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Morphological Amoebas are Self-Snakes

Martin Welk, Michael Breuß, Oliver Vogel

Abstract

This paper is concerned with amoeba median filtering, a structure-

adaptive morphological image filter. It has been introduced by Lerallut

et al. in a discrete formulation. Experimental evidence shows that iter-

ated amoeba median filtering leads to segmentation-like results that are

similar to those obtained by self-snakes, an image filter based on a par-

tial differential equation. We establish this correspondence by analysing a

space-continuous formulation of iterated median filtering. We prove that in

the limit of vanishing radius of the structuring elements, iterated amoeba

median filtering indeed approximates the partial differential equation of

self-snakes. This result holds true under very general assumptions on the

metric used to construct the amoebas. We present experiments with dis-

crete iterated amoeba median filtering that confirm qualitative and quan-

titative predictions of our analysis.

Keywords: morphological amoebas, self-snakes, median filtering, mathematical
morphology, partial differential equations

1 Introduction

Since its beginning in the 60s [23], mathematical morphology has developed into
a powerful theory that provides useful operators for e.g. image denoising, struc-
ture enhancement, and shape simplification [12, 27, 28]. More recently, several
adaptive approaches [5, 22, 32] have been introduced in order to support the
preservation of important image structures by denoising filters.

Introduced by Lerallut et al. [21, 22], morphological amoebas stand out as a
class of morphological image filters in which structuring elements adapt to image
structures with a maximum of flexibility. The key idea of the amoeba construction
is that the structuring elements adapt locally to the variation of grey (or colour)
values, also taking into account the distance to the origin pixel. Thereby, large
deviations in the image values are penalised, so that the amoebas may grow
around corners or along anisotropic image structures. The resulting shape then
takes the role of a structuring element that can be used in conjunction with a
variety of morphological filters. Our investigation in this paper concentrates on
amoeba median filtering (AMF).
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It is typical for the use of a classical median filter that it can be used iteratively.
This is also true for amoeba median filtering. Here, iterated application can be
carried out in different ways. In [21], a pilot image is used to steer the iterated
processes via an alternating procedure. This works as follows. A smoothed ver-
sion of the original image f is used for constructing amoebas for all pixels. The
median filter is applied using the corresponding structuring elements. In subse-
quent iterations, new amoebas are constructed in every step from the previous
filtered image. These amoebas are then used as structuring elements to filter the
original image f . For the purpose of the present paper, we concentrate instead on
a more straightforward iterative procedure for AMF that acts analogous to clas-
sical iterated median filtering [19, 30]. In each iteration, the following two steps
are carried out pixelwise on the previous filtered image: (i) amoeba construction,
and (ii) median filtering using the amoeba as structuring element.

For iterated median filtering with a fixed structuring element, work by Guichard
and Morel [11] has brought out that, in the continuous-scale limit, it approxi-
mates the partial differential equation (PDE) ut = |∇u| div

(

∇u/ |∇u|
)

, known
as (mean) curvature motion [1]. In this sense, iterated discrete median filtering
with a fixed structuring element can be understood as a specific discretisation of
that PDE [17].

Iterated AMF simplifies images towards a cartoon-like appearance with homo-
geneous regions separated by sharp contours. Even corners are preserved fairly
well, in contrast to median filtering with a fixed structuring element. Using
PDE approaches, similar segmentations can be achieved e.g. by so-called self-
snakes [26, 34]. These are filters that stand in close relationship to curvature
motion, with the difference that the evolution is modulated by an edge-stopping
function depending on the local image gradient. Thereby the displacement of
edges is avoided, and edges are sharpened. In the light of Guichard and Morel’s
above-mentioned result it is therefore natural to ask whether there exists a simi-
lar correspondence between a continuous-scale limit case of amoeba filters and a
self-snakes-like PDE.

In the following, we address this question. We prove that iterated amoeba filters
can indeed be understood as a discrete approximations of curvature-based PDE
image filters. We discuss how different choices for the distance measures involved
in the amoeba definition influence the limit case. In one of the settings we discuss,
the self-snakes PDE is recovered.

Our results extend the framework of known correspondences between discrete and
PDE formulations of morphological filters. The study of these relationships helps
to gain a unified view on image filtering methods and to combine advantages of
both approaches. In particular, they also allow to use amoeba procedures as
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discretisations of structure-adaptive PDE filters similar to [17].

