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Abstract
Neuropsychiatric disorders have been demonstrated to manifest shape differences in cortical
structures. Labeled Cortical Distance Mapping (LCDM) is a powerful tool in quantifying such
morphometric differences and characterizes the morphometry of the laminar cortical mantle of
cortical structures. Specifically, LCDM data are distances of labeled gray matter (GM) voxels with
respect to the gray/white matter cortical surface. Volumes and descriptive measures (such as
means and variances for each subject) based on LCDM distances provide descriptive summary
information on some of the shape characteristics. However, additional morphometrics are
contained in the data and their analysis may provide additional clues to underlying differences in
cortical characteristics. To use more of this information, we pool (merge) LCDM distances from
subjects in the same group. These pooled distances can help detect morphometric differences
between groups, but do not provide information about the locations of such differences in the
tissue in question. In this article, we check for the influence of the assumption violations on the
analysis of pooled LCDM distances. We demonstrate that the classical parametric tests are robust
to the non-normality and within sample dependence of LCDM distances and nonparametric tests
are robust to within sample dependence of LCDM distances. We specify the types of alternatives
for which the tests are more sensitive. We also show that the pooled LCDM distances provide
powerful results for group differences in distribution of LCDM distances. As an illustrative
example, we use GM in the ventral medial prefrontal cortex (VMPFC) in subjects with major
depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy subjects. Significant
morphometric differences were found in VMPFC due to MDD or being at HR. In particular, the
analysis indicated that distances in left and right VMPFCs tend to decrease due to MDD or being
at HR, possibly as a result of thinning. The methodology can also be applied to other cortical
structures.
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1 Introduction
In the past 15 years, the laminar structure of the neo-cortex has received considerable
attention thanks to advances in high resolution magnetic resonance imaging (MRI)
technology and the development of Computational Anatomy (CA) methods (e.g.,
[3,7,13,15,17,19]). Specifically, Labeled Cortical Distance Mapping (LCDM) has been
shown to be a powerful tool for structural comparison of cortical thickness characteristics in
the cingulate cortex in studies of Alzheimer’s disease and schizophrenia [1,16,25].

LCDM characterizes the morphometry of the laminar cortical mantle. The term
“morphometry” here has two components, the structural formation (like surface and form) of
the tissue and scale or size (like volume and surface area). Thus, morphometry refers to all
aspects of laminar shape, where “shape” refers to the surface structure, while “size” refers to
the scale of the tissue in question. Specifically, LCDM data are distances of labeled gray
matter (GM) voxels with respect to the gray/white matter (GM/WM) cortical surface. Hence
LCDM distances are local measures characterizing the morphometry of the cortical mantle.

In this article, we assess the use of pooling of LCDM distances in discriminating between
diagnostic groups. In particular we consider LCDM data for the Ventral Medial Prefrontal
Cortex (VMPFC) which is implicated in major depressive disorders (MDD) [10-14].
Abnormalities have been demonstrated in structure and function of the prefrontal cortex due
to MDD [10,11]. Other structural imaging studies have largely focused on adult onset MDD,
while only few have focused on early onset MDD. Structural deficits in a subregion of the
VMPFC, i.e., subgenual prefrontal cortex, have also been associated with early onset of
MDD [2].

Previously, we analyzed morphometric measures (i.e., volume and descriptive summary
statistics based on LCDM distances such as median, mode, range, and variance) and
demonstrated that except for left-right asymmetry and correlation between left and right
measures, these variables usually failed to discriminate between MDD and healthy groups
[5]. This may be due to the fact that the subjects are age-matched female twins, whose
VMPFC may be similar in size. This might also be partly due to the small sample size (i.e.,
number of subjects). On the other hand, by only using a descriptive summary statistic (such
as volume or median) of the numerous distances for each person, we essentially lose most of
the information provided by LCDM measures. Therefore, we suggest a strategy to avoid
such information loss and to more fully utilize the shape or morphometric characteristics
contained in the data by using all of the LCDM distances. Along these lines, we pool (i.e.,
merge) the LCDM distances by condition or group and use the pooled distances to detect
morphometric differences. However the pooled distances do not have within sample
independence, as the distances of neighboring voxels of each voxel are dependent.
Moreover, there is also dependence between distances in left and right VMPFC in each
subject, as they belong to the same person. But we demonstrate that within sample
dependence does not affect the tests in terms of empirical significance levels (or Type I
errors) or power. Throughout the article, we use α=0.05 as the significance level to declare a
p-value to be significant.
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We describe the acquisition of LCDM distances in Section 2.1, the methods we employ in
Sections 2.2 and 2.3, present the analysis of pooled distances in Section 3, and investigate
the influence of assumption violations in Section 4.

2. Methods
2.1 Data Description and Acquisition

A cohort of 34 right-handed young female twin pairs between the ages of 15 and 24 years
old were obtained from the Missouri Twin Registry in order to study cortical changes in the
VMPFC associated with MDD. The inclusion criteria for affected twin pairs were onset
prior to age 16 and the DSM-IV criteria for MDD being greater than duration of 4 weeks.
Control twin pairs had no personal or first degree of family history of MDD. Both
monozygotic and dizygotic twin pairs were included, of which 14 pairs were controls (Ctrl)
and 20 pairs had one twin affected with MDD, their co-twins were designated as the HR
group. Three high resolution T1-weighted MPRAGE magnetic resonance scans of each
subject in this population were acquired using a Siemens scanner with 1 mm3 isotropic
resolution. Images were then averaged, corrected for intensity inhomogeneity and
interpolated to 0.5×0.5×0.5 mm3 isotropic voxels. Following [23], a region of interest (ROI)
comprising the VMPFC stripped of the basal ganglia, eyes, sinus, cavity, was defined
manually and segmented into gray matter (GM), white matter (WM), and cerebrospinal fluid
(CSF) by Bayesian segmentation using the expectation maximization algorithm [12]. A
triangulated representation of the cortex at the GM/WM boundary was generated using
isocontouring algorithms [12].

