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Abstract The problem of the generation of an intermediatesonable motion fields. It is mainly based on motion estima-
image between two given images in an image sequence i®n and has broad applications in the area of video compres-
considered. The problem is formulated as an optimal contrdion. In video compression, the knowledge of motions helps
problem governed by a transport equation. This approactemove the non-moving parts of images and compress video
bears similarities with the Horn & Schunck method for op-sequences with high compression rates. For example in the
tical flow calculation but in fact the model is quite diffeten MPEG format, motion estimation is the most computation-
The images are modelled BY and an analysis of solu- ally expensive portion of the video encoder and normally
tions of transport equations with valuesBV is included. solved by mesh-based matching techniques, e.g. blocking
Moreover, the existence of optimal controls is proven andnatching, gradient matching [37]. While decompressing a
necessary conditions are derived. Finally, two algorithmwideo intermediate images are generated by warping the im-
are given and numerical results are compared with existingge sequence with motion vectors.

methods. The new method is competitive with state-of-the-  Another possibility of image interpolation is based on
art methods and even outperforms several existing methodsptical flow estimation. Since Horn and Schunck proposed
the gradient-based method for optical flow estimation iirthe
celebrated work( [26], this field has been widely developed
till now. For example, instead of the linear constraint ia th
Horn & Schunck method one applies the non-linear isotropic
constraints[[, 13], anisotropic diffusion constraintg,[30]
Mathematics Subject Classification (2000)49J20- and TV constrain{[38] for preserving the flow edges, which
68U10- 65D18 is very useful for motion segmentation. Dealing with large
displacements inimage sequences one develops warping tech
nigue [12] to estimate the flow field in a robust way. How-
ever, in [24] is shown that the Horn & Schunck method is
only suited for optical flow estimation, but not for matching

Image sequence interpolation is the generation of intermed.

; . . . image intensities, especially in case of large displacéspen
ate images between two given images containing some rea-

see also the argumentation|in [34].
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solving the optimality system and we also propose a modi-

fication of the se_gregationlloop of th_e optimality corjdiéon subjectto di = 0. 3)

system, which give better interpolation results and is sbbu

with respect to the choice of regularization parameter. Taye use Tikhonov regularization to stabilize the cost func-

evaluate our proposed interpolation methods we will wiliz tional andA is the regularization parameter. In the frame-

the image database generated by Middlebury Collered  work of optimal control[[29,36] we calb the control and

compare our results using the evaluation method of Middley the state. According to the conservation lawl [25] and the

bury with the results in_[34]. divergence theoreni [32], the divergence free constraint of
b will make the flow volume conserving, smooth and vary
not too much inside the flow field of a moving object. Such

2 Modeling properties are desired to be enjoyed in image interpolation

. o ] o ) in case that the moving objects are not getting deformed.
We are interested in finding a flow field, which is suitableg,ch constraint is not new for optical flow estimation and

forimage matching. It means that instead of minimizing they5s similarly introduced as a regularization constraigt e.
optical flow constraint equation directly, we utilize thans- [35/27110].

port equation to fit a given image to another givenimage  \ye emphasize, that our model is considerably different
ur in the sense of some predefined norm in the cost fuNG;m the Horn & Schunck approach which is based on the

tional. optical flow constraint. There one has a given imagmd

Let us model the optimal control problem governed by, iven derivativeiu (both at timeto) and one finds a flow
the transport equation. Consider the Cauchy problem for thg, 4 p — (v,w) by minimizing

transport equation if0, T] x Q, Q c RY (generallyd = 2):

du(t,x) +b(t,x) - Oxu(t,x) =0 in]0,T] x Q, / (Gu—b- Du)zdt—i-/ |0v|2 + |Ow|2dx.

(1) Q Q
u(0,x) = uo(x) in Q. The main conceptual difference between this approach and
ours is that Horn & Schunck just consider one titgeand
match the flow field only to that time. Hence, it is unclear in
what sense the produced fiddccould be useful to match a
given image with another one. Our approach uses two given
@ images and tries to find a flow fieldwhich transports the
G:XxY —2Z, firstimage as close as possible to the second image. The “op-
tical flow constraint equation” now enters as a constraint to

the optimization problem and not in the objective functiona
whereX,Y,Z are normed spaces to be specified. Then, wgself.

Hereb: [0,T] x Q — RY is an optical flow fieldug is a
given initial condition andi is an unknown function depend-
ing ont andx. We define the nonlinear solution operator of

(uo’b) H u7

define a linear “observation operatd : u+— u(T), which In next chapter we will give some adequate spaces for
observes the value af at timeT. By the chain(up,b) —  y andb. Especially we are interested in imagesand ur

u+ u(T) we have the “control-to-state mapping” which are of bounded variation. Hence, we introduce the so-
SIXxY —U, lution theory of transport equations equipped with a smooth

flow field and aBV image as initial value. Especially we
S:(uo,b) = u(T). need to work out conditions under which tB¥-regularity
The spaceJ is a subspace a, which not involves time is propagated by the flow field. Then, we will analyze the
t. The continuity ofS will be investigated in the concrete existence of a minimizer of problernl (2) restricted[ip (1) and
contexts. Our intention is to find the flow fiewsuch that ().
the corresponding imag8(up,b) matches the imager at
time T as well as possible. This motivates to minimize the

