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Stereo Video Surveillance Multi-agent System: New Solutions
for Human Motion Analysis
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Abstract This article presents a distributed agent-based
system that can process the visual information obtained by
stereoscopic cameras. The system is embedded within a
global project whose objective is to develop an intelligent
environment for location and identification within depen-
dent environments that merges with other types of technolo-
gies. In this kind of environments, vision algorithms are very
costly and require a lot of time to produce a response, which
is highly inconvenient since many applications can require
action to be taken in real time. A multi-agent system (MAS)
can automate the process of analyzing images obtained by
cameras, and optimize the procedure. This study presents
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a MAS that can process stereoscopic images to detect and
classify people by combining a series of novel techniques.

The article shows in detail the combination of techniques
used to perform the detection process. The process can be
subdivided into human detection, human tracking, and hu-
man behavior understanding. With the addition of a case-
based reasoning (CBR) model, the system can also incor-
porate reasoning capabilities. The system was tested under
different conditions and environments.

Keywords Multi-agent systems · Stereo processing ·
Human detection · Case based reasoning

1 Introduction

One of the greatest challenges for the scientific community
is to find more effective means of providing care for the
growing number of people that make up the disabled and
elderly sector [18]. The importance of developing new and
more cost-effective methods for administering medical care
and assistance to this sector of the population is underscored
when we consider current tendencies. Artificial intelligent
systems have been recently examined as potential medical
care supervisory systems. Among those systems are, multi-
agent systems (MAS) [1, 10, 23, 26] for elderly and depen-
dent persons, providing continual support in the daily lives
of these individuals; other examined systems are artificial
vision systems, where we find medical image analysis and
high level computer vision [47, 64]. The study of artificial
vision, specifically stereoscopic vision, has been the object
of considerable attention within the scientific community
over the last few years. Image processing applications are
varied and include aspects such as remote measurements,
biomedical images analysis, character recognition, virtual
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Fig. 1 System for the care and supervision of patients in dependent environments

reality applications, and enhanced reality in collaborative
systems, among others. However, it is still an open trend
and the use of multiagent-systems for improving the stereo-
scopic image data processing can help to construct effective
intelligent environments.

The main topic of our research is part of a larger, global
project whose objective is to develop an intelligent environ-
ment for the care and supervision of patients in dependent
scenarios, providing an environment capable of automati-
cally carrying out location, identification and patient mon-
itoring tasks [23]. Such an environment would also allow
medical personnel to supervise patients as well as to simu-
late situations. In order to reach this objective, artificial intel-
ligence techniques, intelligent agents, wireless technologies
and vision systems are used.

Within the larger scope of the project, the current atten-
tion is being focused on vision systems and 3D representa-
tion. Figure 1 shows the three main modules of our system.
The upper-left module shows location wireless technolo-
gies. The upper-right module shows the vision system. The
bottom module shows a representation of three-dimensional
data. The study presented in this article focuses on the vision
module, specifically the development of an agent-based dis-
tributed architecture that allows for the processing of visual
information obtained by stereoscopic cameras.

For many years, the scientific community has demon-
strated an increasing interest in the study of artificial vision.
Image processing applications are varied and include such

aspects as remote control, biomedical image analysis, char-
acter recognition, virtual reality applications, and enhanced
reality in collaborative systems, among others. Although im-
age analysis and people detection is a well-explored topic,
the use of multi-agent technology in this area has become
the focal point of important interest [17, 66]. The capabili-
ties of commercial hardware to solve the low-level problems
of stereo processing have turned it into an attractive sensor
to develop intelligent systems. Stereo vision provides a type
of information that offers several advantages in the develop-
ment of human–machine applications based on artificial vi-
sion. The advantages come from the fact that stereo vision is
based on a single physical point in the scene that projects to
a unique pair of image locations in two observing cameras.
Applications such as stereo-movies, post-production or 3D
reconstruction are indeed all based on the same basic ingre-
dient: finding the depth of a scene as viewed from several
cameras [5, 40, 80].

This article presents a system that is capable of process-
ing stereoscopic images and detecting people with a stereo
camera, automatically identifying as states of interest a per-
son who is standing or lying on the bed. The detector agent
is based on robust and low complexity algorithms, with the
additional advantage that they can be executed in real time
with a low-cost hardware. The system was tested in a small
indoor environment characterized by very different lighting
conditions in which it had to track people who remained at
a very low activity level for a long time. In addition, there
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were many situations in which the subject being monitored
suffered partial occlusion.

Many techniques used in foreground identification are
based on an adaptive background. In our application we
found that background updating techniques introduce many
errors. After testing various strategies adopted from those
found in previous publications, we decided to base the track-
ing method on a motion detection algorithm. For the detec-
tion of presence and location, the system can use the wire-
less technologies included in the location module [23, 29].
The module has a channel identification based on ZigBee
[29]. Motion detectors can be very sensitive and are capable
of detecting movements even when the patient is sleeping.

In addition to obtaining fast algorithms that can run in
real time, we decided to use the lateral projection of mo-
tion estimations. These projections will be the input data to
classify the detection of the patient state. The information
disparity is estimated directly from the lateral projections.
All these algorithms are not only simple enough, but also
robust and suitable for real-time execution.

The remainder of this paper is structured as follows:
Sect. 2 explains the background related to the key technolo-
gies involved in this study; Sect. 3 describes in detail the
approach used in the vision module; Sect. 4 describes the
experiments and results carried out within a specific case
study; and Sect. 5 presents conclusions and further work.

2 Background

Computational stereo refers to the problem of determining
three-dimensional structure of a scene, from two or more
images, taken from distinct viewpoints. Stereo vision is em-
ployed in a wide range of applications, e.g. industrial inspec-
tion for 3-D objects, autonomous vehicles, robotics, image-
based rendering and more [3, 40, 56, 80].

A point of interest is the detection of people in a stereo
shot sequence; their positioning, their tracking in a room and
the discrimination of their body pose in real time. Several
approaches have been used for human motion analysis, like
the ones referred in [53] and [54], however we will follow
the taxonomy defined in [75] with three major tasks in the
process of humanmotion analysis (namely human detection,
human tracking and human behaviour understanding).

The next three subsections will focus on this taxonomy,
while the last subsection will show a short background of
multi-agent systems and reasoning models used in the pro-
cess of human behaviour understanding.

2.1 Human Detection

Typical human detection strategies are based on one of the
following techniques or a combination of them: background
subtraction, temporal differencing and optical flow analysis.