Bayesian segmentation [12] automatically segments the tissue via the Expectation-
Maximization minimization of Gaussians for the three tissue classes at each voxel. Partial
volume i.e. voxels that share mixtures were resolved via a Neymann-Pearson recalibration
of the segmentation based on a training set [23]. The threshold between GM and WM was
used to generate a triangulated isosurface via the marching tetrahedra algorithm i.e. the mesh
is dense. Validation with several VMPFC subvolumes yielded misclassification errors of
0.05-0.10 (n=5) for the segmentation and sub-voxel accuracy of the isosurface with 50
percent of the vertices within 0.12-0.28 mm (n=14) from semi-automated contours [23].

LCDM is generated as follows: first, the ROI subvolume is partitioned by a regular lattice of
voxels of specific size h , denoted V(h). Every voxel is labeled by tissue type as gray matter
(GM), white matter (WM), or cerebrospinal fluid (CSF) (see, e.g., [12,17]). For every GM
voxel in the ROI, the distance from the centroid of the voxel to the closest point on GM/WM
surface is computed. Let S(Δ) be the triangulated graph representing the GM/WM surface.
An LCDM distance is a set distance function d : νi ∈ V(h) → d (νi , S(Δ)), the distance
between the centroid of voxel νi and the set S(Δ) ; that is, it is the distance from the center of
the voxel to the closest vertex on the surface. More precisely,

(1)

where CM (·) stands for center of mass (or centroid), and ∥·∥2 is the usual L2 – norm . We use
a signed (or labeled) distance to indicate the location of each voxel with respect to the GM/
WM surface. Figure 1 illustrates the computation of distances between labeled voxels and
the cortical surface; also shown is the corresponding non-normalized histograms of LCDM
distances. Observe that GM tissue comprises most of the cortex, and by construction, while
most of GM distances are positive, most of WM distances are negative, and all of CSF
distances are positive. Negative distances for some GM close to the GM/WM boundary are
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possible by construction, because the surface is constructed in such a way that a surface is
always intersecting voxels, i.e., partial volume. So some appropriately labeled GM voxels
may fall on a side of surface that they should not belong to. However, these mislabeled
voxels constitute a small proportion of all voxels and do not affect the overall analysis.
Reliability of LCDMs is dependent on GM segmentation and reconstruction of GM/WM
surfaces which has been validated for several cortical structures including VMPFC [23],
cingulate cortex [24,25] and planum temporale [22]. Condensing to a single distance value
for each vertex on the surface is the next logical step in extending LCDM. This is called
Local LCDM or LLCDM and is useful in comparing thickness across multiple subjects for a
cortical structure (see [20,21]).

For the left ROI, let DL be the set of LCDM distances,  be the distance calculated as in
Equation (1) and associated with kth voxel in subject j in group i for k = 1, 2,…,Kij , j = 1, 2,
…,ni and i = 1, 2,3 (here group 1 is for MDD, 2 is for HR, and 3 is for Ctrl). Thus, n1 = 20,

n2 = 20, and n3 = 28. Right distances DR are denoted similarly as  . Based on prior
anatomical knowledge (e.g., [14]), cortical thickness of the VMPFC is roughly 6 mm, so we
can safely retain distances between −0.5 mm and 5.5 mm so that (potentially) mislabeled
GM is excluded from the data. In this particular case for the left and right VMPFC, only
0.16% and 0.14% of distances were below −0.5 mm respectively; similarly, only 0.22% and
0.07% of distances were above 5.5 mm , respectively.

2.2 Pooling LCDM Distances by Group
Although the descriptive measures such as mean, median, and variance of LCDM distances
are global measures regarding the morphometry of VMPFC, they are summary statistics
(such as volume or median), so they tend to oversimplify the data since instead of a large
number of LCDM distances per subject, we will have two (e.g., one mean value for left, one
for right VMPFC) measures for each subject [5]. Hence we lose most of the information
conveyed by the LCDM distances. A solution to this problem is using all the LCDM
distances in our analysis. So we pool LCDM distances of subjects from the same group and
thereby obtain yet another global measure of morphometry. That is, we pool the LCDM
distances for all left MDD VMPFCs, those for all left HR VMPFCs, and those for all left
Ctrl VMPFCs. Likewise, we pool the right VMPFC LCDM distances. Thus, for left
VMPFCs

(2)

where  is the ℓth distance in group i and  is the number of distances (i.e., GM
voxels) in group i for i = 1, 2,3 (group 1 is for MDD, group 2 for HR, and group 3 for Ctrl).
Similarly, we denote the right pooled distances as  . Furthermore, we denote the overall

(i.e., groups combined) pooled left and right distances as  and  ,
respectively. See Table 1 for the corresponding sample sizes, means, and standard deviations
of the pooled LCDM distances, overall and for each group. For pooling the LCDM
distances, the most crucial assumption is that the subjects with the same diagnosis have
similar VMPFC in morphometry, which is reasonable in practice. By pooling, the most
common characteristics of the VMPFC specific to a diagnostic group are emphasized, while
the differences at the individual (i.e., subject) level are downplayed. Furthermore, the pooled
distances will be more powerful in detecting the differences between LCDM distances
(hence differences in morphometry).
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2.3 Statistical Tests
There is an inherent dependence between LCDM distances of voxels to the gray matter/
white matter boundary due to spatial correlation at the level of individual subjects. When we
pool the LCDM distances by group, this spatial dependence is not removed. That is, pooling
neither creates nor removes the inherent dependence of the distances, as it only ignores the
subject information. We compare the distributions and central measures (e.g., means) of the
LCDM distances using various statistical tests. In particular, we consider Kruskal-Wallis (K-
W) test for omnibus multi-group comparison of the LCDM distributions and ANOVA F-
tests for omnibus multi-group comparison of the LCDM means. For k groups the null
hypothesis for K-W test is H0 : F1 = F2 =…=Fk where Fi is the distribution function of
group i and the null hypothesis for ANOVA F-test is H0 : μ1 = μ2 =…=μk where μi is the
mean of group i, for i = 1, 2,…,k. For comparison of distributions of LCDM distances of
pairs of groups, we apply Wilcoxon rank sum test and Kolmogorov-Smirnov (K-S) tests;
and for comparisons of means of pairs of LCDM distance groups, we apply Welch’s t-test
(see [8] for more detail on these tests). For pairwise comparisons, Wilcoxon rank sum test is
done as a post hoc test after a significant K-W test, because Wilcoxon rank sum and K-W
tests are both variants of the same test for multiple or two group comparison. K-S test is
performed to determine the stochastic ordering. Wilcoxon rank sum test (also called the
Mann–Whitney U test) is a non-parametric test for assessing whether two independent
samples of observations have similar values. It is based on the sum of the ranks of the two
independent samples, when the samples are pooled together. Under the null hypothesis, it is
assumed that the distributions of both groups are equal, i.e., H0 : F1 = F2 . In other words,
the probability of an observation from the first population being larger than the one from the
second population is the same as the probability of an observation from the second
population being larger than the first. For two groups, the K-S test is a nonparametric test
based on the estimated maximum difference between the cumulative distributions of the two
groups. Under the null hypothesis, it is assumed that the distributions are equal, i.e., H0 : F1
= F2 . Welch’s t-test is an extension of the usual Student’s t-test and is intended for use with
two samples having (possibly) unequal variances. The null hypothesis for Welch’s t-test is
H0 : μ1 = μ2 .

