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ABSTRACT: Many nonlinear filters used in practise are stack filters. An algorithm is presented

which calculates the output distribution of an arbitrary stack filter S from the disjunctive normal

form (DNF) of its underlying positive Boolean function (PBF). Our algorithm avoids to enumerate

the models of the PBF one by one, and thus is considerably more efficient than previous methods.

The so called rank selection probabilities can be computed along the way.

1 Introduction

Stack filters were invented in 1986 and have been a key topic of research in nonlinear signal
processing ever since. Simply put, all aspects of a stack filter are reflected in its underlying
positive Boolean function, and a basic familiarity of the latter concept is all that is required
to understand this article. Using Google Scholar one can easily track the literature on various
other aspects of stack filters, e.g. their output distribution. In this article we present a new
algorithm to calculate the output distribution. The new method, called stack filter n-algorithm,
is an extension of the noncover n-algorithm [13] which generates, in compact form, all noncovers
X of given sets A∗

1, . . . , A
∗
h (i.e. X 6⊇ A∗

i for all 1 ≤ i ≤ h).

The stack filter n-algorithm is introduced by means of a medium-size example in Section 2.
Section 3 is dedicated to its theoretic assessment. Section 4 touches upon five related matters,
among which a numeric evaluation, and extensions of the stack filter n-algorithm that deliver
the telling selection probabilities of [8], respectively handle the balanced stack filters of [12].

2 The stack filter n-algorithm

Fix m ≥ 1 and put w := 2m+1. Let b : {0, 1}w → {0, 1} be a positive Boolean function (PBF),
i.e. one without negated variables. Refering to e.g. [2], an operator S from R

Z in itself defined
by the k-th component of Sz being

[Sz]k := b(zk−m, . . . , zk, . . . , zk+m) (k ∈ Z) (1)
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is called a stack filter of window size w based on b. Notice that the PBF b in (1) has been
extended from {0, 1}w → {0, 1} to R

w → R in the usual way, i.e. by replacing the logical
connectives ∧ and ∨ by the minimum respectively maximum operation for pairs of real numbers
(while keeping the symbols). So, if

b(x−1, x0, x1) := ((x0 ∨ x1) ∧ x−1) ∨ x0 (xi ∈ {0, 1}),

then
b(3, 2, 4) = ((2 ∨ 4) ∧ 3) ∨ 2 = (4 ∧ 3) ∨ 2 = 3 ∨ 2 = 3.

By construction each stack filter S is translation invariant in the sense that pushing the series x
ten units to the right and then applying S yields the same as first applying S and then pushing
ten units to the right. So S is completely determined by formula (1) for k = 0.

Let Z = (. . . , Z−1, Z0, Z1, . . .) be a doubly infinite sequence of independent indentically dis-
tributed (i.i.d.) random variables. Let FZ(t) be their common (cumulative) distribution func-
tion, i.e. FZ(t) := Prob(Zi ≤ t) is the probability that Zi is at most t. By translation invariance
the output distribution FSZ(t) := Prob((SZ)i ≤ t) is independent of i. It is known that there is
a well defined function φS(p), called the distribution transfer of S, such that

FSZ(t) = φS(FZ(t)) (t ∈ R).

What’s more, φS(p) is a polynomial which can be calculated [15], [2, p.223 ] as

φS(p) =
∑

b(x)=0

p|Zero(x)| · q|One(x)| (2)

where q := 1 − p and b is as in (1). The summation is over all bitstrings x ∈ {0, 1}w with
b(x) = 0, where by definition

Zero(x) := {1 ≤ i ≤ w| xi = 0},

One(x) := {1 ≤ i ≤ w| xi = 1}.

For instance, consider this positive Boolean function b1 which is already in disjunctive normal
form (DNF). It is of type {0, 1}9 → {0, 1} but we like to scale as {0, 1}W → {0, 1} with
W := {−4,−3,−2,−1, 0, 1, 2, 3, 4}:

b1(x−4, . . . , x4) = (x−2 ∧ x−1 ∧ x0) ∨ (x−1 ∧ x0 ∧ x1) ∨ (x0 ∧ x1 ∧ x2) (3)

∨ (x−4 ∧ x−3 ∧ x−2 ∧ x1 ∧ x2 ∧ x3) ∨ (x−3 ∧ x−2 ∧ x−1 ∧ x1 ∧ x2 ∧ x3)

∨ (x−3 ∧ x−2 ∧ x−1 ∧ x2 ∧ x3 ∧ x4).