. 2 . ..
functlonal% (| S(uo, k?).f ur|lG- Hovyevgr, this prgblem is ill- 3 Analysis of Well-posedness
posed and an additional regularization term is needed. This

regularized optimal control problem can be formulated asrg analyze the solution operat@ we use the method of

minimizing the following cost functional characteristics. We start with the analysis of the corregpo
1 , A ing ODEs, then derive existence results for initial valugs
ti]felj(J(b) =5 | S(uo, b) —url| + 3 )12, (2)  which are of bounded variation and finally derive a result on

the weak sequential closedness@fTogether this shows
! ttp://vision.middlebury.edu/flow/data/ the existence of an optimal control in the respective sgttin
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3.1 Basic Theory of ODE — Q c R?is a bounded, convex, open set with the strong
local Lipschitz condition
It is well-known that the solution theory of transport equa- — b ¢ L([0, T]; Hg’d"’(Q)Z)

tions has a tight relationship with the ordinary differanhti
g P y throughoutthe paper unless otherwise stated. A propecehoi

equation for the spac&) will be discussed in Sectidn 3.3.
y(t) = b(t, y(t)) tel, In order to formulate the solution of transport equation
(4)  in a convenient way, we give the concept of classical flow
y(@ =% inQ. [16].

Regarding the solution theory @ (4), the existence andusniq Definition 1 The classical flow of vector field is a map
ness of a solution can be derived by the theorem of Picard-

Lindelof [23] if b is Lipschitz continuous in space and uni- @(t,x): [0,T] x Q — Q
formly continuous in time. We can also relax the assump-

tion ont of b to be integrable by the following Carathéodory Which satisfies
theoreml[4], which a general version of the Picard-Linfleld , g

theorem: ot (t,X) = b(t7 @(t,X)) in ]OaT] X Qv

()
Theorem 1 (Carathéodory) Define I=[a,c] and Q is a ,
bounded subset iRY. Suppose bl x Q — RY so that ®(0,x) =x in Q.
1. t— b(t,x) is measurable in | for every& Q; A helpful property of® will be given in the following corol-

2. there exists C 0 with |b(t,x) — b(t,x)| < C|x—X| for lary.
a.e.telandevery xX € Q;

3. b(t,x) =0fora.e.te | and every xc 9Q;

4. the function rtt) = |b(t,Xo)| is integrable in | for x €

Corollary 1 For every te [0,T] the mappingd(t,-) : Q —
Q is Lipschitz continuous and a diffeomorphism.

Q. Proof The injectivity can be derived from the uniqueness
Then, there exists a unique solutigh: | — Q with of the backward flow: If the flow® starts from two points
t X1 # Xp and arrives at someat the same poin®(t,x;) =
yi(t) = x0+/b(s, y(s)ds  tel ®(t,x2) = X, the backward flow starting frortt,x) will be
2 not unique. Regarding the surjectivity: for every paimt Q
to the Cauchy probler@d). one can find a backward flow starting framy)
As a consequence of the proof, the flgixt) is absolutely v

continuous infa,c|. Generally, if we consider the solution y(t') = y+/b(s, y(s))ds=xe€ Q,
in [0, T] with T > ¢, we can restary* at (c, y*(c)) until the t
unigque continuous solution arrives at timeThe backward

flg\{v |s.the special case when the timé smaller than the The Lipschitz regularity of® is easily shown by the
initial time a. ; . o
: : Gronwall's lemma. For details we refer {0 [16].
Next, we want to choose an appropriate function space .. : . T - 1
Y for b, which is suitable for the control problem. Accord Since the Lipschitz continuity gives only the lodai-
' P ' regularity, theCl-regularity of @(t,-) in Q one can follow

m%;ﬁo [SL the space of Lipschitz functions is equwalent_ tothe results in[[16], which states thatlifhasC*-regularity
W-*(Q)%, if Q is a bounded, convex, open set. According. . 1

: . : 1o in space, then the flowp(t,-) is alsoC+ in space. In fact,
to [15] lower regularity of the flow field (i.eb € WP with 3/ 2 . : o~

: HZ(Q)? is continuously embedded in®'(Q)?, and hence

p < ») does not preserv@V-regularity. However, the norm .
S 1 s . : .. .. we derive the statement. 0
in W5 is not well suited as a penalty term since it is dif-
ficult to determine the necessary optimality condition of

equipped with th&® —norm. Thus, we assume additionally 3 5 go|ution Theory of Transport Equations
that the domaim2 enjoys the strong local Lipschitz condi-

tion [1] and use the fact that(Q)? is continuously embed- | this subsection we will consider the transport equation

according to Theorefd 1. In case= 0 yields®(t,x) =.

ded intoWw**(Q)% under this assumption, when dif®) = with the initial valueug in BV. The BV space is a natural

2. Considering the divergence-free constrainbare set space for images, sin@&V contains the functions with dis-

Hos,div(Q)z — {f c HS(Q)Z ‘ divf — 0}. continuities along hyp(_arsurfaces, i.e. e_dges o_f images [3]
However, the propagation &V regularity is a delicate mat-

Adjusting the assumption on the timelwin Theorenil and ter. We formulate first the solution of transport equations
previous conditions o we will assume that with a smooth initial value:
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Corollary 2 Let uy € C1(Q) and @ be a classical flow of Proof Let us verify first theL1-convergence ofug * n¢) o ¢
vector field b. Then the transport equati@@@ has unique and set(x) =y