Wilcoxon and t-tests imply an ordering in a location parameter such as mean or median.
Stochastic ordering, if present, can be deduced from the direction of the alternative, together
with the graph of the cumulative distribution functions (cdfs). However, we can also use
Kolmogorov-Smirnov (K-S) tests for H0 : F1 = F2 . Although Wilcoxon rank sum and K-S
tests have the same null hypothesis, Wilcoxon test gives an overall distribution comparison
based on the rankings of the observations, while K-S test compares the cdfs of the
observations at values where the maximum differences between cdfs occur. Hence
Wilcoxon test can be significant for only one of the one-sided alternatives, while K-S test
yields p-values that are not complementary for the one-sided alternatives (i.e., they don’t
add up to 1). Hence, p-values can be significant for both or none of the directional
alternatives. This results from the fact that, the order of the cdfs F1 and F2 can be different at
different distance values (plotted on the horizontal axis). Moreover, if p-value based on K-S
test is significant for only one-sided alternative, then we can also deduce stochastic ordering.
The p-values being insignificant or significant for both one-sided alternatives imply lack of
stochastic ordering. But the first case implies that equality of the distributions is retained,
while the latter implies that the distributions are different. Although K-S test does not
provide the actual values where the significant differences between cdfs occur, it is more
informative and suggestive of distributional differences compared to Wilcoxon rank sum
test. Furthermore, different cdf orderings at different values can be masked by the Wilcoxon
rank sum test. Hence K-S test is more informative compared to Wilcoxon rank sum test.
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We perform the omnibus multi-group tests before the pairwise comparison tests, because if a
multi-group test is not significant, there is no need to perform the pairwise tests. For
example, if K-W test is not significant, then the distributions of the LCDM distances of
groups are not significantly different, hence Wilcoxon rank sum test on each pair of groups
is redundant. On the other hand, if a multi-group test yields a significant result, it only
means that there are some significant differences between the groups, but does not indicate
which groups are different. To determine the pairs that have significant difference, we have
to perform the pairwise comparison methods. Among the tests we consider, K-W and
ANOVA F-tests are omnibus tests, and Wilcoxon rank sum and Welch’s t-tests are for
commonly used multiple comparison procedures after obtaining a significant omnibus test
result. Rejecting an omnibus test for k groups suggest that there are differences between
some pair(s) of the groups, and to determine which pair(s) exhibit significant differences,
k(k – 1)/2 pairwise comparisons are needed. Hence, for large k values, an omnibus test
might save a great deal of time and energy since after an insignificant omnibus test, there is
no need for the pairwise tests. For small k values, one might do an omnibus test followed by
pairwise tests, or just the pairwise tests directly. However, for even k=4, we need 6 pairwise
tests, and this might still be too many pairwise tests, if omnibus test were insignificant.

For the nonparametric tests (K-W, Wilcoxon rank sum, and K-S tests) only within sample
independence is violated, but for the parametric tests (ANOVA F-tests and t-test), the
assumptions of normality (i.e., Gaussianity) and within sample independence are violated.
See [4] for a complete list of assumptions for each of these tests. However, we investigate
the influence of assumption violations on both nonparametric and parametric tests in Section
4 by an extensive Monte Carlo simulation study where we find the effect of assumption
violations is negligible and we conjecture that this is due to the fact that the correlation
structure is similar for each person (hence for each group). Moreover, our analysis does not
concern inference for single populations but comparison of multiple populations. Given the
difficulty to develop a method that accounts for spatial correlations, we ignore this type of
spatial dependence henceforth.

In the analysis of the pooled distances, we apply classical parametric and nonparametric
tests to detect the differences in LCDM distances due to diagnostic group factors. Such
differences will imply morphometric changes (if any) due to the particular disease in
question. K-W test provides an overall test of distributional equality for multiple groups.
That is, if K-W test yields a significant p-value, then we conclude that LCDM distances are
different in distribution for at least two groups, but it does not indicate which pair or pairs of
groups exhibit differences. To find out which pairs exhibit significant distributional
differences, we apply Wilcoxon rank sum test for each pair of LCDM groups. On the other
hand, K-S test is only applicable to compare the distributions of two LCDM groups.
Similarly, if an ANOVA F-test yields a significant p-value, it implies that the mean LCDM
distances are different for at least two LCDM distance groups. To find out which pairs
exhibit significant mean differences, we apply Welch’s t-test for each pair of LCDM groups.
The p-values for the t-test and Wilcoxon rank sum test are complementary, in the sense that
p-values for the one-sided alternatives add up to 1 and can be significant for only one of the
one-sided alternatives. Hence, Wilcoxon test provides an overall distributional comparison
for two LCDM groups. On the other hand, p-values for K-S test are not complementary, as
they do not add up to 1 for the one-sided alternatives. For example, one might have
significant p-values for both of the one-sided alternatives, which implies that at a particular
distance value, a group’s empirical cumulative distribution function (ecdf) is significantly
larger, while at another distance value the other group’s ecdf is larger. Wilcoxon test
(together with the ecdf plots) and K-S tests (either with p-values for both one-sided tests or
with the ecdf plots) might provide the stochastic ordering (if present) of pooled distances.
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3 Analysis of Pooled LCDM Distances
First we test for any distributional differences between the LCDM distances of the three
diagnostic groups by K-W test and apply the ANOVA F-tests (with or without assuming
homogeneity of variances (HOV)) for the equality of the means of the left and right LCDM
distances of the three groups. The null hypothesis for these tests are provided in Section 2.3
(see also [4]).

