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Abstract

In this paper we address the problem of recovering an image from a sequence of distorted
versions of it, where the distortion is caused by what is commonly referred to as ground-level
turbulence. In mathematical terms, such distortion can be described as the cumulative effect
of a blurring kernel and a time-dependent deformation of the image domain. We introduce a
statistical dynamic model for the generation of turbulence based on linear dynamical systems
(LDS). We expand the model to include the unknown image as part of the unobserved state
and apply Kalman filtering to estimate such state. This operation yields a blurry image where
the blurring kernel is effectively isoplanatic. Applying blind nonlocal Total Variation (NL-TV)
deconvolution yields a sharp final result.

1 Introduction

The phenomenon that is commonly referred to as “turbulence” in imaging is caused by the time-
and space-varying refraction index of the air which is due, among other factors, to temperature, air
pressure, humidity, and wind conditions between the acquired scene and the image-capturing device.
The resulting image sequence is also affected by the different and changing lighting conditions within
the scene, by the distance between the observed objects and the camera, and by other artifacts
introduced by the device itself. The problem of reconstructing an image that is altered by ground-
level atmospheric turbulence is still largely unsolved. The typical situation is the one illustrated
in Figure 1, that shows a frame within a sequence of images taken at the Naval Station at China
Lake, in California. The image shows a silhouette and a patterned board observed at a distance of
1 km; it is apparent that the point-spread function (PSF) is time- and space-varying. The images
are taken at a rate of 30 frames per second: Figure 2 shows five frames within the same sequence
(any two consecutive images in the figure are eight time samples apart). One normally assumes
that there is an underlying “true” static image, to be recovered, that is corrupted by the combined
effect of time- and space-dependent blur, domain deformation, and additive noise.

Related work. There is a fairly large literature in optical astronomy (see [12, 34, 45] and
references therein) which is concerned with the problem of reconstructing images that are mostly
obtained by telescopes that operate in quasi-isoplanatic atmospheric conditions. These classical
methods (see also [31, 32, 36, 40]) are however mostly inadequate under the conditions that are
typical of ground-level atmospheric turbulence, i.e. with distortion, blurring and noise that are
markedly not space- nor time-invariant. A type of approach that proved popular and effective in
optical astronomy, specifically in situations where the field-of-view is smaller than the isoplanatic
angle (thus making the blur space-invariant) is the so-called lucky frame (LF) method [14, 35]:
one simply chooses, among the frames that make up a sequence, the one that is the sharpest.
This technique was adapted to anisoplanatic conditions by Aubailly et al. [2] who formulated the
lucky region fusion (LRF) approach: by assuming that different regions within the image frame are
made sharper and less distorted at random times, they design an algorithm to detect such regions
and fuse them into a single high quality image. Both the LF and LRF approaches suffer from
the limitation that it is assumed that the image sequence is extracted from short-exposure videos,
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(a) (b)

Figure 1: (a) Original frame. (b) Detail from original frame (in black & white).

Figure 2: Frames from the original sequence; images in each consecutive pair are 8 samples apart.

thus with limited blur, and that “reasonably” lucky frame and regions do exist: however in many
situations this is a low probability event, especially when the number of available frames is limited.

Shimizu et al. [38] propose a three-stage process: (i) a deformation-free (but blurry) image
is computed from the image sequence simply by temporal averaging; (ii) each frame in the se-
quence is registered to the image computed in the first stage by B-spline interpolation; and (iii)
a multi-frame super-resolution algorithm is used to construct a detailed image from the registered
sequence. Such process, although seemingly effective, is computationally very intensive especially
in estimating the deformation parameters; also, the diffusion process that is implicit in temporal
averaging exacerbates the blurring. Gilles et al. [16] propose a scheme where the image sequence is
registered to the temporal mean, then the mean is re-computed using the registered sequence, and
the process is repeated until convergence; the resulting image is regularized using blind total varia-
tion deconvolution [10, 20]. They perform image registration via Large Deformation Diffeomorphic
Metric Mapping (LDDMM), introduced by Miller et al. [4, 30, 46] which is computationally very
expensive; moreover the final results depend heavily on the choice of the parameters of the LD-
DMM registration. Li et al. [24] use Principal Component Analysis (PCA) to deblur a sequence of
turbulent images, simply by taking the statistically most significant vector as their estimate for the
original static image; instead, Hirsch et al. [21] formulate a space-variant deblurring algorithm that
is seemingly computationally treatable. However neither [24] nor [21] address the issue of domain
deformation and thus are only suitable when the geometric distortion is reasonably small. Tahtali
et al. [41] model the image deformation process by attaching a spring-mass-damper oscillator model
to each pixel with a random perturbation, and augment the state to include the unknown natural
frequency and damping ratio at each location; they treat each pixel location and coordinate inde-
pendently and perform Extended Kalman Filtering (EKF) to estimate the position of each pixel
and produce a static image. However: the state space dimension of the model is so large to be
untreatable; to circumvent this issue they treat each pixel location and dimension independently;
by their own admission, the results depend very heavily on the initial guess of the initial value
of the natural frequency at each location; they only test their technique on artificial data. Zhu
and Milanfar [47] register the image sequence to the mean and then reconstruct a static image by
minimizing a functional with a Total Variation-type regularizing term, assuming that the blurring
kernel is space-invariant; in [48] they replace the second step by an algorithm that yields a static
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image with supposedly space-invariant blur by combining sharp patches in the registered sequence,
which is followed by a final blind deconvolution step. We should mention a recent paper by Mao and
Gilles [28] where they simultaneously register the sequence frames to a static image and regularize
the latter and via split-Bregman iteration, and the results are competitive; no correlation between
the image frames is assumed. Tai et al. [25, 42] have proposed solutions to the motion blur problem
(previously addressed e.g. in [3]), which occurs when parts of the image region (or its entirety) are
affected by space-varying blur caused by either camera or object motion; such solutions cannot be
applied to the ground-level atmospheric blur as the latter does not have comparable smoothness,
local nature, and general regularity.

Our approach. None of the approaches listed above, perhaps with the exception of [41],
consider using a model for the temporal evolution of the image formation process. However, simple
inspection of representative data suggest that, although temporally undersampled relative to the
atmospheric dynamics, the images contain significant temporal correlation that should be exploited.
It is thus natural to model the image sequence as the output of a linear, time-invariant stochastic
linear dynamical system (LDS) [23]. Also, the spatial redundancy of each frame suggests that the
process can be represented by a state variable whose dimension is considerably smaller than the
actual size, measured in number of pixels, of an image. In this paper we use a dynamic texture
approach [11] to model the image formation process as a LDS with a low-dimensional underlying
state process. Such model does not rely on physical principles but is statistical in nature and
the system parameters can be identified efficiently; in fact they can be recalibrated to changing
atmospheric conditions using a short new training sequence. Then an alternate estimation (AE)
scheme based on a Kalman filter (KF) is used to estimate the underlying scene, which is supposed
to be static; this step yields an image whose blurring is mostly isoplanatic. Applying nonlocal Total
Variation (NL-TV) schemes [15, 27] to this image produces a sharp final result.