Preliminary results of this research have been published in [33], where some
coefficients in the derived PDEs were unfortunately flawed due to a mistake in
the derivation, precluding the correct interpretation of the results. In the present
paper, we describe in more detail the derivation of the PDE, thereby correcting
also the mistake from [33]. Moreover, while in [33] already two amoeba metrics
of potential interest were introduced, most of the considerations were carried out
only for the simpler of the two, namely an L2 type (Euclidean) metric. In the
present paper, a full analysis of general amoeba metrics is carried out, thereby
also covering the practically interesting L1 metric case.

Related work. Median filtering in its non-adaptive form goes back to Tukey
[30] and became common as a structure-preserving image filter in the 90s [10, 19].

On the PDE side, (mean) curvature motion for image smoothing has been pro-
posed by Alvarez et al. [1], already together with a “modulated” variant in which
the right-hand side of the original PDE is multiplied with a decreasing func-
tion of the image gradient. Sapiro [26] proposed a variant of this idea, named
self-snakes, in which the edge-stopping factor is placed within the divergence ex-
pression. While curvature motion smoothes in level-line direction only, Caselles
et al. [7] defined for image interpolation purposes a process that smoothes ex-
clusively in gradient flow line direction, called adaptive monotone Lipschitz ex-
tension (AMLE). The general principle to write curvature- and diffusion-based
image filter PDEs as mixtures of smoothing along level line and gradient flow
line directions, which is also an important ingredient of our analysis, has been
established by Carmona and Zhong [6].

The representation of an image as a manifold embedded in the product space
of image domain and grey-value range has been introduced in PDE-based image
filtering with the so-called Beltrami framework by Kimmel et al. [18] and Yezzi
[35].

Since the seminal paper by Guichard and Morel [11] further cross-relationships
between discrete and PDE-based image filters have been studied. For example,
van den Boomgaard [31] proved a PDE approximation result for the Kuwahara-
Nagao operator [20, 25]. Didas and Weickert [9] studied correspondences between
adaptive averaging and a class of generalised curvature motion filters. Barash [2]
and Chui and Wang [8] considered PDE limits of bilateral filters [29].

With regard to future improvements in the algorithmic realisation of amoeba
filters, we mention also digital distance transforms, in particular the work by
Borgefors [3, 4] and Ikonen et al. [15, 16].
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Using a discrete filter as discretisation of a PDE by virtue of an equivalence result
like [11] can also be seen in the context of other unconventional discretisations
of continuous filters that are tailored to preserve certain important qualitative
properties of PDEs. This includes, for example, mimetic discretisations [13, 14]
as well as so-called nonstandard schemes [24].

Structure of the paper. The paper is organised as follows. In Section 2 we
describe the discrete algorithm. Our main contribution, namely the derivation of
PDEs corresponding to AMF, follows in Section 3. In Section 4, we show some
numerical results that illustrate the theoretical findings. The paper is finished
with a conclusion in Section 5.

2 The Discrete Amoeba Construction

The basic procedure is described in Lerallut et al.’s papers [21, 22]. Here, we
give a brief account of the algorithm in the form we have implemented, which is
slightly modified in a few points that will be pointed out in the sequel, compare
also our conference paper [33].

In the following, we work with images f whose pixels are numbered by integers,
such that fi denotes the grey-value of the pixel with index i. The coordinates
of this pixel are denoted by (xi, yi). We distinguish the initial image f from
the iterated images u(n), where n denotes the iteration number. For starting
the iterative process, we set u(0) := f . On the amoebas whose construction is
described below the standard median filter is applied.

Description of the algorithm. For each pixel i0 with (x, y)-coordinates
(xi0 , yi0), an adaptive structuring element is determined as follows. We consider
pixels i∗ within a prescribed maximal Euclidean distance ̺ of pixel i0. The num-
ber ̺ represents the maximal size of the shape of the amoeba, since it will also be
used for limiting the allowed amoeba distance. For the so pre-selected pixels we
consider paths (i0, i1, . . . , ik ≡ i∗) that connect i0 with i∗ via a sequence of pixels
in which each two subsequent pixels ij , ij+1 are neighbours. Among all these, we
determine the shortest path P with respect to the amoeba distance L(P ). If the
amoeba distance is below ̺ for P , the pixel i∗ is accepted as a member of the
amoeba structuring element.