The left and right pooled distances for each group are significantly non-normal (i.e., their
distributions are significantly different from a Gaussian distribution) where based on
Lilliefor’s test of normality p < .0001 for each test (see, e.g., [38]), due to the heavy right
skew of the densities. This skew is biologically reasonable since most of the gray matter
voxels will be expected to be near the GM/WM surface. Moreover, HOV is rejected ( p < .
0001 for both left and right pooled distances based on B-F test). Hence nonparametric tests
of group comparisons would be more appropriate for this data. However, our Monte Carlo
simulation results (see Section 4) suggest that both parametric and nonparametric tests are
appropriate, with each being more sensitive for different alternatives.

The hypothesis of equality of the distributions of the pooled distances can be attributed to
the similarity in the VMPFC shapes for all groups, but not vice versa (i.e., the equality of the
distributions does not necessarily imply morphometric similarity, but only similarity in the
distance structure of GM tissue with respect to the GM/WM surface). Notice that LCDM
distances analyzed in this fashion provide morphometric information, on cortical mantle
thickness and shape because the comparison is done on the ranking of distances (for K-W
test) and means of the distances (for ANOVA F-tests) with respect to the GM/WM surface.
For example, suppose two VMPFC tissues are composed of 100 and 1000 voxels of similar
proportional distances, and then the test will detect no difference, although the morphometry
is obviously different. Hence, as long as the voxels are at a similar distance from the GM/
WM surface, their abundance will not influence the test results. That is, these tests are
“independent of sample density” of LCDM distances.

The resulting p-values are presented in Table 2. Observe that there are significant
differences between the LCDMs of the three groups, i.e., the distributions (and hence the
means) of the LCDM distances for at least two groups are significantly different. Hence we
conclude that there are significant morphometric differences in both left and right VMPFCs
of at least two of the diagnostic groups in question. Hence, we perform pairwise
comparisons by Wilcoxon rank sum test and Welch’s t-test for left (and right) distances,
using Holm’s correction for multiple comparisons. In fact, we could start with pairwise tests
directly, since we have only three diagnostic groups. However, for completeness and
generality, we follow the more conventional path with an omnibus multi-group test followed
by pairwise tests. The simultaneous hypotheses for Wilcoxon tests for left pooled LCDM
distances are

(3)

The less-than alternative for pairwise Wilcoxon tests is then

(4)

Notice that if, for example, MDD left distances tend to be smaller than HR left distances,
then the corresponding distribution functions have the opposite order, i.e.,  . Hence
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the left sided (i.e., less than) alternative for LCDM distances implies that MDD pooled
distances tend to be smaller than Ctrl pooled distances, and HR pooled distances tend to be
smaller than Ctrl pooled distances and MDD pooled distances tend to be smaller than HR
pooled distances. The greater than alternatives are similar except the inequalities should be
reversed. Then we adjust these p-values for simultaneous comparisons by Holm’s correction
method for each alternative. We perform a similar analysis for right pooled distances.

The null hypotheses for pairwise t-tests are similar to the ones provided in (3) and (4) with F
being replaced by μ and the inequalities reversed.

We present the p-values in Table 3. Observe that the distributions of LCDM distances for
MDD and HR groups are not significantly different for both left and right VMPFCs (p-
values based on Wilcoxon rank sum test are .3022 and .0776, respectively). On the other
hand, mean LCDM distances for MDD subjects are significantly larger than that for HR
subjects for both left and right VMPFCs (p-values based on t-test are .0383 and .0041,
respectively). This seemingly contradictory situation occurs since the LCDM distances are
highly skewed right. The LCDM distances for both MDD and HR left VMPFCs tend to be
significantly smaller than those of Ctrl left VMPFCs. The same holds for the right VMPFCs
also.

Stochastic ordering of the distances could be deduced from the direction of the alternative,
together with the graph of the cdfs. See Figure 5 for the cdf plots of the pooled distances.
Although K-S test do not provide the actual distance values where the significant differences
between cdfs occur, it is more informative and suggestive of distributional differences than
Wilcoxon tests. Furthermore, different cdf orderings at different distance values are masked
by the Wilcoxon test in MDD and HR left distances. The associated p-values are presented
in Table 4 where tests for the alternatives are adjusted by Holm’s correction method.
Observe that the cdf of Ctrl-left distances is significantly smaller than those of MDD and
HR-left distances. Furthermore, the cdfs of MDD and HR-left distances are significantly
different from each other, with both sides being significant, which suggests that the order of
cdf comparisons changes at different distance values. Thus, we conclude that MDD-left <ST

Ctrl-left and HR-left <ST Ctrl-left where <ST stands for “stochastically smaller than”. That is,
it is more likely for MDD- or HR-left distances to be smaller compared to Ctrl-left
distances.