2 Problem setup

Figure 2 suggests that what is intuitively referred to as “turbulence” can be modeled, at least to a
first approximation, as the combined effect of (i) a blur with an anisoplanatic point spread function
and (ii) a time-dependent diffeomorphic deformation of the image domain. Such approach, also
used by other authors, is somewhat artificial in that both effects can be combined into one linear
transformation, as we shall see below. However it is effective in terms of modeling and simulation,
and suggests that the recovery procedure can be split into a registration step and a deblurring step.

Assumptions. From now on we shall assume that the camera is static and there is a “true”
underlying scalar luminance ρ : Ω → R that we aim to recover, where Ω ⊂ R2 is the rectan-
gular image domain; on the other hand the data is time-dependent and can be represented as a
function I : Ω× [0, T ]→ R, for some T > 0. We assume that turbulence can be modeled as the
concatenation of two transformations, in the specified order:

(i) the convolution with a time-and space-invariant kernel:

ρ 7→ Kρ, with: (Kρ)(x) = (k ∗ ρ)(x) =
∫

Ω
k(x− y)ρ(y) dy, (1)

for some unknown function k : Ω→ R;
(ii) a deformation of the domain, i.e. the composition with unknown time-dependent diffeomor-

phisms ϕ(·, t) : Ω→ Ω, t ∈ [0, 1], as follows:

Kρ 7→ I, with: I(x, t) = (Kρ)(ϕ−1(x, t)), x ∈ Ω, t ∈ [0, T ]. (2)

Note that we assume that while (i) is dispersive, (ii) is not. Both maps (i) and (ii) are linear, and
so is their concatenation ρ 7→ Kρ 7→ I. In fact we can write

I(x, t) =
∫

Ω
K(x, y, t) ρ(y) dy, x ∈ Ω, t ∈ [0, T ], (3)
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Figure 3: Relation between the original image and the data.

where the cumulative point spread finction (PSF) is given by K(x, y, t) = k(ϕ−1(x, t)− y), x ∈ Ω,
t ∈ [0, T ], which, for any fixed t, is not isoplanatic anymore.

The model above suggests separating the image recovery problem into the estimation of the
time-dependent domain deformation ϕ and the inference of the underlying image ρ from

I(ϕ(x, t)) =
∫

Ω
k(x− y)ρ(y) dy = (Kρ)(x), x ∈ Ω, t ∈ [0, T ];

in other words, under the above assumptions the problem reduces to estimating the warping of the
image sequence, followed by a deconvolution procedure.

Remark. Regarding the assumption that the camera is static, we should add that for distant
scenes a known motion of the camera would not cause significant occlusions and therefore its effects
could be approximated by a homography (a projective transformation) of the image. One could
therefore compensate for such transformation in the computation of the above time-dependent
deformation ϕ. Therefore our assumption is essentially made without loss of generality.

3 Dynamic models for ground-level turbulence

In order to introduce our method we shall represent the data by the image sequence {Ik} with Ik(x) =
I(x, k∆t), where x ∈ Ω, k ∈ N := {1, 2, 3 . . .} and ∆t is the time sampling period. We assume
that the data is generated by applying an unknown sequence of domain transformations {wk} to
the function Kρ, defined in (1); such transformations are precisely the time-sampled diffeomor-
phisms wk(x) := ϕ(x, k∆t), x ∈ Ω, k ∈ N, introduced in (2). In formulas:

Ik(x) := (Kρ)(w−1
k (x)) or simply Ik := (Kρ) ◦ w−1

k , x ∈ Ω, k ∈ N (4)

(the symbol “:=” denotes a definition). The model is summarized in Figure 3. Note that we can
write each diffeomorphic transformation wk : Ω → Ω as wk(x) = x + Wk(x), x ∈ Ω, k ∈ N, where
the vector field Wk : Ω→ R2 indicates the optical flow [22] induced by the map wk. We say that Ik
is obtained by warping the image Kρ via the flow Wk (or the corresponding transformation wk).

In the following sections we shall describe a dynamic model for the temporal evolution of the
motion field, that will later be used for the simultaneous estimation of both the sequence {wk}k∈N
and the blurred image Kρ. In the existing literature on the problem, the approaches that make use
of a dynamic temporal model for turbulence are rare—the reason being that physical models for
such phenomena are rather complex and impractical to use in a computational setting. We shall
instead resort to a statistical model that relies on the dynamic texture approach introduced in [11].

3.1 An LDS-based dynamic texture algorithm

Here we review the basic dynamic texture model that will later be adapted to optical flow. Doretto
et al. [11] introduced a statistical model to artificially synthesize time-dependent image texture for
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a sequence of images {Ik | k ∈ N} by employing a dynamic model of the type:{
ξk+1 = Aξk + qk

Ik = Cξk + rk

qk ∼ N (0, Q)
rk ∼ N (0, R)

k ∈ N, (5)

where ξk ∈ Rn is a low-dimensional state whose temporal evolution is determined by the first linear
equation, while Ik ∈ Rm is the observed image (with m = m1m2 for m1 ×m2 images). When the
texture has a high degree of spatiotemporal redundancy, the state ξ, which somehow summarizes
the texture and its evolution, has a much lower dimension than the actual image, so n � m.
In the above equations qk and rk, k ∈ N, are independent, additive, white Gaussian noise terms
with constant covariance matrices Q ∈ Rn×n and R ∈ Rm×m; A ∈ Rn×n and C ∈ Rm×n are also
constant.

The problem of system identification consists in estimating the model parameters A, C, Q, R
and the initial state ξ1 that “best fit” the measurements {I1, . . . , Iτ}, with τ ≥ n, in a way that we
shall specify shortly. First of all note that such problem does not have a unique solution since there
are infinitely many matrices that give rise to the same sample path (this is easily seen by choosing
an arbitrary M ∈ GLn(R), i.e. a real invertible n× n matrix, and considering a new system of the
type (5) where A, C, Q, R and the initial state ξ1 are substituted by MAM−1, CM−1, MQM−1,
RM−1 and Mξ1, respectively; for a given realization of the Gaussian noise terms {qk} and {rk} the
two dynamical systems generate the same data sequence {Ik}). Ideally, one would want to solve
the following maximum likelihood problem: given measurements {I1, . . . , Iτ} (training sequence),
with τ � n, compute the estimates(

Â, Ĉ, Q̂, R̂, ξ̂1

)
:= arg max

A,C,Q,R,ξ1
p(I1, . . . , Iτ ), (6)

where p is the joint probability distribution of the first τ measurements that is induced by the
model (5). However, given the high dimension of the measurements {Ik}τk=1, for computational
reasons it is not practical to use the known asymptotically optimal methods for systems identifi-
cation, such as [26, 39, 44]. We instead implement the technique described in [11], which is briefly
summarized below; it is a fast and efficient algorithm that provides a sub-optimal solution to (6).

