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Abstract The problem of the generation of an intermediate
image between two given images in an image sequence is
considered. The problem is formulated as an optimal control
problem governed by a transport equation. This approach
bears similarities with the Horn & Schunck method for op-
tical flow calculation but in fact the model is quite different.
The images are modelled inBV and an analysis of solu-
tions of transport equations with values inBV is included.
Moreover, the existence of optimal controls is proven and
necessary conditions are derived. Finally, two algorithms
are given and numerical results are compared with existing
methods. The new method is competitive with state-of-the-
art methods and even outperforms several existing methods.
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1 Introduction

Image sequence interpolation is the generation of intermedi-
ate images between two given images containing some rea-
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sonable motion fields. It is mainly based on motion estima-
tion and has broad applications in the area of video compres-
sion. In video compression, the knowledge of motions helps
remove the non-moving parts of images and compress video
sequences with high compression rates. For example in the
MPEG format, motion estimation is the most computation-
ally expensive portion of the video encoder and normally
solved by mesh-based matching techniques, e.g. blocking
matching, gradient matching [37]. While decompressing a
video intermediate images are generated by warping the im-
age sequence with motion vectors.

Another possibility of image interpolation is based on
optical flow estimation. Since Horn and Schunck proposed
the gradient-based method for optical flow estimation in their
celebrated work [26], this field has been widely developed
till now. For example, instead of the linear constraint in the
Horn & Schunck method one applies the non-linear isotropic
constraints [6,13], anisotropic diffusion constraints [30,20]
and TV constraint [38] for preserving the flow edges, which
is very useful for motion segmentation. Dealing with large
displacements in image sequences one develops warping tech-
nique [12] to estimate the flow field in a robust way. How-
ever, in [24] is shown that the Horn & Schunck method is
only suited for optical flow estimation, but not for matching
image intensities, especially in case of large displacements,
see also the argumentation in [34].

Borzı́, Ito and Kunisch considered the optical flow prob-
lem in the optimal control framework [10]. Due to an op-
timal control formulation the estimated flow field is also
suitable for image interpolation, since one searches the flow
field such that the interpolated image has a best matching to
a given image in the sense of some norm. In this paper we
modify the model proposed in [10] for interpolating inter-
mediate images between two given images and analyze the
well-posedness of the corresponding minimizing problem.
In the end we introduce an efficient numerical method for
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solving the optimality system and we also propose a modi-
fication of the segregation loop of the optimality conditions
system, which give better interpolation results and is robust
with respect to the choice of regularization parameter. To
evaluate our proposed interpolation methods we will utilize
the image database generated by Middlebury College1 and
compare our results using the evaluation method of Middle-
bury with the results in [34].

2 Modeling

We are interested in finding a flow field, which is suitable
for image matching. It means that instead of minimizing the
optical flow constraint equation directly, we utilize the trans-
port equation to fit a given imageu0 to another given image
uT in the sense of some predefined norm in the cost func-
tional.

Let us model the optimal control problem governed by
the transport equation. Consider the Cauchy problem for the
transport equation in[0,T]×Ω , Ω ⊂ R

d (generallyd = 2):






∂tu(t,x)+b(t,x) ·∇xu(t,x) = 0 in ]0,T]×Ω ,

u(0,x) = u0(x) in Ω .

(1)

Hereb : [0,T]×Ω −→ R
d is an optical flow field,u0 is a

given initial condition andu is an unknown function depend-
ing ont andx. We define the nonlinear solution operator of
(1)

G : X×Y −→ Z,

(u0,b) 7→ u,

whereX,Y,Z are normed spaces to be specified. Then, we
define a linear “observation operator”ET : u 7→ u(T), which
observes the value ofu at timeT. By the chain(u0,b) 7→
u 7→ u(T) we have the “control-to-state mapping”

S: X×Y −→ U,

S: (u0,b) 7→ u(T).

The spaceU is a subspace ofZ, which not involves time
t. The continuity ofS will be investigated in the concrete
contexts. Our intention is to find the flow fieldb such that
the corresponding imageS(u0,b) matches the imageuT at
time T as well as possible. This motivates to minimize the
functional 1

2 ‖S(u0,b)−uT‖
2
U . However, this problem is ill-

posed and an additional regularization term is needed. This
regularized optimal control problem can be formulated as
minimizing the following cost functional

inf
b∈Y

J(b) =
1
2
‖S(u0,b)−uT‖

2
U +

λ
2
‖b‖2

Y , (2)

1 http://vision.middlebury.edu/flow/data/

subject to divb= 0. (3)

We use Tikhonov regularization to stabilize the cost func-
tional andλ is the regularization parameter. In the frame-
work of optimal control [29,36] we callb the control and
u the state. According to the conservation law [25] and the
divergence theorem [32], the divergence free constraint of
b will make the flow volume conserving, smooth and vary
not too much inside the flow field of a moving object. Such
properties are desired to be enjoyed in image interpolation
in case that the moving objects are not getting deformed.
Such constraint is not new for optical flow estimation and
was similarly introduced as a regularization constraint e.g.
in [35,27,10].

We emphasize, that our model is considerably different
from the Horn & Schunck approach which is based on the
optical flow constraint. There one has a given imageu and
a given derivative∂tu (both at timet0) and one finds a flow
field b= (v,w) by minimizing

∫

Ω
(∂tu−b ·∇u)2dt+

∫

Ω
|∇v|2+ |∇w|2dx.

The main conceptual difference between this approach and
ours is that Horn & Schunck just consider one timet0 and
match the flow field only to that time. Hence, it is unclear in
what sense the produced fieldb could be useful to match a
given image with another one. Our approach uses two given
images and tries to find a flow fieldb which transports the
first image as close as possible to the second image. The “op-
tical flow constraint equation” now enters as a constraint to
the optimization problem and not in the objective functional
itself.

In next chapter we will give some adequate spaces for
u andb. Especially we are interested in imagesu0 anduT

which are of bounded variation. Hence, we introduce the so-
lution theory of transport equations equipped with a smooth
flow field and aBV image as initial value. Especially we
need to work out conditions under which theBV-regularity
is propagated by the flow field. Then, we will analyze the
existence of a minimizer of problem (2) restricted to (1) and
(3).