In view of (2) we wish to encode the family Mod of all x = (x−4, x−3, . . . , x4) in {0, 1}W with
b(x) = 0 in a compact way∗. First note that

Mod = Mod1 ∩Mod2 ∩Mod3 ∩Mod4 ∩Mod5 ∩Mod6,

∗If we were to start with the conjunctive normal form (CNF) of b, we would end up with a compact represen-
tation of the set Mod′ of all x ∈ {0, 1}W with b(x) = 1. Hence, instead of (2), a dual kind of formula would yield
φS(p).
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where the family Modi corresponds to the i-th conjunction in (3). For instance we write

Mod1 := {x ∈ {0, 1}W | x−2 ∧ x−1 ∧ x0 = 0} = (2, 2, n, n, n, 2, 2, 2, 2)

because x−2 ∧ x−1 ∧ x0 = 0 (nul) if and only if at least one of x−2, x−1, x0 is nul, and the
other variables x−4, x−3, x1, x2, x3, x4 can independently assume the 2 values 0 and 1. Thus
(1, 1, 0, 1, 0, 1, 0, 1, 1) ∈ Mod1 but (0, 0, 1, 1, 1, 0, 0, 1, 0) 6∈ Mod1. If we identify a 0, 1-string x

with the subset X = {i ∈ W : xi = 1} of W then Mod1 consists of all noncovers X of
A∗

1 := {−2,−1, 0} in the sense that X 6⊇ A∗
1. The noncover n-algorithm from [13] (more on

that in Section 3) generates all simultaneous noncovers of the given sets (here deriving from the
terms of a PBF) A∗

1, A
∗
2, . . . , A

∗
6 as follows:

−4 −3 −2 −1 0 1 2 3 4

2 2 n n n 2 2 2 2 PC = 2

2 2 2 n n 2 2 2 2 PC = 3

2 2 0 1 1 0 2 2 2 PC = 3

2 2 2 2 0 2 2 2 2 PC = 4

2 2 2 0 1 n n 2 2 PC = 4

2 2 0 1 1 0 2 2 2 PC = 3

n n n 2 0 n n n 2 PC = 5

2 2 2 0 1 n n 2 2 PC = 4

2 2 0 1 1 0 2 2 2 PC = 3

2 n n 2 0 n n n 2 PC = 6

0 1 1 0 0 1 1 1 2 PC = 6

2 2 2 0 1 n n 2 2 PC = 4

2 2 0 1 1 0 2 2 2 PC = 3

2 n n 2 0 2 n n 2 final

2 1 1 n 0 0 1 1 n final

0 1 1 0 0 1 1 1 2 PC = 6

2 2 2 0 1 n n 2 2 PC = 4

2 2 0 1 1 0 2 2 2 PC = 3

Table 1: The workings of the noncover n-algorithm

By PC = 2 we mean that at this stage the pending conjunction is the second one, i.e. the one
that defines Mod2. In other words, we need to sieve out those x ∈ Mod1 that happen to be in
Mod2 = (2, 2, 2, n, n, n, 2, 2, 2). In order to do so we determine the intersection {−2,−1, 0} ∩
{−1, 0, 1} = {−1, 0} of the “n-pools” of Mod1 and Mod2 and then split the {0, 1, 2, n}-valued
row r := Mod1 accordingly into a disjoint union r = r′ ∪ r′′ where

r′ := {x ∈ r| x−1 = 0 or x0 = 0} = (2, 2, 2,n,n, 2, 2, 2, 2)
r′′ := {x ∈ r| x−1 = x0 = 1} = (2, 2, 0,1,1, 2, 2, 2, 2).

