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Abstract This paper presents two new higher order diffu-
sion models for removing noise from images. The mod-
els employ fractional derivatives and are modifications of
an existing fourth order partial differential equation (PDE)
model which was developed by You and Kaveh as a gen-
eralization of the well-known second order Perona-Malik
equation. The modifications serve to cure the ill-posedness
of the You-Kaveh model without sacrificing performance.
Also proposed in this paper is a simple smoothing technique
which can be used in numerical experiments to improve de-
noising and reduce processing time. Numerical experiments
are shown for comparison.

Keywords Nonlinear diffusion - Fractional derivatives -
Image denoising - Fourth order

1 Introduction

Noise is an unavoidable component of digital image acquisi-
tion, and as such, noise removal has become a fundamental
task of image processing. The problem is formulated by con-
sidering an image as a collection of intensity data about N
pixels,

u(i)=v@)+n@), i=1,...,N.
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In this paper, only grey scale images are considered, so u is
a scalar valued function taking on quantized integer values
between 0 and 255. u is an observed image, consisting of a
“true” image v polluted with noise n. To denoise an image
is to recover v from the observed image u, a theoretically
impossible task. Indeed fine details of an image can be in-
distinguishable from noise and all known denoising methods
can cause various degrees of blurring, staircasing, and other
artifacts.

Noise reduction, in particular PDE-based noise reduc-
tion, has been a subject of much research since a seminal
paper by Perona and Malik in 1990 [29] which introduced
the then novel paradigm of using nonlinear diffusions for
the task of denoising images. Their method improves upon
the technique of linear diffusion used previously (and intro-
duced by Witkin [33]) by reducing the diffusivity at loca-
tions of the image where edges are found by an appropriate
edge detector. The latter is typically implemented by mea-
suring the gradient |Vu| of the image. The Perona-Malik
model is based on the equation

ur — V- (g(IVu)Vu) =0, (1.1)
where g(-) is a diffusivity such as

1
g(S)Zm, c>0. (12)

Discretizations of (1.1) have proved to be effective denois-
ing tools. However, two significant problems have been ob-
served. Firstly, (1.1) has been shown to be mathematically
ill-posed [22], which makes it impossible to prove theoret-
ical results about the behavior of algorithms based on that
equation. Secondly, in numerical experiments, such algo-
rithms tend to produce artifacts at edges, such as staircas-
ing (when false edges are introduced) [22, 32] and blocky,
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cartoonish effects (when smooth edges are sharpened into
corners) [34]. The literature abounds in attempts to cure
these problems, including regularizing the edge detector
[Vu| [1, 2, 5, 8, 18], and generalizing the ideas of Per-
ona and Malik to higher order equations [6, 14, 20, 21,

25, 30, 31, 34]. Of note is a fourth order generalization of
(1.1) proposed by You and Kaveh which is the focus of
this paper. Numerical experiments in the aforementioned
papers and others show that many fourth order denois-
ing models are successful at avoiding the staircasing and
cartoonishness characteristic of second order models, and
excel at preserving a natural look to images such as hu-
man faces. This success often comes at the cost of good
performance in flat regions of images, and many fourth
order denoising methods leave a kind of splotchy arti-
fact in such regions (see for example experiments in [10,

20, 21, 25]). Additionally, (2.7) has been noted to pro-
duce a speckle artifact, which is removed by the authors
of [34] in a post-processing step. Improvements of mod-
els such as (2.7) can be gained through the contributions
of this paper. Proposed in this paper are two new PDE
models which transplant ideas from regularized second or-
der models [18] to the fourth order You-Kaveh model and
which offer analytical as well as practical benefits. The new
models utilize a fractional Laplacian operator and a frac-
tional gradient, respectively, to detect edges and limit blur-
riness.

Processing time can be reduced and denoising results im-
proved through the use of a novel smoothing step involving
a simple manipulation of parameters. The proposed equa-
tions are discretized with a spectral scheme. With the com-
bination of this numerical scheme and smoothing technique,
we are able to obtain improved denoising results compared
to previous experiments shown with (2.7) and its variants.
Specifically, the splotchy artifact characteristic of fourth or-
der denoising methods can be alleviated without sacrific-
ing edge preservation, and speckling is not observed at all,
with either (2.7) or the proposed modifications. The smooth-
ing technique is not particular to the proposed fourth order
equations; experiments are shown to demonstrate the abil-
ity of the smoothing step to improve the performance of a
previously proposed second order PDE for noise removal,
as well as to dramatically reduce the necessary processing
time.