It remains to specify the amoeba distance as well as the neighbourhood relation
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between subsequent pixels. In [21, 22], the amoeba distance is given by

L
(n)
L (P ) =

k−1
∑

m=0

1 + σ

k−1
∑

m=0

∣

∣

∣
u

(n)
im+1

− u
(n)
im

∣

∣

∣
, (1)

where σ > 0 is a parameter that penalises large deviations in grey-value data,
and each pixel is required to be in the 4-neighbourhood of its predecessor, i.e.
a horizontal or vertical neighbour. Note that this definition involves the mea-
surement of spatial distances by the L1 distance (city-block metric), since the
first sum in (1) counts the pixels in the path P (without the starting pixel i0).
Moreover, spatial and tonal distances (i.e. grey-value differences) are combined
via an l1 sum.

In our implementation, we use a metric that better approximates the Euclidean
distance in space. To this end, we use 8-neighbourhoods that include horizontal,
vertical, and diagonal neighbours, and use the Euclidean distance on these pixel
pairs. This results in shorter paths compared to the procedure of Lerallut et
al., as well, conceptually, in an improvement in terms of rotational invariance.
For the way how spatial and tonal distances are combined we implement either
a Euclidean sum, or an l1 sum like in (1), which leads finally to two alternative
amoeba distance measures L2 and L1 given by

L
(n)
2 (P ) =

k−1
∑

m=0

√

(

xim+1
− xim

)2
+
(

yim+1
− yim

)2
+ σ2

(

u
(n)
im+1

− u
(n)
im

)2

, (2)

L
(n)
1 (P ) =

k−1
∑

m=0

(

√

(

xim+1
− xim

)2
+
(

yim+1
− yim

)2
+ σ

∣

∣

∣
u

(n)
im+1

− u
(n)
im

∣

∣

∣

)

. (3)

While our implementation and experiments concentrate on the metrics (2), (3), in
our theoretical framework these two cases will be embedded into a more general
context.

We remark that the distance measurements could be improved: To better approx-
imate the spatial Euclidean distance one could use the digital distance transforms
discussed in [3], see also [4]. Alternative digital distance transforms approximat-
ing spatial-tonal Euclidean distance or L1 distance and efficient algorithms are
discussed in [15, 16].

3 Space-Continuous Amoeba Model

For our further investigation, we need a space-continuous formulation of AMF.
We base this on the representation of a (smooth) image u by its graph Γ = Γu,σ :=
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{p(x, y) = (x, y, σu(x, y)) | (x, y) ∈ Ω} where Ω ⊂ R
2 is the image domain, and

σ a scaling parameter for grey-values as in (1)–(3). Note that this embedding is
analogous to the Beltrami framework, compare [35]. The surface Γ is equipped
with a metric d which can be obtained by restricting the Euclidean metric of the
embedding space R

3, i.e.

d(p1, p2) ≡ d2(p1, p2) = min

1
∫

0

√

x′(s)2 + y′(s)2 + σ2u′(s)2 ds (4)

where the minimum is taken over all curves [0, 1] → Γ that start in p1 := p(x1, y1)
and end in p2 := p(x2, y2), and u is treated as a function of the curve parameter,
u(s) ≡ u(x(s), y(s)) such that u′(s) = ux(x(s), y(s))x

′(s) + uy(x(s), y(s))y
′(s).

Alternatively, and closer to the setting of [21], one can use an l1 sum of the
Euclidean distance in space and the grey-value distance,

d(p1, p2) ≡ d1(p1, p2) = min

1
∫

0

(

√

x′(s)2 + y′(s)2 + σ |u′(s)|
)

ds . (5)

Of course, one could even use an lp sum for arbitrary p ≥ 1; this would include
in the limit p→ ∞ an amoeba metric that measures the maximum of the spatial
and weighted tonal distance. For our theoretical considerations, we will use as
the most general setting a metric

d(p1, p2) ≡ dϕ(p1, p2) = min

1
∫

0

ϕ
(

√

x′(s)2 + y′(s)2, σ |u′(s)|
)

ds (6)

where ϕ is a homogeneous C2 function of degree 1, strictly increasing in both
variables, and fulfils the triangle inequality ϕ(s+ v, t+ w) ≤ ϕ(s, t) + ϕ(v, w).

