1ŷ + ty2
n+1 − t

ŷT Â2ŷ
=

= sup
t

inf
ŷT Â3ŷ=n+1

ŷT Â1ŷ + ty2
n+1 − t ŷT Â3ŷ

n+1

ŷT Â2ŷ
=

= sup
t

inf
ŷT Â3ŷ=n+1

ŷT
(

Â1 + t
(

[ 0 0
0 1 ] − Â3

n+1

))

ŷ

ŷT Â2ŷ
(26)

Finally, since strong duality holds, we can state the fol-

lowing corollary. [1].

Corollary 2. If t∗ and ŷ∗ solves (26), then (ŷ∗)T N̂ ŷ∗ =
n + 1 and y∗

k+1 = 1. That is, ŷ∗ is an optimal feasible

solution to (12)

4. The Dual Problem and Constrained Normal-

ized Cuts

Returning to our relaxed problem (11) we start off by

introducing the following lemma.

Lemma 2. L and M are both (n + 1) × (n + 1) positive

semidefinite matrices of rank n − 1, both their nullspaces

are spanned by n1 = [ 1 ... 1 0 ]
T

and n2 = [ 0 ... 0 1 ]
T

.

Consequently, LĈ and MĈ are also positive semidefinite.

Proof. L is the zero-padded positive semidefinite Laplacian

matrix of the affinity matrix W and is hence also positive

semidefinite. For M it suffices to show that the matrix

(1T d)D − ddT is p.s.d.

vT ((1T d)D − ddT )v =
∑

i di

∑

j djv
2
j − (

∑

i divi)
2

=
∑

i,j didjvj(vj − vi) =
∑

i didivi(vi − vi) +

+
∑

i,j<i didjvj(vj − vi) + djdivi(vi − vj) =
∑

i,j<i didj(vj − vi)
2 ≥ 0, ∀v ∈ R

n (27)

The last inequality comes from di > 0 for all i which means

that (1T d)D − ddT , and thus also M , are positive semidef-

inite.

The second statement follows since both Lni = Mni =
0 for i = 1, 2.

Next, since

vT Lv ≥ 0, ∀v ∈ R
n ⇒ vT Lv ≥ 0, ∀v ∈ Null(Ĉ) ⇒

⇒ wT NĈ
T LNĈ

T w ≥ 0, ∀w ∈ R
k ⇒

⇒ wT LĈw ≥ 0, w ∈ R
k

it holds that LĈ � 0, and similarly for MĈ .

Assuming that the original problem is feasible then we

have that, as f(ŷ) of problem (23) is the quotient of two pos-

itive semidefinite quadratic forms and is therefore f(ŷ) non-

negative, a minima for the relaxed Normalized Cut problem

will exist. Theorem 1 states that strong duality holds for a

program on the form (23), if a minima exists. Consequently,

we can apply the theory from the previous section directly

and solve (11) through its dual formulation. Let

EĈ = [ 0 0
0 1 ] −

NT

Ĉ
N

Ĉ

n+1 = NT

Ĉ

[
− I

n+1
0

0 1

]

NĈ (28)



and let θ(ŷ, t) denote the Lagrangian function. The dual

problem is then

sup
t

inf
||ŷ||2

N
Ĉ

=n+1
θ(ŷ, t) =

ŷT (LĈ + tEĈ)ŷ

ŷT MĈ ŷ
(29)

The inner minimization is the well known generalized

Rayleigh quotient, for which the minima is given by the al-

gebraically smallest generalized eigenvalue1 of (LĈ +tEĈ)
and MĈ . Letting λG

min(t) and vG
min(t), denote the small-

est generalized eigenvalue and corresponding generalized

eigenvector of (LĈ + tEĈ) and MĈ we can write problem

(29) as we can write problem (29) as

sup
t

λG
min(LĈ + tEĈ ,MĈ). (30)

It can easily be shown that the minimizer of the inner prob-

lem of (29), is given by a scaling of the generalized eigen-

vector, ŷ(t) = (||vG
min(t)||N

Ĉ
)vG

min(t). The relaxed Nor-

malized Cut problem can thus be solved by finding the max-

ima of (30). As the objective function is the point-wise in-

fimum of functions linear in t, it is a concave function, as is

expected from dual problems. So solving (30) means max-

imizing a concave function in one variable t, this can be

carried out using standard methods for one-dimensional op-

timization.