The background subtraction technique attempts to detect
moving regions in an image by differencing pixel by pixel
between the current image and a reference background. This
common approach has evolved with several methods incor-
porating dynamic update in the background [41] or [46], try-
ing to adapt the background to the lighting conditions, or
even small changes in the background scene. Moreover, one
of them [9] had introduced the disparity information from
stereo pair images to achieve a better result. They have been
proved effective for background modelling: single Gaus-
sians [44, 76] a mixture of Gaussians [36, 70], or even me-
dian [28] or minimum-maximum values [41], etc. However
most of them have limited results when they have to deal
with sudden changes in illumination, environmental changes
(such as new objects appearing on scene, or changes in the
positioning of objects or furniture), the existence of an ex-
tended period of immobility for the human individuals, or
occlusions of people in the scene. All these situations are
very common in our case study, as detailed in Sect. 4.

Many of the used background modes exploit intensity,
disparity, edges or any combination of these magnitudes.
The background is updated according to some statistical cri-
teria. In our particular case, due to variable lighting scenar-
ios, the backgrounds based on intensity have a highly vari-
able pattern. From intensity, it is difficult to obtain an al-
gorithm fast enough to follow a fast illumination change;
this change incurs a long stream of errors. Another problem
occurs when the patient being monitored stays still, almost
motionless, for a long time, as when for instance, the patient
is sleeping in bed. In these situations updated background
models can cause any substantive part of the body to remain
integrated into the background. When considering the use
of the edges, the biggest problem we have found throughout
our work is also due to the variability of illumination. Wall
lamps introduce sets of lights and shadows that lead to false
contours even on the smooth walls, while natural illumina-
tions avoid these false contours. The information of dispar-
ity is nevertheless more stable but—as it is well known—it
can only be exploited in the areas of the image with suffi-
cient variability. In areas with smooth textures like portions
of the image representing walls this magnitude cannot be
evaluated. The disparity information is often helpful to dis-
tinguish the shadows and to segment two objects when there
is partial overlap between them. However, when shadows
appear on a portion of the image in which there is no dis-
parity information, they are detected as part of the object of
interest.

Another possible approach to the human detection is the
calculation of temporal differencing, using two or three con-
secutive frames from the video stream, and obtaining the
absolute difference between them. These methods are very
adaptive to dynamic environments, but generally do a poor
job of extracting all relevant feature pixels. Moreover, [20]
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proposes a combination of adaptive background subtraction
and three-frame differencing. In our case we have adopted
an approach based exclusively on temporal differencing: we
use this information in conjunction with presence sensors
based on RFID and ZigBee technologies, from the ZigBee
MAS of Fig. 1.

Optical flow [11] is the last common approach to human
detection; it calculates an approximation to a vector map
of the estimated movement of the pixels obtained from two
consecutive frames. It can be used to detect moving objects
independently in the presence of camera motion; however,
most optical flow computation methods are computationally
complex and cannot be applied to full-frame video streams
in real time without specialized hardware. Sometimes, to
complete the human detection module, an object detection
part is required. This part separates the human from other
moving objects based on their shape characteristics, their
silhouette (when it is possible to extract) or even their mo-
tion related to a kinematics model. Note that this step might
be unnecessary under some situations where the moving ob-
jects are known to be human.

Other possible approaches are based on skin colour de-
tection. This approach cannot be used in our case, as our
stereo pair images are monochromatic.

2.2 Human Tracking

The main objective of the stage for tracking people in mo-
tion is to generate their trajectories over time by tracking
their plot to plot position. The output of this stage pro-
vides us with the image area occupied by the person and
updates it frame by frame. Usually the representations of
people and objects to track can be done through a set of rep-
resentative points [74], or by primitive shapes (rectangles,
circles or ellipses) [21], or by the surroundings and the com-
plete silhouettes [77]. Other possibilities are the articulated
models linked by articulation points [2]. According to the
latter strategy, we can model a person’s body through the
head, trunk and extremities, associating them with a prede-
termined movement pattern, or patterns, based on skeletons
which have been used for this as well. Of all options, this one
was chosen to obtain the rectangles that encompass people,
because it provides us with a good initial approach to the
problem, which is a prior and necessary step in the rest of
the representations.

In some cases the characterization is complemented
by information on appearance characteristics (textures and
color fundamentally) (appearance features). Appearance can
be modeled parametrically with key parameters of proba-
bility densities [58], and non-parametrically with their his-
tograms [21]. If the objects we follow do not change while
tracking them, they can be replaced by templates. These ad-
ditional parameters did not fit in our case, since we do not

have color information and the texture cannot serve to dis-
criminate between people and other objects in the whole
scene. Other models incorporate information from multi-
ple views of the objects to follow [55], using systems with
multiple cameras at different points in the scene where the
tracking is carried out. Neither case applied to our particular
situation since we have a stereo camera situated in a corner
of the room.

To summarize the different tracking methods at the work-
place [78] proposes a taxonometric classification and pro-
vides a detailed description of the main approaches, which
range from the simple deterministic systems based on track-
ing singular points [74], to systems based on silhouettes and
their correspondence in tracking models [67].

In our case, we have carried out a bounding box tracking,
based on the lateral histograms of image differences. With
the use of stereo cameras, the location becomes straightfor-
ward when we have a dense disparity map.

2.3 Human Behavior Understanding

After successfully tracking the movement of the human sub-
ject from one frame to another in an image sequence, the
problem of understanding human behaviours from the per-
spective of image sequences becomes apparent. Behaviour
understanding involves action recognition and description
and may be simply considered a classification problem of
time varying feature data, i.e., matching an unknown test
sequence with a group of labelled reference sequences rep-
resenting typical human actions. However, when there is a
need for a more complete description, other approaches are
convenient: Dynamic Time Warping [45], Hidden Markov
Models [35] or Neural networks [38]; followed by an action
recognition step and semantic description phase.

Existing techniques can be grouped into the following
types based on the nature of the algorithms used: Naive
Bayes probabilistic models [34], Hidden Markov Models
[35], Fuzzy Logic: K-NN (K-Nearest Neighbours), NN (K-
Nearest Neighbours) [4], roles: Dynamic Time Warping
[45], Sequential Minimal Optimization (SMO) [60], trees
and decision rules CART (Classification and Regression
Trees) [12] C4.5, C5.0/See5 [63] RIPPER [19], Neural net-
works [38].