I
oner [ 18010090 - too 90 x
U(t.) = o (L) () ©

Proof Let us test[(ll) along the characteristics denoted by_— /|uo*n£(y) — ug(y)||det( D¢ (y))|dy
(£, @(t,x)

-1
0= 2 (t,0(t.x) +bit, @(t.x) - Cu(t, D(t,X) < lluo e = Uollus ) [|deXDE ]| o )
B du(t O(t.x) + dcb(t ) Ou(t, (t.) LetL bethe Lipschitzconstant«pﬁli.e.L:HDq&*lHLm(Q)A1
ot ot T then||det(|:|¢*1)HLm(Q) is bounded from above byl2. To-
_ z(u(t Yo d(t,X)) gether with the approximation property of mollifiers this
- ot ’ gives theL1—convergence. Regarding the wéaknvergence

This implies that every solution is constant along the charof Radon measureS(up * n¢) we observe that for every
acteristics. Adjusting the initial value we deri\i@ (6) ism s Y € CZ(Q)? it holds

lution to (I) and the uniqueness follows |mmed|ately from

the uniqueness of flow. /D (Uo*Ne) o @) ydx

Equipped with a non-differentiable initial value the class .
solution [6) will not work. Next, we give the definition of = */(UO*UE) o pdivipdx
the solution of transport equations in the weak sense.

Definition 2 (Weak solution) If b and up are summable = — | (UoxNe)(Y)div(Wo ¢ (y))| detTlp—(y)|dy
functions andb is divergence free in space, then we say
that a functionu: [0,T] x Q — R is a weak solution of
@@ if the following identity holds for every functiog €

C2([0,T[xQ):

\b\b

/ Ne(y— Suo(s)dsliv(y o §(y)) | detIg () dy

/ / Me(y—)div(yo 6 ~X(y))| detdp 1 (y)|dyw(s)ds

;
//u(dt¢+b-m¢)dxdt=—/uo(x)qs(o,x)dx 7)
) J ) _ _./ Ne+ (div(go =) detg ) (Jup(s)ds  (8)

In Theoreni 4 it will be shown thaf}(6) is actually the unique Q

weak solution of[(fl) withug € BV(Q). Before we are able Since¢ ! is C! and Lipschitz continuous i, the con-
to deal with the proof, we recall briefly the weialopology ~ volved term belongs th?(Q). Recall that in the two dimen-
of BV [3//5/7[6], sional caseBV(Q) is continuously embedded int?(Q),

_ X then utilizing the approximate property of mollifiers imgsi
n BV(Q) U = U LL(Q) uandDun Q) Du that the equatiori{8) converges to

which possesses convenient compactness properties in the 7/div(¢’uo ¢’1(s))|detD¢*1(s)|uo(s)ds
following theorem|[3].

Theorem 2 Let(un) C BV(Q). Then(un) converges weakly* #(8)=s /dmp Yo((&))dE
to u in BV(Q) if and only if (un) is bounded in BYQ) and
converges to u in} Q).

()
To prove that[(B) is a weak solution &f (1) it is commonto /l’uD Uo ¢)

use the technique of mollifiers [21]. In short, we smooth the Q

initial value with a mollifiern, with variances, let & con-  In (x) we applied the Gauss-Green formula for B func-
verge to zero and investigate the convergence of the solutidions [21]. 0

with a smooth initial value to a nonsmooth initial value. Jhi

. i Remark 1Under the same assumptions of Theofdm 3 one
will be done in next theorem.

can derive from Theoref 2 th@fug * n¢) o @) is uniformly
Theorem 3 Assume gic BV(Q), ¢ and¢ ! are diffeomor-  bounded irBV(Q) and converges tago ¢ in L*(Q), actu-
phisms and Lipschitz continuous . Then, the sequence ally also inLP(Q) with p < 2 due to the approximate prop-
((up* Ne) o @) converges to glo ¢ in the weak* topology of erty of mollifiers and the fadBV(Q) has a continuous em-
BV(Q). bedding intoL?(Q) in the two dimensional case.
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Lemma 1 Assume that g€ BV(Q), ¢(t,-) and ¢ 1(t,-)
are diffeomorphisms if2 for every te [0,T] and ¢ (-,X) is
absolutely continuous if®, T] for every xe Q. Define

Ug(t,X) = (Up* Ne) 0 P (T, X).
Then, 4 € C([0,T];BV(Q)).

The upper convergence is valid sirce L?([0, T];L2(Q)?)
and thanks to(10). The lower convergence can be deduced
from the property of approximate identity. The left equalit
is valid for a smooth initial value and smooth vector field.
Hence, all of them imply the right equality.

Regarding the uniqueness of weak solution it is shown in
[2] that the continuity equation, which is equal to the trans

We skip the proof of Lemmi@ 1, since it is a trivial result port equation in case div= 0, has a unique solution in the

utilizing the substitution technique introduced in the gfro

Cauchy-Lipschitz framework, i.da € L1([0, T]; W3 (RY)).

of TheoreniB. Now, we are able to prove the existence anBefinitely, it is also valid under our assumptioniof
uniqueness of the weak solution of the transport equation Because of the uniqueness of the weak solution the con-

@.

Theorem 4 If ug € BV(Q), then there exits a unique weak

solution

O(tv)() =Ugo ¢7l(t7 )(X) (9)
of (T)) belonging to ([0, T];BV(Q)).