The cdf of MDD-right distances is significantly smaller than HR-right distances which
implies HR-right <ST MDD-right. But K-S test yields significant result for both types of
one-sided alternative for MDD-right, Ctrl-right and HR-right, Ctrl-right and MDD-left and
HR-left pairs (see Table 4 and Figure 5). This implies, for example, the cdfs of MDD-right
and Ctrl-right distances are different, but the differences between the cdfs of the groups
change over the distance values; that is, for small distances, the order of cdfs for right
distances is Ctrl<MDD<HR, which is the order for the proportion of voxels with smaller
distances to the total number of voxels. Hence there is no stochastic ordering between them.
That is, the proportion of voxels with smaller distances is largest for HR subjects and
smallest for Ctrl subjects. For large distances the order of cdfs for right distances is
HR<MDD<Ctrl, which can be interpreted similarly. This result indicates the cortical
thinning for HR and MDD subjects compared to Ctrl subjects in the right VMPFC.

4 The Influence of Assumption Violations: A Monte Carlo Analysis
In this section, we investigate the influence of the assumption violations due to the spatial
correlation and non-normality inherent in the LCDM distances on the tests. The most crucial
step in a Monte Carlo simulation is being able to generate distances resembling those of
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LCDM distances of GM in VMPFCs; i.e., simulating the true randomness in LCDM
distances.

For illustrative purposes, we choose the left VMPFC of HR subject 1. Recall that the LCDM
distances for left VMPFC of HR subject 1 are denoted as  . We rearrange the distances,

 , so that first stack of distances is in the interval I0 := [−1,0.5] mm , the second stack of
distances is in I1 := (0.5,1.0] mm , the third stack of distances is in I2 := (1.0,1.5] mm , and so
on (until the last stack of distances is in I11 := (5.5,6.0] mm). Let νi be the number of

distances that fall in Ii i.e.,  , for i = 0,1,2,…,11 . Hence ν = (ν0,ν1,…,ν11) =
(2059, 1898, 1764, 1670, 1492, 1268, 814, 417, 142, 81, 61, 16). Then we merge these

stacks into one group, (by appending  to  for i = 1,2,…,10). See Figure 2,
where the left graph is for the stacked distances and the right graph is for distances sorted in
ascending order.

A possible Monte Carlo simulation for these distances can be performed as follows. We
independently generate n numbers in {0,1,2,…,11} proportional to the above frequencies, νi,
with replacement, i.e., with the discrete probability mass function PN (Nj = i) = νi/11659 for
i = 1,2,…,11 and j = 1,2,…,n. So, PN (Nj = i) = νp,i where

(5)

Let ni be the frequency of i among the n generated numbers from {0,1,2,…,11} with

distribution PN, for i = 1,2,…,11. Hence . Then we generate as many U(0,1)
numbers for each i ∈{0,1,2,…,11} as i occurs in the generated sample of 1000 numbers and
add these uniform numbers to i . That is, we generate  for k = 1,2,…,ni for each i .
Then we divide each distance by 2 to make the range of generated distances [0,6.0] mm
which is the range of  , so the desired distance values are dik = (i+Uik )/2 . Hence the set
of simulated distances is

(6)

A sample of the distances generated in this fashion is plotted in Figure 3 where the left plot
is for the distances as they are generated at each bin (stack) of size 0.5 mm, the right plot is
for the distances sorted in ascending order. Comparing Figure 2 and Figure 3, we observe
that the Monte Carlo scheme described above generates distances that resemble LCDM
distances for left VMPFC of HR subject 1. Therefore the distances generated in this fashion
together with modification of some parameters such as νp,i would resemble the distances of
VMPFCs from real subjects. That is, when such parameters are modified in the Monte Carlo
scheme described above, the differences in the LCDM distances could simulate the
morphometric differences between real subjects.
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4.1 Simulation of Distances that Resemble LCDM Distances
In our Monte Carlo study, we generate three samples  ,  , and  with sizes nx , ny , and
nz , respectively, and set nx = ny = nz =10000. Each sample is generated similar to the
procedure described above. For example, sample  is generated as follows: First we
generate

(7)

where  with  is the ith entry in  and is also the ith
value after the entries |νi-ηx | are sorted in descending order for i = 0,1,2,…,11 and

. Let  be the frequency of i among the nx generated numbers
from PX . Then we generate  for  for each i . Hence the set of
simulated distances for set  is

(8)

Samples  and  are generated similarly with parameter subscripts in (7) and (8) are
modified accordingly.

4.2 Empirical Size Estimates for the Multi-Sample Case
For the null hypothesis of multi-sample case which states the equality of the distributions of
LCDM distances, we generate three samples  ,  , and  with the below parameters:

(9)

Notice that each sample is generated so as to resemble those of the left VMPFC of HR
subject 1 up to scale. This is done without loss of generality, since any other VMPFC can
either be obtained by a rescaling of the generated distances or by modifying the parameters.
So for example, for sample  , PX(Xj = i) = νp,i with νp,i being the ith entry in vp in Equation
(5) and the set of simulated distances for set  is as in Equation (8) with rx = 1.0 and ηx = 0.

We repeat this sample generation procedure Nmc = 10000 times. We count the number of
times the null hypothesis is rejected at α = 0.05 level for K-W test of distributional equality
and ANOVA F-tests (with and without HOV) of equality of mean distances. The ratio of the
number of significant results by each test to Nmc yields the estimated significance levels
under Ho. The estimated significance levels for various values of nx , ny , and nz are provided
in Table 5, where  is the empirical size estimate for K-W test,  is for ANOVA F-test
with HOV, and  is for ANOVA F-test without HOV. Furthermore,  is the proportion
of agreement between K-W and ANOVA F-test with HOV, i.e., the number of times out of
10000 Monte Carlo replicates both KW and ANOVA F-test with HOV reject the null
hypothesis. Similarly,  is the proportion of agreement between K-W and ANOVA F-
test without HOV, and  is the proportion of agreement between ANOVA F-test with
HOV and ANOVA F-test without HOV. Using the asymptotic normality of the proportions,
we test the equality of the empirical size estimates with 0.05, and compare the empirical
sizes pairwise. We observe that the K-W test is at the desired significance level, while
ANOVA F-tests with and without HOV are at the desired level or slightly conservative.
Notice also that under Ho, the tests tend to be more conservative as the sample sizes
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increase. Hence, if the distances are not that different; i.e., the frequency of distances for
each bin and the distances for each bin are identically distributed for each group, the
inherent spatial correlation does not seem to influence the significance levels. Moreover, we
observe that for LCDM distances K-W and ANOVA with HOV tests have significantly
different rejection (hence acceptance) regions, because the proportion of agreement for these

tests,  is significantly smaller than the minimum of  and  ,  .
Similarly, K-W and ANOVA without HOV tests have significantly different rejection
(hence acceptance) regions because, the proportion of agreement for these tests,  is

significantly smaller than  . However, ANOVA with and without HOV tests
have about the same rejection (hence acceptance) regions because, the proportion of

agreement for these tests,  is not significantly different from  . This
mainly results from the fact that K-W and ANOVA with HOV tests test different
hypotheses, and so do the K-W and ANOVA without HOV tests. But, ANOVA with and
without HOV tests basically test the same hypotheses.