One step of amoeba filtering then reads as follows. For a given location (x0, y0)
in the image domain, an amoeba structuring element A(x0, y0) is constituted by
all locations (x, y) for which d(p(x0, y0), p(x, y)) does not exceed a given radius
̺. Typical shapes of amoeba structuring elements with the metrics d2 and d1 are
shown in Figure 1. It is worth noticing that with the metric d ≡ d2 from (4)
the boundary of A(x0, y0) crosses the level line through (x0, y0) orthogonally and
smoothly, while e.g. with d ≡ d1 as given by (5) it has kinks at the intersection
points, giving the structuring element a digonal overall shape in contrast to the
elliptical contour with (4).

Once the structuring element has been constructed, the median of all grey-values
within the structuring element is taken, i.e. the value µ whose level line (the curve
along which u(x, y) = µ holds) cuts A(x0, y0) into two parts of equal area. In the
filtered image, µ becomes the new grey-value at location (x0, y0).
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Figure 1: Amoeba structuring elements. (a) Typical amoeba with metric d ≡ d2

from (4). (b) Typical amoeba with metric d ≡ d1 from (5).

3.1 Analysis with Euclidean Amoeba Metric

We analyse the amoeba median filter now in a manner similar to Guichard and
Morel’s approach [11], and focus first on the case of the metric d ≡ d2, see (4).

Without loss of generality, we assume that we are dealing with the location
(x0, y0) = (0, 0). We assume further that u(x0, y0) = 0, and that the image
gradient at (x0, y0) is given by ∇u(x0, y0) = (α/σ, 0)T with some positive α.
Then σu possesses the Taylor expansion

σu(x, y) = αx+ βx2 + γxy + δy2 + O(̺3) (7)

within A = A(x0, y0), where we have used that x, y = O(̺).

Consider now a value z = O(̺). We are interested in the level line of u corre-
sponding to the grey-value z/σ, restricted to A. On this line, σu(x, y) = z holds.
Due to the prescribed gradient direction of u, level lines of u within A are roughly
oriented in y direction. We can therefore express the level line by writing x as a
function of y. To this end, we read σu(x, y) = z as a quadratic equation for x
with the solutions

x1,2 =
1

2β

(

−α− γy ±
√

(α + γy)2 − 4β(δy2 − z)
)

+ O(̺3) (8)

We drop the “−” solution which is outside A if ̺ is small enough, and use the
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Taylor expansion
√

1 + v = 1 + 1
2
v − 1

8
v2 + O(v3) to obtain

x =
1

2β

(

−α − γy + α

√

1 +
2γ

α
y +

4β

α2
z +

γ2

α2
y2 − 4βδ

α2
y2

)

+ O(̺3)

=
1

2β

(

−α− γy + α + γy +
2βz

α
+
γ2

2α
y2 − 2βδ

α
y2

− γ2

2α
y2 − 2βγ

α2
yz − 2β2

α3
z2

)

+ O(̺3) (9)

and thus

x = x(y) = x(y, z) =

(

z

α
− z2β

α3

)

− zγ

α2
y − δ

α
y2 + O(̺3) . (10)

We will now compute the length of the level line segment within A because it
contributes to the weight with which the value u = z/σ enters the computa-
tion of the median µ. The end points of this segment are obtained by equating
d2(p(x0, y0), p(x(y), y)) to ̺. Approximating d2 by the Euclidean distance within
R

3, this equation becomes x(y)2 + y2 + z2 = ̺2, and because of y, z = O(̺) we
have

(

1 − 2δ

α2
z

)

y2 − 2γ

α3
z2y +

(

1 + α2

α2
z2 − ̺2 − 2β

α4
z3 + O(̺4)

)

= 0 , (11)

a quadratic equation for y. For its two solutions y1, y2 one easily checks that
y1, y2 = O(̺) and y1+y2

2
= O(̺2).

The difference |y1 − y2| yields up to O(̺3) the desired length L(z) of the level
line segment within A, i.e.