For a set of general data it is not possible to determine
in advance the classifier that will lead to better results, as
there is a tendency to combine the outputs of several classi-
fiers to generate a specific output. This technique is known
as ensemble [79] although in a more generic mode it is
called mixture of experts. At present, the mixture of ex-
perts technique is being used in various studies [39, 71].
Mixture of experts makes it possible to select and merge
the outputs of various processes to generate a response that
best suits the final value [49]. The mixtures used are usually
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limited to selecting maximum values of the output or deter-
mining/calculating their weighted means to estimate the fi-
nal value. In more complex combinations neural networks
are applied to combine the outputs [57]. Basically these
techniques of combining classifiers are grouped into Bag-
ging (Bootstrapping aggregation) or Bagging classifiers, and
Boosting [12] or Ada-Boosting [37]. However, these proce-
dures do not allow a mixture to minimize the output error
depending on several factors. For this reason it is necessary
to include a procedure that can mix the output of several
classifiers, according to the predictive ability of each one of
them, by using a combination of their outputs.

2.4 MAS and CBR

Agents are autonomous software entities [14] able to inter-
act with their surroundings, and highly capable of adapt-
ing to changes. Agents can communicate with other agents
and work in a coordinated manner. For this reason, Multi-
agent systems (MAS) facilitate the development of dynamic
environments such as patients care and supervision. More-
over, agent-oriented methodologies provide a mechanism
for modelling distributed, inter-operable and secure systems
by taking social and organizational considerations into ac-
count and by integrating multiple devices, sensors and hu-
mans.

The use of deliberative BDI (Belief, Desire, Intention)
agents [13, 65] is essential in the development of the
system we are proposing. Apparently, the human visual
system deals with a high level of specialization when it
comes to classifying and processing the visual informa-
tion that it receives, such as reconstructing an image by
texture, shadow, depth, etc. Computationally, it is difficult
to compete with such specialization and to separate from
an image only the relevant information for any particular
purpose. In response to this problem, we propose imple-
menting a distributed agent-based architecture that will al-
low visual information contained in an image to be pro-
cessed in real time. An agent-based distributed architec-
ture, which runs on demand, allows code to be moved to
places where actions are required. This allows run-time re-
sponses, autonomy, continuity of services and greater levels
of flexibility and scalability than centralized architectures
[7, 15].

Because the system is capable of generating knowledge
and experience, the effort involved in programming multiple
tasks will also be reduced since it would only be necessary to
specify overall objectives, allowing the agents to cooperate
and achieve the stated objectives.

The agents must be capable of both independent reason-
ing and joint analysis of complex situations in order to be
able to achieve a high level of interaction with humans [8].
Although multi-agent systems already exist and are capable

of gathering information within a given environment in or-
der to provide medical care [23], there is still much work to
be done. It is necessary to continue developing systems and
technologies that focus on the improvement of services in
general. These technologies can help to construct more ef-
ficient distributed systems capable of addressing new prob-
lems.

A case-based reasoning system (CBR) [1] embedded
within a deliberative agent allows it to respond to events,
to take the initiative according to its goals, to communicate
with other agents, to interact with users, and to make use
of past experiences to find the best plans to achieve goals.
The learning capabilities of the CBR systems are due to
their inherent structure, which is composed of four main
phases [1]: retrieval, reuse, revision and retention. In the
first phase, the most similar cases to the proposed problem
are retrieved from the case base. Once a series of cases are
extracted from the case base, they must be reused by the
system. In this second phase, an adaptation of the selected
cases is done to fit the current problem. After giving a solu-
tion to the problem, that solution is revised to check if the
proposed alternative is a solution to the problem. If the pro-
posal is confirmed as a solution, then it is retained by the
system and could eventually serve as a solution to future
problems.

This cycle is integrated within the activities of the BDI
agent [22] and identifies the phases as tasks or roles that the
agent should be able to perform. This makes up for one of
the primary deficiencies in the BDI model, which involves
the manner in which memory and past experiences are han-
dled. In [22, 25] a method is presented for incorporating a
CBR engine to the BDI model. The main idea in these stud-
ies is the use of the mechanisms provided by the deliberative
BDI model, (namely; Beliefs, Desires and Intentions) to be
able to obtain a representation of the case and initiate the
CBR reasoning cycle. To integrate the CBR reasoning sys-
tem within the structure of a deliberative BDI agent, [22]
proposed a formula relating the case concept to the funda-
mental concepts of BDI. The relationship between CBR sys-
tems and BDI agents can be established by implementing
cases as beliefs, intentions and desires, which leads to the
resolution of the problem. As described in [22], in a CBR-
BDI agent, each state is considered a belief; the objective to
be reached may also be a belief. The intentions are plans of
actions that the agent has to carry out in order to achieve its
objectives. So an intention is an ordered set of actions; each
change from state to state is made after carrying out an ac-
tion (the agent remembers the action carried out in the past,
when it was in a specified state, and the subsequent result).
A desire will be any of the final states reached in the past (if
the agent has to deal with a situation, which is similar to a
past one, it will try to achieve a similar result to the previ-
ously obtained one).
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3 Our Approach

As mentioned earlier, the study presented here focuses on
the vision module of a MAS. The different processes are
implemented over a distributed agent-based architecture,
which allows it to run tasks in parallel using each service as
an independent processing unit. The architecture would al-
low a stereoscopic image processing system to carry out its
own phases, which could be distributed among the agents.
Thus data gathering, preprocessing, filtering and reconstruc-
tion, as well as human form detection, could all be carried
out in parallel. A description and initial proposal for this
global architecture can be found in [66]. The system is com-
prised of a set of agents with defined roles that share infor-
mation and services. The image analysis involves a complex
process where each agent executes its task with the informa-
tion available at each moment.

As shown in Fig. 2, the data obtained from the stereo-
scopic camera are entered into the system and shared be-
tween the agents that will use specific services to process the
data (filtering, preprocessing, disparity analysis, etc.) [66].
The system outputs can be located on the high-density dis-
parity map obtained from the distance between the camera
and the objects, the numerical representation of these dis-
tances, their three-dimensional representation in real time,
and/or the detection of human forms in the specified area.

A commercial stereo camera [66] was employed in this
work because it can capture two images from slightly differ-
ent positions (stereo pair) that are transferred to the com-
puter to calculate a disparity image containing the points

matched in both images. Knowing the extrinsic and intrinsic
parameters of the stereo camera, it is possible to reconstruct
the three-dimensional position.

People detection and stereo processing are treated as sep-
arate processes in this study. Every time a new image is cap-
tured, the system must first apply stereo processing to obtain
the distances of the objects in the image. After that, the sys-
tem can decide to apply the people detection to the same
image.

Figure 2 shows the steps that occur in a typical sequence
of processing images from the stereoscopic camera. Each
of the phases depicted in Fig. 2, or parts of it, can be per-
formed by the agents that constitute the system. This study
focuses on the detection phase of multi-agent system, and
more specifically on the detector agent responsible for car-
rying out this functionality to allow Human Detection, Hu-
man Tracking, and Human behavior understanding. Detec-
tion and tracking provide us with the information necessary
for the final classification (Human Behavior Understand-
ing). The classification process is detailed in Sect. 3.3 and
shows how it is possible to apply multiple classifiers and
then make a mixture of their outputs, yielding the final esti-
mate. For this, we propose a CBR model that includes inde-
pendent techniques to carry out this step.