4.3 Empirical Power Estimates for Multi-Sample Case

For the alternative hypothesis, we generate sample  as in the null case, so  is as in
Equation (8). We consider various ry and ηy values for sample  and various rz and ηz
values for sample  . The five alternative cases we consider are

(10)

See Figure 4 for the kernel density estimates of sample distances under the null case and
various alternatives.

We repeat the sample generation Nmc = 10000 times under each alternative case. We count
the number of times the null hypothesis is rejected at α = 0.05 for K-W test of distributional
equality, and ANOVA F-tests (with and without HOV) of equality of mean distances, and
find the ratio of number of significant results by each test to Nmc . Thus we obtain the
empirical power estimates under Ha which are provided in Table 6, where  is the

empirical power estimate for K-W test,  is for ANOVA F-test with HOV, and  is for
ANOVA F-test without HOV. Using the asymptotic normality of the empirical power
estimates, we observe that under each of Ha cases with (ry,rz,ηy,ηz)∈{(1.1,1.0,0,0),
(1.1,1.2,0,0)} the distributions are different, so the larger the ry and rz from 1.0, the higher
the power estimates for K-W and ANOVA F-tests. Furthermore, as the sample size n
increases, the power estimates for K-W and ANOVA F-tests also increase. Notice that under
these alternatives, the K-W test tends to be more powerful than ANOVA F-tests, since such
alternatives influence the ranking (hence the distribution) of the distances, more than the
mean of the distances. Furthermore, under these alternatives, it is not the size or scale that is
really different; it is the difference in shape that is more emphasized. The size component is
distance with respect to the GM/WM surface; i.e., if the GM voxels from the GM/WM
surface are at about the same distance, the K-W test is more sensitive to the differences in
the distributions of the LCDM distances. We also note that ANOVA F-tests with and
without HOV have about the same power estimates.

Under each of alternative cases with

Ceyhan et al. Page 11

J Math Imaging Vis. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(11)

as ηy and ηz deviate more from 0, the power estimates for K-W and ANOVA F-tests
increase. Note that as n increases, the power estimates also increase under these alternative
cases. Under these second type of alternatives, ANOVA F-tests tend to be more powerful,
since the right skewness (tail) of distances are more emphasized, which in turn implies that
the differences in the mean distances are emphasized more. Under these alternatives, both
the size or scale and shape are different. If the GM voxels from the GM/WM surface are at
different distances, ANOVA F-tests are more sensitive to the differences in LCDM
distances. We also note that both ANOVA F-tests (with and without HOV) have about the
same power estimates.

4.4 Empirical Size Estimates for the Two-Sample Case
For the null hypothesis for the two-sample case, we generate two samples  and  each of
size nx and ny , respectively. Each sample is generated as described in Section 4.2. We repeat
the sample generation Nmc = 10000 times.

We count the number of times the null hypothesis is rejected at α = 0.05 for Lilliefor’s test
of normality, Wilcoxon rank sum test of distributional equality, t-test of equality of mean
distances, and K-S test of equality of cdfs, and find the ratio of the number of significant
results by each test to Nmc , thereby obtain the estimated significance levels. Unlike the
multi-sample case, for the two-sample case, except for Lilliefor’s test there are three types of
alternative hypotheses possible: two-sided, left, and right-sided alternatives. The estimated
significance levels are provided in Table 7, where  is the empirical size estimate for
Wilcoxon rank sum test,  is for t-test,  is for K-S test. Furthermore,  is the
proportion of agreement between Wilcoxon rank sum and t-tests,  is the proportion of
agreement between Wilcoxon rank sum and K-S tests, and  is the proportion of
agreement between t-test and K-S test. We omit the Lilliefor’s test, since by construction,
our samples are severely non-normal, so normality is rejected for virtually all samples
generated. Observe that under Ho, the empirical significance levels are about the desired
level for all three types of alternatives, although Wilcoxon tests are slightly liberal, while K-
S test is slightly conservative. Hence, if the distances are not that different; i.e., the
frequency of distances for each bin and the distances for each bin are identically distributed
for each group, the inherent spatial correlation does not influence the significance levels.
However, Wilcoxon rank sum, t-test, and K-S methods test different hypotheses, so their
acceptance and rejection regions are significantly different for LCDM distances, since the
proportion of agreement for each pair is significantly smaller than the minimum of the
empirical size estimates for each pair of tests.

4.5 Empirical Power Estimates for the Two-Sample Case
For the alternative hypotheses, we generate samples  and  as in Section 4.3 also. Note
that when ry = 1 and ηy = 0, we obtain the null case. The five alternative cases we consider
are (ry,ηy )∈{(1.1,0),(1.2,0),(1.0,10),(1.0,30),(1.0,50)}. We count the number of times the
null hypothesis is rejected for Lilliefor’s test of normality, Wilcoxon rank sum test of
distributional equality, t-test of equality of mean distances, and K-S test of equality of cdfs,
thereby obtain the estimated significance levels as before. The power estimates are provided
in Table 8, where  is the power estimate for Wilcoxon rank sum test,  is for t-test,  is
for K-S test.
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Under the alternative cases with (ry,ηy)∈{(1.1, 0),(1.2,0)}, we see that the distributions start
to differ. As ry deviates further away from 1.0, then the power estimates for Wilcoxon rank
sum, t-test, and K-S tests increase. Furthermore, as the sample size n increases, the power
estimates for Wilcoxon test, t-test, and K-S test also increase. Observe that as in the multi-
sample case, under these alternatives, Wilcoxon test is more powerful than t-test, since the
ranking of the distances are affected more than the mean distances under these alternatives.
But K-S test has the highest power estimates for sample sizes larger than 1000. Thus, for
differences in shape rather than the distance from the GM/WM surface, K-S test and
Wilcoxon rank sum test are more sensitive (i.e., powerful) than t-test. Furthermore, as the
sample sizes increase, the left-sided tests become more powerful than their two-sided
counterparts. Notice that we omit the power estimates for the right-sided alternatives, since
by construction (i.e., due to our parameter choices in our simulations)  values tend to be
smaller than  values for these alternatives; hence the tests virtually have no power for the
right-sided alternatives.