Unfortunately, the task of solving large scale generalized

eigenvalue problems can be demanding, especially when

the matrices involved are dense, as the case is here. This can

however be remedied, by exploiting the unique matrix struc-

ture we can rewrite the generalized eigenvalue problem as a

standard one. First we note that the generalized eigenvalue

problem Av = λBv is equivalent to the standard eigenvalue

problem B−1Av = λv, if B is non-singular. Furthermore,

in large scale applications it is reasonable to assume that the

number of variables n + 1 is much greater than the number

of constraints m. Then the base for the null space of the

homogenized linear constraints NĈ can then be written on

the form NĈ = [ c c0

I ]. Now we can write

MĈ = [ c c0

I ]
T

(
[

((1T d)D−ddT ) 0
0 0

]

) [ c c0

I ] =

=

{

D:=
h

D1 0
0 D2

i

d:=
h

d1

d2

i

}

=
[

D2 0

0 cT
0 D1c0+1

]

︸ ︷︷ ︸

D̃

+

+
[

cT cd1+d2 0

cT
0 cT

0 d1 1

]

︸ ︷︷ ︸

V

[
D1

1
−1

]

︸ ︷︷ ︸

S

[ c c0

dT
1 cT +dT

2 dT
1 c0

0 1

]

=

= D̃ + V SV T (31)

Hence, MĈ is the sum of a positive definite, diagonal

matrix D̃ and a low-rank correction V SV T . As a direct

1By generalized eigenvalue of two matrices A and B we mean finding

a λ = λG(A, B) and v, ||v|| = 1 such that Av = λBv has a solution.

result of the Woodbury matrix identity [5] we can express

the inverse of MĈ as

MĈ
−1 = (D̃ + V SV T )−1 =

= D̃−1
(

I − V (S−1 + V T D̃−1V )−1V D̃−1
)

(32)

Despite the potentially immense size of the entering ma-

trices, this inverse can be efficiently computed since D̃

is diagonal and the size of the square matrices S and

(S−1+V T D̃−1V ) are both typically manageable and there-

fore easily inverted. Our generalized eigenvalue problem

then turns into the problem of finding the smallest algebraic

eigenvalue of the matrix MĈ
−1LĈ . The dual problem be-

comes

sup
t

λmin

(
(D̃−1(I − V (S−1 + V T D̃−1V )−1V D̃−1)

NĈ
T (LĈ + tEĈ)NĈ

)
. (33)

Not only does this reformulation provide us with the more

familiar, standard eigenvalue problem but it will also allow

for very efficient computations of multiplications of vec-

tors to this matrix. This is a crucial property, since, even

though MĈ
−1(LĈ + tEĈ) is still dense, it is the product

and sum of diagonal (D̃−1, EĈ), sparse (LĈ , NĈ) and low

rank matrices (V , S−1). It is a very structured matrix to

which iterative eigensolvers can successfully be applied.

In certain case it might however occur that the quadratic

form in the denominator is only positive semidefinite and

thus singular.

These cases are easily detected and must be treated spe-

cially. As we then can not invert MĈ and rewrite the prob-

lem as a standard eigenvalue problem we must instead work

with generalized eigenvalues, as defined in (30). This is

preferably avoided as this is typically a more computation-

ally demanding formulation, especially since the entering

matrices are dense. Iterative methods for finding gener-

alized methods for structured matrices such as LĈ + tE

and MĈ , do however exist [10]. Note, that the absence of

linear constraints is such a special instance. However, in

that case homogenization is completely unnecessary, and

(6) with Cz = b removed, is an standard unconstrained

generalized Rayleigh quotient and the solution is given by

the generalized eigenvalue λT
G(D − W, (1T d)D − ddT ).

Now, if t∗ and ŷ∗ = (||vG
min(t∗)||N

Ĉ
)vG

min(t∗) are

the optimizers of (29), and (29), corollary 2 certifies that

(y∗)T NT

Ĉ
NĈy∗ = n + 1 and that ŷ∗

k+1 = 1. With ẑ∗ =
[

z∗

ẑ∗n+1

]

= NĈ ŷ∗ and ẑn+1 = ŷn+1, we have that z∗ prior

to rounding is the minimizer of (6). Thus we have shown

how to, through Lagrangian relaxation, solve the relaxed,

linearly constrained Normalized Cut problem exactly.

Finally, the solution to the relaxed problem must be dis-

cretized in order to obtain a solution to the original binary



problem (5). This is typically carried out by applying some

rounding scheme to the solution.

4.1. Multi-Class Constrained Normalized Cuts

Multi-class Normalized Cuts is a generalization of (2)

for an arbitrary number of partitions.

Nk
cut =

k∑

l=1

cut(Al, V )

assoc(Al, V )
(34)

If one minimizes (34) in an iterative fashion, by, given the

current k-way partition, finding a new partition while keep-

ing all but two partitions fixed. This procedure is known as

the α − β-swap when used in graph cuts applications, [3].

The associated subproblem at each iteration then becomes

Ñk
cut =

cut(Ai, V )

assoc(Ai, V )
+

+
cut(Aj , V )

assoc(Aj , V )
+

∑

l 6=i,j

cut(Al, V )

assoc(Al, V )
=

cut(Ai, V )

assoc(Ai, V )
+

cut(Aj , V )

assoc(Aj , V )
+ c, (35)

where pixels not labeled i or j are fixed. Consequently,

minimizing the multi-class subproblem can be treated simi-

larly to the bipartition problem. At each iteration we have a

problem on the form

inf
z

f(z) = zT (D−W )z
−zT ddT z+(1T d)2

s.t. z ∈ {−1, 1}n

Cz = b, (36)

where W, D, C and b will be dependent on the current par-

tition and choice of labels to be kept fixed. These matrices

are obtained by removing rows and columns correspond-

ing to pixels not labeled i or j, the linear constraints must

also be similarly altered to only involve pixels not currently

fixed. Given an initial partition, randomly or otherwise, it-

erating over the possible choices until convergence ensures

a multi-class segmentation that fulfills all constraints. There

is however no guarantee that this method will avoid getting

trapped in local minima and producing a sub-optimal solu-

tion, but during the experimental validation this procedure

always produced satisfactory results.