While all x ∈ r′ trivially satisfy x−1 ∧ x0 ∧ x1 = 0, i.e. belong to Mod2, this is not the case
for all x ∈ r′′. However, turning at the 6-th position the 2 to 0 does the job. This yields the
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current working stack with the two rows labelled PC = 3; see top of Table 1. (Of course this
“stack” has nothing to do with its namesake in “stack filter”.) As a general rule, the topmost
row in the stack is always treated first (“last in, first out”). This may entail “local changes”, or
a splitting of the top row into several sons. In this way we proceed up to the second last stack in
Table 1. Let us pick its top row r = (2, n, n, 2, 0, n, n, n, 2) and illustrate once more the splitting
process. The intersection of the n-pool of r with (the index set of) the pending 6th conjunction
is {−3,−2, 1, 2, 3} ∩ {−3,−2,−1, 2, 3, 4} = {−3,−2, 2, 3}. Accordingly split r into the disjoint
union of r′ and r′′:

r = (2, n, n, 2, 0, n, n, n, 2)
r′ = (2,n,n, 2, 0, 2,n,n, 2)
r′′ = (2,1,1, 2, 0, 0,1,1, 2).

Since r′ ⊆ Mod6, r
′ is the first son of r. We have r′′ 6⊆ Mod6, but r

′′∩Mod6 = (2, 1, 1, n, 0, 0, 1, 1, n)
becomes the second son. Both rows are final, i.e. are subsets of Mod and thus collected in a
steadily increasing final stack. The working stack now contains three rows with pending con-
junctions 6, 4, 3 respectively. In our case it just so happens that they are in fact already final (so
e.g. all x in the row labelled PC = 4 happen to satisfy the 4th, 5th and 6th conjunction). The
final stack comprises thus the five rows in Table 2 (for the moment ignore p2q2 and so forth):

−4 −3 −2 −1 0 1 2 3 4

2 2 0 1 1 0 2 2 2 p2q2

2 2 2 0 1 n n 2 2 pq(1− q2) = pq − pq3

0 1 1 0 0 1 1 1 2 p3q5

2 1 1 n 0 0 1 1 n p2q4(1− q2) = p2q4 − p2q6

2 n n 2 0 2 n n 2 p(1− q4) = p− pq4

Table 2: The probability contributions of the final rows

For instance, the second row in Table 2 contains 25 · (22 − 1) noncovers, where (22 − 1) comes
from nn. The total number N of noncovers evaluates to

N = 32 + 32 · 3 + 2 + 2 · 3 + 16 · 15 = 376,

which is much higher than the number R = 5 of final multivalued rows. As we shall see in
Section 3, in general the n-pool of rows is a bit more subtle.

Let us now calculate the output distribution. The first row in Table 2 contains 25 = 32 bitstrings
x with b1(x) = 0. Each contributes some probability α1 α2 p q q p α3 α4 α5 to the sum in (2).
Since each αi can independently be chosen to be p or q, the sum of these 32 terms is

p2q2(ppppp+ · · ·+ pqqpq + · · ·+ qqqqq) = p2q2(p+ q)5 = p2q2. (4)

The fact that e.g. nn = {00, 01, 10} yields pp + pq + qp = 1 − q2, explains the contribution
pq(1−q2) of the second row. Similarly for the three other rows. Summing up the terms in Table
2 yields

φS(p) = p2q2 + pq − pq3 + p3q5 + p2q4 − p2q6 + p− pq4

= 7p2 − 8p3 − 8p4 + 25p5 − 24p6 + 11p7 − 2p8. (5)
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3 Theoretic assessment

Suppose the constraint A∗ = {3, 4} is to be imposed on a row r = (1, 2, 1, 1) in the process
of the stack filter n-algorithm. Then r needs to be cancelled since no member X ∈ r satisfies
X 6⊇ A∗. Fortunately, with some precautions the cancellation of rows can be avoided, which is
essential in the Theorem below. Another remark about the proof is in order. Apart from the
probabilities coupled to the final {0, 1, 2, n}-valued rows, the stack filter n-algorithm coincides
with the noncover n-algorithm of [13], which is a special “homogeneous” case of the Horn n-
algorithm, which in turn is an instance of some principle of exclusion. Since our special case is
somewhat buried by this and the technical machinery of [13], yet admits a comparatively smooth
proof from scratch, we give that proof below.

Theorem: Suppose the stack filter S has window size w and its positive Boolean function
b(x) is given as a disjunction of h conjunctions (DNF). Then the stack filter n-algorithm
computes the output distribution of S in time O(Nw2h2). Here N is the number of
bitstrings x with b(x) = 0.