The paper is organized as follows. Key results from
the literature about second and fourth order diffusions
and their regularizations are summarized in Sect. 2. In
Sect. 3, the behavior of the You-Kaveh model and the ef-
fects of various parameters are analyzed, and the smooth-
ing technique is proposed and its ability to improve per-
formance is demonstrated. Section 4 details the two pro-
posed models, their performance is illustrated with numer-
ical experiments in Sect. 5, and the paper is concluded in
Sect. 6.

2 Background

Use of diffusion PDEs for noise removal can be traced back
to the scale space method introduced by Witkin in 1983 [33].
This method smoothes a noisy image by convolving it with
Gaussian kernels on a scale of variances. It is equivalent to
considering a smoothed image as the solution to the linear
heat equation

uy=V-(yVu), u(0) =uqp (original image), (2.1)

where the diffusion coefficient y is constant. This is an ef-
fective smoothing method, but it cannot distinguish noise
from edges, thus blurring the entire image. The method
needs to be complemented by a second processing step
which locates and reintroduces edges. In a 1990 paper [29],
Perona and Malik propose their idea to preserve edges in the
first step by replacing y with an “edge detector”, a nonlinear
function which would inhibit diffusion across edges. They
observe that edges in an image correspond to regions of
high gradient, and thus consider y = g(|Vu|), where g(-) is
chosen appropriately so as to slow diffusion (become small)
when |Vu| is large. One possibility for such a function sug-
gested by Perona and Malik is given in (1.2). In their pa-
per, they propose discrete equations which can be incorpo-
rated into a continuous PDE model for image processing.
The Perona-Malik model can be viewed as an approxima-
tion of (1.1), which is therefore commonly referred to as the
Perona-Malik equation in the literature. Analytically, PDE
models based on (1.1) have been found to be ill-posed [22].
Despite, or rather because of this, the Perona-Malik model
preserves sharp edges well, but still doesn’t escape some
practical drawbacks, including the creation of artifacts such
as staircasing and blocky effects [22, 32, 34].

Attempts to overcome the problematic issues of Perona-
Malik can be broadly classified into two categories: second
order regularizations and relaxations of Perona-Malik, and
higher order diffusions. Spatial regularizations have been
considered, which involve smoothing the argument in the
nonlinear edge detector function g with a C* kernel G,
typically a Gaussian. See, for example, [1, 8, 27]. This leads
to the equation

ur—V-(g(IVGo *u)Vu) =0, inQforr>0. (22

Other authors have proposed models in which the nonlin-
earity is regularized with a space-time convolution, namely
[11, 12, 28]. Purely temporal regularizations are considered
in [2, 4, 5].

An irony of the Perona-Malik model is that its great-
est strengths, superior edge detection capabilities, are made
possible by the nonlinearity g(|Vul|), which is also re-
sponsible for its weaknesses, ill-posedness and artifacts.
Consequently, regularizing this nonlinearity can cure ill-
posedness, but often at the cost of good edge detection. This
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is particularly true of regularizations of the type in (2.2).
Reintroducing a smooth kernel G, results in blurring, ex-
actly what Perona and Malik try to avoid.

Guidotti in [16—18] proposes two different, “milder” reg-
ularizations characterized by the use of fractional derivatives
in the edge detector function g. Fractional derivatives can be
defined by first observing that

9, = F. 'diaglQming)n.cz)Fs,

where F is the partial Fourier transform with respect to z =
x, y. Then the fractional partial derivative is defined by

8 = ]-"Z_ldiag[((ZﬂnZ)pe’p%Sign(”))nzez]fzv

for any p € R™. The fractional gradient is finally given by

ap
V”:[’“]
%

Exponents of the positive definite Laplacian operator —A
with periodic boundary conditions can be defined through
its symbol:

(=AY = F~ldiag[(47%(n|*") 121 F,

for any p e RY.