L(z) = 2̺

√

1 − z2(1 + α2)

̺2α2

(

1 +
zδ

α2
+

z3β

α2
(

α2̺2 − z2(1 + α2)
)

)

+ O(̺3) . (12)

To determine the median µ, we consider the equation

σµ
∫

Z−

L(ζ)
∂x

∂z
(ζ) dζ =

Z+
∫

σµ

L(ζ)
∂x

∂z
(ζ) dζ , (13)

where Z+ and Z− are the smallest positive and largest negative values for which
L(Z+) = L(Z−) = 0, and the derivative ∂x

∂z
(ζ) = ∂x

∂z
(y1+y2

2
, ζ) is taken at the

midpoint of the corresponding level line segment, y1+y2
2

= O(̺2). To interpret
(13), we notice that each side integrates the lengths L(ζ) of level line segments
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over some range of grey-values, weighted with the inverse density ∂x
∂z

(ζ) of these
level lines. As a consequence, each integral measures the area of the portion of
the structuring element with grey-values in its integration domain, and (13) as a
whole expresses the condition that the portions with grey-values below and above
µ have equal area, which is exactly the characterisation of the median.

From (10) it follows that

∂x

∂z
(ζ) =

1

α
− 2β

α3
ζ + O(̺3) . (14)

For the integration bounds in (13) one has Z+,−Z− = Z∗ + O(̺3) with Z∗ =
̺α/

√
1 + α2.

Provided that µ = O(̺2), the equality (13) can then be transformed into

Z∗
∫

0

(

L(ζ) · ∂x
∂z

(ζ) − L(−ζ) · ∂x
∂z

(−ζ)
)

dζ = 2σµL(0) · ∂x
∂z

(0) + O(̺4) , (15)

thus

Z∗
∫

0

(

L(ζ)

(

1 − 2β

α2
ζ

)

− L(−ζ)
(

1 +
2β

α2
ζ

))

dζ = 2σµL(0) + O(̺4) (16)

(note that we have multiplied here with α to eliminate the factor ∂x
∂z

(0) = 1
α
). Up

to higher order terms the left-hand side equals

4̺(δ − 2β)

α2

Z∗
∫

0

ζ

√

1 − ζ2(1 + α2)

̺2α2
dζ +

4β

̺α4

Z∗
∫

0

ζ3

√

1 − ζ2(1+α2)
̺2α2

dζ

=
4̺3(δ − 2β)

1 + α2

1
∫

0

ξ
√

1 − ξ2 dξ +
4̺3β

(1 + α2)2

1
∫

0

ξ3

√

1 − ξ2
dξ

=
4̺3

3(1 + α2)
(δ − 2β) +

8̺3

3(1 + α2)2
β

=
4̺3

3(1 + α2)
δ − 8̺3α2

3(1 + α2)2
β . (17)

Together with L(0) = 2̺+ O(̺3), this implies

µ =
̺2

3σ

(

δ

1 + α2
− 2βα2

(1 + α2)2

)

+ O(̺3) (18)
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which by virtue of (7) can be restated in terms of spatial derivatives of u as

µ =
̺2

6

(

uyy
1 + σ2u2

x

− 2σ2u2
xuxx

(1 + σ2u2
x)

2
+ O(̺)

)

. (19)

We have therefore obtained a result of the same type as the equivalence from
[11]: One amoeba median filter step acts approximately like one time step of an
explicit scheme for the PDE

ut =
uξξ

1 + σ2 |∇u|2
− 2σ2 |∇u|2 uηη
(

1 + σ2 |∇u|2
)2 (20)

with time step size τ = ̺2/6. On the right-hand side, second order derivatives
are taken in the directions of the normalised gradient vector η := ∇u/ |∇u| and
the perpendicular vector ξ := η⊥, the tangential vector of the local level line of
u.

When ̺ tends to zero, the iterated amoeba median filter therefore converges to
the PDE (20). The first summand of the right-hand side of (20) can obviously
be interpreted as right-hand side of curvature motion ut = uηη multiplied by

an edge-stopping factor g(|∇u|) :=
(

1 + σ2 |∇u|2
)−1

. The second summand

corresponds to an AMLE evolution weighted with h(|∇u|) := −2σ2 |∇u|2 (1 +
σ2 |∇u|2)−2, compare Figure 2(a). However, as h takes negative values, this
term represents rather an edge-enhancing backward AMLE, i.e. a one-dimensional
backward diffusion process.