Summary of the algorithm. We will make the following assumptions on the matrix C ∈ Rm×n:

rank(C) = n and CTC = In (7)

where the superscript T indicates transposition and In is the n×n identity matrix, so we assume that
the columns of C are linearly independent and orthonormal; this condition results in an essentially
unique solution for the identification criterion that we consider below.

Consider the three matrices:

Iτ1 := [I1, I2, . . . , Iτ ] ∈ Rm×τ , ξτ1 := [ξ1, ξ2, . . . , ξτ ] ∈ Rn×τ , rτ1 := [r1, r2, . . . , rτ ] ∈ Rm×τ .

Note that by (5) we have that Iτ1 = Cξτ1 +rτ1 . Now let Iτ1 = UΣV T be the Singular Value Decompo-
sition (SVD) [19] of the matrix Iτ1 , where U ∈ Rm×m, V ∈ Rτ×τ , with UTU = Im and V TV = Iτ ;
the matrix Σ ∈ Rm×τ is diagonal and its diagonal elements {σi | i = 1, . . . ,min(m, τ)}, known as
the singular values of Iτ1 , are real and non-negative. We remind the reader that the Frobenius inner
product of two equally sized matrices G and H is 〈G,H〉F :=

∑
i,j GijHij = trace(GTH); it induces

a norm that we shall indicate with ‖·‖F . We now consider the best estimates of the matrix C and ξτ1
with respect to the Frobenius norm,

(
Ĉ(τ), ξ̂τ1

)
:= arg minC, ξτ

1
‖rτ1‖F = arg minC, ξτ

1
‖Iτ1 − Cξτ1‖F ; it

follows from the fixed rank approximation property [19] that

Ĉ(τ) = first n columns of U and ξ̂τ1 = first n rows of ΣV .

5



We write the matrix ξ̂τ1 ∈ Rn×τ as ξ̂τ1 = [ξ̂1, ξ̂2, . . . , ξ̂τ ]. As far as the “system matrix” A ∈ Rn×n

is concerned, we take Â(τ) := arg minA
∥∥ξ̂τ2 − Aξ̂τ−1

1

∥∥
F

, where ξ̂τ2 := [ξ̂2, . . . , ξ̂τ ] ∈ Rn×(τ−1); this
estimate can be expressed in closed form as

Â(τ) = ξ̂τ2
(
ξ̂τ−1

1

)+
,

where + indicates the pseudoinverse matrix. Finally, the covariance matrix Q can be estimated as

Q̂(τ) := 1
τ−2

∑τ−1
k=1

[
ξ̂k+1 − Â(τ)ξ̂k

][
ξ̂k+1 − Â(τ)ξ̂k

]T
.

The covariance matrix R can be estimated in a similar fashion; however, due to its large size
(m×m), this is rarely calculated.

We refer the reader to [11] (which also includes Matlab code for identifying the system pa-
rameters) for more details. We shall just observe that the condition (7) makes the estimate for C
uniquely determined up to a change of sign of C and ξ, and a permutation of the columns of C
and the corresponding dimensions of the state space. Note, however, that it is common to order
the columns of U , and therefore those of C, according to descending order of the corresponding
singular values in Σ; in addition any change of basis in the state space has in fact no influence on the
output of the system. Also, the realization of the dynamical system that is obtained by imposing
the orthonormality of the columns of C is “balanced”, in that it has reduced numerical sensitivity
in identification and synthesis. Last, but not least, the sequence Îk := Ĉ(τ)ξ̂k, k = 1, . . . , τ can be
interpreted as a denoised version of the original training sequence.

Remark. The values taken by a grayscale image are nonnegative, whence for computational reasons
one normally does not implement the above procedure for the actual image sequence but rather
from its deviation for the temporal mean I(x) := 1

τ

∑τ
k=1 Ik(x), x ∈ Ω, i.e. one writes δIk(x) :=

Ik(x)− I(x), x ∈ Ω and considers δIk as the output of the dynamical system (5).

3.2 Adaptation of dynamic texture model to optical flow

The dynamic model described above can be used to create a (once again, purely statistical) temporal
model for the evolution of optical flow Wk, k ∈ N, by treating it as the output of a similar system:{

ξk+1 = Aξk + qk

Wk = Cξk + rk

qk ∼ N (0, Q)
rk ∼ N (0, R)

k ∈ N, (8)

where ξk ∈ Rn, Wk ∈ R2m (m = m1m2 for m1 × m2 images, and 2m � n), A ∈ Rn×n and
C ∈ R2m×n. Once again qk ∼ N (0, Q), with Q ∈ Rn×n and rk ∼ N (0, R), with R ∈ Rm×m. The
vector Wk may be written by stacking the two m-dimensional vectors W 1

k and W 2
k , that respectively

represent the first and second dimensions of the motion field. In formulas, we write

Wk =
[
W 1
k

W 2
k

]
=
[
C1

C2

]
ξk + rk (9)

where matrices C1 and C2 are both in Rm×n. We remind the reader that the optical flow that we
are considering is calculated between a fixed image and the video sequence, as illustrated in Figure 3
(and not between subsequent frames in the sequence), so to model the warping from turbulence.

In principle, once the parameters have been identified, the system (8) can be treated as a
dynamic model for the evolution of the flow {W1, . . . ,Wτ} for a particular training sequence of
images {I1, . . . , Iτ}. However a problem arises in the identification of the model parameters, in
that once a training sequence of images has been fixed, the “true” sequence of flows W1, . . .Wτ

that generates such images is not known because the original image ρ is not known either (in fact,
estimating ρ and the sequence of flows is the goal of this paper). But a training sequence must
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Figure 4: (a) The centroid in Euclidean space. (b) −→p1c (thick) is obtained by averaging vectors −−→p1pi
(thin). (c) The “correction” −→qc (thick) is obtained by averaging vectors −→qpi (thin).

be chosen in order to identify the system parameters A, C, Q, R, and ξτ1 . A way to proceed
is to consider some estimate ρ̃ of the blurred true image Kρ and recover the sequence of optical
flows from such estimate and the actual data {I1, . . . , Iτ}; then this estimated sequence of optical
flows can be used to identify the system parameters of (8) using the dynamic texture techniques
summarized in §3.1. For example, the temporal mean I(x) := 1

τ

∑τ
k=1 Ik(x), x ∈ Ω could be used

for ρ̃. The temporal mean is often used as an initial estimate for the original image ρ in most of the
algorithms that have been proposed to solve the turbulence problem; however, it is very blurry and
consequently the estimated optical flows can be conspicuously inaccurate. A better choice for ρ̃ is
what we call the centroid , described below.