Proof. As in the introductory example, the terms in the DNF of b(x) yield subsets A∗
1, . . . , A

∗
h

of W := [w] whose models (= simultaneous noncovers) Y ⊆ W we wish to pack in disjoint
{0, 1, 2, n}-valued rows. Any (not necessarily final) row r is called feasible if Y ∈ r for at least
one model Y . As opposed to other applications of the princple of exclusion, here feasibility is
easily tested. Namely, r is feasible if and only if

(∀1 ≤ i ≤ h) A∗
i 6⊆ ones(r). (6)

Initially our “working stack” solely comprises the row r0 = (2, 2, . . . , 2) of length w which we
identify with the powerset of W . Note that r0 is feasible since ∅ ∈ r. Row r0 carries the pointer
PC(r0) = 1, where PC stands for “pending constraint”. Generally, the top row r of the working
stack is treated as follows. If PC(r) = j (for some j ∈ [h]) then the set A∗

j is “imposed” upon r,
that is, the set U of all X ∈ r with X 6⊇ A∗

j is represented as a disjoint union of rows r1, . . . , rs
where s ≤ w. That this is always possible (the “core” claim), and costs O(w2), will be shown
in a moment.

Because r was feasible by induction, at least one of its “candidate” sons r1, . . . , rs will be as
well. Since the feasibility of r = rj amounts to the truth of (6), it costs O(shw) = O(hw2) to
sieve the sons of r, i.e. the feasible rows among r1, . . . , rs. Altogether the cost of one imposition
of a constraint upon a row is O(w2) +O(hw2) = O(hw2).

The R final rows can be viewed as the leaves of a tree with root (2, 2, . . . , 2) that has height h;
each imposition triggers all sons of some node. Therefore the number of impositions is at most
Rh (distinct final rows, possibly having some of their forefathers in common). It follows that
producing the R final rows costs O(Rh ·hw2) = O(Nh2w2) in view of R ≤ N , by the disjointness
of final rows. Calculating (as in (4)) the contributions to φS(p) of all final rows, and adding
them, costs O(Nw), which is swallowed by O(Nh2w2).

It remains to verify the core claim, i.e. that U := {X ∈ r : X 6⊇ A∗} (A∗ := A∗
j ) can be

represented as promised.
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Case (a): A∗ ∩ zeros(r) 6= ∅ or A∗ wholly contains an n-bubble of r. Then U = r, and so put
rs = r1 = r.

Since r is feasible, A∗ ⊆ ones(r) is impossible, and so the only remaining possibility is

Case (b): A∗∩ zeros(r) = ∅ and A∗ does not wholly contain an n-bubble of r and A∗ 6⊆ ones(r).
This is exactly Case 7 in Section 5 of [13], whose essense we repeat here.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 2 n1 n1 n2 n3 n3 n4 n1 n2 n3 n3 n4 n4 r

2 2 n n n2 n3 n3 n4 2 n2 n3 n3 n4 n4 r1
2 2 1 1 0 n3 n3 n4 0 2 n3 n3 n4 n4 r2
2 2 1 1 1 n n n4 0 0 2 2 n4 n4 r3
2 2 1 1 1 1 1 0 0 0 n3 n3 2 2 r4
n n 1 1 1 1 1 1 0 0 n3 n3 n4 n4 r5

Table 3: Five candidate sons of some {0, 1, 2, n}-valued row

Suppose W = [14], A∗ = [8], and r is as in Table 3. Note that the n-pool of r is the disjoint
union {3, 4, 9} ∪ {5, 10} ∪ {6, 7, 11, 12} ∪{8, 13, 14} of four mutually independent n-bubbles, each
one defined by “at least one nul there”, as in Section 2. Putting

r1 := {X ∈ r : X 6⊇ {3, 4}}

r2 := {X ∈ r : X ⊇ {3, 4} and X 6⊇ {5}}

r3 := {X ∈ r : X ⊇ {3, 4, 5} and X 6⊇ {6, 7}}

r4 := {X ∈ r : X ⊇ {3, 4, 5, 6, 7} and X 6⊇ {8}}

r5 := {X ∈ r : X ⊇ {3, 4, 5, 6, 7, 8} and X 6⊇ {1, 2}}

it is clear that U is the disjoint union of r1, . . . , r5. A minute’s reflection shows that, crucially,
these sets can again be written as {0, 1, 2, n}-valued rows as shown in Table 3, and that generally
(full details in [13]) splitting a row in s ≤ w candidate sons like this costs O(sw) = O(w2). �

It follows from the proof that O(Nw2h2) could be substituted by O(Rw2h2) where R ≤ N is the
number of final {0, 1, 2, n}-valued rows. Unfortunately R is unpredictable. Theoretically R = N

is possible† but in practise R is usually orders of magnitudes smaller than N (see Subsection
4.1).