3 Analysis of Well-posedness

To analyze the solution operatorG we use the method of
characteristics. We start with the analysis of the correspond-
ing ODEs, then derive existence results for initial valuesu0

which are of bounded variation and finally derive a result on
the weak sequential closedness ofG. Together this shows
the existence of an optimal control in the respective setting.

http://vision.middlebury.edu/flow/data/
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3.1 Basic Theory of ODE

It is well-known that the solution theory of transport equa-
tions has a tight relationship with the ordinary differential
equation




γ̇(t) = b(t,γ(t)) t ∈ I ,

γ(a) = x0 in Ω .

(4)

Regarding the solution theory of (4), the existence and unique-
ness of a solution can be derived by the theorem of Picard-
Lindelöf [23] if b is Lipschitz continuous in space and uni-
formly continuous in time. We can also relax the assump-
tion ont of b to be integrable by the following Carathéodory
theorem [4], which a general version of the Picard-Lindelöf
theorem:

Theorem 1 (Carathéodory) Define I= [a,c] and Ω is a
bounded subset inRd. Suppose b: I ×Ω →R

d so that

1. t → b(t,x) is measurable in I for every x∈ Ω ;
2. there exists C≥ 0 with |b(t,x)−b(t,x′)| ≤ C|x− x′| for

a.e. t∈ I and every x,x′ ∈ Ω̄ ;
3. b(t,x) = 0 for a.e. t∈ I and every x∈ ∂Ω ;
4. the function m(t) = |b(t,x0)| is integrable in I for x0 ∈

Ω .

Then, there exists a unique solutionγ∗ : I → Ω with

γ∗(t) = x0+

t∫

a

b(s,γ∗(s))ds t∈ I

to the Cauchy problem(4).

As a consequence of the proof, the flowγ∗(t) is absolutely
continuous in[a,c]. Generally, if we consider the solution
in [0,T] with T > c, we can restartγ∗ at (c,γ∗(c)) until the
unique continuous solution arrives at timeT. The backward
flow is the special case when the timet is smaller than the
initial time a.

Next, we want to choose an appropriate function space
Y for b, which is suitable for the control problem. Accord-
ing to [3] the space of Lipschitz functions is equivalent to
W1,∞(Ω)d, if Ω is a bounded, convex, open set. According
to [15] lower regularity of the flow field (i.e.b∈ W1,p with
p< ∞) does not preserveBV-regularity. However, the norm
in W1,∞ is not well suited as a penalty term since it is dif-
ficult to determine the necessary optimality conditions ofb
equipped with theL∞−norm. Thus, we assume additionally
that the domainΩ enjoys the strong local Lipschitz condi-
tion [1] and use the fact thatH3

0(Ω)d is continuously embed-
ded intoW1,∞(Ω)d under this assumption, when dim(Ω) =

2. Considering the divergence-free constraint onb we set

H3,div
0 (Ω)2 :=

{
f ∈ H3

0(Ω)2
∣∣∣ div f = 0

}
.

Adjusting the assumption on the time ofb in Theorem 1 and
previous conditions onΩ we will assume that

– Ω ⊂ R
2 is a bounded, convex, open set with the strong

local Lipschitz condition
– b∈ L2([0,T];H3,div

0 (Ω)2)

throughout the paper unless otherwise stated. A proper choice
for the spaceU will be discussed in Section 3.3.

In order to formulate the solution of transport equation
in a convenient way, we give the concept of classical flow
[16].

Definition 1 The classical flow of vector fieldb is a map

Φ(t,x) : [0,T]×Ω −→ Ω

which satisfies




∂Φ
∂ t

(t,x) = b(t,Φ(t,x)) in ]0,T]×Ω ,

Φ(0,x) = x in Ω .

(5)

A helpful property ofΦ will be given in the following corol-
lary.

Corollary 1 For every t∈ [0,T] the mappingΦ(t, ·) : Ω →

Ω is Lipschitz continuous and a diffeomorphism.

Proof The injectivity can be derived from the uniqueness
of the backward flow: If the flowΦ starts from two points
x1 6= x2 and arrives at somet at the same pointΦ(t,x1) =
Φ(t,x2) = x̄, the backward flow starting from(t, x̄) will be
not unique. Regarding the surjectivity: for every pointy∈ Ω
one can find a backward flow starting from(t,y)

γ(t ′) = y+

t′∫

t

b(s,γ(s))ds= x∈ Ω ,

according to Theorem 1. In caset ′ = 0 yieldsΦ(t,x) = y.
The Lipschitz regularity ofΦ is easily shown by the

Gronwall’s lemma. For details we refer to [16].
Since the Lipschitz continuity gives only the localC1-

regularity, theC1-regularity ofΦ(t, ·) in Ω one can follow
the results in [16], which states that ifb hasC1-regularity
in space, then the flowΦ(t, ·) is alsoC1 in space. In fact,
H3

0(Ω)2 is continuously embedded intoC1(Ω̄)2, and hence
we derive the statement. ⊓⊔

3.2 Solution Theory of Transport Equations

In this subsection we will consider the transport equation
with the initial valueu0 in BV. The BV space is a natural
space for images, sinceBV contains the functions with dis-
continuities along hypersurfaces, i.e. edges of images [3].
However, the propagation ofBV regularity is a delicate mat-
ter. We formulate first the solution of transport equations
with a smooth initial value:
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Corollary 2 Let u0 ∈ C1(Ω) and Φ be a classical flow of
vector field b. Then the transport equation(1) has unique
solution

u(t,x) = u0◦Φ−1(t, ·)(x). (6)

Proof Let us test (1) along the characteristics denoted by
(t,Φ(t,x))

0 =
∂u
∂ t

(t,Φ(t,x))+b(t,Φ(t,x)) ·∇u(t,Φ(t,x))

=
∂u
∂ t

(t,Φ(t,x))+
∂Φ
∂ t

(t,x) ·∇u(t,Φ(t,x))

=
∂
∂ t

(u(t, ·)◦Φ(t,x)).