The centroid. In Euclidean geometry the centroid of a set of points {p1, . . . , pN} whose
coordinates are known is given by c = 1

N

∑N
i=1 pi; see Figure 4(a). If only the positions of the

points with respect to one of them, e.g. without loss of generality p1, are known, i.e. if only vectors
−−→p1pi, i = 2, . . . N are known, then we can still compute the position of c with respect to p1 as

−→p1c =
1
N

∑
i 6=1

−−→p1pi , (10)

as illustrated in Figure 4(b). It is immediate to verify that
∑N

i=1
−→cpi = 0, and that −→qc = 1

N

∑N
i=1
−→qpi

for any other point q; see Figure 4(c). These elementary considerations lead to the following idea.
Suppose we want to compute the “centroid” of the set of N images {Ii(x), x ∈ Ω}1≤i≤N . Thinking
of them as “points” and of the optical flow between two images as a “vector” between them, we can
compute the optical flow between the reference image I1 and the rest of them, i.e. the N “vectors”−−→
I1Ii(x), x ∈ Ω, i = 1, . . . , N ; so, treating optical flow as an element of a linear space, we compute
the average flow

−→
I1c using equation (10) and then we warp I1 via the flow

−→
I1c to finally get the

“centroid” image c of the data set.
Iterative scheme. Note however that in the case of images the procedure is not exact since

in reality images are not points in an Euclidean space and one cannot be exactly deformed into the
other by warping it via optical flow; in particular note that if turbulence causes features to be “lost”
in I1 they will not appear in c either. Therefore the resulting c will actually depend on the choice of
the initial starting image, and in fact

∑N
i=1

−→
cIi will not be equal to zero. To partially correct this the

following iterative scheme can be implemented: (1) a first estimate of the centroid is computed with
the procedure described above, and we shall call this q; (2) the correction flow −→qc := 1

N

∑N
i=1
−→qpi is

calculated (see Figure 4(c)) and a new estimate of the centroid image c is computed by warping q
via the optical flow −→qc; (3) the previous step is repeated until convergence. Such procedure is similar
to the one employed by Pennec [33] for computing the Fréchet (or intrinsic) mean of a distribution
of points (or a probability density) on a curved manifold.

Figure 5 compares the temporal mean of a detail of the original image sequence with the centroid
computed with respect to the first frame; optical flows were computed via a modern implementa-
tion of the Horn-Schunck algorithm [22] (which has the advantage of being computationally fast;
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(a) (b)

Figure 5: Comparison: (a) the temporal mean and (b) the centroid of a set of images, both computed
using the first 200 samples of the sequence and, in the case of (b), 5 iterations of the scheme.
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268

Figure 6: Three non-consecutive realizations of the synthesized flow (top), and the corresponding
frames obtained by warping the centroid (bottom). For this example, n = 50 and τ = 200.

other methods, such as Black & Anandan [5], produce sharper flows, which are not necessarily ap-
propriate for modeling optical turbulence). On the other hand, warping was performed by bicubic
interpolation. Both the temporal mean and the centroid were computed using the first 200 frames
of the sequence. In the case of the centroid, the iteration described above was repeated 5 times
and yielded a result that is much better than the one obtained after the first iteration. Note that
the edges are evidently straightened in both pictures when compared to those in Figure 1(b), but
the centroid is considerably sharper than the temporal mean.

Identification and simulation. After the centroid is computed, it can be used as an initial
estimate ρ̃ of the image Kρ and the optical flowsW :=

{
W̃1, . . . , W̃τ

}
between ρ̃ and {I1, . . . , Iτ} can

be estimated; once this is done, the estimated flowsW can be used to identify the parameters A, C,
Q, R, and ξ0 of the dynamical system (8). At this point the flow can be simulated (i.e. synthetized)
by generating numerically the Gaussian random sequence qk ∼ N (0, Q), k ∈ N and inserting it into
the first equation of the dynamical system (8). The resulting sequence of flows Ŵk := Cξk, k ∈ N
(whose first τ samples may be viewed as a denoised version of the training sequence of flows W)
can then be used to warp the centroid ρ̃ so to visualize the resulting (synthetic) turbulent images:

Isynth
k := ρ̃ ◦ ŵ−1

k , k ∈ N with ŵk(x) := x+ Ŵk(x), x ∈ Ω;

the results are illustrated in Figure 6 for n = 50, τ = 200.
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(a) (b) (c) (d) (e)
n = 50, τ = 50 n = 50, τ = 100 n = 50, τ = 200 n = 50, τ = 500 n = 50, τ = 1000

(f) (g) (h) (i) (j)
n = 200, τ = 200 n = 200, τ = 300 n = 200, τ = 500 n = 200, τ = 600 n = 200, τ = 1000

Figure 7: The eigenvalues of Â(τ) in ten cases. The circle represents the complex curve |z| = 1.

Finally, Figure 7 compares the eigenvalues of the identified matrix Â(τ) in (8) for n = 50 (size
of the hidden state ξk) and different values of τ (length of the training sequence). In case (a), with
n = τ = 50, the training sequence is too short to effectively learn the parameters of the system.
As a consequence the eigenvalues of Â(τ) lie on the complex unit circle, which is typical of periodic
systems: that is, the synthesized sequence of flows is an almost exact copy of the training sequence,
repeated indefinitely (i.e. we are overfitting the data); still, the similarity between the two suggests
that the spatial redundancy within a frame is high enough that the chosen state dimension n = 50
is enough to effectively describe the flow on the entire image domain. Moreover, the time evolution
is well captured by a linear dynamic model. However, in order to obtain a more statistically
significant dynamic model the length of the training sequence must be increased: cases (b), (c),
(d) and (e) have τ = 100, τ = 200, τ = 500 and τ = 1000 respectively (while keeping n = 50)
and it is apparent that the resulting identified systems are considerably slower than case (a), as
the eigenvalues are closer to the point z = 1. Also note that the eigenvalue locations seem to
converge as τ increases, which confirms our stationarity assumptions for the time evolution of the
flow: for our particular sequence convergence is achieved around τ = 500 (for n = 50). Warping
the centroid by the synthesized sequence of flows resulting from case (e) yields an image sequence
that is perhaps less “visually appealing” than the one resulting from case (a), in that it is slower
and not as reminiscent of the training sequence, but the model identified using a longer training
sequence is in fact more statistically significant and reliable for prediction purposes. Another set
of eigenvalues is shown for n = 200 and five different values of τ in Figures 7(f)–(j): convergence
once again occurs around τ = 500.