Proof Consider the transport equation with initial valug
convolved with mollifiern,

{ au(t,x) +b(t,x) - Oxu(t,x) =0 in]0,T] x Q

u(0,x) =Ug*Ne(x) in Q.

Corollary[2 implies that there exists a unigue solutiprof
the form

Ug(t,X) = (Up* Ne) 0 @ (L, -)(X).
Let us define
((t,X) = ugo @ (t,-)(X),

whereu(t,-) € BV(Q) according to Theoretn] 3 for every
t €[0,T]. RemarK1 gives thai(t,-) converges tai(t,-) in
L?(Q) andug(t,-) is uniformly bounded iBV(Q). And ac-
cording to Lemmall this yields thag is uniformly bounded

in L*([0,T];BV(Q)), which is continuous embedded into

L2([0,T};L2(Q)). Hence, there exists a subsequefeg)
of (ug) such that

Ug, — Gin L%([0, T];L3(Q)) (10)

andu e L*([0,T];BV(Q)). Due to the weak convergence

of ug in L2([0,T];L%(Q)), one can derive for every
C2([0,T[x Q) it holds that

—

O—4

J ug [3d +b- O]dxdt
Q

O—-

[ G[aé +b-O¢ldxdt
Q

7fu0*n£k¢(0ax)dx 7.[ u0¢(0,x)dx
Q Q

vergence of subsequeng@®, ) in the previous proof can be
proceeded to the whole sequerfag). O

3.3 Existence of a Minimizer

The goal of this subsection is to complete the cost functiona
(@) with some reasonable norm and investigate the existence
of a minimizer of problent{2). First of all, we give the norm

of the penalty term of{2) w.r.b. According to[1] an equiv-
alent norm oH3 is

1/2
||bHHO3(Q)2 = ( Z ||‘7ab||52(g)2> : (11)
la|=3

We can easily find out that the seminofify, |JAb|?dx)*/?
is actually another equivalent norm B(Q)?, since it is
equivalent to[(Il1). For the regularity &fin time we can
give the equivalent norm af([0, T]; H3(Q)?)

]
16120171200 = [ 1085() 2 gyecit (12)
0

As discussed above, we assume thandut areBV-functions.
Hence,BV seems to be a proper choice for the splice
However, sinceBV is continuously embedded Irf(Q) for

d =2 we useU = L?(Q) (we discuss this choice in more
detail in Sectiofi4). Hence, our cost functional is

:
1 A
3(0) = 5 1S{uo.b) ~rl[P2 g + 5 [ DA, P et
0

(13)

Lemma 2 If (¢,) and (¢;1) are sequences of diffeomor-
phisms inQ and the Jacobian determinadetd¢y, is uni-
formly boundedin £(Q) by the upper bound C. Thef{uo *
Ne) o ¢ 1) is uniformly bounded in BYQ) w.r.t. n.

Proof It is easy to check thdtiy x n¢) is uniformly bounded
in BV(Q) according to Theorefm 2 afdl 3. Suppose that the
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upper bound i€. Let us verify first the.l—norm by setting
y=¢r"(x)

/ |(Uo* Ne) o @ Y|dx
Q

— [ Iuo nel|detCign(y) dy
Q

< C/|uo*r)£|dy
Q

< C6||U0HL1(Q)-

Regarding the variation norm ljuo|[,4(q) := o [DUo|dx
we have

[ B ne)o 65 dx
Q

= [ Do ne) ) detTgn(y) iy
Q

< c/m(uo*ns)(y)ldy
Q

< CGHUOHvar(Q)'

a

Lemma 3 If (by) is uniformly bounded in#([0, T];H3(Q)?)
and w € BV(Q). Define e = (Up*Ne) o @yt and 4, =
une(t). Then, there exists a subsequeriog ;) such that
Un.e CONverges to some limitzun L2([0,T];LP(Q)) with
p < 2 and weakly to pwith p= 2. utnkjg converges to g(t)
in LP(Q) with p< 2 and weakly to p(t) with p=2.

Proof Recall that for everypy, there is a corresponding,
S.t.@n(t,-) eWH(Q)?and|| 0@y (t, )| =gy = LiD(®Pn(t;))-
The Lipschitz continuity implies via Gronwall’s lemma

t
Lip(®n(t,-)) < exp (/ Lip(bn(s,-))ds) . (14)
0

The boundedness ¢iy,) in L?([0, T]; H3(Q)?) gives the up-
per bound ofi(T¥). Hence, the Jacobian determinarii dift, -
is also uniformly bounded ib®(Q). According to LemmBl2
this implies thatt, , is uniformly bounded irBV(Q) w.r.t.
n. Then, there exists a subsequeriak ) of (uf,.) such
thatup, . converges tal; in LP(Q) (weakly for p = 2) with

p < 2. Considering the integral over time one has

T T
i, [ e~ gy 0t = [ Jim e~
0 0

2
ng—oo utf ‘ ’ LP(

mdt% 0 zero.

Now we consider the minimization problem

inf J(b)

. (15)
bel2([0,T;HZ™ (2)2)

with J according to[(113). Proving the existence of minimiz-
ersis usually achieved by the direct methad [7] and the most
difficult part lies in the weak sequential closeness of the so
lution operatoiG with respect td.

Theorem 5 (Weak sequential closenes§uppose the se-
quence(by) € L2([0, T];HZ™(Q)2) is uniformly bounded
and converges weakly to b irf ([0, T];H3(Q)?). Let u, be
the corresponding weak solutions @) with flow field
and initial value i (i.e. t, = G(up, b)). Suppose thaticon-
verges tod in L2([0,T];LY(Q)) andd € L2([0, T];L?(Q)),
thend = G(up, b).

