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Component-trees and multivalued images:
Structural properties

Nicolas Passat, Benoı̂t Naegel

Abstract—Component-trees model the structure of grey-level
images by considering their binary level-sets obtained from
successive thresholdings. They also enable to define anti-extensive
filtering procedures for such images. In order to extend this
image processing approach to any (grey-level or multivalued)
images, both the notion of component-tree, and its associated
filtering framework, have to be generalised. In this article we first
deal with the generalisation of the component-tree structure. We
define a new data structure, thecomponent-graph, which extends
the notion of component-tree to images taking their values in
any (partially or totally) ordered set. The component-graphs are
declined in three variants, of increasing richness and size, whose
structural properties are studied.

Index Terms—Mathematical morphology, component-tree,
multivalued images, anti-extensive filtering, component-graph.

I. I NTRODUCTION

T HE component-tree is a data structure which models
some characteristics of grey-level images by considering

their binary level-sets obtained from successive thresholding
operations. Component-trees are particularly well-suited for
the design of methods devoted to process or analyse grey-
level images, based on hypotheses related to the topology
(connectedness) and the specific intensity (local extrema)of
structures of interest. Based on these properties, component-
trees have been involved in several image processing applica-
tions, especially for filtering and segmentation.

The success of component-trees in the field of grey-level
image processing, together with the increasing need for appli-
cations involving multivalued images, justify their extension
to the case of such images, which do not take their values in
totally ordered sets, but in any (partially or totally) ordered
ones. In particular, this work takes place in the context of the
extension of mathematical morphology to multivalued images.

After a preliminary study of the relations between
component-trees and multivalued images from a methodolog-
ical point of view [1], a generalisation of component-trees
to such images has been initiated in [2]. The present work
develops this framework. In particular, this article dealswith
data structure issues (algorithmic issues will be considered
in a further article). We describe a new data structure, the
component-graph, which extends the notion of component-tree
to images taking values in any ordered set. The component-
graphs are declined in three variants of increasing richness and
size. There structural properties are studied, in particular under
various hypotheses related to frequent image value spaces.

Nicolas Passat and Benoı̂t Naegel are with the Université de Stras-
bourg, LSIIT UMR CNRS 7005, Strasbourg, France (passat@unistra.fr,
b.naegel@unistra.fr).

This article is organised as follows. Section II describes the
context of this work. Section III provides notations. Section IV
gives a formal definition of the classical notion of component-
tree. Sections V–VII constitute the contribution of the article.
Section V defines the notion of component-graph. Section VI
establishes the structural links between different variants of
this notion. Section VII studies the influence of specific image
value spaces, thus leading to structural simplifications. Sec-
tion VIII summarises the principal properties of component-
graphs. Section IX concludes the article.

II. RELATED WORKS

A. Component-trees

Initially proposed in the field of statistics [3], [4], the
component-tree (also known as dendrone [5], [6], confinement
tree [7] or max-tree [8]) has been (re)defined in the framework
of mathematical morphology (see,e.g., [9]-Chapter 7, or [10])
and involved in the development of morphological operators
[11], [8].

From a methodological point of view, some efforts have
been conducted to enable the efficient computation of
component-trees [8], [12], [13]. From an applicative pointof
view, component-trees have been involved in the development
of several image processing and analysis techniques. Most of
them are devoted to filtering or segmentation [8], [14], [15],
[16], [17]. Other applications have also been considered, for
instance, image registration [7], [18], image retrieval [19],
[20], image classification [21], interactive visualisation [22],
multithresholding [23] or document binarisation [24].

In the field of filtering and segmentation, the proposed
methods have been designed to detect some structures of
interest by using information modelled by attributes [11],[25],
and stored at each node of the tree. These attributes are chosen
according to hypotheses related to the applicative context. The
subtree obtained by pruning the component-tree of the image,
with respect to these attributes, can then be used to reconstruct
a binary (segmentation) or grey-level (filtering) result.