Fractional derivatives have been shown to be effective
tools both for regularization [13] (where fractional diffu-
sions are considered) and for edge detection [26] (where one
dimensional signals are considered). The models proposed
by Guidotti are based on the equations

u =V (g(IV ¥ ulHVu) =0 (2.3)
and
ur — g([(=A)'"* 1) Au =0, Q2.4)

coupled with appropriate initial and boundary conditions,
where ¢ € (0, 1). It is shown in [16, 17] that (2.4) and (2.3)
are locally well-posed and that (2.3) admits characteristic
functions of smooth sets as stationary solutions. Addition-
ally, numerical experiments suggest that these two models
produce significantly less staircasing than does (1.1) or other
second order diffusion equations (such as TV minimization).
Blocky effects (conferring a “cartoonish” feel to processed
images), however, remain. See Figs. 3 and 9 for examples
of the denoising effects of (2.3). Since [VI=€u| is itself an
effective edge detector, blurring is not observed, as it is with
other regularized models such as (2.2).

Other researchers have opted to modify the Perona-Malik
model by generalizing it to higher orders instead of by ap-
plying regularizations. Fourth order PDEs from the litera-
ture include those proposed in [6, 20, 21, 25, 31, 34]. One
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of most frequently cited is the model derived by You and
Kaveh in [34] from a variational formulation. It is shown
in [35] that solving (1.1) is equivalent to minimizing the first
order functional

/Qf(IWI)dQ, (2.5)

where f'(s) = sg(s), via the method of gradient descent.
When the diffusivity function is picked as in (1.2), the
Perona-Malik model is equivalent to minimizing

1 log (1 + ¢%s%)dQ
22 g og(1+cs .
You and Kaveh propose minimizing instead the second order
functional
/ f(Au)dS. (2.6)
Q
The gradient descent method performed on this second order
functional yields a fourth order PDE
ur = —A(g(Au)Au). 2.7
This is a fourth order nonlinear diffusion equation in which
diffusion is slowed near the location of edges. However,
edges are identified by the Laplacian |Au|, instead of the
gradient |Vu| used in (1.1). The rationale put forth in [34]
for the use of fourth order equations with second order edge
detection is that such equations admit a more flexible class
of equilibria than second order equations (for which char-
acteristic functions are stationary). This allows solutions to
transiently relax to smoother states where sharp but smooth
gradients are preserved as opposed to being further sharp-
ened into jumps, thus avoiding the blocky effects associated
with (1.1). The fourth order (2.7) exhibits similar analytical
behavior to (1.1), and is likely also ill-posed [19].
One could consider instead the equation
ur + A[g(IVul)Au] =0, (2.8)
which couples the fourth order diffusion of (2.7) with the
edge detector of (1.1). It is an important observation that re-
version to edge detection via the gradient as in (2.8) in the
context of fourth order diffusions does not coincide with re-
turning to a second order model. Characteristic functions are
in fact not equilibria for (2.8). Hajiaboli considers a model
similar to (2.8) in [20] but with a modified diffusivity func-
tion g. There are many other approaches to noise removal
which are not touched upon here. See [7] for a survey of
other methods. Of particular interest to this discussion are
higher order variational methods, for example, [3, 9, 10,
24]. The methods proposed here continue to compare well
in the wider arena which also includes these other methods.
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3 Numerical Considerations

3.1 Scheme

Equations such as (2.7) are commonly discretized using fi-
nite difference methods (see for example [20, 34]). We in-
stead employ a spectral method so that fractional derivatives,
defined through the Fourier transform, can be easily incor-
porated into these models. The scheme used is the Krylov
subspace spectral (KSS) method with block Lanczos itera-
tion developed by Lam bers in [23]. This is an explicit time-
marching method which possesses a high order of accuracy
as well as the stability of implicit methods. It is also use-
ful for discretizing (2.3) and (2.4), second order PDEs using
fractional derivatives.

The high accuracy of the KSS method comes from the
fact that it computes each Fourier coefficient individually
using an approximation that is, in some sense, optimal for
it. Consequently, this method avoids the regularizing effects
of the finite difference method, providing a more accurate
representation of the behavior of the equations in question.
Our experiments on (2.7), however, are largely comparable
to those in [20, 34]. One exception to this is a speckle artifact
observed by You and Kaveh in experiments on (2.7), as well
as by Hajiaboli on the same equation. You and Kaveh re-
move this artifact in a post-processing step in [34]. Our own
experiments on (2.7) discretized using the KSS method do
not reveal this speckle artifact, suggesting that the artifact is
associated with the finite difference discretization of (2.7),
rather than with the equation itself. This idea is strength-
ened by the results in [3], in which (2.7) is discretized with
a pseudospectral method, and the speckle artifact is not ob-
served. The authors do observe an artifact they refer to as
speckling, but it is more akin to the effect of the bottom left
image in Fig. 2, where dots appear all over the image. In the
results shown in [20, 34], speckles are concentrated along
the edges of an image.