It has been pointed out that b(x) may not initially be given in disjunctive normal form. However,
if not, there are efficient methods to compute the DNF from any reasonable kind of presentation
of b(x); this e.g. applies to the erosion - dilation cascades in subsection 4.1. In any case, the
bigger problem arguably is to find the bitstrings x ∈ {0, 1}w with b(x) = 0.

†Even then, provided N ≈ 1

2
· 2W as is to be expected for random PBF’s, the stack filter algorithm would beat

by a factor 2 a brute force search of all of {0, 1}W .
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4 Related matters

Subsection 4.1 glimpses at the practical performance of a Mathematica implementation of the
stack filter n-algorithm, and 4.2 shows that the so called rank selection probabilities pi can be
gleaned from the {0, 1, 2, n}-valued rows along the way. Subsections 4.3 and 4.4 are about the
joint distribution of stack filters, respectively about a certain generalization of “ordinary” stack
filters to “balanced” stack filters. The required adaptions of our algorithm stay within the realm
of {0, 1, 2, n}-valued rows. Finally, as powerful as binary decision diagrams often are, it is argued
in 4.5 that they are not appropriate in our situation.

4.1 Numerics exemplified on the LULU filter C5

Certain stack filters Ln, their duals Un, and compositions thereof (called LULU filters) have
been proposed in [9] and earlier‡, as alternatives to the popular median filters. Actually, the
function b1(x−4, . . . , x4) from Section 2 is the PBF underlying U2L2.

The natural definition of each LULU filter is as a cascade of so called erosions and dilations

(CED), two dual concepts from Mathematical Morphology [9, III.C]. Computing the DNF of
any CED essentially amounts§ to calculating CNF’s and DNF’s of successively bigger (details
in [3]) positive Boolean functions. For instance,

Cn := LnUnLn−1Un−1 . . . L1U1

is a CED stack filter with window size w = 2n2 + 2n + 1. Using Berge’s algorithm to compute
the DNF of C5 from its CED-representation took about 46 hours. Calculating the output
distribution φC5

(p) = p5+7p6−· · ·+114680p43+ · · ·+p53 with the stack filter n-algorithm took
another 12 hours. At least as illuminating as φC5

(p) are the so called rank selection probabilities
that can be calculated along the way as discussed in the next subsection. The underlying PBF
of C5 had N = 639′173′390′187′370′752 models, which were packed in a mere R = 179′244
final rows. More extensive numerical evaluations of similar implementations of the principle of
exclusion (and how they compare to say BDD’s) are provided in upcoming publications.

Due to the specific regularities of UnLn its DNF has in fact been discovered by other means [9,
p.112] and its distribution transfer was computed independent of its DNF in [3]; it equals

φUnLn = 1− qn+1 − npqn+1 − pq2n+2 − 1
2(n − 1)(n + 2)p2q2n+2. (7)

One verifies that (7) coincides with (5) for n = 2. Even the distribution transfer of Cn can be
determined [3], albeit only by an efficient recursive formula as opposed to the closed form in (7).
For all n ≤ 5 the results agreed with the ones obtained with the stack filter n-algorithm, which
is a strong indication that both methods are correct.

‡Using terminology of Mathematical Morphology, Ln (dually for Un) is an opening induced by a line segment
of length n+1, whence the underlying PBF has window size 2n+1. As opposed to the median filters, all LULU

filters S are idempotent (S ◦ S = S) and even co-idempotent ((id− S) ◦ (id− S) = id− S).
§Computing the DNF of a PBF from its CNF is a well researched topic [5], which also amounts to get all

minimal transversals of a set system. The author used a refinement of the classic “Berge-algorithm” for the task,
does not claim that it competes with the cutting edge algorithms for DNF ↔ CNF, but feels that the stack filter
n-algorithm is the right approach once the DNF is given.
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4.2 Rank selection probabilities