This implies that every solution is constant along the char-
acteristics. Adjusting the initial value we derive (6) is a so-
lution to (1) and the uniqueness follows immediately from
the uniqueness of flowΦ. ⊓⊔

Equipped with a non-differentiable initial value the classic
solution (6) will not work. Next, we give the definition of
the solution of transport equations in the weak sense.

Definition 2 (Weak solution) If b and u0 are summable
functions andb is divergence free in space, then we say
that a functionu : [0,T]× Ω → R is a weak solution of
(1) if the following identity holds for every functionϕ ∈

C∞
c ([0,T[×Ω) :

T∫

0

∫

Ω

u(∂tϕ +b ·∇ϕ)dxdt=−
∫

Ω

u0(x)ϕ(0,x)dx. (7)

In Theorem 4 it will be shown that (6) is actually the unique
weak solution of (1) withu0 ∈ BV(Ω). Before we are able
to deal with the proof, we recall briefly the weak∗ topology
of BV [3,5,7,6],

un
∗

−−−−⇀
BV(Ω)

u :⇔ un −−−→
L1(Ω)

u andDun
∗

−−−−⇀
M (Ω)

Du

which possesses convenient compactness properties in the
following theorem [3].

Theorem 2 Let(un)⊂BV(Ω). Then(un) converges weakly*
to u in BV(Ω) if and only if(un) is bounded in BV(Ω) and
converges to u in L1(Ω).

To prove that (6) is a weak solution of (1) it is common to
use the technique of mollifiers [21]. In short, we smooth the
initial value with a mollifierηε with varianceε, let ε con-
verge to zero and investigate the convergence of the solution
with a smooth initial value to a nonsmooth initial value. This
will be done in next theorem.

Theorem 3 Assume u0 ∈BV(Ω),ϕ andϕ−1 are diffeomor-
phisms and Lipschitz continuous inΩ . Then, the sequence
((u0 ∗ηε)◦ϕ) converges to u0◦ϕ in the weak* topology of
BV(Ω).

Proof Let us verify first theL1-convergence of(u0∗ηε)◦ϕ
and setϕ(x) = y
∫

Ω

|(u0∗ηε)◦ϕ(x)−u0◦ϕ(x)|dx

=

∫

Ω

|u0∗ηε(y)−u0(y)||det(∇ϕ−1(y))|dy

≤ ‖u0∗ηε −u0‖L1(Ω)

∥∥det(∇ϕ−1)
∥∥

L∞(Ω)
.

LetL be the Lipschitz constant ofϕ−1 i.e.L=
∥∥∇ϕ−1

∥∥
L∞(Ω)4

,

then
∥∥det(∇ϕ−1)

∥∥
L∞(Ω)

is bounded from above by 2L2. To-
gether with the approximation property of mollifiers this
gives theL1−convergence.Regarding the weak∗ convergence
of Radon measures∇(u0 ∗ ηε) we observe that for every
ψ ∈C∞

c (Ω)2 it holds
∫

Ω

∇((u0∗ηε)◦ϕ)ψdx

= −

∫

Ω

(u0∗ηε)◦ϕdivψdx

= −

∫

Ω

(u0∗ηε)(y)div(ψ ◦ϕ−1(y))|det∇ϕ−1(y)|dy

= −
∫

Ω

∫

Ω

ηε(y− s)u0(s)dsdiv(ψ ◦ϕ−1(y))|det∇ϕ−1(y)|dy

= −

∫

Ω

∫

Ω

ηε(y− s)div(ψ ◦ϕ−1(y))|det∇ϕ−1(y)|dyu0(s)ds

= −

∫

Ω

ηε ∗
(
div(ψ ◦ϕ−1)|det∇ϕ−1|

)
(s)u0(s)ds. (8)

Sinceϕ−1 is C1 and Lipschitz continuous inΩ , the con-
volved term belongs toL2(Ω). Recall that in the two dimen-
sional caseBV(Ω) is continuously embedded intoL2(Ω),
then utilizing the approximate property of mollifiers implies
that the equation (8) converges to

−

∫

Ω

div(ψ ◦ϕ−1(s))|det∇ϕ−1(s)|u0(s)ds

ϕ(ξ )=s
= −

∫

Ω

divψ(ξ )u0(ϕ(ξ ))dξ

(∗)
=

∫

Ω

ψD(u0◦ϕ)

In (∗) we applied the Gauss-Green formula for theBV func-
tions [21]. ⊓⊔

Remark 1Under the same assumptions of Theorem 3 one
can derive from Theorem 2 that((u0∗ηε)◦ϕ) is uniformly
bounded inBV(Ω) and converges tou0 ◦ϕ in L1(Ω), actu-
ally also inLp(Ω) with p≤ 2 due to the approximate prop-
erty of mollifiers and the factBV(Ω) has a continuous em-
bedding intoL2(Ω) in the two dimensional case.
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Lemma 1 Assume that u0 ∈ BV(Ω), ϕ(t, ·) and ϕ−1(t, ·)
are diffeomorphisms inΩ for every t∈ [0,T] andϕ(·,x) is
absolutely continuous in[0,T] for every x∈ Ω . Define

uε(t,x) = (u0 ∗ηε)◦ϕ(t,x).

Then, uε ∈C([0,T];BV(Ω)).

We skip the proof of Lemma 1, since it is a trivial result
utilizing the substitution technique introduced in the proof
of Theorem 3. Now, we are able to prove the existence and
uniqueness of the weak solution of the transport equation
(1).

Theorem 4 If u0 ∈ BV(Ω), then there exits a unique weak
solution

û(t,x) = u0◦Φ−1(t, ·)(x) (9)

of (1) belonging to L∞([0,T];BV(Ω)).

Proof Consider the transport equation with initial valueu0

convolved with mollifierηε




∂tu(t,x)+b(t,x) ·∇xu(t,x) = 0 in ]0,T]×Ω

u(0,x) = u0∗ηε(x) in Ω .

Corollary 2 implies that there exists a unique solutionuε of
the form

uε(t,x) = (u0 ∗ηε)◦Φ−1(t, ·)(x).