Proof Since(by) converges weakly toin L2([0, T];H3(Q)?),
it is also valid that
bn — bin L2([0, T];L%(Q)>?). (16)

Let us consider the differencg — 0 applying a test function
¢ € CE([0, T[xQ):

;
| [ un(@9 -+ i) — a(ag + bIg)dxat
0Q

T T
O/Q/Ot¢(unu)dxdt+0/£ ¢ - (Unbn — Gb)dxdt

(@) (ii)
Part(i) converges to zero, sineg — Gin L2([0, T];L1(Q)).
Regarding partii) we can derive
T

//qu(unbn—fjb)dxdt

0Q
T T
_ (O/Q/Dqsbn(unu)dxdt+0/Q/D¢u(bnb)dxdt)

< 10¢]l = (0,1)x 02 [bnll2o.1L=(@)2) [Un = Tll 2o 710110
) T
+//D¢v0(bnfb)dxdt
0Q

Since(by) is uniformly bounded in.2([0, T];H3(Q)?), itis
also uniformly bounded in.2([0,T];L*(Q)?). Due to the
convergence ofl, in L%([0,T];LY(Q)) and [16) imply the
two summands of last inequality converge respectively to

Since(un) are weak solutions of[1), the limiti$ also a
weak solution off(lL), i.eu = G(up, b). O

with p < 2. The exchange of the limit is valid since the inte-
grand is bounded and with the same argument one can deriféeorem 6 (Existence of a minimizerSupposegic BV(Q),

the weak convergence of, ¢ in L2([0, T];L%(Q)). O

then the minimization probleifig) has a solution.



Proof Let (by) C L2(0, T];H3%(Q)2) be a minimizing se- 5 Algorithms
quence of the cost functional. The coercivity bfl(13) is a
natural property subject to the norin{12). From the coercivin this section we will present an efficient numerical algo-
ity one hagby) is uniformly bounded in.?([0, T];H3(Q)?),  rithmto discretize the optimality conditions system. Relga
then there is a subsequer{tg, ) of (b,) converging weakly ing the forward and backward transport equations_id (18)
to b in L2([0,T];H3(Q)?). For eactb, there exits a unique one can take advantage of explicit formula (6) and estimate
flow @51, which is a diffeomorphism i2 and absolutely the backward flow by the fourth-order Runge-Kutta method.
continuous in0, T]. Define Another possibility for solving the transport equationsas
_1 utilize the explicit high-order TVD schemes with flux limite
Une = (Uo*1e) © @y “superbee”([2%,28,10]. It works very well for preservingth
According to Lemmal3 there exists a subsequegg:),  e€dges of images and avoiding oscillations of solutions. The
which convergesta, € L([0,T];L?(Q)) inL2([0,T];LY(Q)) last equation of[{18) is a triharmonic equation which stems
and converges for evetye [0, T] weakly toug(t) in L2(Q).  from the use of spade? as penalty term i (13). There are
Theorenib implies that; = (Up* s ) o @~1. Hence, ityields little articles about its numerical schemes, €.gl [17]. Bet
that algorithms are either not efficient or difficult to be applied
[u Leddx  — futsqbdx d?rectl)./. The motivation for this term was thithas to be
Lipschitz continuous to obtain a unique flow. If we ap-
ply some smooth initial flovia® in the discrete form of(18)
+ { and replacing)® with A in (I8) still leads to smooth enough
b. Actually, according to[[18] an initial valuey € L?(Q) is
fUtnk‘l’dX - futqbdx transported into ah?(Q)-function by a flow fieldo € H™.

Hence, in our context we can also work with the optimality
for every¢ € L?(Q). The left and right convergences in the system

diagram are valid due to the property of approximate identi-

ties according and theut = ugo ®@~(t,-). Henceu}, con- w+b-Ou=0, u(0) = ug
verges weakly taf in L?(Q) for everyt € [0, T].
The L.s.c. of the first term i {13) can be easily derived | Pt+b-Up=0, p(T) = —(u(T) —ur)
from qu —ur — u' —ur in L?(Q). And the Ls.c. of the divb— 0 (19)
second term in[(13) is valid due to the norm-continuity of o
b. O AAb+0Og=pOu, b=0,0,b=0,
Ab=00n0Q.

4 First-order Optimality Conditions System We remark that the assumptiag, ut € BV is not present

é” this model anymore. One could easily use= BV and
the BV-norm for the differencei(T) — ur since this would
only affect the right hand side of the adjoint equation. How-
ever, in this case we have to ensure that the flow fieisl
Lipschitz- continuous. In numerical experiments we found,
T that this did not alter the results too much and hence, we use
L(u,b,p,q) =J(u, b)+// +b-0u) pdxdt+//d|qudxdtthe optimality systeni (19).
0 o The hierarchical processing accordind to [9], i.e. a coarse
(17) tofine calculation, provides a good choicebdf The qual-
ity of b® depends strongly on the downsampling and upsam-
pling procedures of images.
With a divergence free initial valug® we propose a seg-
regation loop in the spirit of [10] to interpolate the interm

We use the Lagrangian technique to compute the first-ord
optimality conditions of control probleni (1L3) governed by
(@ and (). Let us define first the minimizing functional with
Lagrange multipliergp,q)

the variablep is the adjoint state ofi andq is the adjoint
state ofb. The functional derivatives of (17) w.rt. andb
yield the first-order necessary conditions system

w+b-Ou=0, u(0) = up diate image at timé&
Segregation loop |
pt+b-Op=0, p(T) = —(u(T) —ur) Supposer = 1, ,Nigop andNigop is the iteration number.