Figure 8 shows precisely the (one-step) predictive power of our model. We used the first τ = 500
samples to compute the centroid ρ̃ and to identify the system parameters Â(τ), Ĉ(τ), Q̂(τ), and ξ̂τ1
for the system (8); parts (a) and (b) show, respectively, the actual frame I501 and the “predicted”
image Î501, computed by setting ξ̂501 := Aξ̂500, Ŵ501 := Cξ̂501 and by warping the centroid ρ̃ via
such flow. Note that since all the eigenvalues of Â(τ) lie inside the complex unit circle it is the case
that Â(τ)k → 0 for k →∞, so ξ̂τ+k := Â(τ)kξ̂τ ' 0 and Ŵτ+k := Cξ̂τ+k ' 0 for large k, therefore
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(a) (b)

Figure 8: (a) The original frame I501. (b) The one-step prediction Î501 (with n = 100).

the estimate Îτ+k is given by the centroid itself. However it is apparent from Figure 8 that our
model is effective in terms of one-step prediction, which we will use in the next section.

Remark. Instead of using a physical dynamical model for turbulence we have introduced a purely
statistical one that has the further advantage of being linear, whence easily implementable for
computational purposes. Furthermore one should note that the parameters can be quickly re-
calibrated to changing atmospheric conditions using a new training sample of images within a
short time window; while we did not implement this, it could be done, for example, using the
online dynamic texture estimation algorithm with exponential decaying weights described in [9].

4 Global dynamical model, and Kalman filtering

In the previous section we have introduced a statistical dynamic model for turbulence that can be
used (in principle, in conjunction with any of the known methods) for the recovery of the underlying
static image. Perhaps the simplest scheme to employ with such dynamic model is the Kalman filter
(KF) [23]. The problem that we are now addressing is in fact the recovery of the blurry version Kρ
of the original image: so we can augment the state in (8) by adding the image Kρ and treating it
as a hidden constant with respect to time, to be estimated (in the remainder of this section we will
drop the “K” for notational convenience). The resulting global dynamical system, that describes
the time evolution of both the image and the optical flows {Wk} and the generation of the data {Ik}
(refer to Figure 3), can be written as:

ρk+1 = ρk + sk rk ∼ N (0, S) (11a)
ξk+1 = Aξk + qk qk ∼ N (0, Q) k ∈ N (11b)

Ik = ρk ◦ w−1
k (11c)

where wk(x) = x + Wk(x), x ∈ Ω ⊂ R2 and, by virtue of the second of equations (8), Wk = Cξk.
Once again, the state ξk ∈ Rn is a low-dimensional representation of the optical flow Wk ∈ R2m, and
matrices A ∈ Rn×n and C ∈ R2m×n are the ones identified by the procedure described previously:
they are in fact Â(τ) and Ĉ(τ) from §3.2. Also, sk and qk are independent, white, Gaussian additive
noise terms, and it the case that Q := Q̂(τ) from §3.2. Note that the additive noise sk in (11a) will
allow the estimate of ρ to drift away from the value it is initially assigned.

We call (11a) and (11b) state equations and (11c) measurement equation; the joint state sequence
{(ρk, ξk)}k∈N is hidden whereas all we measure is the data sequence {Ik}k∈N. As we shall soon see
in detail we cannot apply directly the equations of the Kalman filter for estimating the hidden
state. In fact on the right-hand side of the measurement equation (11c) we have both the image ρk
and the flow wk (which is a function of the state ξk via Wk = Cξk), but the equation is not linear
in the joint state (ρk, ξk). In fact it is linear in ρk (for fixed ξk) and not in the flow. So we will
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have to apply an alternate estimation (AE) procedure at each measurement update, as explained
in detail later. We define the estimates/error covariance matrix pairs:

ρ̂j|k := E
[
ρj |I1 . . . , Ik

]
, Σj|k := Var

[
ρj |I1 . . . , Ik

]
,

ξ̂j|k := E
[
ξj |I1 . . . , Ik

]
, Pj|k := Var

[
ξj |I1 . . . , Ik

]
.

where E and Var are the symbols for expectation and covariance, respectively. Note that Wk is
also an unknown of the problem, so we can consider the estimate Ŵj|k := E

[
Wj |I1 . . . , Ik

]
and

the corresponding error covariance matrix Θj|k := Var
[
Wj |I1 . . . , Ik

]
. However we can completely

describe the estimates of Wj by the estimates of ξj , in fact Ŵj|k = Cξ̂j|k and Θj|k := CPj|kC
T .

The Time Update (TU) equations, or prediction equations, are straightforward:

ρ̂k+1|k = ρ̂k|k (12a)

ξ̂k+1|k = Aξ̂k|k (12b)

Σk+1|k = Σk|k + S (12c)

Pk+1|k = APk|kA
T +Q (12d)

where S = E[sksTk ] and Q = E[qkqTk ] are the covariance matrices introduced in (11a) and (11b).

Measurement Update (MU) equations for ρ. Note that the mapping ρ 7→ ρ◦w−1 (for fixed w)
is linear in ρ, so we could directly apply the equations of the Kalman filter. However since such
mapping is represented by a very large matrix (m×m, with m = m1m2), for computational reasons
it is convenient to rewrite the measurement equation (11c) as:

Ik ◦ wk = ρk + ζk (13)

where ζk is Gaussian, white, zero-mean additive noise with E[ζkζTk ] = Z > 0. Assuming that we
know wk+1|k+1 (more on this issue below) the measurement update equations for ρ are simply:

ρ̂k+1|k+1 = ρ̂k+1|k + Lk+1(Ik+1 ◦ ŵk+1|k+1 − ρ̂k+1|k), (14)

Σk+1|k+1 = (I − Lk+1)Σk+1|k,

where Lk+1 = Σk+1|k(Σk+1|k + Z)−1

is the Kalman gain. Note that in equation (14) we need the estimate ŵk+1|k+1, i.e. Ŵk+1|k+1 :=
E
[
Wk+1|I1 . . . , Ik+1

]
= Cξ̂k+1|k+1, but as we anticipated above we do not have ξ̂k+1|k+1 at our

disposal yet. So we may use ξ̂k+1|k from the time update equation (12b); in the next step (mea-
surement update for ξ) we will use the value of ρ̂k+1|k+1 from (14) to compute ξ̂k+1|k+1, and we
shall then iterate the process.