Let us define

û(t,x) = u0◦Φ−1(t, ·)(x),

where û(t, ·) ∈ BV(Ω) according to Theorem 3 for every
t ∈ [0,T]. Remark 1 gives thatuε(t, ·) converges to ˆu(t, ·) in
L2(Ω) anduε(t, ·) is uniformly bounded inBV(Ω). And ac-
cording to Lemma 1 this yields thatuε is uniformly bounded
in L∞([0,T];BV(Ω)), which is continuous embedded into
L2([0,T];L2(Ω)). Hence, there exists a subsequence(uεk)

of (uε) such that

uεk ⇀ û in L2([0,T];L2(Ω)) (10)

and û ∈ L∞([0,T];BV(Ω)). Due to the weak convergence
of uεk in L2([0,T];L2(Ω)), one can derive for everyϕ ∈

C∞
c ([0,T[×Ω) it holds that

T∫

0

∫

Ω
uεk[∂tϕ +b ·∇ϕ ]dxdt −→

T∫

0

∫

Ω
û[∂tϕ +b ·∇ϕ ]dxdt

‖ ‖

−
∫

Ω
u0∗ηεkϕ(0,x)dx −→ −

∫

Ω
u0ϕ(0,x)dx.

The upper convergence is valid sinceb∈ L2([0,T];L2(Ω)2)

and thanks to (10). The lower convergence can be deduced
from the property of approximate identity. The left equality
is valid for a smooth initial value and smooth vector field.
Hence, all of them imply the right equality.

Regarding the uniqueness of weak solution it is shown in
[2] that the continuity equation, which is equal to the trans-
port equation in case divb= 0, has a unique solution in the
Cauchy-Lipschitz framework, i.e.b∈ L1([0,T];W1,∞(Rd)).
Definitely, it is also valid under our assumption ofb.

Because of the uniqueness of the weak solution the con-
vergence of subsequence(uεk) in the previous proof can be
proceeded to the whole sequence(uε). ⊓⊔

3.3 Existence of a Minimizer

The goal of this subsection is to complete the cost functional
(2) with some reasonable norm and investigate the existence
of a minimizer of problem (2). First of all, we give the norm
of the penalty term of (2) w.r.t.b. According to [1] an equiv-
alent norm ofH3

0 is

‖b‖H3
0 (Ω)2 =

(

∑
|α |=3

‖∂ αb‖2
L2(Ω)2

)1/2

. (11)

We can easily find out that the seminorm(
∫

Ω |∇∆b|2dx)1/2

is actually another equivalent norm ofH3
0(Ω)2, since it is

equivalent to (11). For the regularity ofb in time we can
give the equivalent norm ofL2([0,T];H3

0(Ω)2)

‖b‖2
L2([0,T];H3

0 (Ω)2) =

T∫

0

‖∇∆b(t, ·)‖2
L2(Ω)4 dt. (12)

As discussed above, we assume thatu0 anduT areBV-functions.
Hence,BV seems to be a proper choice for the spaceU .
However, sinceBV is continuously embedded inL2(Ω) for
d = 2 we useU = L2(Ω) (we discuss this choice in more
detail in Section 4). Hence, our cost functional is

J(b) =
1
2
‖S(u0,b)−uT‖

2
L2(Ω)+

λ
2

T∫

0

‖∇∆b(t, ·)‖2
L2(Ω)4 dt.

(13)

Lemma 2 If (ϕn) and (ϕ−1
n ) are sequences of diffeomor-

phisms inΩ and the Jacobian determinantdet∇ϕn is uni-
formly bounded in L∞(Ω) by the upper boundC. Then,((u0∗

ηε)◦ϕ−1
n ) is uniformly bounded in BV(Ω) w.r.t. n.

Proof It is easy to check that(u0∗ηε) is uniformly bounded
in BV(Ω) according to Theorem 2 and 3. Suppose that the
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upper bound is̃C. Let us verify first theL1−norm by setting
y= ϕ−1

n (x)
∫

Ω

|(u0∗ηε)◦ϕ−1
n |dx

=
∫

Ω

|u0∗ηε ||det∇ϕn(y)|dy

≤ C
∫

Ω

|u0∗ηε |dy

≤ CC̃‖u0‖L1(Ω) .

Regarding the variation norm by‖u0‖var(Ω) :=
∫

Ω |Du0|dx
we have
∫

Ω

|∇(u0∗ηε)◦ϕ−1
n |dx

=

∫

Ω

|∇(u0∗ηε)(y)||det∇ϕn(y)|dy

≤ C
∫

Ω

|∇(u0 ∗ηε)(y)|dy

≤ CC̃‖u0‖var(Ω) .

⊓⊔

Lemma 3 If (bn) is uniformly bounded in L2([0,T];H3(Ω)2)

and u0 ∈ BV(Ω). Define un,ε = (u0 ∗ηε) ◦Φ−1
n and utn,ε =

un,ε(t). Then, there exists a subsequence(unk,ε ) such that
unk,ε converges to some limit uε in L2([0,T];Lp(Ω)) with
p< 2 and weakly to uε with p= 2. ut

nk,ε converges to uε(t)
in Lp(Ω) with p< 2 and weakly to uε(t) with p= 2.