5. Experimental Validation

A number of experiments were conducted to evaluate

our proposed formulation but also to illustrate how relevant

visual information can be incorporated into the segmenta-

tion process through non-homogenous, linear constraints

and how this can influence the partitioning.

All images were gray-scale of approximately 100-by-

100 pixels in size. The affinity matrix was calculated

based on edge information, as described in [6]. The one-

dimensional maximization over t was carried out using a

golden section search, typically requiring 15 − 20 eigen-

value calculations. The relaxed solution z was discretized

by simply thresholding at 0.

Firstly, we compared our approach with the standard

Normalized Cut method, fig. 1. Both approaches produce

Figure 1. Original image (left), standard Normalized Cut algo-

rithm (middle) and the reformulated Normalized Cut algorithm

with no constraints (right).

similar results, suggesting that in the absence of constraints

the two formulations are equivalent. However, where our

approach has the added advantage of being able to handle

linear constraints.

The simplest such constraint might be the hard coding

of some pixels, i.e. pixel i should belong to a certain class.

This can be expressed as the linear constraints zi = ±1,

i = 1..m. In fig. 2 it can be seen how a number of such

hard constraints influences the segmentation of the image in

fig. 1.

Figure 2. Original image (left), segmentation with constraints

(middle) and constraints applied (right).

Another visually significant prior is the size or area of

the resulting segments, that is constraints such as
∑

i zi =
1T z = a. The impact of enforcing limitations on the size of

the partitions is shown in fig. 3.

Excluding and including constraints such as, pixel i and

j should belong to the same or separate partitions, zi +zj =
0 or zi − zj = 0, is yet another meaningful constraint. The

result of including a combination of all the above types of

constraints can be seen in fig. 4.

Finally, we also performed a multi-class segmentation

with linear constraints, fig. 5.



Figure 3. Original image (top left), segmentation without con-

straints (top middle) and segmentation boundary and constraints

applied (top right). Segmentation with area constraints, (area=100

pixels) (middle left), segmentation boundary and constraints

applied (middle right). Segmentation with area constraints,

(area=2000 pixels) (bottom left), segmentation boundary and con-

straints applied (bottom right).

We argue that these results, not only indicate a satisfac-

tory performance of the suggested method, but also illus-

trates the relevance of linear grouping constraints in image

segmentation and the impact that they can have on the re-

sulting partitioning. These experiments also seem to indi-

cate that even a simple rounding scheme as the one used

here can often suffice. As we threshold at zero, hard, in-

cluding and excluding constraints are all ensured to hold

after discretizing. Only the area constraints are not guar-

anteed to hold, however probably since the relaxed solution

has the correct area, thresholding it typically produces a dis-

crete solution with roughly the correct area.

6. Conclusions

We have presented a reformulation of the classical Nor-

malized Cut problem that allows for the inclusion of lin-

ear grouping constraints into the segmentation procedure,

through a Lagrangian dual formulation. A method for how

to efficiently find such a cut, even for very large scale prob-

lems, has also been offered. A number of experiments as

well as theoretical proof were also supplied in support of

these claims.

Improvements to the presented method include, firstly,

the one-dimensional search over t. As the dual function

is the point-wise infimum of the eigenvalues of a matrix,

it is sub-differentiable and utilizing this information should

Figure 4. Original image (top left), segmentation without con-

straints (top middle), segmentation boundary and constraints ap-

plied (top right). Segmentation with hard, including and ex-

cluding, as well as area constraints, (area=25% of the entire im-

age) (middle left), segmentation boundary and constraints applied

(middle right). Segmentation with constraints, (area=250 pixels)

(bottom left), segmentation boundary and constraints applied (bot-

tom right). Here a solid line between two pixels indicate an includ-

ing constraint, and a dashed line an excluding.

Figure 5. Original image (top left), three-class segmentation with-

out constraints (top middle), segmentation boundary (top right).

Three-class segmentation with hard, including and excluding con-

straints (bottom left), segmentation boundary and constraints ap-

plied (bottom right).

greatly reduce the time required for finding t∗. Another is-

sue that was left open in this work is regarding the round-

ing scheme. The relaxed solution z is currently discretized

by simple thresholding at 0. Even though we can guaran-

tee that z prior to rounding fulfills the linear constraints,



this is not necessarily true after thresholding and should be

addressed. For simpler constraints, as the ones used here,

rounding schemes that ensures that the linear constraints

hold can easily be devised. We felt that an in-depth discus-

sion on different procedures for discretization was outside

the scope of this paper.

Finally, the question of properly initializing the multi-

class partitioning should also be investigated as it turns out

that this choice can affect both the convergence and the final

result.
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