A closer look reveals that sg′(s) = h(s). Thus the second summand can be
expressed as |∇u| g′(|∇u|) uηη which transforms further into 〈∇g,∇u〉.

As a result, we see that (20) is nothing else than the self-snakes PDE [26, 34]

ut = |∇u| div

(

g(|∇u|) ∇u
|∇u|

)

= g(|∇u|)uξξ + 〈∇g(|∇u|),∇u〉 . (21)

3.2 Analysis with General Amoeba Metric

Replacing the d2 amoeba metric (4) with the dϕ metric from (6), we can carry
out a very similar analysis like in the previous subsection.

We start again from the Taylor ansatz (7). The end points of the level line segment
within the amoeba for u = z/σ now need to fulfil dϕ(p(x0, y0), p(x(y), y)) =
̺, where dϕ is approximated by the corresponding distance in 3D space, thus
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Figure 2: Edge-stopping functions in PDEs approximated by iterated amoeba
median filtering. For visualisation, σ is fixed to 1. (a) Weight functions g(s) =
(

1 + s2
)−1

for the curvature motion term (solid line), h(s) = −2s2
(

1 + s2
)−2

for
the shock term (dashed line) from the PDE (20) based on the Euclidean amoeba
metric (4). (b) Corresponding weight functions for the amoeba metric (5).

ϕ
(

√

x(y)2 + y2, |z|
)

= ̺. Using the homogeneity of ϕ we can write ϕ(v, w) =

wϕ( v
w
, 1) =: wψ( v

w
). Thus we have |z|ψ

(√
x(y)2+y2

|z|

)

= ̺, and finally

x(y)2 + y2 = z2ψ−2

(

̺

|z|

)

(22)

where ψ−2 denotes the square of the inverse function of ψ. Substituting (10) into
the condition, we obtain instead of (11) the quadratic equation
(

1 − 2δ

α2
z

)

y2 − 2γ

α3
z2y +

(

1

α2
− ψ−2

(

̺

|z|

))

z2 − 2β

α4
z3 + O(̺4) = 0 , (23)

from which we conclude by analogous considerations as before that

L(z) = 2 |z|
√

ψ−2

(

̺

|z|

)

− 1

α2



1 +
δ

α2
z +

β

α4ψ−2
(

̺

|z|

)

− α2
z



 + O(̺3) (24)

By inserting this and observing the new integration bound Z∗ = ̺/ψ(1/α) (re-
member that α > 0) the left-hand side of (16) becomes

4(δ − 2β)

α2

Z∗
∫

0

ζ2

√

ψ−2

(

̺

|ζ |

)

− 1

α2
dζ +

4β

α4

Z∗
∫

0

ζ2

√

ψ−2
(

̺

|ζ|

)

− 1
α2

dζ

=
4̺3(δ − 2β)

α2ψ3(1/α)
I1(α) +

4̺3β

α4ψ3(1/α)
I2(α) (25)
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where the two integrals

I1(α) :=

1
∫

0

ξ2Rψ(ξ, α) dξ (26)

I2(α) :=

1
∫

0

ξ2

Rψ(ξ, α)
dξ (27)

depend on the expression

Rψ(ξ, α) :=

√

ψ−2

(

1

ξ
ψ

(

1

α

))

− 1

α2
. (28)

By analogous reasoning as for the d2 metric, it is finally proven that one step of
amoeba median filtering approximates a time step of size τ = ̺2/6 of an explicit
scheme for the PDE

ut = g(|∇u|)uξξ + h(|∇u|)uηη (29)

with the two weight functions

g(s) =
3I1(σs)

(σs)2ψ3(1/(σs))
, (30)

h(s) =
3I2(σs)

(σs)4ψ3(1/(σs))
− 2g(s) . (31)

Again, the right-hand side consists of a curvature motion uξξ modulated by the
weight g and an edge-sharpening shock term given by the AMLE expression uηη
with the weight h.

As an example, we show in Figure 2(b) the functions g and h for the case of the
d1 amoeba metric, (5).