Proof Recall that for everybn there is a correspondingΦn

s.t.Φn(t, ·)∈W1,∞(Ω)2 and‖∇Φn(t, ·)‖L∞(Ω)4 = Lip(Φn(t, ·)).
The Lipschitz continuity implies via Gronwall’s lemma

Lip(Φn(t, ·))≤ exp




t∫

0

Lip(bn(s, ·))ds



 . (14)

The boundedness of(bn) in L2([0,T];H3(Ω)2) gives the up-
per bound of (14). Hence, the Jacobian determinant det∇Φn(t, ·)
is also uniformly bounded inL∞(Ω). According to Lemma 2
this implies thatut

n,ε is uniformly bounded inBV(Ω) w.r.t.
n. Then, there exists a subsequence(ut

nk,ε) of (ut
n,ε) such

thatut
nk,ε converges tout

ε in Lp(Ω) (weakly for p= 2) with
p≤ 2. Considering the integral over time one has

lim
nk→∞

T∫

0

∥∥ut
nk,ε −ut

ε
∥∥2

Lp(Ω)
dt =

T∫

0

lim
nk→∞

∥∥ut
nk,ε −ut

ε
∥∥2

Lp(Ω)
dt → 0

with p< 2. The exchange of the limit is valid since the inte-
grand is bounded and with the same argument one can derive
the weak convergence ofunk,ε in L2([0,T];L2(Ω)). ⊓⊔

Now we consider the minimization problem

inf
b∈L2([0,T];H3,div

0 (Ω)2)

J(b) (15)

with J according to (13). Proving the existence of minimiz-
ers is usually achieved by the direct method [7] and the most
difficult part lies in the weak sequential closeness of the so-
lution operatorG with respect tob.

Theorem 5 (Weak sequential closeness)Suppose the se-
quence(bn) ∈ L2([0,T];H3,div

0 (Ω)2) is uniformly bounded
and converges weakly to b in L2([0,T];H3(Ω)2). Let un be
the corresponding weak solutions of(1) with flow field bn
and initial value u0 (i.e. un =G(u0,b)). Suppose that un con-
verges toû in L2([0,T];L1(Ω)) and û ∈ L2([0,T];L2(Ω)),
thenû= G(u0,b).

Proof Since(bn) converges weakly tob in L2([0,T];H3(Ω)2),
it is also valid that

bn ⇀ b in L2([0,T];L2(Ω)2). (16)

Let us consider the differenceuu− û applying a test function
ϕ ∈C∞

c ([0,T[×Ω):
∣∣∣∣∣∣

T∫

0

∫

Ω

un(∂t ϕ +bn∇ϕ)− û(∂tϕ +b∇ϕ)dxdt

∣∣∣∣∣∣

=

∣∣∣∣∣

T∫

0

∫

Ω

∂tϕ(un− û)dxdt

︸ ︷︷ ︸
(i)

+

T∫

0

∫

Ω

∇ϕ · (unbn− ûb)dxdt

︸ ︷︷ ︸
(ii)

∣∣∣∣∣.

Part(i) converges to zero, sinceun → û in L2([0,T];L1(Ω)).
Regarding part(ii) we can derive

T∫

0

∫

Ω

∇ϕ(unbn− ûb)dxdt

=




T∫

0

∫

Ω

∇ϕbn(un− û)dxdt+

T∫

0

∫

Ω

∇ϕ û(bn−b)dxdt




≤ ‖∇ϕ‖L∞([0,T]×Ω)2 ‖bn‖L2([0,T];L∞(Ω)2) ‖un− û‖L2([0,T];L1(Ω))

+

T∫

0

∫

Ω

∇ϕ û(bn−b)dxdt

Since(bn) is uniformly bounded inL2([0,T];H3(Ω)2), it is
also uniformly bounded inL2([0,T];L∞(Ω)2). Due to the
convergence ofun in L2([0,T];L1(Ω)) and (16) imply the
two summands of last inequality converge respectively to
zero.

Since(un) are weak solutions of (1), the limit ˆu is also a
weak solution of (1), i.e. ˆu= G(u0,b). ⊓⊔

Theorem 6 (Existence of a minimizer)Suppose u0∈BV(Ω),
then the minimization problem(15) has a solution.
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Proof Let (bn)⊂ L2([0,T];H3,div
0 (Ω)2) be a minimizing se-

quence of the cost functional. The coercivity of (13) is a
natural property subject to the norm (12). From the coerciv-
ity one has(bn) is uniformly bounded inL2([0,T];H3(Ω)2),
then there is a subsequence(bnk) of (bn) converging weakly
to b in L2([0,T];H3(Ω)2). For eachbn there exits a unique
flow Φ−1

n , which is a diffeomorphism inΩ and absolutely
continuous in[0,T]. Define

un,ε = (u0∗ηε)◦Φ−1
n .

According to Lemma 3 there exists a subsequence(unk,ε),
which converges touε ∈L2([0,T];L2(Ω)) in L2([0,T];L1(Ω))

and converges for everyt ∈ [0,T] weakly touε(t) in L2(Ω).
Theorem 5 implies thatuε =(u0∗ηε)◦Φ−1. Hence, it yields
that

∫

Ω
ut

nk,ε ϕdx −→
∫

Ω
ut

ε ϕdx

↓ ↓

∫

Ω
ut

nk
ϕdx −→

∫

Ω
utϕdx

for everyϕ ∈ L2(Ω). The left and right convergences in the
diagram are valid due to the property of approximate identi-
ties according and thenut = u0◦Φ−1(t, ·). Hence,ut

nk
con-

verges weakly tout in L2(Ω) for everyt ∈ [0,T].
The l.s.c. of the first term in (13) can be easily derived

from uT
nk
− uT ⇀ uT − uT in L2(Ω). And the l.s.c. of the

second term in (13) is valid due to the norm-continuity of
b. ⊓⊔

4 First-order Optimality Conditions System

We use the Lagrangian technique to compute the first-order
optimality conditions of control problem (13) governed by
(1) and (3). Let us define first the minimizing functional with
Lagrange multipliers(p,q)

L(u,b, p,q)= J(u,b)+

T∫

0

∫

Ω

(ut +b·∇u)pdxdt+

T∫

0

∫

Ω

divbqdxdt,

(17)

the variablep is the adjoint state ofu andq is the adjoint
state ofb. The functional derivatives of (17) w.r.t.u andb
yield the first-order necessary conditions system




ut +b ·∇u= 0, u(0) = u0

pt +b ·∇p= 0, p(T) =−(u(T)−uT)

divb= 0,

λ ∆3b+∇q= p∇u, b= 0,∇nb= 0,
∆b= 0 on∂Ω .