Givenug, ur, b"1(t), A", The iteration process for solv-
ing (19) at iteratiom proceeds as follows:

3 _ _ _
AA*b+Ug=plu,  b=0,0hb=0, 1. Computeu"1(t),Ou"-(t) andu"~(T) by the forward
Ab=00n0Q. transport equation using andb™ 1.

divb =0, (18)
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2. Computep™(t) by the backward transport equation us- rive
ing —(u"(T) —ur) andb™ 2,

3. Computeb"(t) by the Stokes equation with right-hand
sidep™1(t)Ou"1(t) and aA™.

u+b*-0Ou=0 u"(0)=up
pi+bOp =0 pr(T)=—(u'(T)~ur)

After Nioop iterations the intermediate imag&loor(t) ap- divb* =0 b*=00n0Q
proximatingu at timet. Moreover, we use a monotonically
decreasing sequen¢@"), which converges to a final*.

However, thanks to the theory of Stokes equations

[22], W?Actually, (27) is the optimality system of another consieai

know that minimization problem, namely
c ~ u(T) — ur? 22)
5 —Urll2
Ib®)llz(@) < 5 IPOBUM) [4-2q) - 2L €[0,T]. (20) 2 B
subject to

In practice we find out that if we choog2") such that the u+b0u =0 u*(0)=up

norm of the right-hand side df(P0) is monotonically increas . (23)
ing, the value ob(t) will be also increasing. However, the | divb" =0 b*=00ndQ.

final A* cannot be chosen too small such that the minimizin

process of {13) is ill-posed gCompared to(13) the functional{22) is not regularized. But

. i if we stop the segregation loop Il on time, i.e. the interpola
~ Moreover, since the systeril {18) is a necessary condfy error does not vary too much, then it is not surprising
tion of minimizing functionall(IB), one expects that themer ¢ segregation loop I1 gives good approximation restits o
[u(T) = urlli2(q) is not very small. But since this is one of j,iermediate images. From the point of view of regulariza-
our final goals, we propose a modification of segregation;,, theory, one may see the segregation loop Il as a kind

loop I, which poses no requirement for choosing a specifig 5 | andweber method for minimizingu(T)
sequencéA ) and gives better approximation of intermedi-

ate images. We modify segregation loop | as follows:
Segregation loop IL

Supposen = 1,--- ,Nigop andNigop is the iteration number.
Givenup, ur, b"1(t), A. The iteration process at iteration
proceeds as follows:

—Uur HEZ(Q)
which is inspired by a Tikhonov-functional.

In the most cases the forward interpolation fropto
ur and the backward interpolation froas to ug are com-
plementary, since the flow is only able to transport objects
from somewhere to somewhere, but not able to create some
new objects. If in the forward case some new objects ap-
pear, then in the backward case the new objects disappeatr.
1. Computeu“*l(t)-, Dunf_l(t) andu™ }(T)by the forward | means that backward interpolation is more suitable for in

transport equation using andb" . terpolating the intermediate images. In practice, we thke t
2. Computep™*(t) by the backward transport equation us- ayerage of forward and backward interpolations.

ing —(u"(T) —ur) andb™ 2,
3. Compute the solution of the Stokes equations with right-

handlsidepnfl(t)Du”*l(t) andA. Then, denote it by 5 1 Wierarchical Method

ob" (1) .
4. b"(t) = b () + obM (). In order to get a start valug® for the optimality system,

the hierarchical processing is a good ansatz. It can be under

In segregation loop Il we utilize the system(19) to estimatestood in level in the following steps:
the update of the flow field and update the flow field in step
4. This point of view is different from the original problem
(@9), but interestingly this modification actually solvéet
necessary condition of another minimizing problem. If the
segregationloop Il converges, then the up@f *(t) con-  The estimated optical flow ~* is a start value of the hier-
verges to zero. Since the initial valbé is divergence free  archical method in level— 1. In coarsest level we assume
and in each iteration the update flab"* is divergence the start value is zero. As above mentioned, the down- and
free, the limit ofb" is also divergence free. up-sampling methods are decisively, i.e. it is supposed to

We denoter*, p*, b*, g* the limits of particular sequences lose the local structures of objects as small as possibliewnhi
and in this cas@b* = 0. Setting the limits into[(19) we de- down- and up-sampling the images or the optical flow.

1. Downsample the images into level
2. Solve systenf(19) in levelout and geb'.
3. Upsample the optical flow into level 1 and geb' 1.



In practice, we apply bicubic interpolation [31] for the Another way for solving the transport equation is to utilize
sampling, since it has fewer interpolation artifacts than b the characteristic solution. Fro (6) we know the keypoint
linear interpolation or nearest-neighbor interpolatiéom-  is to solve the backward flow starting froft x)
pared to the Gaussian pyramid [14] the downsampled im-

ages by bicubic interpolation does look not so blurred. 00 _ b(s, ®) in[0,t[xQ
Js (24)
5.2 Numerical Schemes for Transport Equations d(t,x)=x inQ.