The detector Agent is a CBR-BDI agent composed of a
reasoning cycle that consists of four sequential phases: re-
trieve, reuse, revise and retain. The CBR system is com-
pletely integrated into the agents’ architecture. The structure
of the CBR system has been designed around the case con-
cept. In order to initially construct the model case base start-
ing from the available histogram data, the CBR stores the

Fig. 2 Phases, MAS and CBR
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histograms obtained with the human detection and tracking
techniques.

That is, once the preprocessing for the dimensionality re-
duction and the extraction of relevant information has been
completed, we proceed to the classification process. To per-
form the classification process we break up the information
obtained from the horizontal and vertical histograms.

During the retrieval stage, we select the most similar
cases to the present case, taking into account the type of il-
lumination. This phase can be thought of as a data selection
step that aims to retrieve the list of cases that might be most
informative given a new sample to classify.

The adaptation of previous cases in order to solve a new
problem is accomplished in the reuse stage (right bottom
square in Fig. 2). A mixture of experts, explained below, is
used in this stage.

In the revision stage, the expert is provided with useful
data about the decision made by the system. The expert con-
trasts the initial prediction given by the system with other
external information, such as patient history, in order to as-
certain a revised prediction and a final classification.

Every time a new problem is solved, the internal structure
of the CBR system is updated (retain stage). The new case
is associated with its corresponding class and added to the
case base. The case base is updated and the system marks
the most similar cases selected for future classifications.

3.1 Human Detection

Most of the modules for people detection with monocular
or stereo cameras are based on a background estimation and
subtraction [9]. However, our approach is based on the mea-
surement of frame differences; this is basically due to the
better performance of this option compared to a background
estimation system based on median values of successive
frames. Other more sophisticated approaches to background
estimation failed to reproduce in real-time calculation. Af-
ter several trials on images captured under working condi-
tions, we found that when creating a balance between the
calculation complexity and the obtained results, the best re-
sults for the movement detection would be with a measure
of frame differences. Therefore, we use a 2-frame absolute
differences measure, which has better results than a single
frame differences.

In order to better capture the movement, the information
can be extracted from three consecutive frames instead of
only two. Thus, IRt (m,n) represents the gray level right im-
age intensity of the stereo pair at frame t—with m,n be-
ing the pixel coordinate indices—, and the right differences
DR

t (m,n) can be defined as:

DR
t (m,n) = |mean{(IRt (m,n) − IRt−1(m,n)),

(IRt−1(m,n) − IRt−2(m,n)),

(IRt (m,n) − IRt−2(m,n))}| (1)

Where |.| represents the operation module. To simplify,
the calculation of (1) is also obtained from:

DR
t (m,n) = k · |IRt (m,n) − IRt−2(m,n)|, (2)

where the constant parameter k takes the value 2/3.
When using k = 2/3 and an image capture rate of 15

frames per second, the movement detection is obtained from
images taken at a temporal distance of 133.3 ms. The same
movement resolution could be obtained working at half of
the image capture rate and taking the image differences of
two time consecutive frames.

The same operations in (2) are then made with the stereo
left images, to obtain the left absolute differences DL

t (m,n).

3.2 Human Tracking

The objective for the human tracking phase is to automati-
cally find the box that encloses the person being monitored.
In order to accomplish this objective, the two frames of ab-
solute differences of the stereo pair images are projected
onto the vertical and horizontal axes. Sometimes these are
called lateral histograms [31], and are calculated by sum-
ming the gray levels of the pixels in each of the columns
and rows of the image differences.

In (3) we define the horizontal and vertical histograms of
the right stereo image differences.

hR
t (m) =

∑

n

DR
t (m,n), vR

t (n) =
∑

m

DR
t (m,n) (3)

The same definition is used for the horizontal and vertical
histograms of left stereo differences hL

t (m) and vL
t (n).

With this operation the 2-D information required to per-
form the human tracking in the images is reduced to the 1-D
discrete function, which is more suitable for real time pro-
cessing. This information will then be classified using dif-
ferent statistical methods.

We take the mean of the right and left horizontal projec-
tions to obtain a single 1-D horizontal projection ht (m), and
we repeat the same process to obtain the vertical projection
vt (n).

In order to find the horizontal and vertical box sizes we
establish a threshold on the simplified versions of the signals
ht (m) and vt (n).

The simplification of ht (m) and vt (n) is performed by
applying a 1-D morphological filtering. The main advan-
tage of morphological operations is that they preserve the
positions of the maximums, the minimums, and the edges
of the original function. The mathematical morphology was
first developed for black and white images, but has been ex-
tended to work with gray and color images as well as one-
dimensional functions [68].
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There are two basic morphological operations; erosion
and dilation. These are computed using a structuring ele-
ment Y . There are several structuring elements. Morpho-
logical operations are strongly dependent on the structur-
ing element. We have selected a flat structuring element of a
given length L that in the 1D context can be seen as a mo-
bile window. Then the 1D erosion computes the minimum
value of the part of the function inside a mobile window de-
fined by the structuring element Y . Thus, the erosion of the
function f (m) by the structuring element Y, εY (f (m)), de-
creases peaks and accentuates valleys. The dilation of f (m),
δY (f ) gives the maximum value of the part of the function
inside the mobile template defined by Y , accentuating peaks
and minimizing valleys. By combining dilation and erosion
we can form other morphological filters. The opening and
the closing are the basic morphological filters.

The morphological opening of f (m) by the structuring
element Y is denoted by γY (f ) and is defined as the erosion
of f (m) by Y followed by the dilation by the same structur-
ing element. Similarly, the morphological closing of f (m)

by the structuring element Y is denoted by ϕY (f ) and is
defined as the dilation of f (m) by Y followed by erosion
by Y . The filter output function is more simple than the in-
put function because the details of the original function that
are smaller than the length of the structuring element Y will
disappear.

There is an order relation between the opening, the orig-
inal function and the closing given by:

γY (f (m)) ≤ f (m) ≤ ϕY (f (m)) (4)

The opening is always less than or equal to the original
function while the closing is always greater or equal.