(18)

5 Algorithms

In this section we will present an efficient numerical algo-
rithm to discretize the optimality conditions system. Regard-
ing the forward and backward transport equations in (18)
one can take advantage of explicit formula (6) and estimate
the backward flow by the fourth-order Runge-Kutta method.
Another possibility for solving the transport equations isto
utilize the explicit high-order TVD schemes with flux limiter
“superbee” [25,28,10]. It works very well for preserving the
edges of images and avoiding oscillations of solutions. The
last equation of (18) is a triharmonic equation which stems
from the use of spaceH3

0 as penalty term in (13). There are
little articles about its numerical schemes, e.g. [17]. Butthe
algorithms are either not efficient or difficult to be applied
directly. The motivation for this term was thatb has to be
Lipschitz continuous to obtain a unique flowΦ. If we ap-
ply some smooth initial flowb0 in the discrete form of (18)
and replacing∆3 with ∆ in (18) still leads to smooth enough
b. Actually, according to [18] an initial valueu0 ∈ L2(Ω) is
transported into anL2(Ω)-function by a flow fieldb ∈ H1.
Hence, in our context we can also work with the optimality
system





ut +b ·∇u= 0, u(0) = u0

pt +b ·∇p= 0, p(T) =−(u(T)−uT)

divb= 0,

λ ∆b+∇q= p∇u, b= 0,∇nb= 0,
∆b= 0 on∂Ω .

(19)

We remark that the assumptionu0,uT ∈ BV is not present
in this model anymore. One could easily useU = BV and
theBV-norm for the differenceu(T)−uT since this would
only affect the right hand side of the adjoint equation. How-
ever, in this case we have to ensure that the flow fieldb is
Lipschitz- continuous. In numerical experiments we found,
that this did not alter the results too much and hence, we use
the optimality system (19).

The hierarchical processing according to [9], i.e. a coarse
to fine calculation, provides a good choice ofb0. The qual-
ity of b0 depends strongly on the downsampling and upsam-
pling procedures of images.

With a divergence free initial valueb0 we propose a seg-
regation loop in the spirit of [10] to interpolate the interme-
diate image at timet:
Segregation loop I.
Supposen = 1, · · · ,Nloop andNloop is the iteration number.
Givenu0,uT , bn−1(t), λ n−1. The iteration process for solv-
ing (19) at iterationn proceeds as follows:

1. Computeun−1(t),∇un−1(t) andun−1(T) by the forward
transport equation usingu0 andbn−1.
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2. Computepn−1(t) by the backward transport equation us-
ing−(un−1(T)−uT) andbn−1.

3. Computebn(t) by the Stokes equation with right-hand
sidepn−1(t)∇un−1(t) and aλ n.

After Nloop iterations the intermediate imageuNloop(t) ap-
proximatingu at timet. Moreover, we use a monotonically
decreasing sequence(λ n), which converges to a finalλ ∗.
However, thanks to the theory of Stokes equations [22], we
know that

‖b(t)‖H1(Ω) ≤
C
λ
‖p(t)∇u(t)‖H−1(Ω) , a.e.t ∈ [0,T]. (20)

In practice we find out that if we choose(λ n) such that the
norm of the right-hand side of (20) is monotonically increas-
ing, the value ofb(t) will be also increasing. However, the
final λ ∗ cannot be chosen too small such that the minimizing
process of (13) is ill-posed.

Moreover, since the system (18) is a necessary condi-
tion of minimizing functional (13), one expects that the term
‖u(T)−uT‖L2(Ω) is not very small. But since this is one of
our final goals, we propose a modification of segregation
loop I, which poses no requirement for choosing a specific
sequence(λ n) and gives better approximation of intermedi-
ate images. We modify segregation loop I as follows:
Segregation loop II.
Supposen= 1, · · · ,Nloop andNloop is the iteration number.
Givenu0,uT , bn−1(t), λ . The iteration process at iterationn
proceeds as follows:

1. Computeun−1(t),∇un−1(t) andun−1(T)by the forward
transport equation usingu0 andbn−1.

2. Computepn−1(t) by the backward transport equation us-
ing−(un−1(T)−uT) andbn−1.

3. Compute the solution of the Stokes equations with right-
hand sidepn−1(t)∇un−1(t) and λ . Then, denote it by
δbn−1(t) .

4. bn(t) = bn−1(t)+ δbn−1(t).

In segregation loop II we utilize the system (19) to estimate
the update of the flow field and update the flow field in step
4. This point of view is different from the original problem
(19), but interestingly this modification actually solves the
necessary condition of another minimizing problem. If the
segregation loop II converges, then the updateδbn−1(t) con-
verges to zero. Since the initial valueb0 is divergence free
and in each iteration the update flowδbn−1 is divergence
free, the limit ofbn is also divergence free.

We denoteu∗, p∗,b∗,q∗ the limits of particular sequences
and in this caseδb∗ = 0. Setting the limits into (19) we de-

rive





u∗t +b∗ ·∇u∗ = 0 u∗(0) = u0

p∗t +b∗ ·∇p∗ = 0 p∗(T) =−(u∗(T)−uT)

divb∗ = 0 b∗ = 0 on∂Ω

∇q∗ = p∗∇u∗

(21)

Actually, (21) is the optimality system of another constrained
minimization problem, namely

1
2
‖u∗(T)−uT‖

2
L2(Ω) (22)

subject to




u∗t +b∗∇u∗ = 0 u∗(0) = u0

divb∗ = 0 b∗ = 0 on∂Ω .
(23)

Compared to (13) the functional (22) is not regularized. But
if we stop the segregation loop II on time, i.e. the interpola-
tion error does not vary too much, then it is not surprising
that segregation loop II gives good approximation results of
intermediate images. From the point of view of regulariza-
tion theory, one may see the segregation loop II as a kind
of a Landweber method for minimizing‖u(T)− uT‖

2
L2(Ω)

which is inspired by a Tikhonov-functional.
In the most cases the forward interpolation fromu0 to

uT and the backward interpolation fromuT to u0 are com-
plementary, since the flow is only able to transport objects
from somewhere to somewhere, but not able to create some
new objects. If in the forward case some new objects ap-
pear, then in the backward case the new objects disappear.
It means that backward interpolation is more suitable for in-
terpolating the intermediate images. In practice, we take the
average of forward and backward interpolations.