B. Mathematical morphology and multivalued images

Mathematical morphology has been first defined on binary
images, and then on grey-level ones (see [9] for a recent
state of the art on mathematical morphology). Its extension
to multivalued (e.g., colour, multispectral, label) images is an
important task, motivated by potential applications in multiple
areas. Several contributions have been devoted to this specific
purpose (a whole state of the art is beyond the scope of this
article; see,e.g., [26] for a recent survey).
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In general, the spaces in which such images take their
values are not canonically equipped with total orders (by
opposition to the case of grey-level images), but with partial
ones. Several strategies have been considered to deal with
this issue. Except in few works (see,e.g., [27]), they intend
to split these value spaces into several totally ordered ones
(marginal processing), or to definead hoctotal order relations
on them (vectorial processing), with several variants [28], [29],
[30], [31], [32]. These approaches present the advantage of
embedding multivalued images into simpler frameworks which
authorise to process them similarly to grey-level ones, enabling
in particular to reduce the algorithmic complexity inducedby
partially ordered sets. Unfortunately, they also potentially bias
the information intrinsically carried by these –more complex
but richer– partially ordered value spaces.

In the present work, we deal with the general case ofany
(partially or totally) ordered value spaces, without attempting
to modify the order, then providing a contribution to the
extension of mathematical morphology to multivalued images,
and more especially to the one of connected filtering (see also
[33], [34] for other recent contributions on this topic).

III. N OTATIONS

The inclusion (resp. strict inclusion) relation on sets is noted
⊆ (resp.⊂). The cardinality of a setX is noted|X|. The power
set of a setX is noted2X . If P ⊆ 2X is a partition ofX, we
write X =

⊔
P.

A function F from a setX to a setY is notedF : X → Y ,
and the set of all the functions fromX to Y is notedY X . If
X ′ ⊆ X and Y ′ ⊆ Y , we noteF (X ′) = {F (x) | x ∈ X ′}
and F−1(Y ′) = {x ∈ X | F (x) ∈ Y ′}. If F is a bijection,
we also noteF−1 : Y → X its associated inverse function.

Let a be a (binary) relation on a setX. The restriction of
a to a subsetY ⊆ X will generally still be noteda (except
if a new notation is introduced).

We say thata is an equivalence relation ifa is reflexive,
transitive and symmetric. For anyx ∈ X, the equivalence
class ofx with respect toa is noted[x]a. The set of all these
equivalence classes is notedX/a.

We say thata is an order relation (and that(X,a) is an
ordered set) ifa is reflexive, transitive and antisymmetric.
Moreover, we say thata is a total (resp. partial) order relation
(and that(X,a) is a totally (resp. partially) ordered set), if
a is total (resp. partial) (i.e., if ∀x, y ∈ X, (x a y)∨ (y a x)
(resp. if∃x, y ∈ X, (x 6a y) ∧ (y 6a x))).

For any symbol further used to denote an order relation (⊆,
≤, E, etc.), the inverse symbol (⊇, ≥, D, etc.) denotes the
associated dual order, while the symbol without lower bar (⊂,
<, ⊳, etc.) denotes the associated strict order.

The Hasse diagram of an ordered set(X,6) is the couple
(X,≺) where≺ is the cover relation associated to6, defined
for all x, y ∈ X by x ≺ y iff x < y and there is noz ∈ X
such thatx < z < y.

If (X,6) is an ordered set andx ∈ X, we notex↑ =
{y ∈ X | y > x} and x↓ = {y ∈ X | y 6 x}, namely the
sets of the elements greater and lower thanx, respectively. If
Y ⊆ X, the set of all the maximal and minimal elements of

X are noted
`6

Y and
a6

Y , respectively. The supremum
and the infimum ofY are noted (when they exist)

∨6
Y

and
∧6

Y , respectively (we will note
⋃

and
⋂

for
∨⊆ and∧⊆, respectively). The maximum and the minimum ofY are

noted (when they exist)
b6

Y and
c6

Y , respectively. IfY is
defined as{x | p(x)} wherep is a Boolean predicate, we will
sometimes note

b6

p(x) x, instead of
b6

Y ; the same remark

holds for
c6,

∨6,
∧6,

⋃
,
⋂

,
⊔

.
(Note that the symbol≤ will be used to denote two distinct

orders: the standard order onZ and the pointwise order on
functions; the context of use enables however to unambigu-
ously associate the correct semantics to each occurrence ofthe
symbol.)

IV. COMPONENT-TREES

A. Connectivity

Intuitively (and informally), the notion ofconnectivityon
a setΩ allows to decide whether it is possible to go from
a point (or a subset) ofΩ to another one while always
remaining in Ω. If this property is verified, we say that
Ω is connected. Several (similar, and sometimes equivalent
[35]) ways can be considered to define connectivity: from the
standard notions of topology [36], [37]; from the notions of
paths in digital/discrete spaces [38], [39], [40]; or even by
morphological definitions of connectivity [41], [42], [43], [16].