Let S be a stack filter. Given a sequence Z of i.i.d. random variables, the so called rank selection

probability pi is defined as the probability that a fixed component of the output series SZ is the
i-th smallest in the sliding window of length w. It is known, [8], [2, p.236] that

pi =
Aw−i
(

w
w−i

) −
Aw−i+1
(

w
w−i+1

) ,

where Ai is the number of bitstrings x with i ones and w− i zeros that have b(x) = 0. The Ai’s
can be conveniently calculated in tandem with the evaluation of (2). For instance, as the reader
can easily verify, the contribution of the last row in Table 2 to A0 up to A7 is:

A0 :
(

8
0

)

= 1

A1 :
(

8
1

)

= 8

A2 :
(8
2

)

= 28

A3 :
(8
3

)

= 56

A4 :
(4
0

)(4
4

)

+
(4
1

)(4
3

)

+
(4
2

)(4
2

)

+
(4
3

)(4
1

)

= 69

A5 :
(4
1

)(4
4

)

+
(4
2

)(4
3

)

+
(4
3

)(4
2

)

= 52

A6 :
(4
2

)(4
4

)

+
(4
3

)(4
3

)

= 22

A7 :
(4
3

)(4
4

)

= 4.

We mention that in [6] the optimization of stack filters with respect to certain constraints leads
to specific desirable values of A1, . . . , Aw. Finding a stack filter S that features these values (at
least approximately) is however hard. One may hence be led to compile a catalogue of CED’s
(see 4.1) with corresponding vectors (A1, . . . , Aw) from which a suitable candidate S can be
picked.

4.3 The joint output distribution of two stack filters

Let Z be a doubly infinite sequence of i.i.d. random variables. For two stack filters S and T

with corresponding positive Boolean functions b1(x) and b2(y) their joint output distribution
FSZ,TZ(s, t), or simply JD(s, t), is defined as

JD(s, t) := Prob((SZ)0 ≤ s and (TZ)0 ≤ t).

If we set p := Prob(Z0 ≤ s), π := Prob(Z0 ≤ t) and assume p ≤ π (the case p > π is similar)
then it is shown in [2, p.230] that

JD(s, t) =

w
∑

i=0

w
∑

j=0

Ai,jp
i(π − p)w−i−j(1− π)j , (8)

8



where Aij is the number of (x, y) ∈ {0, 1}w × {0, 1}w such that

x ≥ y, b1(x) = b2(y) = 0, v−,−(x, y) = i, v+,+(x, y) = j,

and where¶

v−,−(x1, . . . , xw, y1, . . . , yw) := |{1 ≤ k ≤ w : xk = yk = 0}|

v+,+(x1, . . . , xw, y1, . . . , yw) := |{1 ≤ k ≤ w : xk = yk = 1}|

The calculation of the coefficients Aij works row-wise. So suppose r in Table 4 is one of the final
rows obtained after applying the noncover n-algorithm to b1. Obviously the set

F := {y : (∃x ∈ r) x ≥ y}

is represented by row r0. If say b2(y) = y3 ∧ y9 ∧ y10 then the set

F(b2) := {y ∈ F : b2(y) = 0}

is the disjoint union ρ1 ∪ ρ2 ∪ ρ3:

1 2 3 4 5 6 7 8 9 10 11

r = n1 n1 n1 2 2 0 n2 n2 n2 1 1

r0 = n1 n1 n1 2 2 0 n2 n2 n2 2 2

ρ1 = 2 2 0 2 2 0 n2 n2 n2 2 2

ρ2 = n1 n1 1 2 2 0 2 2 0 2 2

ρ3 = n1 n1 1 2 2 0 n2 n2 1 0 2

x = 0 1 1 1 0 0 1 1 0 1 1

σ = 0 2 2 2 0 0 0 2 0 0 2

τ = 0 2 2 2 0 0 1 0 0 0 2

Table 4: Adapting the algorithm to joint output distributions

For each x ∈ r and k ∈ {1, 2, 3} one now records v−,−(x, y) and v+,+(x, y) for all y ∈ ρk with
y ≤ x. For instance, taking the x indicated in Table 4 one verifies that

{y ∈ ρ3 : y ≤ x} = σ ∪ τ,

where the later union is disjoint (see n2n2 in ρ3 and the corresponding boldface entries in σ, τ).
It is easy to see that σ contributes an amount of

(5
j

)

to the value of A4,j for all 0 ≤ j ≤ 5.