Measurement Update (MU) equations for ξ. We now assume that ρ̂k+1|k+1, computed with
the procedure described above, is known. Whence the most natural way of performing the mea-
surement update for ξ is to consider the following linear measurement equation instead of (11c):

Wmeas
k = Cξk + rk, rk ∼ N (0, R), (15)

which is precisely the second of equations (8), where C and R are the the matrices computed in the
identification step described in §3.2, while Wmeas

k is the measured optical flow between ρ̂k|k (assumed
known) and Ik (data): that is, Ik = ρ̂k|k ◦ (wmeas

k )−1, with wmeas
k (x) = x+Wmeas

k (x), x ∈ Ω. Such
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flow can again be computed via a modern inplementation of the Horn-Schunck algorithm [22]. So
the measurement update equations for ξ are simply:

ξ̂k+1|k+1 = ξ̂k+1|k +Mk+1(Wmeas
k+1 − Cξ̂k+1|k)

Pk+1|k+1 = (I −Mk+1C)Pk+1|k

where the Kalman gain is given by

Mk+1 = Pk+1|kC
T (CPk+1|kC

T +R)−1, (16)

or: Mk+1 = (CTR−1C + P−1
k+1|k)

−1CTR−1 (17)

where we have applied the Matrix Inversion Lemma [23] (under the assumption that Pk+1|k > 0).
Note that (17) is more convenient to use than (16) because (17) involves the inversion of two n×n
matrix, while (16) involves the inversion of an m×m matrix, with m = m1m2 � n. The inversion
of the m ×m matrix R is performed, offline, only once; however, for computational purposes, it
may be convenient to use instead a diagonal matrix R with equal diagonal elements.

Remark (Measurement Update via an Alternating Estimation (AE) scheme). As noted
before, the measurement equation (11c) is not linear in the joint state (ρk, ξk) therefore we employ
an alternate estimation scheme. However, as we said above in order to compute ξ̂k+1|k+1 in prin-
ciple one needs ρ̂k+1|k+1, and vice versa. A reasonable procedure is to alternate between the two
measurement updates for ρ (for ξ fixed) and ξ (for ρ fixed), by using ξ̂k+1|k instead of ξ̂k+1|k+1 at
the first step. In detail, for a fixed k:

1. Perform the TU (time update) by equations (12a)–(12d).
2. Use ξ̂k+1|k instead of ξ̂k+1|k+1 in the MU equations for ρ to compute ρ̂k+1|k+1 and Σk+1|k+1.
3. Use ρ̂k+1|k+1 in the MU equations for ξ to compute ξ̂k+1|k+1 and Pk+1|k+1.
4. Use ξ̂k+1|k+1 in the MU equations for ρ to compute ρ̂k+1|k+1 and Σk+1|k+1.
5. Go to step 3 and iterate.

Note that the iteration should be repeated a fixed number of times and not until convergence,
because otherwise ρ̂k+1|k+1 will converge to the current measurement Ik+1, and ξ̂k+1|k+1 to zero. In
our implementation steps 3 and 4 are repeated twice at each Kalman iteration. Also, the Kalman
gain and Σj|k, S and Z (which are all m×m matrices, with m = m1m2 � n) are treated as scalars
for computational reasons.

As far as other practical details of the implementation are concerned, if we have a sequence of N
images {Ik}Nk=1 at our disposal we may use the first τ samples {Ik}τk=1 as the training sequence
for computing the centroid and estimating the the parameters of the dynamical system (8). The
remaining data {Ik}Nk=τ+1 can instead be used to run the Kalman filter-based scheme described
above, using the centroid as initial estimate for ρ. By its own formulation, Kalman filtering at
the kth step minimizes a mean square error, so the scheme yields a blurry image ρ̂N |N , i.e. an
estimate for the function Kρ introduced at the end of §2, since no regularization is imposed by the
Kalman filtering. It is actually relevant at this stage to work with images that are still blurry, since
this helps the estimation of optical flow needed for the measurement update of ξ. The blur in the
resulting estimate ρ̂N |N turns out to be relatively space-invariant (isoplanatic), and a deconvolution
algorithm can be applied; this final step is precisely described in the next section.

5 Deblurring via nonlocal Total Variation deconvolution

We are now left with the problem of deblurring an image with space-invariant blurring kernel;
in this section we briefly describe the problem and summarize our method of choice. Given an
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unknown image u : Ω → R and an convolution kernel k : Ω → R (also referred to as point spread
function, or PSF) the well-known deconvolution problem is the one of recovering u from the data:

f := k ∗ u+ n (18)

where ∗ is the symbol for convolution and n is additive noise. The problem is ill-posed since the
convolution operation typically causes the irremediable loss of the higher frequencies of u. So in
order to make the solution to the problem unique one needs to restrict the search of u to a smaller
function space. One way to proceed is to define the solution û of the deconvolution problem as

û = arg min
u

{∫
Ω

(f − k ∗ u)2dx+ µ

∫
Ω
U(u,∇u) dx

}
, (19)

for some function U of u and its gradient. The first term is the data-dependent term while the
second is the regularization term, and the constant µ > 0 is the regularization parameter .

Two common choices for the function U are the following. Once can choose U(u,∇u) = u2,
i.e. impose an L2 regularization term [43]; the Euler-Lagrange equation is: k∗ ∗ (k ∗u−f)+µu = 0,
where k∗(x) := k(−x), x ∈ Ω is the adjoint of the kernel. Instead, one can use an H1 semi-norm
regularization term [1], i.e. choose U(u,∇u) = ‖∇u‖2; in this case, which is also referred to as
Wiener filtering, the Euler-Lagrange equation is the PDE: k∗ ∗ (k ∗ u − f) − µ∆u = 0, where ∆u
is the Laplacian of u. Both methods thus lead to linear equations and it is possible to employ the
FFT to solve them in one step in the frequency domain. However, to compensate for the noise a
large regularization parameter µ must be used, which causes the edges of û to be smeared out.