To discretize the transport equations we can use the secont solve [2#) numerical efficiently we use Runge-Kutta 4th
order TVD scheme. Itis also suitable for the backward transorder method([31]. We discretiZg 0] with time stepAt =
port equation, since we can reform it into the forward prob-0.1 and utilize a constant flowover t, 0] due to saving the

lem by setting’ := T —t: memory and computational cost. In this scheme we have to
interpolate the flowb(t,x) with some non-integex, since
v —b-UOp=0, p(0)=—(u(0) - ur). only the flowb(t,-) with integer coordinates is given. For

this we use bilinear interpolation (a bicubic interpolatio
sizes in space and time, respectively with mesh inidex leads to almost the same results). Then, we warp the im-
1,--,N,j=1,---,Minspace ané=1,--- K intime. The  29€lo with the coordinates calculated Hy [24) using cubic
stability condition of the scheme, usually called CFL cendi SPine predefined in Matlab to approximaie, x).

tion [7], is

Suppose the image size iéx M, h and At are the mesh

At - .
ocrL := maxX(|V|max, IWImaX)F <1 5.3 Finite Element Methods for Stokes Equations
by settingb := (v,w). In practice we choosAt such that As previously mentioned, after replaciag with A it is im-

ocrL = 0.1. The TVD scheme of the forward transport equa-mediately seen that the last two equationsid (19) are the

tion is: Stokes equations. Stokes flow estimation was investigated i
Ukt _ gk [33] and Suter applied the mixed finite element method [35]
Ut”(j = IJT”’ for solving it. Moreover, the approximation of velocity fiel
. X0 ) b(t,-) and pressure(t,-) will achieved by the polynomial
vk i 1+ _17Vi3 kK K of second order (P2) and first order (P1), so-called Taylor
VUX||1 - h 1+ ZX(rifl ) + (ulfl,J ulj) — .
300 2 r’s J. and Hood element5 [19]. If the chosen finite element spaces
2; satisfy the inf-sup condition, also called LBB conditio[1
_£ 14 }X(ff ) }X(ri+%,j) 11], then the method is stable.
h 270V ikgdl 2, The variational problem of the Stokes equations reads as
2 follows:
'(uikJrl,j - Uh—),
WhereviJjr =maxVij,0),v;; = min(vij, 0) and the flux differ- a(b(t),v) +c(va(t) = (f(1),v) WeV, (25)
ence ratios are defined as c(b(t),w) =0, YweWw
uk Uk uk —uk
D . M N B o ) - )
i—3] uikj _ UE‘,L,- N UE‘,L,- — Uikfz,j ’ and the bilinear forms are defined by
-, = U — Uy | - = U g j — U _ a(b(t),v) = /)\ Ob(t)Ovdxdy
2] uikJrl,j - Uh— e 2l ur+2,j - uikJrl,j Q

In the similar way we can discretize the terawu,. The c(v,q(t)) = /(diw)q(t)dxdy
superbee limiter function is given by

Q
X (r) = max0,min(2r,1),min(r, 2)). (f(t),v) = — / f(t)vdxdy

To compute the spatial derivatives of images we use the stan- Q

dard three-point formula: wheref := p0u,V := H}(Q)? and

1
PUlij = %(_Ui—l,j +Uiy1j)Pij,

1 W:={we LZ(Q)‘ /‘wdxdyzo
puyfij = %(fuuiﬁ Ui j+1) Pij - P
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The discretization of[{25) using the mixed finite element6 Numerical Experiments

produces a linear system of the form
6.1 Parameter Choice Rule

ACY (bun fmn
<C 0) < Po > = < A (26)  The essential parameters of the quality of image interpola-
tion are the regularization parameterand the downsam-

The approximation coefficientayy, po and fyn are w.r.t. pling levell. Experimentally, we find out that the optimal

the basis of finite element spacgsandW,. The stiffness regularization parameteippt andl are coupled. The down-
matrix A has the following block form: sampling level should be so adapted that at the lowest level

L the estimated optical flow is accurate With’\aJt At the
A A O higher levell with | < N the parameteA opt IS larger than
0 A /\g‘pt. In practice, we choos;haOpt with | < N by the follow-

ing strategy:

whereA; = ([o O¢il¢jdxdy); ,i,j=1,---,MNandg; are 1. Finda pan()\opt, L) experimentally at the lowest leviel
the basic functions o¥},. The matrixCt has also a block 2. Choosehom such that)‘(l)ptl//\opt € [10°210°5] and the
form interpolation errors decrease at lelvel 1.
ct The difference between segregation loop | and Il lies in that
Cc'= (Ctl), segregation loop Il equips with a consta\lébt at each level
2 and segregation loop | applies a monotonically decreasing
sequence converging fd,pt at each level. In case the image
size is around 608 400 we set the lowest levél= 3 and
cl = /%wjdxdy‘ =1 MN;j=1,--,Q Agpt € [10°10°7].
29 6.2 Numerical Results

c, = t,quxdy‘lfl MN;j=1,---.,Q

To illustrate the effect of our intermediate interpolated i
ages, we apply the interpolation error (IE) introduced ly [8
Moreover, the IE measures the root-mean-square (RMS) dif-
ference between the ground-truth imagend the interpo-

lated imageu

Similarly, y; are the basic functions &f},. The vectorf =
(f1, f2)t is composed of scalar producty, ¢i) and(f2, ¢i)
fori =1,--- ,MN. We derive the interpolation polynomial
of f1, f, w.r.t. the basic functions