We have used the opening to simplify ht (m) and vt (n)

and to obtain the threshold. Accordingly, by means of a clos-
ing we define cht (m) and cvt (n) as:

cht (m) = ϕY (ht (m)) = εY (δY (ht (m))) (5)

cvt (n) = ϕY (vt (n)) = εY (δY (vt (n))) (6)

The election of the length L—the unique parameter in a
1-D flat structuring element—is determined by taking into
account the size of the elements to preserve in cht (m) and
cvt (n). The object of interest is the human to be detected.
His or her size in the room scene must be preserved. The
higher the length L of Y the simpler cht (m) and cvt (n) are.
A good level of simplification can be obtained by taking val-
ues of L that are between 5 and 12 parts of the maximum
number of pixels of the image scene. As the used images
have 640×480 pixels, we have chosen a flat structuring ele-
ment Y of length 100 pixels although the system works well
for a wide range around this value.

We decided that the movement in the x-direction, at
frame t , is concentrated in the parts of cht (m) where, con-
sidering cht (0) and cht (M − 1), the extreme values of
cht (m) are greater than:

(1− α)max{cht (m)} +max{cht (0), cht (M − 1)} (7)

where α is a number between 0 and 1. We proceed in the
same way for the vertical direction. The sections that are
moving must to be greater than:

(1− α)max{cvt (n)} +max{cvt (0), cvt (N − 1)} (8)

where cvt (0) and cvt (N − 1) are the extreme values of
cvt (n). We have worked using α = 0.85.

If in DR
t (m,n) the number of pixels representing the

movement is zero, the information provided by image t can
be discarded.

Another advantage of working with these lateral his-
tograms of right hR

t (m) and vR
t (n), and left views hL

t (m)

and vL
t (n) is that we can rapidly measure a rough value of

the disparity as it is represented in the results section.
The morphological operations can be performed with fast

algorithms optimized as those described in [35], the lateral
projection operations are not expensive in computing time.

3.3 Human Behavior Understanding

Finally, for the human behaviour understanding phase, in
this first approach, the human detection agent will classify
two positions: standing/walking and lying. For the classifi-
cation process we used the lateral histograms of the image
differences as a data classifier against a trained classifier.

To perform the final calculation, several classifiers were
applied and then a mixture of their outputs was made to pro-
vide the final estimation. The final output is based on the
minimization of the final error of classification. The starting
point for creating the experts mixture is based on the calcula-
tion of the output based on the weighted mean of classifiers
as shown in (9).

f (x1, . . . , xn) =
∑

i

wixi with
∑

i

wi = 1 (9)

Where xi represents values obtained by the experts and
wi the weight values. To set the weights value, we define
the set of variables that affect the final estimation. In this
case we have taken into account several factors to calculate
the final weights: the estimation of error in calculating the
average of the values estimated by experts, the variance of
the outputs, and the hit rate. The following sections set out
the relevance of each of these values. Generally, the factors
affecting the final weights are denoted as pi for both the
expression in (9) and as shown in (10)

f (x1, . . . , xn) =
∑

i

(pi
1 + · · · + pi

n)xi (10)



A
U

TH
O

R
’S

 P
R

O
O

F

Journal ID: 10851, Article ID: 290, Date: 2011-04-26, Proof No: 1, UNCORRECTED PROOF

« JMIV 10851 layout: Large v.1.3.2 file: jmiv290.tex (petras) class: spr-twocol-v1.2 v.2011/02/19 Prn:2011/04/26; 9:36 p. 9/19»
« doctopic: OriginalPaper numbering style: ContentOnly reference style: mathphys»

J Math Imaging Vis

865 919

866 920

867 921

868 922

869 923

870 924

871 925

872 926

873 927

874 928

875 929

876 930

877 931

878 932

879 933

880 934

881 935

882 936

883 937

884 938

885 939

886 940

887 941

888 942

889 943

890 944

891 945

892 946

893 947

894 948

895 949

896 950

897 951

898 952

899 953

900 954

901 955

902 956

903 957

904 958

905 959

906 960

907 961

908 962

909 963

910 964

911 965

912 966

913 967

914 968

915 969

916 970

917 971

918 972

The factors are defined so that they meet the condition
(11)
∑

i

pi
j = 1 (11)

From the expression (10) we set out a series of variables
that determine the relevance degree of each factor in calcu-
lating the estimated final value, thus obtaining (12). These
variables will serve to minimize the final error.

f (x1, . . . , xn) =
∑

i

(w1p
i
1 + · · · + wnp

i
n)xi (12)

In order for (12) to meet the definition of weighted sum,
the condition defined in (13) must be given as
∑

i

(w1p
i
1 + · · · + wnp

i
n) = 1 (13)

Taking into account the expression (11) we can simplify (13)
the expression as follows:

w1p
1
1 + w2p

1
2 + · · · + wnp

1
n + w2p

2
1 + w2p

2
2 + · · ·

+ wnp
2
n + · · · + w1p

n
1 + w2p

n
2 + · · · + wnp

n
n = 1

Separating the term as the following manner, it is clear
that the term corresponding to the last line is simplified with
the first term of the previous expressions, leaving only the
terms: w1p

1
1,w1p

2
1 . . . , the same thing happens with other

terms.

w1p
1
1 + w2p

1
2 + · · · + wnp

1
n

w1p
2
1 + w2p

2
2 + · · · + wnp

2
n

...

w1p
n−1
1 + w2p

n−1
2 + · · · + wnp

n−1
n

w1(1− p1
1 − p2

1 − · · · − pn−1
1 )

+ w2(1− p1
2 − p2

2 − · · · − pn−1
2 )

+ · · · + wn(1− p1
n − p2

n − · · · − pn−1
n )

Simplifying even more, we finally get

w1 + · · · + wn = 1 (14)

The goal is to find the set of values of wi that minimize
the final error value in the estimation given the values of p

and x. The calculation of this value is part of the definition
of the mean square error to measure the level of error, which
leaves us with the expression to minimize expression (15)
subject to the indicated restrictions

f (w1, . . . ,wn) =
∑

i

((w1p
i
1 + · · · + wnp

i
n)xi − yi)

2

(15)
s.t. 1− w1 − · · · − wn = 0

Applying Lagrange

f (w1, . . . ,wn,λ) =
∑

i

((w1p
i
1 + · · · + wnp

i
n)xi − yi)

2

− λ(1− w1 − · · · − wn)) (16)

From expression (16) we obtain the system of (17) that
allows us to calculate the values of w1, . . . ,wn that mini-
mize the error of the final classification

∂f

∂w1
= ∂

∑
i ((w1p

i
1 + · · · + wnp

i
n)xi − yi)

2 − λ(1− w1 − · · · − wn)

∂w1

...

∂f

∂wn

= ∂
∑

i ((w1p
i
1 + · · · + wnp

i
n)xi − yi)

2 − λ(1− w1 − · · · − wn)

∂wn

(17)

∂f

∂λ
= ∂

∑
i ((w1p

i
1 + · · · + wnp

i
n)xi − yi)

2 − λ(1− w1 − · · · − wn)

∂λ

Then we present the experts utilized to carry out the clas-
sification: SVM and MLP.