To circumvent this problem Rudin, Osher and Fatemi [37] proposed the Total Variation (TV)
functional of u as regularizing term. Applying variational techniques to

Fλ,µ[u] :=
λ

2

∫
Ω

(f − k ∗ u)2dx+ µ

∫
Ω
‖∇u‖ dx

one finds that its local minimizers may be computed by gradient descent with the nonlinear PDE

∂u

∂t
= λ k∗ ∗ (f − k ∗ u) + µdiv

(
∇u
‖∇u‖

)
, (20)

with Neumann boundary condition ∂u
∂n = 0 on ∂Ω. Methods for implementing (20) are described,

for example, in [8, 18]; this produces denoised images with sharp edges and low-gradient regions.
An evolution of the above scheme is the so-called nonlocal version of Total Variation deconvo-

lution (NL-TV) where one restores pixel patches by using information from others that are similar;
see [15, 27]. This is particularly effective when image structures (edges, lines, corners, etc.) are
repeated several times within the same image, as it is the case on the board in part (b) of Fig-
ure 1. Given the data f(x), x ∈ Ω in model (18), first one considers a nonnegative, symmetric
weight function wf (x, y), (x, y) ∈ Ω2, with the property that wf (x, y) ' 1 when the patches around
locations x and y are similar and wf (x, y) ' 0 otherwise. For example one can choose (as in [6, 7]):

wf (x, y) := exp
{
−
(
Ga ∗ |f(x+ ·)− f(y + ·)|

)
(0)

h2

}
, (21)

where Ga is a Gaussian kernel with standard deviation a and h is a filtering parameter; normally h
is set to be the standard deviation of the noise in (18). The nonlocal derivative (for a fixed y ∈ Ω)
and gradient of a function u ∈ L2(Ω,R) are defined, respectively, as:

∂yu : Ω→ R, with (∂yu)(x) := [u(y)− u(x)]
√
w(x, y),

∇wu : Ω× Ω→ R, with (∇wu)(x, y) := ∂yu(x).
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Figure 9: Flow chart of the algorithm.

Also, given a function v ∈ L2(Ω2,R) we can define its nonlocal divergence divwv ∈ L2(Ω,R) as
the dual of the nonlocal gradient with respect to the L2 inner product, that is, by definition:
〈divwv, u〉L2(Ω,R) = −〈v,∇wu〉L2(Ω2,R); it is the case [15] that this definition leads to the expression

(divwv)(x) =
∫

Ω

[
v(x, y)− v(y, x)

]√
w(x, y) dy, x ∈ Ω.

Finally, the dot product of two functions v1, v2 ∈ L2(Ω2,R) is (v1 · v2)(x) :=
∫

Ω v1(x, y) v2(x, y) dy,
x ∈ Ω, and the square magnitude of v1 is simply |v1|2(x) := (v1 · v1)(x), x ∈ Ω.

With the above calculus the NL-TV functional of a function u ∈ L2(Ω,R) is defined as

J [u] :=
∫

Ω
|∇wu|(x) dx =

∫
Ω

√∫
Ω

[u(x)− u(y)]2wf (x, y) dy dx.

One can show [15] that a minimizer of the functional Eλ,µ[u] := λ
2

∫
Ω(f − k ∗ u)2 dx + µJ [u], for

fixed values of parameters λ, µ ∈ R, is a steady state solution of the partial differential equation

ut = λ k∗ ∗ (f − k ∗ u)− µL[u], (22)

where L[u] :=− divw

(
∇wu
|∇wu|

)
= −

∫
Ω

[
u(y)− u(x)

]( 1
|∇wu|(x)

+
1

|∇wu|(y)

)
w(x, y) dy,

which is obtained by computing the first variation of J [u]. Note that the PDE (22) is formally
similar to (20), except that the divergence term is substituted by its nonlocal version. Note that
the regularizing term J and the corresponding gradient term L also depend on the data f . We
used precisely NL-TV deconvolution to sharpen the blurry image ρ̂N |N provided by the Kalman
filter. More implementation details, as well as our final results, are discussed in the next section.

6 Numerical results

Our image recovery algorithm is summarized in Figure 9. First of all a training sequence I1, . . . , Iτ
is used for computing the centroid. The centroid and the training sequence itself are employed
to compute an estimate of the sequence of motion fields that generate the data, i.e. the optical
flows W̃1, . . . , W̃τ between the centroid ρ̃ and the data I1, . . . , Iτ . Following this, such sequence
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(a) (b) (c)

Figure 10: Comparison between: (a) the centroid of the first 100 images; (b) the blurry image
produced by 200 iterations of Kalman filtering (with n = 50); and (c) the image resulting from
NL-TV deconvolution.

of motion fields is used to identify the parameters of the dynamical system (8), which models the
time evolution of turbulence, by following the procedure of §3.2. A Kalman filter is then applied to
the “global” dynamical system (11), with the parameters identified at the previous step and using
the centroid ρ̃ and ξ̂τ as initial estimates for ρ and ξ. For the reasons discussed in §4 an alternate
estimation (AE) scheme must be employed at each measurement update step. This produces a
blurry image where the kernel is approximately space-invariant. Finally, an NL-TV deconvolution
scheme is employed for deblurring. We should note that the NL-TV implementation that we are
using is, for the time being, non-blind: we assume that the blurring Kernel is Gaussian, with a
hand-picked standard deviation.

Figure 10 shows the result of our algorithm with the intermediate steps, i.e. the centroid and the
blurry image produced by the Kalman filtering procedure. We used a training sequence of τ = 200
images {I1, . . . , Iτ}, fixed the dimension of the dynamical system (8) at n = 50 and used a data
sequence of 200 images to perform the Kalman filtering. The standard deviation of the Gaussian
blurring kernel used in the NL-TV algorithm was hand-picked at 1.5, as it yielded the crispest
result. The final result is better than then one obtained by simply applying NL-TV directly to the
temporal mean, or the centroid: this is especially apparent when analyzing the smaller features of
the recovered images. In Figure 11 the first image lacks details and sharpness. The second one
has excessive contrast between the horizontal bars, which is an artifact that typically arises in the
application of a deblurring algorithm to an image with anisoplanatic (i.e. non-space-invariant) blur.
This does not occur in the third image, indicating that the Kalman filter produces an image with
blur that is essentially isoplanatic.

Mean + NL-TV Centroid + NL-TV KF + NL-TV

Figure 11: Comparison of the images resulting from applying NL-TV to the temporal mean (of 100
samples), the centroid (also computed with 100 samples), and the Kalman filter output.

Figure 12 illustrates the raw data, intermediate steps and final results yielded by our scheme
for three image sequences of the same scene taken at different times of the day, therefore with
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(i) (ii) (iii)

(F)

(E)

(D)

(C)

(B)

(A)

Figure 12: From raw data to recovered images for three sequences: (A) a complete frame in the
original sequence; (B) detail; (C) temporal mean (never used); (D) centroid; (E) Kalman Filter
output; (F) NL-TV output.
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(a) (b) (c)

Figure 13: Comparison between the final results yielded by: (a) the Lucky region fusion (LRF)
approach; (b) the PCA method; and (c) our algorithm.

different temperature, pressure, humidity, wind, and lighting conditions. Sequence (i), on the left,
was taken in the morning and in fact is the one that we have considered so far in this paper.
Sequence (ii) is taken in the evening and is characterized by an intermediate level of turbulence,
with a higher blur, as apparent from Figure (B)-(ii), lower contrast, and lower luminance; note
how the final result is still relatively crisp. Image sequence (iii) was taken in the afternoon and is
characterized by turbulence conditions that are so extreme that the scene is hardly visible: parts of
it are in fact completely saturated by light. Note, in this example, how the image (E)-(iii) yielded
by the Kalman filter does not have the artifacts that are present in the centroid (D)-(iii), while
having similar geometrical structure. It is also much sharper than the temporal mean (C)-(iii). As
expected the results are worse than in the previous two experiments, but some parts of the board
(such as the black circle and the thicker bars) are clearly visible after applying our recovery scheme.
As we describe next we used the same hand-picked parameters in all three experiments, except for
the standard deviation of the Gaussian kernel in NL-TV deconvolution.