While for general functions ψ the integrals I1 and I2 may not be solvable in
closed form, it is possible to compute these integrals, and thereby the weight
functions g and h, numerically and thereby to implement a numerical scheme for
the evolution PDE (29). In calculating the integrals, however, care must be taken
of the (weak) singularity of the integrands at ξ = 1.

It is easy to show that the derivative of the integrand of I1 w.r.t. s is bounded
over the product [a, b] × [0, 1] of closed intervals [a, b] (0 < a < b) for s and [0, 1]
for ξ such that it is uniformly continuous. It follows further that its integral

12



is uniformly convergent w.r.t. s. As a consequence, one can compute g′(s) by
exchanging differentiation and integration, and derive the expression

sg′(s) − h(s) =
3ψ′
(

1
σs

)

(σs)3ψ4
(

1
σs

)I3(σs) (32)

with the integral

I3(α) :=

1
∫

0



3ξ2Rψ(ξ, α) −
ξψ−1

(

1
ξ
ψ
(

1
α

)

)

ψ
(

1
α

)

ψ′
(

ψ−1
(

1
ξ
ψ
(

1
α

)

))

Rψ(ξ, α)



 dξ . (33)

Using the antiderivative

∫



3ξ2Rψ(ξ, α)−
ξψ−1

(

1
ξ
ψ
(

1
α

)

)

ψ
(

1
α

)

ψ′
(

ψ−1
(

1
ξ
ψ
(

1
α

)

))

Rψ(ξ, α)



 dξ = ξ3Rψ(ξ, α) (34)

one concludes that I3(α) = 0 and sg′(s) = h(s) holds exactly as in the d2 case.
The PDE (29) can therefore be identified as a self-snakes evolution (21) with the
edge-stopping function g given by (30).

4 Experiments

We present two experiments that confirm the behaviour suggested by the analyt-
ical results from the previous section.

The House experiment. We use first a comparatively simple image in order to
investigate the effect of the different parameters of the amoeba median filtering
algorithm, see Figure 3, and to compare results against self-snakes, see Figure 4.

Figure 3(a) shows the original image. Subfigure (b) depicts the steady state of
standard median filtering with a fixed (3×3) structuring element. As usual with
median filtering, the shape of edges is rounded, and the facade of the depicted
house is quite non-uniform in its grey-value distribution. The use of a larger non-
adaptive structuring element will distort the shape of important image features.

In Figure 3(c–f) we compare the results of iterated AMF using the L2 amoeba
distance together with varying parameters.

We start with a relatively strong penalisation of grey-value differences given by
σ = 0.25, see (c, d). This leads to a visible image simplification in which almost

13



a b

c d

e f

Figure 3: The House experiment. Top row: (a) Original image. (b) Filtered
with iterated median filter, 3×3 stencil, 40 iterations. Middle row: (c) Iterated
AMF, ̺ = 10, σ = 0.25, 4 iterations. (d) Same as in (c) but 20 iterations.
Bottom row: (e) Iterated AMF, ̺ = 10, σ = 0.02, 10 iterations. (f) Iterated
AMF, ̺ = 20, σ = 0.25, 1 iteration.
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a b

Figure 4: The House experiment with self-snakes. (a) Image from Figure 3(a)
filtered by self-snakes (21) with Euclidean edge-stopping function, σ = 0.25, time
step τ = 0.25, 267 iterations. (b) Same but σ = 0.02, τ = 0.25, 667 iterations.

flat image regions are flattened even more. Edges are sharpened but stay fairly
well in place.

When a very small σ is used, as in Figure 3(e), image contrast has little influence
on the amoeba shapes such that the filter gets close to a non-adaptive median
filter with large structuring elements. The typical rounding of corners and dis-
appearance of small-scale structures can be observed well. Translating to the
approximated self-snakes evolution, the edge-stopping function now takes values
close to 1, implying a smoothing behaviour very similar to curvature motion.