The KSS method is applied to tiles of an image of size
2™ pixels square, m € N. A border of 16 pixels is reflected
across each side of the tile to emulate periodic boundary
conditions and to avoid any boundary effects, and this bor-
der is removed after denoising. A very small time step is
required with this method in order to avoid artifacts, in par-
ticular for fourth order equations and for larger values of m.
This may necessitate a very long processing time to get suf-
ficient noise removal, but the processing time can be short-
ened by processing an image in several stages with different
parameters (see Sect. 4).

In the following, unless otherwise noted, all experiments
are performed on 256 pixel square images, and the diffusiv-
ity function g is chosen as in (1.2).

3.2 Noise Removal Versus Blurring

In any diffusion based noise removal process there is a trade-
off between sufficient noise removal and the preservation
of edges. Diffusion in (2.7) is controlled by the diffusivity
function g. Both of the diffusivity functions proposed by
Perona and Malik (i.e., (1.2)) depend on a parameter ¢ which
determines the size of edges, that is, a location of an image is
considered to be an edge if |Vu| (or another choice of edge
detector) is greater than 1/c at that location, and it is not an
edge if the edge detector is less than 1/c. Consequently, this
parameter serves as a sort of measure of the trade-off be-
tween noise removal and edge preservation. When c is too
small, noise and edges are both smoothed quickly; when ¢
is too large, too much noise is mistaken for edges and never
smoothed away.

However, with fourth order equations such as (2.7),
within the range of medium-sized c’s, a splotchy artifact
comes into play. When ¢ is medium-small, after a small
number of iterations most noise is eliminated and edges are
well preserved, but low-frequency components of the noise
are still present, leaving a splotchy effect over flat areas of
the image. Many more iterations are required to smooth
these splotches away, but ¢ is now too small to preserve
edges in the face of so much smoothing. When c¢ is cho-
sen medium-large, splotches can be smoothed away while
still preserving edges, but this requires a great number of
iterations, at a high computational cost.

Similar behavior can also be observed with second order
equations such as (1.1) and (2.3), but only at time scales
smaller than are typically used for discretization. Thus,
splotchiness is not usually observed with second order equa-
tions. Fourth order equations often need to be discretized
with a smaller time step than is required for second order
equations. The time scale frequently used for fourth order
equation is small enough to expose the splotchy behavior
described above, and hence this artifact is observed in many
experiments on fourth order models elsewhere in the litera-
ture, in particular, [20, 21, 25, 34].

This phenomenon is illustrated in Fig. 1 on a simple
image with 20% Gaussian noise, denoised with (2.7) with
two different values of c¢. The first row shows the original
clean and noisy images. The second row, left to right, shows
the evolution under (2.7) with a smaller ¢ = 10~° and time
step h =5 x 107'2, for 500, 1000, and 2000 iterations. The
third row, left to right, shows the evolution with the larger
¢ =3 x 107° and the same time step for 1000, 3000, and
5000 iterations. With the smaller c, the edge is blurred be-
fore noise is sufficiently removed. With the larger c, the edge
is preserved for a large number of iterations, allowing for the
splotchiness to be mostly smoothed away.

The edge in the simple image in Fig. 1 is able to with-
stand the large number of iterations necessary to eliminate
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Fig. 1 A noisy two-tone image is denoised with (2.7) with a smaller
¢ for 500, 1000, and 2000 iterations (second row), and with a larger ¢
for 1000, 3000, and 5000 iterations (third row)

splotches because it is very sharp. Smaller edges in natural
images are not so robust. Splotchiness can be lessened, but at
the cost of the blurring of fine details of an image, so it may
be necessary to retain some splotchiness to avoid excessive
blurring.