3.3.1 Support Vector Machine

The Support Vector Machine (SVM) is a supervised learn-
ing technique applied to the classification and regression of
elements. SVM can be applied in a variety of fields such as

chemistry, ambient intelligence, modelling and simulation,
and data or text mining. The algorithm represents an ex-
tension of the linear models [73]. Originally developed for
the classification of linearly separable problems, it basically
consists of finding the straight line or hyper plane (in two
or more dimensions) that makes it possible to separate the
elements of a set. SVM can also separate different classes
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of elements that cannot be separated linearly. To do so, it
uses functions to map out the initial space of coordinates in
a highly dimensional space. Because the dimensionality of
the new space can be so high, it is not practical to calculate
the hyperplanes that perform the linear separation. Instead,
a series of non linear functions known as kernel 	 are used,
where xi is a vector with n-dimension, the idea is to convert
the elements xi in a highly dimensional space using the ap-
plication of a feature function 	(x). The following equation
is used to perform the classification (18) [43].

class(xk) = signe[w	(xk) + b]

= signe

(
m∑

i=1
λiyi	(xi)	(xk) + b

)
(18)

where xi is a vector with n-dimension, the idea is to con-
vert the elements xi in a highly dimensional space using the
application of a feature function	(x),λi is a Lagrange mul-
tiplier, and yi is the output value for the pattern b constant.
The calculation of these values is described in [39].

As we can see, there is a product 	(xi)	(xk) that, ac-
cording to the dimensionality of the new space, can be very
costly to calculate. For this reason, it is necessary to select
a series of kernel functions that can operate in the origi-
nal space to perform these calculations without requiring a
heavy computational load.

To calculate the classifier class(xk) there are algorithms
such as the Sequential Minimal Optimization (SMO) [61].
From the hyperplane calculated by SMO, we proceed to cal-
culate the distance of each of the points to the hyperplane.
These distances will be calculated to estimate the error in
the calculation of the distance and to make the mixture of
methods as described in the last paragraph of the subsection
classification model. The distance is calculated according to
(19)

d(x;w,b) = |w · 	(x) + b|
‖w‖ (19)

For each of the complexes in which the input patterns are
divided, we create a hyperplane through the application of
SMO , therefore generating a set of hyperplanes denoted by
P = {h1, . . . , hn}
P = {h1, . . . , hn}.

3.3.2 Neural Network

The reasoning memory used by the agent is defined by the
following expression: P = {p1, . . . , pn} and is implemented
by means of a MLP (Multilayer Perceptron) neural network.
MLP is the most widely applied and researched artificial
neural network (ANN) model. MLP networks implement
mappings from input space to output space and are normally

applied to supervised learning tasks [38]. A sigmoid func-
tion with a range of values in the interval [0,1] was selected
as the MLP activation function. It is used to classify the dif-
ferent states of the people detected in the room.

Entries for the neural network corresponding to the case
elements are defined in Table 7. The output corresponds to
xy . Because the neurons exiting from the hidden layer of
the neural network contain sigmoid neurons with values be-
tween [0,1], the incoming variables are redefined so that
their range falls between [0.2–0.8]. This transformation is
necessary because the network cannot work with values that
fall outside this range. The outgoing values are similarly
limited to the range of [0.2, 0.8] with the value 0.2 corre-
sponding to a non-attack and the value 0.8 corresponding to
an attack. Training for the network is carried out by the error
Backpropagation Algorithm [50].

When a previously trained network is already available
for the set of data associated with the new case, the case
classification process is carried out in the revise phase. If a
previously trained network is not available, the training is
carried out after the entire procedure has been completed,
beginning with the cases related to the service and subnet
mask, as shown in the above equation.

3.3.3 Relevant Factors

The detected relevant factors were based on the error dur-
ing the estimation of the average value for each of the fol-
lowing types: the variance of the data and the hit rate. To
calculate the average error we assume that N � n because
the total number of images to estimate, though unknown, is
much greater than the set of images used during the train-
ing. The error for the mean is defined in terms of expression
(20) calculated from the definition of error for estimating the
average

e = ±k
Sc√
n

(20)

where k is defined from the stated confidence level, Sc is
the quasi-variance and n is the number of elements in the
sample.

The final value of the factor is set according to the ratio
of the sample mean and the error

pe
i = x̄/e (21)

We define a factor for each of the i classifiers, and for
each classifier we define a different factor for each different
class defined.

Another factor is based on the value obtained as an out-
put for the classifier, taking into account the distance with
respect to the average theoretical value of the class, the
variance and the value provided by the classifier. Values
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Fig. 3 Distribution of the
values of a classifier for each
class

corresponding to this class are standardized together with
the value obtained by the classifier and then we calculate
the probability that z is less than or greater than the k

value obtained by standardizing the value of the classifier
P(z < k) = α. Based on the value of alpha we calculate the
weight of this factor according to the original value. Fig-
ure 3 provides a graphical representation of the distribution
of values obtained from a classifier for classes 1 and 2 (up
and down), representing both the normal distribution of the
mean μ1 and μ2. The values x1 and x2 correspond to the
estimated value of the classifier for a particular pattern.

The value of the factor for class 1 and class 2 corresponds
to as appropriate the value obtained with the case x1 or x2
respectively, and is defined by the expression (22). This fac-
tor changes for each classifier and for each case.

p(x1) =
{

k · P(z >
x1−μ1

σ1
) x1 > μ1

1 ioc

p(x2) =
{

k · P(z >
x2−μ2

σ2
) x2 < μ2

1 ioc

(22)

where k is a constant, x1 is the value obtained by the classi-
fier, μ1 is the average for the values obtained by the classi-
fier for class 1, and σ1 the variance. We similarly define the
variables for the second case.

The last factor taken into account is related to the hit rate
for each method. The hit rate is defined by the number of
correctly classified cases during the training and estimation
phase. The value of the factor is constant for all cases given
a particular classifier. Each of the factors is defined to meet
(11). To calculate these values the following operation is
performed:

pi
j = pi

j /(p
1
j + · · · + pn

j ) (23)

where i corresponds to the classifier i.

3.3.4 Classification Model

The classification model was applied to the case study of
the proposed mixture in Sect. 3.3. In the mixture, the clas-
sification models are applied according to the SMO and the

MLP, weighted by the factors described in the Relevant fac-
tors section This process eventually results in the following
model:

f (x1, x2) = (w1p1 + w2p
i
2 + w3p3)x1 + (w1(1− p1)

+ w2(1− pi
2) + w3(1− p3))x2 (24)

where wi is calculated according to (17), the value p1 is
calculated according to (21), pi

2 is calculated from (22), and
p3 contains the hit rate. All these parameters are defined so
as to meet (23), while the values of x1 and x2 correspond to
the estimation calculated by SVM and theMLP respectively.