Under the Ha cases with (ry,ηy)∈{(1.0,10),(1.0,30),(1.0,50)}, as ηy deviates further away
from 0, the power estimates for Wilcoxon rank sum, t-test, and K-S tests increase. Note that
as n increases, the power estimates also increase under each alternative case. Under these
alternatives, t-test is more powerful than Wilcoxon test, since mean distances are more
affected than the rankings under such alternatives. However, K-S test has higher power
estimates for larger deviations from the null case. These alternatives imply that the distances
of the GM voxels are at different scales, t-test has the best performance for small
differences, while for large differences, K-S has the best performance. Furthermore, as the
sample sizes increase, the left-sided tests become more powerful than their two-sided
counterparts. Again, we omit the power estimates for the right-sided alternatives, because,
by construction,  values tend to be smaller than  values for these alternatives.

We do not report the power estimates for Lilliefor’s test of normality, since by construction
our data is severely non-normal, and we get power estimates of 1.000 under both null and
alternative cases.

5 Discussion and Conclusions
Pooled LCDM distances, when used as a single variable, provide a method to analyze
heterogeneous forms of morphometric differences. When the LCDM distances of the
subjects in the same diagnostic group are pooled, common morphometric traits of the ROI
for that group are accentuated. Conversely, the morphometric traits not common for all the
subjects in a group but specific to a particular subject are downplayed. The most common
morphometric traits in a relevant ROI in a particular group may be associated with the
diagnosis of the group and pooled LCDM distances carry on the most common
characteristics, so they have the potential as demonstrated here to be very sensitive in
detecting the diagnosis-specific traits of the ROI. As a result, they can indicate changes in
the ROI highly associated with disease (major depression in the VMPFC in this article) or
associated with being at genetic risk for the development of a specific condition. When
pooled distances yield significant results, it implies that ROI significantly differ in
morphometry (shape or size). However, it does not indicate the specific location within a
ROI where such differences occur which might be important for understanding the
underlying neurobiology. This may require the use of censoring which is the topic of another
paper.

We use Kruskal-Wallis (K-W) and ANOVA F-tests (with or without HOV) for multi-group
comparisons, Wilcoxon rank sum, Kolmogorov-Smirnov (K-S), and t-tests for two-group
comparisons (the first two of these tests used to test distributional differences and the third is
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used to test mean differences due to a location parameter). But these tests require within
sample independence which is violated due to the spatial correlation between LCDM
distances of nearby voxels. Furthermore, parametric tests require normality of the samples
also, which is again violated due to the heavy right skewness of the LCDM distances.
However, our Monte Carlo analysis indicates that the influence of these violations is mild or
negligible. Furthermore, the tests are more sensitive against different alternatives. In
particular, K-W and Wilcoxon tests (i.e., the nonparametric tests) are more sensitive to
distributional differences in a ROI with similar laminar thickness, while ANOVA F-tests
and t-test (i.e., parametric tests) are more sensitive against the differences in the means, that
is, differences in average GM thickness (i.e., laminar thickness values). On the other hand,
K-S test is more sensitive to the largest difference in the cdfs of the LCDM distances.

Although the focus of this paper is the description of new morphologic image processing
methods, as an illustrative example, we use GM tissue in the Ventral Medial Prefrontal
Cortex (VMPFC) as the ROI for three groups of subjects; namely, subjects with major
depressive disorder (MDD), subjects at high risk (HR) for MDD, and unrelated healthy
control subjects (Ctrl). Based on previous results from other groups with older adult
populations, we expected to find cortical differences associated with affective disorders in
this region, however the nature of the changes or if they are present in younger populations
has not been well characterized. Our study comprises of adolescent and young adult (MDD,
HR) and (Ctrl, Ctrl) co-twin pairs. We found that gray matter distances in left and right
VMPFC tend to decrease associated with MDD or being at HR for MDD, which is a
characteristic that would be associated with cortical thinning. We thus observe a significant
reduction in laminar thickness of VMPFC and perhaps shrinkage in MDD when compared
to Ctrl subjects. However the same trend is also seen in the HR subjects, who are typical
healthy individuals except for their genetic relation to the depressed cotwins. Thus this study
does not support that all of the changes in morphometry of VMPFCs is related directly to
major depression. It could be possible that VMPFC tend to shrink due to depression, but as
similar shrinkage is seen in HR subjects, it could also be the case that specific genetic
factors might predispose to this morphometric difference in VMPFC which in turn leads to
vulnerability for developing depression in young individuals. Furthermore, in the pooled
LCDM distance analysis, we find that the central values (i.e., means and medians) of the
pooled distances in left VMPFCs of MDD and HR subjects are not significantly different,
but the orderings of the central values of LCDM distances are MDD < Ctrl and HR < Ctrl; in
right VMPFCs the ordering is as HR < MDD < Ctrl. Our findings here support that there are
significant lateralization differences in the contribution of this region to affective disorders;
similar asymmetry or lateralization findings have been previously reported in functional and
structural studies [13,18] and functional lateralization in this region has also been reported in
animal models [9]. The cdf comparisons indicate that it is more likely for left VMPFCs of
MDD or HR subjects to be thinner than those of Ctrl subjects which confirm the above
findings about cortical thinning. However no such stochastic ordering occurs for the right
VMPFCs, which only indicates the cdf orderings depend on the distance values in the right
VMPFCs.