3.3 Artifacts and Proposed Smoothing Step

The numerical performance of (2.7) is sensitive to the choice
of parameters. Artifacts appear when the parameter ¢ and the
time step are too large. This is unfortunate, since a small ¢
can lead to blurriness, and a small time step can lead to a
long processing time.

A small choice of ¢ is not able to sufficiently remove
noise without blurring edges. However, by using a small ¢
as well as a very small time step, high-frequency compo-
nents of noise can be removed in just a few iterations with
little blurring of edges (shown in the middle left image in
Fig. 2). This slightly smoothed image, which is not noisy
so much as it is splotchy, is less prone to artifacts than the
initial noisy image. We then continue the denoising process
on the smoothed image, using a larger time step and a larger
c to preserve edges. If this larger ¢ was used on the initial
image, it would need to be used with a smaller time step
to avoid artifacts, necessitating a large number of iterations
to achieve sufficient noise removal. Additionally, since high
frequency components of noise are removed in the first step,
the remaining noise can be more effectively removed in the
second step, and in less time.

@ Springer

Fig. 2 Comparison of denoising effects of (2.7) with and without a
smoothing step. First row (left to right): clean image, image with 20%
Gaussian noise. Second row (left to right): noisy image smoothed first
with a very small ¢ and small time step for 10 iterations, this smoothed
image denoised with a larger time step and larger ¢ for 400 iterations.
Third row (left to right): image denoised with the smaller ¢ and larger
time step for 200 iterations, image denoised with the smaller ¢ and
smaller time step for 1000 iterations

Figure 2 compares the denoising effects of (2.7) on a nat-
ural image with and without this regularizing step. The first
row shows the original clean image of Lena, and the im-
age corrupted with 20% Gaussian noise. The second row
shows the two steps of the smoothing process: first the noisy
image is smoothed with a small ¢ = 1078 and time step
h =5 x 10~!2 for 10 iterations; the resulting smoothed im-
age is then denoised with a larger ¢ =2 x 10~ and a larger
time step & = 10719 for 400 iterations. The third row shows
denoising results without the smoothing step: the image de-
noised with ¢ = 3 x 107° and the larger time step & = 10~1°
for 200 iterations; and the image denoised with the same ¢
but the smaller time step & = 5 x 10~'2 for 1000 iterations.
Edge preservation in the two images in the middle and bot-
tom right is comparable, but the image denoised with the
smoothing step requires many fewer iterations (410 versus
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Fig. 3 Comparison of denoising effects of (2.3) with and without a
smoothing step. The initial clean and noisy images are shown in Fig. 2

Table 1 Quantitative values are shown for the three denoised images
shown in Fig. 4, as well as for the original noisy image

Noisy Image  2nd Order  4th Order (1)  4th Order (2)
PSNR 27.83 35.78 34.57 35.24
SNR 2.65 6.02 5.63 5.72
£1-error  2.93e3 2.38e3 1.67e3 3.39e3
fy-error  2.32¢3 0.93e3 1.07e3 0.99¢3

Fig. 4 The Lena image with 20% Gaussian noise added is denoised
three ways. First row (left to right): “2nd Order”, denoised with (1.1);
“4th Order (1)”, denoised with (2.7) for a short time; and “4th Order
(2)”, denoised with (2.7) for a long time. Second row: the method noise
for each image. The initial clean and noisy images are the same as in
Fig. 2

1000), and shows less noise and splotchiness in flat areas.
When a smaller c is used with the larger time step, as in the
image in the bottom left, noise is not effectively removed
before blurring sets in.

This smoothing technique can be applied to other de-
noising me thods as well, such as second order PDEs. Fig-
ure 3 compares the effects of (2.3) with and without an ini-
tial smoothing step. On the left is an image of Lena cor-
rupted with 20% Gaussian noise and denoised with (2.3)
with ¢ = 0.1, ¢ = .003, and time step 7 =5 x 107° for 400

Fig. 5 Lena with 20% Gaussian noise denoised with (2.7) (first row),
(4.1) (second row), and (4.2) (third row), at two different stopping
times. The initial clean and noisy images are the same as in Fig. 2

iterations. On the right is the same noisy image denoised
with the same equation first with a smoothing step using pa-
rameters 7 =35 x 1077 and ¢ =5 x 1077 for 10 iterations,
and followed by 100 iterations using the same parameters as
with the image on the left. This discretization of this equa-
tion is not sensitive to parameter choice as (2.7) is, so we
can utilize a large choice of ¢ even without the smoothing
step. As is shown, the smoothing step is still useful for im-
proving performance (at the cost of the clarity of some finer
features) and for dramatically reducing processing time (110
iterations versus 400).