Similarly τ contributes an amount of
(4
j

)

to the value of A4,j+1 (0 ≤ j ≤ 4). Calculations can be
sped up by clumping together suitable x’s rather than processing them one by one. We discuss
a similar phenomenon in more detail in the next subsection.

4.4 Balanced stack filters

In [11], [12] the concept of a balanced‖ stack filter S is introduced. Citing from [11]: “They are
much more versatile, being empowered not only with lowpass filtering characteristics, but with

¶This notation is not used in [2] but ties in well with the notation used in subsection 4.4, which in turn is akin
to the notation of [11]. For instance, our v−,+(x, y) in 4.4 corresponds to w(x ∧ s) in equation (17) of [11].

‖Actually, Arce, Paredes and Shmulevich propose to reserve the term “stack filter” to their new concept, and to
relabel the “old” stack filters as stack smoothers. As suggested by one referee, we stick to the old, well established
terminology.
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bandpass or highpass filtering characteristics as well.” They are based on “mirrored threshold-
ing” which entails t and −t to play symmetric roles. Most important for us, S is based again
upon a PBF albeit in a manner more sophisticated than (1). For instance, the PBF is of the
kind b(x, y) = b(x1, . . . , xw, y1, . . . , yw), and in this set up a stack filter turns out to be a bal-
anced stack filter where b does not depend on y1, . . . , yw (i.e., these variables are fictitious). As
usual let Z be a doubly inifinite sequence of i.i.d. random variables with common cumulative
distribution function FZ(t) = Prob(Zi ≤ t) (i ∈ Z). Put F (t) = FZ(t) and

p+,+ :=

{

F (−t)− F (t) if t ≤ 0
0 if t > 0

p−,− :=

{

0 if t ≤ 0
F (t)− F (−t) if t > 0

p−,+ :=

{

F (t) if t ≤ 0
F (−t) if t > 0

p+,− :=

{

1− F (−t) if t ≤ 0
1− F (t) if t > 0.

Besides v+,+(x, y) and v−,−(x, y) from 4.3 we also put

v−,+(x, y) := |{1 ≤ k ≤ w : xk = 0 and yk = 1}|

v+,−(x, y) := |{1 ≤ k ≤ w : xk = 1 and yk = 0}|.

Modulo some obvious typos, it is shown in [11, (17)] that the output distribution, i.e. FSZ(t) =
Prob((SZ)0 ≤ t), can be calculated as

FSZ(t) =
∑

b(x,y)=0

p
v+,+(x,y)
+,+ · p

v+,−(x,y)
+,− · p

v−,+(x,y)
−,+ · p

v−,−(x,y)
−,− .

As opposed to JD(s, t) in (8), which is a polynomial of Prob(Z0 ≤ s) and Prob(Z0 ≤ t), here
FSZ(t) is not quite a polynomial in terms of Prob((SZ)0 ≤ t) and Prob((SZ)0 ≤ −t).

Nevertheless the noncover n-algorithm is of good use. Suppose it has (among others) returned
the final row r in Table 5. Take any bitstring x∗ = (x1, . . . , x9) “contained” in the left hand
side (n1, n2, n3, 1, n4, n4, 0, 2, n3) of r. More precisely, any bitstring x∗ which is extendible∗∗ to
a bitstring (X∗, y) ∈ r. Say x∗ = (1, 1, 1, 1, 1, 0, 0, 0, 0). For each fixed k ∈ {0, 1, . . . , 5} and
k′ ∈ {0, 1, · · · , 4} we now show how the number f(k, k′) of bitstrings y = (y1, . . . , y9) with

v+,+(x
∗, y) = k and v−,+(x

∗, y) = k′

(whence v+,−(x
∗, y) = 5− k and v−,−(x

∗, y) = 4− k′)

can be calculated fast. First, notice that the subset

r(x∗) := {(x, y) ∈ r : x = x∗}

of r can be written as multi-valued row as shown in Table 5.