1
2

fl = gfl(xi)fpi IE = (MN ZZ (%i,yj) — 00, Yj)) ) )

h whereM x N is the image size. We test our methods on the
fa = i; fa(xi) i, datasets generated by Middlebury with public ground-truth
- interpolation:

— Dimetrodon with size 584 388
— Venus with size 42& 380

where; is the corresponding measurement poirnpofThen,

fi = (T, 6 Z fa(x; /¢J¢'dXdy i=1,--,MN Every dataset is composed of three images and the mid-
image is the ground-truth interpolation at tim& @ we as-

f— (fza z fa(x; /¢J¢.dxdy i =MN-1-- 2MN. sume the evolutlgn process of three images Iasts'ﬁm_el.
To evaluate the interpolation we can compare our interpo-

lation results with the ground-truth by means of IE mea-

For simplifying the estimation we just need to define thesure.The ranking of the interpolation results calculated b
basic functions of a single element, i.e. a triangle or sejuar segregation loop | and |l refers to Taljle 1. As[in [8] men-
and derive the corresponding element stiffness matrix antioned the Pyramid LK method and Mediaplalrare sig-
element mass matrix, then assemble them A&toCy, C2,  nificantly better for interpolation than for ground-truttom
fun. tion, since e.g. Mediaplay&¥ tends to overly extend the

Since the matrix in(26) is sparse and symmetric, but noflow into textureless regions, which are not significantly af
positive definite, the systeri (26) can be numerically solvediected by image interpolation. According to Table 1 segre-
by the routine bicgstab predefined in MATLAB. gation loop Il works better than some classic methods and
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more accurate than segregation loop |. The places where the.

interpolation errors take place refer to Higi-[2. As a result

our methods especially segregation loop Il work efficiently 6.

in image interpolation.

Attouch, H., Buttazzo, G., Michaille, G.: Variational Alysis in
Sobolev and BV Spaces. SIAM (2006)

Aubert, G., Kornprobst, P.: A mathematical study of tHevred
optical flow problem in the spadgV(Q)*. SIAM J. Math Anal.
30(6), 1282—-1308 (1999)

7. Aubert, G., Kornprobst, P.: Mathematical Problems indm&ro-
. cessing. Springer Verlag New York, LLC (2002)

_ Dimetrodon  Venus 8. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black).M
Segregation loop | 2.25 6.67 Szeliski, R.: A database and evaluation methodology foicapt
Segregatlon loop Il 1.95 3.63 flow. In: ICCV, pp. 1-8 (2007)

Stich et al. 178 288 9. Barron, J., Khurana, M.: Determining optical flow for larmo-
Pyramid LK 249 367 tions using parametric models in a hierarchical framewokt
Bruhn et al. %9 373 Vision Interface, pp. 47-56 (1994)
Black and Anandan 36 393 10. Borzi, A., Ito, K., Kunisch, K.: Optimal control formation for
Mediaplayef™ 268 454 determining optical flow. SIAM Journal of Scientific Commgi
Zitnick et al. 306 533 24, 818-847 (2002)
Table 1 Interpolation errors calculated by our methods using thé-Mi 11. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Elementekfods.

dlebury datasets by comparison to the ground truth intatjmsl with
results taken fromi [34].

Springer-Verlag (1991)

12. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: Higbuaacy

optical flow estimation based on a theory for warping. In: Gom
puter Vision - ECCV 2004, Lecture Notes in Computer Science,
pp. 25-36. Springer (2004)

The whole interpolation process of Middlebury datasets3. Bruhn, A., Weickert, J., Schnorr, C.: Lucas/Kanade tsiee

is accomplished by 9 generated images respectively using
segregation loop | and Il. The additional data generatexd int14
films are given in Online Resource.

15.

7 Conclusion and Outlooking

The approach to image sequence interpolation by optim&IG'
control of a transport equation has proven to be useful ang;_

competitive to existing methods. While we started to model
the images irBV we ended up with an algorithm which does
not exploit this regularity but merely uses théstructure.

This was due to the fact that one needs Lipschitz-continuous

flow fields to preserv8V-regularity [15]. Hence, we finally 19.

usedH? flow fields. However, this still imposes some reg-
ularity on the flow field and discontinuous flow fields are
still not allowed. In further work it may be interesting toeus

BV vector fields and hence try to transport an image with &1.

possibly discontinuous flow field. Another open question is
how to deal with objects which appear in the second imagé

but are not present in the first image. One possibility coule3,

be to use heuristic techniques to estimate motions which oc-
clude or disclose objects as described in [34].

25.
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Fig. 1 (a) up. (b) ur. (c) up plus the colored difference between andur. (d) The groundtruth interpolation at tinfe/2 from the Middlebury
datasets. (e) The generated interpolation at flfyi2 by segregation loop I. (f) The absolute difference betweirand (e). (g) The generated
interpolation at timél' /2 by segregation loop II. (h) The absolute difference betw(e¢ and (g).
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Fig. 2 (a) up. (b) ur. (c) up plus the colored difference betweem andur. (d) The groundtruth interpolation at tinfe/2 from the Middlebury
datasets. (e) The generated interpolation at flfyi2 by segregation loop I. (f) The absolute difference betweirand (e). (g) The generated
interpolation at timel' /2 by segregation loop II. (h) The absolute difference betw(e and (g).
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