In Figure 3(f) we return to the sensitive tonal weight setting of (c) but increase
the amoeba parameter ̺ relative to (c, d). From the analytic point of view,
this corresponds to a larger time step size: Due to the quadratic relationship
τ = ̺2/6 we can expect that a single iteration with structure element radius
̺ = 20 should roughly correspond to four iterations with a structure element of
half the radius, ̺ = 10. Indeed, the results shown in Figure 3(c) and (f) look very
similar. We observe especially that the transition zones at the shadows are located
very similarly. The self-snake-like sharpening, however, appears somewhat more
prominent in the image processed with four iterations. The similarity between
the two results also gives rise to the expectation that for the simple test image
used here the qualitative behaviour of amoeba median filtering with structure
element radius ̺ = 10 is still comparable to the continuous limit ̺→ 0.

For comparison, Figure 4 displays results of numerical evaluation of the self-
snakes PDE (21) with Euclidean edge-stopping function g(s) = (1 + σ2s2)−1. An
explicit time-stepping scheme was used wherein the curvature-motion component
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g(|∇u|)uξξ was discretised using central differences, while the backward AMLE
contribution was discretised by an upwind-like discretisation.

The parameters for Figure 4(a) have been adjusted to match those of the AMF
experiments in Figure 3(c) or (f), and indeed the filtering result is very similar.
Figure 4(b) should approximate Figure 3(e). Here the approximation is some-
what worse: On one hand, the discretisations of derivatives in the PDE scheme
inevitably introduce some additional blurring and accelerate the structure sim-
plification process. On the other hand, one has to be aware that the structuring
elements of the amoeba evolution are fairly large such that visible deviations from
the limit case behaviour can be expected.

The Head experiment. In our second experiment (Figure 5) we use an MR
image of a human head which abounds in details of different contrast and scale.
The original image is shown in Subfigure (a), a non-adaptive median filter result
in (b). In (c, d) iterated AMF results both with L2 and L1 amoeba distance
are displayed. It can be seen that both distance measures lead to similar results.
Moreover, we observe even clearer than in the House experiment the good quality
of segmentation that is achieved in spite of the relative simplicity of the filtering
approach.

We contrast the results once more with numerical computations based on the
self-snakes PDE, where we use this time the edge-stopping function (30) corre-
sponding to the L1 amoeba metric (5). A precomputed lookup table with linear
interpolation was used for the edge-stopping function.

Since the present test image contains a multitude of small-scale structures, the
differences between a conventional PDE discretisation and amoeba median filter-
ing become evident: Figure 5(e) clearly demonstrates an over-simplification due
to numerical blurring effects. To give an impression of the influence of the latter,
we have re-computed the self-snakes evolution on a finer grid: Using a mesh size
of 0.25 instead of 1, the resulting image, Figure 5(f), retains much more structure
and shows in the coarser image structures a comparable degree of simplification
as the AMF result in Subfigure (d). However, small-scale structures still retain
more contrast in the AMF result.

5 Conclusion

In this paper we have presented an analysis of iterated amoeba median filter-
ing which demonstrates that even highly adaptive discrete morphological image
filters can be interpreted in terms of PDE-based evolutions. An equivalence re-
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e f

Figure 5: The Head experiment. Top row: (a) Original image. (b) Steady
state of iterated median filter. Middle row: (c) Iterated AMF, ̺ = 10, σ = 0.25,
10 iterations, L2 amoeba distance. (d) Same but with L1 amoeba distance.
Bottom row: (e) Self-snakes with edge-stopping function based on L1 metric
(5), σ = 0.25, time step size τ = 0.25, 667 iterations. (f) Same self-snakes
evolution computed on a grid with spatial mesh size 0.25, σ = 0.25, τ = 0.015625,
10667 iterations.
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sult has been proven that links iterated amoeba median filtering to self-snakes,
a well-known PDE image filter with segmentation behaviour. Thereby a clear
explanation of qualitative properties of iterated AMF was given, together with
predictions that could be experimentally checked. Our experiments confirm the
predictions of the theoretical investigation, while demonstrating at the same time
the difficulties of conventional discretisations of the self-snakes PDE in reproduc-
ing its favourable theoretical properties.

It appears therefore attractive to use iterated AMF itself as a discretisation of the
self-snakes PDE. Together with equivalence results as by Guichard and Morel this
may lead to establishing a dictionary of unconventional discretisations of image
filtering PDEs which retain advantageous qualitative characteristics of the PDEs
better than standard approaches.

This emphasises a common perspective on discrete and PDE-based image filters,
which may help to fuse both formerly disparate branches of image processing.
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