∗∗It is easily seen that the extendible bitstrings are exactly the members of (2, 2, 2, 1, n4, n4, 0, 2, 2).
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x1 x2 x3 x4 x5 x6 x7 x8 x9 y1 y2 y3 y4 y5 y6 y7 y8 y9

r = n1 n2 n3 1 n4 n4 0 2 n3 n1 n1 n3 n2 n2 n1 n1 n2 n2

r(x∗) = 1 1 1 1 1 0 0 0 0 n1 n1 2 n2 n2 n1 n1 n2 n2

r1 = 1 1 1 1 1 0 0 0 0 n1 n1 2 n2 n2 2 2 2 2

r2 = 1 1 1 1 1 0 0 0 0 n1 n1 2 1 1 2 2 n2 n2

r3 = 1 1 1 1 1 0 0 0 0 1 1 2 n2 n2 n1 n1 2 2

r4 = 1 1 1 1 1 0 0 0 0 1 1 2 1 1 n1 n1 n2 n2

Table 5: Adapting the algorithm to balanced stack filters

Problem is we cannot freely choose k 1’s among {y1, . . . , y5} and k′ 1’s among {y6, . . . , y9}
because e.g. the choice (1, 1, 0, 0, 0, 1, 1, 0, 0) clashes with n1n1n1n1. But when one partitions
r(x∗) as r1 ∪ r2 ∪ r3 ∪ r4 as indicated, then for each ri the choices within {y1, . . . , y5} respec-
tively {y6, . . . , y9} can be made independently. To fix ideas, say k = 2 and k′ = 3. Then the
contribution of r(x∗) = r1 ∪ r2 ∪ r3 ∪ r4 to the coefficient of the monom

pk+,+ p5−k
+,− pk

′

−,+ p4−k′

−,−

occuring in FSX(t) is

f(k, k′) = 8 · 4 + 1 · 2 + 1 · 2 + 0 · 0 = 36.

Generally, the number of bitstrings with a fixed number k of 1’s that are contained in a
{0, 1, 2, n}-valued row can be determined fast. Similar to 4.3, but more obvious, time can be
saved by clumping together suitable bitstrings (x1, . . . , x9). For instance, (1, 1, 0, 1, 0, 0, 0, 1, 1)
causes the same right hand side (n1, n1, 2, n2, n2, n1, n1, n2, n2) as did x∗. As another example,
(0, 0, 1, 1, 1, 0, 0, 0, 0) is one among ten left hand sides of weight 3 that cause the right hand side
(2, 2, 2, 2, 2, 2, 2, 2, 2).

4.5 On binary decision diagrams

Shmulevich et al. [10] proposed to evaluate (2) by setting up a binary decision diagram (BDD)
for the Boolean function b(x) that underlies the stack filter S whose distribution transfer needs
to be calculated. Suppose one has indeed spent time to get a BDD that represents b(x). While
the number of models x ∈ {0, 1}w with b(x) = 0 can be determined fast from a BDD, it is more
cumbersome to generate all models, as is forced by (2). True, from the BDD one can get the
set of models as a disjoint union of {0, 1, 2}-valued rows in recursive fashion. (See [1, p.22] or
the long chapter on BDDs in Donald Knuth’s forthcoming book.) However, these rows are far
more numerous than the ones produced by the stack filter n-algorithm; not surprisingly since
our algorithm uses one additional symbol and hence more flexibililty in its {0, 1, 2, n}-valued
rows. Finally, the enhancements discussed in subsections 4.2, 4.3, 4.4 are cumbersome to be
handled by BDD’s.
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Conclusion

The present article can be viewed as the realization of a fifth benefit of DNF’s that was announced
in [14], i.e. the calculation of a stack filter’s output distribution and (even more useful) its
selection probabilities. The so doing stack filter n-algorithm is accessible from the author’s
home page. It has the form of a Mathematica Notebook. The indicated enhancements in 4.3
and 4.4 have not been programmed by the author; anybody is welcome to do so.

Last not least we draw attention to [7], a comprehensive framework in which stack filters, alias
lattice polynomial functions (LPF), constitute but one type of aggregation function. However,
there are no references to nonlinear signal theory or Mathematical Morphology in [7]. For
instance, other than might appear from [7, p.361], cumulative distribution functions of “nice”
LPF’s (i.e. their underlying PBF’s are more regular than ours) have a long history - in the case
of Order Statistics dating back to 1932 [4].
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