5.1 Hierarchical Method

In order to get a start valueb0 for the optimality system,
the hierarchical processing is a good ansatz. It can be under-
stood in levell in the following steps:

1. Downsample the images into levell .
2. Solve system (19) in levell out and getbl .
3. Upsample the optical flow into levell −1 and getbl−1.

The estimated optical flowbl−1 is a start value of the hier-
archical method in levell −1. In coarsest level we assume
the start value is zero. As above mentioned, the down- and
up-sampling methods are decisively, i.e. it is supposed to
lose the local structures of objects as small as possible while
down- and up-sampling the images or the optical flow.
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In practice, we apply bicubic interpolation [31] for the
sampling, since it has fewer interpolation artifacts than bi-
linear interpolation or nearest-neighbor interpolation.Com-
pared to the Gaussian pyramid [14] the downsampled im-
ages by bicubic interpolation does look not so blurred.

5.2 Numerical Schemes for Transport Equations

To discretize the transport equations we can use the second-
order TVD scheme. It is also suitable for the backward trans-
port equation, since we can reform it into the forward prob-
lem by settingt ′ := T − t:

pt′ −b ·∇p= 0, p(0) =−(u(0)−uT).

Suppose the image size isN×M, h and∆ t are the mesh
sizes in space and time, respectively with mesh indexi =
1, · · · ,N, j = 1, · · · ,M in space andk= 1, · · · ,K in time. The
stability condition of the scheme, usually called CFL condi-
tion [7], is

σCFL := max(|v|max, |w|max)
∆ t
h

≤ 1.

by settingb := (v,w). In practice we choose∆ t such that
σCFL = 0.1. The TVD scheme of the forward transport equa-
tion is:

ut |
k
i j =

uk+1
i j −uk

i j

∆ t
,

−vux|
k
i j =

v+i j
h



1+
1
2

χ(r+
i− 1

2 , j
)−

1
2

χ(r+
i− 3

2 , j
)

r+
i− 3

2 , j



 (uk
i−1, j −uk

i j )

−
v−i j
h


1+

1
2

χ(r−
i+ 1

2 , j
)−

1
2

χ(r−
i+ 3

2 , j
)

r−
i+ 3

2 , j




·(uk
i+1, j −uk

i j ),

wherev+i j = max(vi j ,0),v−i j = min(vi j ,0) and the flux differ-
ence ratios are defined as

r+
i− 1

2 , j
=

uk
i+1, j −uk

i j

uk
i j −uk

i−1, j

, r+
i− 3

2 , j
=

uk
i j −uk

i−1, j

uk
i−1, j −uk

i−2, j

,

r−
i+ 1

2 , j
=

uk
i j −uk

i−1, j

uk
i+1, j −uk

i j

, r−
i+ 3

2 , j
=

uk
i+1, j −uk

i j

uk
i+2, j −uk

i+1, j

.

In the similar way we can discretize the term−wuy. The
superbee limiter function is given by

χ(r) = max(0,min(2r,1),min(r,2)).

To compute the spatial derivatives of images we use the stan-
dard three-point formula:

pux|i j =
1
2h

(−ui−1, j +ui+1, j)pi j ,

puy|i j =
1
2h

(−ui, j−1+ui, j+1)pi j .

Another way for solving the transport equation is to utilize
the characteristic solution. From (6) we know the keypoint
is to solve the backward flow starting from(t,x)





∂Φ
∂s

= b(s,Φ) in [0, t[×Ω ,

Φ(t,x) = x in Ω .

(24)

To solve (24) numerical efficiently we use Runge-Kutta 4th
order method [31]. We discretize[t,0] with time step∆ t =
0.1 and utilize a constant flowb over[t,0] due to saving the
memory and computational cost. In this scheme we have to
interpolate the flowb(t,x) with some non-integerx, since
only the flowb(t, ·) with integer coordinates is given. For
this we use bilinear interpolation (a bicubic interpolation
leads to almost the same results). Then, we warp the im-
ageu0 with the coordinates calculated by (24) using cubic
spline predefined in Matlab to approximateu(t,x).

5.3 Finite Element Methods for Stokes Equations

As previously mentioned, after replacing∆3 with ∆ it is im-
mediately seen that the last two equations in (19) are the
Stokes equations. Stokes flow estimation was investigated in
[33] and Suter applied the mixed finite element method [35]
for solving it. Moreover, the approximation of velocity field
b(t, ·) and pressureq(t, ·) will achieved by the polynomial
of second order (P2) and first order (P1), so-called Taylor
and Hood elements [19]. If the chosen finite element spaces
satisfy the inf-sup condition, also called LBB condition [19,
11], then the method is stable.

The variational problem of the Stokes equations reads as
follows:




a(b(t),v)+ c(v,q(t)) = ( f (t),v) ∀v∈V,

c(b(t),w) = 0, ∀w∈W
(25)

and the bilinear forms are defined by

a(b(t),v) =
∫

Ω

λ ∇b(t)∇vdxdy,

c(v,q(t)) =
∫

Ω

(divv)q(t)dxdy,

( f (t),v) = −

∫

Ω

f (t)vdxdy,

where f := p∇u,V := H1
0(Ω)2 and

W :=




w∈ L2(Ω)
∣∣∣
∫

Ω

wdxdy= 0




 .
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The discretization of (25) using the mixed finite element
produces a linear system of the form

(
A Ct

C 0

)(
bMN

pQ

)
=

(
fMN

0

)
. (26)

The approximation coefficientsbMN, pQ and fMN are w.r.t.
the basis of finite element spacesVh andWh. The stiffness
matrixA has the following block form:

A=

(
A1 0
0 A1

)
,

whereA1 = (
∫

Ω ∇ϕi∇ϕ jdxdy)i j , i, j = 1, · · · ,MN andϕi are
the basic functions ofVh. The matrixCt has also a block
form

Ct =

(
Ct

1

Ct
2

)
,

Ct
1 =





∫

Ω

∂ϕi

∂x
ψ jdxdy

∣∣∣ i = 1, · · · ,MN; j = 1, · · · ,Q





Ct
2 =






∫

Ω

∂ϕi

∂y
ψ jdxdy

∣∣∣ i = 1, · · · ,MN; j = 1, · · · ,Q




 .