Finally, in Figure 13 we compare the results yielded by two state of the art techniques and our
own method. The first image is obtained by applying the Lucky Region Fusion (LRF) method [2] to
the first 100 frames of the image sequence that we have treated throughout this paper (column (i)
of Figure 12), and we can see that while the geometry is reconstructed well the final result is
still considerably blurry. The second image in Figure 13 is yielded by the Principal Component
Analysis (PCA) technique described in [24], once again applied to the first 100 images of the same
sequence: this method also reconstructs the geometry of the underlying scene correctly, and does
a better job at deblurring than LRF does. However our method (albeit considerably slower than
the first two) yields a result, shown on the right, that is considerably sharper.

Free parameters, and computational complexity. Throughout the algorithm there is
a number of hand-tuned parameters which we summarize here, pointing out those to which our
approach is most sensitive.

(1) Centroid computation. The parameters to choose are: the smoothness parameter to be
used in the Horn-Schunck algorithm1 for optical flow recovery, which we call α; the number τ
of images I1, . . . , Iτ to use be used in the computation of the flow (10); the number M of cycles
in the iterative scheme used to compute the centroid. In our experiments we chose α = 80,
τ = 100 and M = 5 (as long as M ≥ 4 the centroid is fairly robust with respect to the choice
of such parameters). An important choice is the reference image with respect to which the
centroid is computed (i.e. I1 in Figure 4); in fact if turbulence has eliminated certain features
from this particular frame, these will also be absent from the centroid (however, the Kalman
filter scheme will later compensate for such deficiencies by using the rest of the data). We
used bicubic interpolation to warp the images via the computed flows.

1We remind the reader that the Horn-Schunck method minimizes a data fidelity term for the flow plus (as regu-
larizing term) the H1-seminorm of the flow itself times a smoothing parameter; see [22] for details.
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(2) Computation of the training sequence {W̃k}. This is the sequence of the optical flows
between the centroid and the data set, to be used for parameter identification in the linear
system (8). One has to choose the length τ of the training sequence and, once again, the
smoothing parameter α for the computation of such optical flows. In our experiments τ is
in the 100-400 range, and α = 80 as above. Again, the results are not very sensitive to the
choice of such parameters.

(3) LDS parameters identification. For this task one chooses the dimension n of the internal
state ξ of the system (8), with n < τ . In our experiments n is in the 50-200 range.

(4) Kalman Filter. The two parameters that have to be chosen for the Kalman Filter are Z
and R, the noise variance values in the measurement equations (13) (for ρ) and (15) (for ξ),
respectively. In our experiments we have chosen Z = 5000 and R = 50, so to allow ρ to
evolve from its initial value (which is the centroid). The KF scheme also computes, at each
step, one or more optical flow estimates between pairs of images, depending on how many
alternative estimation (AE) cycles we decide to run at each step (in our experiments, it is
two): the smoothness parameter α is fixed at 80, as above.

(5) NLTV. First of all, the weight wf defined in (21) must be computed from the Kalman filter
output. This is normally done by pre-processing the data with the Wiener filter, i.e. (19)
with U(u,∇u) = ‖∇u‖2, in order to enhance edges and thus impose a structure to the
NL-TV estimate (through the weight function wf ): the parameter µ in (19) is computed
automatically (so to make the H1 seminorms of f and û the same). Two parameters that are
hand-picked are the size of the patch and the size of the search window for the construction
of wf . Last, the weights in the NL-TV functional must be chosen, as well as the variance of
the Gaussian kernel used in the deconvolution. Of all the parameters listed here the latter is
by far the most important one, as it is normally the case in deconvolution problems.

As far as computational complexity is concerned, most parts of the algorithm run in real-time except
for those involving the estimation of optical flow: for two 90 × 130 images, the such computation
takes about 3.7 seconds using Matlab on a MacBook equipped with a 2.4 GHz Intel Core 2 Duo
processor. This makes the computations in (1), (2) and (4) the most burdensome parts of the
scheme. Another computationally expensive part of the algorithm is the calculation of the weight
function employed by the NL-TV scheme, though this has to be done only once.

7 Conclusions and future work

In this paper we have proposed a statistical method for modeling the time evolution of turbulence
caused by atmospheric conditions (i.e. the combined effects of temperature, pressure, humidity,
wind and lighting conditions, together with other artifacts introduced by the image capturing device
itself); we believe this is an innovation that was not yet attempted in the existing literature. We did
so by fitting the parameters of a low-dimensional linear dynamical system, by adapting a dynamic
texture algorithm to the evolution of optical flow. We have then used such model to formulate
a method for solving the problem of recovering an image affected by ground-level turbulence by
using a Kalman filter scheme (with alternate estimation sub-steps for the measurement update
equations) that produces an image with quasi-isoplanatic blur. Finally, a nonlocal Total variation
deconvolution scheme yields a sharp estimate of the original image.

We should point out that there are situations when the proposed method does not work: namely,
those where a linear system of the type (8) cannot model effectively the turbulence phenomenon.
This may happen for any of the following reasons, possibly combined: turbulence is not stationary in
time and does not follow a coherent pattern; the optical flow does not have the spatial redundancy
prerequisites for being described by a low-dimensional state; last, but certainly not least, the
training sequence (i.e. the available data) is too short to correctly identify the parameters, especially
when a larger state dimension is needed.
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However when the conditions are such that the linear system does describe the data well, we have
a computationally tractable model that can be used for image recovery. The model’s parameters
can be fitted efficiently and in fact can be quickly re-calibrated to changing atmospheric conditions;
the estimate for the blurry version of the original image is computed by combining the prediction
provided by the model and the actual data, using appropriate weights. In fact, while the temporal
model that we use is especially suited for Kalman filter-based image estimation, one could explore
the possibility of using it conjunction with other recovery methods such as those that we described
in the introduction. Future work directions include but are not limited to: finding an algorithm
for the centroid computation that is robust to the choice of the reference image; incorporating the
deblurring step into the Kalman filtering scheme; considering ways to automate the choice of what
now are hand-picked parameters; and exploring the advantages of choosing different deblurring
kernels, such as those known from the optics literature (see [13, 17, 29] and references therein).
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