4 Experiments and Results

A broader experimentation was done to test the process-
ing and detection of different people under different light-
ing conditions and different distances from the stereo vision
system. We employed 640×480 sized images and sub-pixel
interpolation to enhance the precision in the stereo calcula-
tion. The operation frequency of our system is near 10 Hz on
a 3.2 GHz Pentium IV computer running on Windows XP.
The camera has the following characteristics [62]: 640×480
pixel sensors, monochrome, 3.8 mm focal distance, capable
of capturing 48 photograms per second, 120 mm line base,
6 pin IEEE-1394 (FireWire) interface connection. The im-
ages were taken from a height of 1.6 m with a 15 fps veloc-
ity, obtaining approximately 400M coded data in AVI and
PGM format (16 bits per image).

The environment in which the system was developed is a
hospital room. The rooms were small in size, containing one
or two beds. The environment was subjected to very differ-
ent lighting conditions that could change rapidly. For exam-
ple, there was natural light through a window, and several
possibilities for artificial lighting, including ceiling or wall
lamps. There was also a door in front of the camera that
could change the lighting condition of the scene if it were
suddenly opened or closed. These variable conditions create
different shades that can be combined in many ways and ap-
pear at different angles. Figure 4 shows the scene captured
by the camera at six different illuminations. In this figure we
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Fig. 4 A set of different
illuminations of the room.
Top-down, and left to right: wall
lamp on with closed door; wall
lamp on with open door; ceiling
lamp on with closed door;
ceiling lamp on with open door;
natural light with closed door;
and natural light with open door

Fig. 5 Lateral histograms of a stereo difference. At the upper right
panel the original stereo pair in a single image. At the central right
panel the two frames absolute differences images. At the lower right
panel the horizontal histogram, or horizontal projection of stereo dif-

ferences (with red representing the right camera, and blue representing
the left one). At the left panel the vertical histograms of stereo differ-
ences

can observe that the patterns of shadows and reflections can
vary widely.

To perform our analysis, we selected 682 video sequence
images captured under different conditions of lighting and
human presence in the room. The different images contain

one person under different lighting sources: 248 images with
natural lighting (37%), 186 images with fluorescent ceiling
light (27%), and 245 cases of incandescent wall lighting on
the far wall of the image (36%). For each of these various
lighting conditions, the individuals in the room were either
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Fig. 6 Examples of surrounding people by a box under different positions and changing lighting conditions

lying down or standing in different areas of the room. Of the
682 images, 680 were correctly classified (lying down or
standing). Two images were incorrectly classified, introduc-
ing skewed data into the system for the purpose of ensuring
the proper functioning of the algorithms. The previous clas-
sification was used to train different supervised algorithms
and the proposed CBR in order to analyze its functioning.

After the classification of the images it is necessary to re-
cover the information associated with the input parameters
used in the algorithms. Therefore, it is necessary, as a first
step, to detect the motion of objects in space in order to clas-
sify the objects in the scene. The detection of motion is per-
formed by calculating histograms. Figure 5 shows part of the
partial calculations realized in the motion detection phases
with the lateral histograms and their relationship to a partic-
ular scene. The upper part of the image shows the original
scene in a gray level image with a person coming through
the door. Just below is the output of the motion detector for

the instant of capturing the original image, detecting, for this
very instant, the parts in motion of the scene. The difference
images in the scene are obtained simultaneously from each
one of the sides of the stereo camera. The lateral histograms
are calculated on these images and the figure represents the
lateral histograms which are represented simultaneously us-
ing the color red for the right camera and the color blue
for the left camera. The horizontal histograms appear in the
lower part of the image while the lateral histograms on the
left image. It is clear that by using only the information of
the histograms we can locate the moving parts of the scene.

Lateral histograms can reduce the data dimensionality
that the application works with, thus enabling us to work
at the system runtime. The detection and tracking of the per-
son is done using the morphological operations described in
Sect. 3.2, using α = 0.85.

The tracking process can be observed in Fig. 6 in which
four different cases were considered. In this figure the im-
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Fig. 7 Lateral histograms of a stereo difference. With high disparity, the person is close to the camera. At the lower right panel the horizontal
histogram, or horizontal projection of stereo differences (red represents the right eye, and blue the left one)

age of each person is surrounded by a yellow box in dif-
ferent positions and in different lighting conditions. Look-
ing at a set of four images, and using the same represen-
tation as in Fig. 5, the top left image represents the origi-
nal image, the image below is image Dt . A yellow box en-
closes the area in which the person is detected. On the left,
the vertical projection vt (y) is represented in red, cvt (y) in
blue, and in green the parts of vt (y) that are greater than
the threshold and determine the vertical axis of the yellow
square. Below Dt (x, y),ht (x) is depicted in red, cht (x) in
blue, and in green the parts of ht (x) that are greater than
the threshold determining the horizontal axis of the yellow
square.

To have a direct and rough measure of disparity we cal-
culated the maximum value of the cross correlation on the
lateral histograms of right and left views.

In Fig. 7 we can observe a person close to the stereo-
scopic camera equipment, which is separated along the hor-
izontal axis. We see that the horizontal histogram calculated
for the right camera, in red, shows a similar but shifted pro-
file with respect to what we obtain from the left camera, in
blue.

From the cross correlation between both profiles we can
estimate the horizontal component of the disparity.

The position of the maximum represents the disparity be-
tween points, and its value could represent the range of the
distance, as we can see in Fig. 8.