Similarly, ψi are the basic functions ofWh. The vectorf =
( f1, f2)t is composed of scalar products( f1,ϕi) and( f2,ϕi)

for i = 1, · · · ,MN. We derive the interpolation polynomial
of f1, f2 w.r.t. the basic functions

f h
1 =

MN

∑
i=1

f1(xi)ϕi

f h
2 =

MN

∑
i=1

f2(xi)ϕi ,

wherexi is the corresponding measurement point ofϕi . Then,

fi = ( f h
1 ,ϕi) =

MN

∑
j=1

f1(x j)

∫

Ω

ϕ jϕidxdy, i = 1, · · · ,MN

fi = ( f h
2 ,ϕi) =

MN

∑
j=1

f2(x j)
∫

Ω

ϕ jϕidxdy, i = MN+1, · · · ,2MN.

For simplifying the estimation we just need to define the
basic functions of a single element, i.e. a triangle or square,
and derive the corresponding element stiffness matrix and
element mass matrix, then assemble them intoA1, C1, C2,
fMN.

Since the matrix in (26) is sparse and symmetric, but not
positive definite, the system (26) can be numerically solved
by the routine bicgstab predefined in MATLAB.

6 Numerical Experiments

6.1 Parameter Choice Rule

The essential parameters of the quality of image interpola-
tion are the regularization parameterλ and the downsam-
pling level l . Experimentally, we find out that the optimal
regularization parameterλopt andl are coupled. The down-
sampling level should be so adapted that at the lowest level
L the estimated optical flow is accurate with aλ L

opt. At the
higher levell with l < N the parameterλ l

opt is larger than
λ N

opt. In practice, we chooseλ l
opt with l < N by the follow-

ing strategy:

1. Find a pair(λ L
opt,L) experimentally at the lowest levelL.

2. Chooseλ l−1
opt such thatλ l−1

opt /λ l
opt ∈ [100.2100.5] and the

interpolation errors decrease at levell −1.

The difference between segregation loop I and II lies in that
segregation loop II equips with a constantλ l

opt at each level
and segregation loop I applies a monotonically decreasing
sequence converging toλ l

opt at each level. In case the image
size is around 600×400 we set the lowest levelL = 3 and
λ L

opt ∈ [105105.5].

6.2 Numerical Results

To illustrate the effect of our intermediate interpolated im-
ages, we apply the interpolation error (IE) introduced by [8].
Moreover, the IE measures the root-mean-square (RMS) dif-
ference between the ground-truth image ˜u and the interpo-
lated imageu

IE =

(
1

MN

N

∑
i=1

M

∑
j=1

(u(xi ,y j)− ũ(xi ,y j))
2

) 1
2

,

whereM×N is the image size. We test our methods on the
datasets generated by Middlebury with public ground-truth
interpolation:

– Dimetrodon with size 584×388
– Venus with size 420×380

Every dataset is composed of three images and the mid-
image is the ground-truth interpolation at time 0.5 if we as-
sume the evolution process of three images lasts timeT = 1.
To evaluate the interpolation we can compare our interpo-
lation results with the ground-truth by means of IE mea-
sure.The ranking of the interpolation results calculated by
segregation loop I and II refers to Table 1. As in [8] men-
tioned the Pyramid LK method and MediaplayerTM are sig-
nificantly better for interpolation than for ground-truth mo-
tion, since e.g. MediaplayerTM tends to overly extend the
flow into textureless regions, which are not significantly af-
fected by image interpolation. According to Table 1 segre-
gation loop II works better than some classic methods and
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more accurate than segregation loop I. The places where the
interpolation errors take place refer to Fig. 1−2. As a result
our methods especially segregation loop II work efficiently
in image interpolation.

Dimetrodon Venus
Segregation loop I 2.25 6.67
Segregation loop II 1.95 3.63

Stich et al. 1.78 2.88
Pyramid LK 2.49 3.67
Bruhn et al. 2.59 3.73

Black and Anandan 2.56 3.93
MediaplayerTM 2.68 4.54

Zitnick et al. 3.06 5.33

Table 1 Interpolation errors calculated by our methods using the Mid-
dlebury datasets by comparison to the ground truth interpolation with
results taken from [34].

The whole interpolation process of Middlebury datasets
is accomplished by 9 generated images respectively using
segregation loop I and II. The additional data generated into
films are given in Online Resource.

7 Conclusion and Outlooking

The approach to image sequence interpolation by optimal
control of a transport equation has proven to be useful and
competitive to existing methods. While we started to model
the images inBV we ended up with an algorithm which does
not exploit this regularity but merely uses theL2-structure.
This was due to the fact that one needs Lipschitz-continuous
flow fields to preserveBV-regularity [15]. Hence, we finally
usedH1 flow fields. However, this still imposes some reg-
ularity on the flow field and discontinuous flow fields are
still not allowed. In further work it may be interesting to use
BV vector fields and hence try to transport an image with a
possibly discontinuous flow field. Another open question is,
how to deal with objects which appear in the second image
but are not present in the first image. One possibility could
be to use heuristic techniques to estimate motions which oc-
clude or disclose objects as described in [34].
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Fig. 1 (a) u0. (b) uT . (c) u0 plus the colored difference betweenu0 anduT . (d) The groundtruth interpolation at timeT/2 from the Middlebury
datasets. (e) The generated interpolation at timeT/2 by segregation loop I. (f) The absolute difference between(d) and (e). (g) The generated
interpolation at timeT/2 by segregation loop II. (h) The absolute difference between (d) and (g).
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Fig. 2 (a) u0. (b) uT . (c) u0 plus the colored difference betweenu0 anduT . (d) The groundtruth interpolation at timeT/2 from the Middlebury
datasets. (e) The generated interpolation at timeT/2 by segregation loop I. (f) The absolute difference between(d) and (e). (g) The generated
interpolation at timeT/2 by segregation loop II. (h) The absolute difference between (d) and (g).
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