3.4 Quantitative Evaluation

The parameters used in the experiments in Sect. 5 (i.e., time
step &, ¢, and stopping time) have been chosen by trial and
error in order to get the best denoising results on the basis
of appearance. While this is hardly an exact way to measure
results, ultimately the important feature is the appearance of
an image, even though it is a difficult task to find a quantity
which can measure it reliably.
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Fig. 6 Cameraman with 20% Gaussian noise denoised with (2.7) (sec-
ond row), (4.1) (third row), and (4.2) (fourth row), at two different
stopping times. The initial clean and noisy images are shown in the
first row

Other characteristics of a denoised image may be mea-
sured to quantify the success of the denoising method. These
characteristics include peak signal-to-noise ratio (PSNR),
signal-to-noise ratio (SNR), £;-error, and £>-error. All of
these quantities measure a comparison between the denoised
image and the original clean image. A stopping time could
be determined by optimizing one of these quantities (as is
often done, see, e.g., [15, 20]). However, it should not be as-
sumed that the clean image is known, and the stopping time

@ Springer

Fig. 7 Peppers with 20% Gaussian noise denoised with (2.7) (second
row), (4.1) (third row), and (4.2) (fourth row), at two different stopping
times. The initial clean and noisy images are shown in the first row

for a denoising model should be independent of the clean
image.

Furthermore, these quantities do not necessarily give an
accurate measure of the quality of a denoised image, as they
may not adequately penalize certain undesirable properties,
such as excessive noise, splotchiness, or blurriness. Table 1
lists the PSNR, SNR, ¢;-error and ¢,-error for three differ-
ent denoising results on an image of Lena corrupted by 20%
Gaussian noise, as well as for the initial noisy image. The
three images are obtained by denoising with:



J Math Imaging Vis (2011) 40: 188-198

195

Fig. 8 Contour plots of the
clean cameraman image (fop
left), the noisy image (fop
right), the image denoised

with (4.1) (bottom left), and the
image denoised with (4.2)
(bottom right)

— (2.3) with ¢ = 0.1, ¢ = .003, and time step h = 5 x 10°
for 300 iterations (“2nd Order”);

— (2.7) with ¢ = 1077 and time step h = 5 x 10~12 for 10
iterations (“4th Order (1)”); and

— (2.7) with the previous parameters, followed by ¢ =5 x
1073 and time step & = 10~ !! for 350 iterations (“4th Or-
der (2)).

The denoised images are shown in Fig. 4. The “best” value
for each quantity is shown in the table in bold (a larger
PSNR or SNR is better, and a smaller £;-error or £,-error
is better). The best values correspond either to “2nd Order”,
which still contains transient noise-related artifacts, or to the
“4th Order (1), which contains excessive splotchiness. “4th
Order (2)” has, arguably, the best appearance, but this is not
indicated by any of these measurements.

Method noise, the difference between the initial noisy im-
age and the denoised image, is a gauge of the success of a
denoising method that does not depend on the clean image.
Ideally the method noise should resemble noise, and should
not exhibit features of the original image. The method noise
for the three denoised images is shown in Fig. 4. Method
noise is a good indicator of blurriness in a denoised image,
as when edges are smoothed out, they show up in the method
noise. However, it may not be a good indicator of the best
denoising results, as sharp edges may need to be partly sac-
rificed for effective noise removal.

4 Proposed Models

We propose two modifications to (2.7), each of which uses
a different edge detector. The two new models are

ur + Ag([(=M)'2ul?)Au) =0, inQfors>0,
u periodic, fort > 0, “.1)
u(0) = uo, in Q forr =0,

and
ur + AV tu>)Au) =0, inQforr >0,
u periodic, fort > 0, “4.2)
u(0) = uy, in Q fort =0,