After analyzing the previous preprocessing for dimen-
sionality reduction and the extraction of relevant informa-
tion, we proceed to perform the technical analysis of the
classification. To perform the classification process we start
with the information obtained from the horizontal and verti-
cal histograms of the previous classification and proceed to
evaluate the efficiency of the proposed classification tech-
nique. To evaluate the significance of the possible classi-
fication techniques used during the reuse phase, we per-
formed a comparison between different classifiers follow-
ing Dietterich’s model 5× 2-Cross-Validation Paired t-Test
algorithm [33]. The value 5 in the algorithm represents the
number of replications of the training process, and value 2
is the number of sets into which the global set is divided.
Thus, for each of the techniques, the global dataset S was
divided into two groups S1 and S2 as follows: S = S1 ∪ S2
and S1∩S2 = φ. Then, the learning and estimation processes
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Fig. 8 Left and right horizontal histograms of difference images at upper panels, and Cross-correlation of the stereo horizontal histograms of
Fig. 7, at lower panel. The position of the maximum is at d = −21

Table 1 Number of hits in the
classification process together
with the average and deviation

Correctly classified Average Deviation

BayesNet 317 327 313 323 316 325 310 324 303 320 317.64 7.17
NaiveBayes 283 291 294 281 291 293 283 295 277 277 286.34 6.68
AdaBoostM1 312 334 315 319 319 320 313 335 311 325 320.10 8.16
Bagging 313 329 312 325 320 330 312 328 311 328 320.62 7.65
DecisionStump 310 316 306 312 309 315 307 311 298 308 309.12 4.83
JRip 314 322 310 326 318 335 318 326 312 339 321.75 9.11
Logistic 302 341 302 341 289 341 302 341 299 341 318.46 21.40
LogitBoost 314 333 317 334 321 333 312 333 314 336 324.43 9.40
MultiBoostAB 310 316 306 313 309 318 307 316 305 309 310.84 4.35
OneR 310 320 301 316 315 321 299 318 303 310 311.11 7.62
Stacking 169 172 165 176 157 184 165 176 163 178 170.15 7.76
CBR 333 335 330 336 333 335 335 333 313 332 331.37 6.39

were carried out. This process was repeated 5 times for each
of the techniques, and involved the following steps: the clas-
sifier was trained using S1 and then it was used to classify
S1 and S2. In the second step, the classifier was trained using
S2 and then it was used to classify S1 and S2. The results ob-
tained are shown in Table 5, where the columns represent the
classifications obtained for S1, S2 (trained with S1) and S1,
S2 (trained with S2) for each of the 5 repetitions. The rows
in Table 1 show the different classifiers used during the clas-
sification process. The columns represent the number of hits
obtained during the learning process. The last two columns

represent the mean and the standard deviation. The proposed
system presents the highest hit rate against the other meth-
ods if we consider the final mean obtained. The deviation in
the number of hits is also low so we can conclude that the
hit rate is more constant than the rest of methods.

The analysis of the cross validation is completed using
the Dietterich’s 5 × 2-Cross-Validation Paired t-Test [65].
The significance levels obtained in the test are shown in Ta-
ble 2. As can be observed, the results are very similar to
those previously shown in Table 2. In this case, the only
technique that provides results similar to CBR is LogitBoost
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00 although the value obtained is lower than the significance

level of 0.05.
Therefore the difference is considered to be significant.

The logistic method cannot be considered significantly dif-
ferent from the CBR as the value obtained in the test is 0.59.
However, noting the mean of both methods and comparing
331 with 318, while we can conclude that there does exist a
difference between the two methods, we cannot do so statis-
tically due to the high deviation within the Logistic method.

Figure 9 shows the information obtained in the classifi-
cation process. As we can see, the method cannot estimate
that it is different from any other method because of the high
variability. The CBR system is estimated differently for all
the methods with the exception of the logistic method. The
theoretical significance level is shown by the variable signif-
icance.

Once the techniques used in the CBR are statistically ver-
ified, we proceed to analyze the evolution of the CBR system
with the increase of case memory. To do this, we estimate the
efficiency in the classification by studying the evolution of
the number of errors from the increased size of the database.
In Fig. 10, we can see the evolution of the hit rate with the
increase in the base case. The x-axis represents the number
of cases and the y-axis represents the hit rate.

The qualitative analysis of the errors is obtained for dif-
ferent training methods by trainingN −1 images and sorting
the remaining image. The results show that of 682 test im-
ages we detected 17 classification errors, which corresponds
to about 2.5% of the cases. Two of the errors correspond to
errors forced to verify the system, and thus should not count.

If we analyze the errors we get different results in each
type of illumination, based on the results using the CBR-
based method. In the case of natural illumination we found
a 1.2% error rate, regardless of the conditions of open or
closed door., In the case of fluorescent illumination from the
ceiling, we have an error rate below 1% which does not de-
pend on the status of the door. But with incandescent illumi-
nation on the wall, the error rate soars to 5.3% of the cases.

5 Conclusions and Future Work

The article has focused on the combination of techniques
used to perform a detection process, subdivided into: human
detection, human tracking and human behavior understand-
ing. The system proposes a novel solution based on the CBR
paradigm, including advanced reasoning capacities.

In order to evaluate the system’s capacity, a variety of
tests were performed. The system improved the processing
capability compared to other centralized systems, given that
the distributed agents approach makes it possible to process
tasks individually and with different techniques (filters, ob-
taining distance, human detection, human tracking and hu-
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Fig. 9 Significance level
obtained using the t-test

Fig. 10 Evolution of the hit
rate with the increase in case
memory

man behavior understanding). Because the system is per-
fectly modularized, the tasks can be carried out simultane-
ously and/or in a distributed manner. Due to its inherent na-
ture, the implemented human detection techniques are not
sensitive to human presence when the person remains static,
standing or laying, during extended periods of time. More-
over, due to the camera position we can find that the person
being monitored can suffer partial occlusions. Sometimes a
person can be in the same position for long periods of time,
when lying in bed for example, with a very low level of ac-
tivity.

In the test sequences we worked with images with a sin-
gle person in scene, as the main use of the system is to mon-
itor people when they are alone in a room. However, the
system could be adapted to detect more than one person in a
scene, with the decomposition of the image into sub-images
according to the activity detected in different regions.

The classification of the images varies depending on the
illumination. With images of low contrast it becomes more

difficult to make a proper detection and classification. The
illumination issues are, by far, one of the trickiest questions
relating to real-time real-world systems. The approach was
designed to be independent of the illumination, however we
found the worst results with wall lamp illumination, prob-
ably due to higher noise introduced by the large amplifica-
tion gain produced by the low illumination. The best results
correspond to scenes with fluorescent illumination or with
natural tamed daylight.

Another critical point is the adjustment of the cameras. In
our case we have used an automatic gain and an automatic
focus adjustment for the stereo-pair camera. These settings
work well for getting optimal visualization of the images,
regardless of the changes in the scene, or the changes in the
lighting conditions as we will have in the real working envi-
ronment described, but they become hard conditions for the
setting parameters of a vision system. Our solution is inde-
pendent of these adjustments, as it works with differences
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of close related time frames. These frames will have very
similar settings.

As lines of future work, the proposed system can be en-
hanced by choosing different human tracking, human detec-
tion or classification techniques. Moreover, application of
our approach is not restricted to the shown environment and
can also be employed in other dynamic environments. The
proposed approach can be extended to applications where
stereo data are processed, e.g. movies, gaming, mobile robot
navigation [56] or industrial applications [3].
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