We demonstrate that pooled LCDM distances may provide a useful tool in detecting
morphometric differences associated with specific disorders which affect the cortex. There
is increasing recognition that different cortical features such as surface area or thickness may
provide clues to different underlying pathology [6]. For instance increased GM distribution
at shorter distances may represent increased surface area or increased curvature which could
be further investigated via different methods. Attaining similar maximum long distances
with a lower gray matter concentration at nearby long distances could indicate achievement
of expected cortical thickness with loss of thickness in certain subregions within the ROI.
Additional characterization of cortex may lead to improved sensitivity to detect differences
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associated with specific disorders. For example, the thickness at each point on the surface
can be measured, which means mapping the surfaces to a template and then doing the
statistics at each point on the surface. For this purpose, the first step is to apply LLCDM and
then apply LDDMM-Surface (see [20,21]). We also note that the LCDM based methodology
used in this article can be applied to many different cortical regions.
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Figure 1.
A two-dimensional illustration of normal distances from a GM and a WM voxel to the GM/
WM surface (left) and non-normalized histograms of LCDM distances of GM, WM, and
CSF tissues (right).
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Figure 2.
Plots of the LCDM distances for the left VMPFC of HR subject 1. The left plot is for the
distances stacked for intervals of size 0.5 mm and the right plot is for the sorted distances.
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Figure 3.
Plots of the data values generated by Monte Carlo simulation to resemble LCDM distances.
The left plot is for the distances stacked for intervals of size 0.5 and the right plot is for the
sorted distances.
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Figure 4.
Plots of the kernel density estimates of the Monte Carlo simulated LCDM distances under
the null case and alternatives with ηz = 0 and ry ∈ {1.1,1.2} (left); null case and alternatives
with ry = 1.0 and ηz ∈ {10,30,50} (right). For the parameters ry and ηz, see Section 4.
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Figure 5.
Empirical cdfs of the pooled LCDM distances when extreme subjects are removed for the
left and right VMPFCs.
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Table 2

The p-values for the multi-group comparisons of the pooled LCDM distances by K-W test, ANOVA F-tests
with and without HOV. pKW : p-value for K-W test, pF1 , pF2 : p-values for ANOVA F-tests with and without
HOV, respectively

Multi-group Comparisons of the Pooled Distances

Left Right

pKW < .0001 , pF1 < .0001 , pF2 < .0001 pKW < .0001 , pF1 < .0001 , pF2 < .0001
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Table 3

The p-values for the simultaneous pairwise comparisons of the pooled distances by Wilcoxon rank sum test
and the t-test. The p-values are adjusted by Holm’s correction method. (g, (ℓ) : first group is greater (less) than
the second group.)

With Wilcoxon rank sum test With t-test

Pair Left Right Left Right

MDD, HR .3022 ( ℓ ) .0776 (g) .0383 (g) .0041 (g)

MDD, Ctrl <.0001 ( ℓ ) <.0001 ( ℓ ) <.0001 ( ℓ ) <.0001 ( ℓ )

HR, Ctrl <.0001 ( ℓ ) <.0001 ( ℓ ) <.0001 ( ℓ ) <.0001 ( ℓ )
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Table 6

The power estimates based on Monte Carlo simulation of distances with three groups,  , , and  with sizes
nx , ny , and nz , respectively, with Nmc =10000 Monte Carlo replicates.  is the empirical power estimate for

K-W test,  and  are for ANOVA F-tests with and without HOV, respectively. The superscripts of the
power estimates in the same row are labeled in increasing order of significance. That is, the power estimates
with the same superscript are not significantly different from each other; while power estimate with label a is
significantly smaller than the estimate labeled with b , and so on

(ry,rz)=(1.1,1.0); (ηy,ηz) = (0,0)

(nx,ny,nz) β̂KW β̂F1
β̂F2

(1000,1000,1000) .0778a .0770a .0768 a

(5000,5000,10000) .2281a .2137b .2114 b

(5000,10000,5000) .2936a .2731b .2745 b

(5000,10000,7500) .3244a .2939b .2947 b

(10000,10000,10000) .3900a .3564b .3559 b

(ry,rz)=(1.1,1.2); (ηy,ηz) = (0,0)

(1000,1000,1000) .1396a .1316a
b

.1313b

(5000,5000,10000) .6725a .6315b .6317b

(10000,5000,5000) .6651a .6262b .6253b

(5000,10000,5000) .5296a .4828b .4828b

(10000,10000,10000) .8410a .8050b .8050b

(ry,rz) = (1.0,1.0); (ηy,ηz)=(10,0)

(1000,1000,1000) .0574
b

.0728a .0721a

(5000,5000,10000) .0767
b

.1930a .1854a

(5000,10000,5000) .0884
b

.2341a .2381a

(5000,7500,10000) .0832
b

.2415a .2360a

(5000,10000,7500) .0878
b

.2571a .2584a

(10000,10000,10000) .1006
b

.3127a .3061a

(ry,rz) = (1.0,1.0); (ηy,ηz)=(10,30)

(1000,1000,1000) .0963
b

.1519a .1512a

(5000,5000,10000) .3986
b

.7436a .7537a

(10000,5000,5000) .3556
b

.7175a .7071a

(5000,10000,5000) .2908
b

.5826a .5831a
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(ry,rz)=(1.1,1.0); (ηy,ηz) = (0,0)

(nx,ny,nz) β̂KW β̂F1
β̂F2

(5000,7500,10000) .4191
b

.7578a .7627a

(10000,7500,5000) .3652
b

.7229a .7147a

(10000,5000,7500) .4554
b

.8260a .8226a

(7500,5000,10000) .4739
b

.8331a .8363a

(7500,10000,5000) .3421
b

.6743a .6702a

(5000,10000,7500) .3752
b

.6938a .6983a

(10000,10000,10000) .5352
b

.8842a .8835a
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