where €2 is the unit square and ¢ € (0, 1). For small ¢, (4.1)
offers at best a modest improvement to the performance
of (2.7), but unlike (2.7), it can be shown to possess a unique
short time solution [19]. While the Laplacian |Au| in (2.7)
is effective at detecting edges, the gradient |Vu| is gener-
ally a better edge detector, especially on images with very
sharp edges. It is therefore natural to replace the edge detec-
tor in (2.7) with the gradient, yielding (2.8). It is discussed
in Sect. 3.3 that (2.7) is prone to artifacts when a large time
step and large values of ¢ are chosen. Equation (2.8) is even
more susceptible to artifacts, and an even smaller time step
is required to avoid them, resulting in a longer processing
time. Equation (4.2) uses instead a regularized gradient to
detect edges, which alleviates some of the sensitivity to the
choice of parameters. Equation (4.2) can therefore be used
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with a larger time step than can (2.8), shortening processing
time, while still providing effective edge preservation.

5 Numerical Experiments

It is shown in Sect. 3.3 that the proposed smoothing tech-
nique can improve the performance of some PDE denoising
models from the literature, including both second and fourth
order models. In this section we illustrate the behavior of the
two proposed fourth order equations implemented with the
smoothing step, and compare the behavior with that of (2.7).
The strength of (4.2) compared to the second order (2.3) is
also demonstrated.
The following parameters are used in Figs. 5 and 9:

— Equation (2.7): Smoothed with time step 4 =5 x 10712
and ¢ = 108 for 10 iterations, followed by A = 10710
and c =2 x 1073,

Fig. 9 Denoising results using (2.3) and (4.2) on an image with 20%
(left column) and 30% (right column) Gaussian noise. First row: initial
noisy images. Second row: results denoising with (2.3). Third row: re-
sults denoising with (4.2). The initial clean image can be seen in Fig. 2

@ Springer

— Equation (4.1), & = 0.1: Smoothed with & =5 x 10712
and ¢ = 10~ for 5 iterations, followed by h = 10710 and
c=5x1077.

— Equation (4.2), ¢ = 0.1: Smoothed with & =5 x 10712
and ¢ = 107 for 5 iterations, followed by h =5 x 107!
and ¢ = 0.006.

— Equation (2.3), ¢ = 0.1: Smoothed with h =5 x 10~7 and
¢ =5 x 1077 for 10 iterations, followed by h =5 x 100
and ¢ = 0.003.

The number of iterations used in the second step varies de-
pending on the image and the amount of noise.

Figures 5, 6, and 7 show the evolution of the three fourth
order models—(2.7), (4.1), and (4.2)—on several noisy im-
ages, after 300 and 500 iterations following the smooth-
ing step. Figure 8 shows contour plots of images denoised
with the proposed models. The images denoised with (4.2)
show somewhat improved edge preservation compared to
the others, but they also exhibit somewhat blocky behav-
ior. The images denoised with (2.7) and (4.1) show some
cross-hatching artifacts which are not observed with (4.2).
All three fourth order methods effectively remove splotches
and other artifacts in flat regions. (These cross-hatching arti-
facts are also observed in experiments in [3] on (2.7) and on
a modification of (2.7) involving fractional derivatives. The
model proposed in [3] is not closely related, mathematically
speaking, to (4.1), but is in the same spirit.)

The proposed fourth order equations, like (2.7) and other
fourth order models, improve upon second order models in
the sense that they avoid the cartoonish look common to
many images denoised by second order models. This ben-
efit is particularly evident the presence of large amounts
of noise. Figure 9 contrasts the performance of the fourth
order equation (4.2) and the second order (2.3) on images
with 20% and 30% Gaussian noise added. The second row
shows the denoising results with (2.3) after 100 and 200 it-
erations in the second step, and the third row shows the re-
sults with (4.2) after 400 and 800 iterations (the rest of the
parameters are as given above). Results on the image with
20% noise are in the left column, and with 30% in the right
column. The second order method requires few iterations to
achieve satisfactory denoising results, but the fourth order
method is better able to avoid a cartoonish appearance and
preserves a more natural look.

6 Conclusion

The fourth order diffusion PDE (2.7) proposed in [34] has
been analyzed, and a smoothing technique has been pro-
posed which reduces processing time and improves the per-
formance of this model and others like it. Two modifications
of (2.7) have been proposed which utilize fractional deriva-
tives for edge detection. Numerical experiments have been
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shown comparing the performance of the two new models
with that of (2.7) as well as a second order method.
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