A connectivity onΩ can be defined by a functionC : 2Ω →
22Ω

which provides, for anyX ⊆ Ω the set of all the connected
sets included inX. The maximal elements of the ordered set
(C(X),⊆) are called theconnected componentsof X, and the
set of all the connected components ofX (namely

`⊆ C(X))
is notedC[X].

In the present work, we are mainly interested by the
following three properties of connectivity:

(P1) If X ⊆ Ω, then the setC[X] is a partition ofX.
(P2) If X ⊆ Y ⊆ Ω, then for anyA ∈ C[X], there exists a

uniqueB ∈ C[Y ] such thatA ⊆ B.
(P3) If X ⊆ Y ⊆ Ω, A ∈ C[Y ] andA ⊆ X, thenA ∈ C[X].

Broadly speaking, Property (P1) guarantees the complete-
ness and non-redundancy of the decomposition ofX into
connected components; Property (P2) guarantees the hierar-
chical organisation of connected components in the power set
lattice of Ω; and Property (P3) guarantees the persistence of
connected components in this lattice.

In the sequel, we consider any connectivity onΩ (satis-
fying, in particular, Properties (P1)–(P3)), provided that Ω is
connected for this connectivity (i.e., C[Ω] = {Ω}).

In the illustrations of Sections IV–VII, the setsΩ will
be finite subsets ofR2 equipped with the usual arc-based
connectivity.

B. Images

Let Ω be a nonempty finite set. LetV be a nonempty finite
set equipped with an order relation6. We assume that(V,6)
admits a minimum, noted⊥. An imageis a functionI : Ω →
V . The setsΩ and V are called thesupport and thevalue
spaceof I, respectively. For anyx ∈ Ω, I(x) ∈ V is the
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value of I at x. Without loss of generality, we assume that
I−1({⊥}) 6= ∅. If (V,6) is a totally (resp. partially) ordered
set, we say thatI is a grey-level(resp. amultivalued) image.

Let X ⊆ Ω and v ∈ V . The thresholding functionλv is
defined by

∣∣∣∣
λv : V Ω → 2Ω

I 7→ {x ∈ Ω | I(x) > v}
(1)

The cylinder functionC(X,v) is defined by
∣∣∣∣∣∣

C(X,v) : Ω → V

x 7→

{
v if x ∈ X
⊥ otherwise

(2)

An image I : Ω → V can be decomposed into cylinder
functions induced by thresholding operations and, symmetri-
cally, I can be reconstructed by composition of these cylinder
functions, as

I =

≤j

v∈V

≤j

X∈C[λv(I)]

C(X,v) (3)

where≤ is the order relation onV Ω defined by

(F ≤ G) ⇔ (∀x ∈ Ω, F (x) 6 G(x)) (4)

We noteΨ the set of all the connected components obtained
from all the thresholdings ofI

Ψ =
⋃

v∈V

C[λv(I)] (5)

C. Component-trees

In the sequel of this section, we assume that(V,6) is a
totally ordered set. It derives from Properties (P1), (P2) and
from the totality of6 that for anyX ∈ Ψ, (X↑,⊆) is a totally
ordered set. Moreover, since we also haveΩ =

b⊆
X↑, the

Hasse diagramT of (Ψ,⊆) has a tree structure (of rootΩ).
This Hasse diagram is called thecomponent-treeof I.

An example of component-tree is shown in Fig. 1(a–g). It
illustrates the fact thatX ∈ Ψ can correspond to several con-
nected components in distinct thresholded imagesλv(I) ⊆ Ω
for successive valuesv ∈ V .

This remark implies thatX ∈ Ψ is intrinsically associated
in T to a valuem(X) defined by

m(X) =

6j
{v | X ∈ C[λv(I)]} =

6k

x∈X

I(x) (6)

which is actually the maximal value ofV which generates
this connected component by thresholding ofI (note that the
second equality in Formula (6) derives from Property (P3)).
This definition ofm(X) is justified by the reconstruction ofI
from its component-tree. Indeed, eachX ∈ Ψ is associated to a
cylinder function, and in particular to the value parameterising
this function. More formally, based on Formula (3), we have

I =

≤j

X∈Ψ

C(X,m(X)) (7)

The selection of subsets ofΨ (generally based onad hoc
criteria) in component-treesT can be used to develop (anti-
extensive) filtering procedures [8], [14]. When performing

(a) I

A

B

C D,E

K

L M N

F,G H,I,J

O,P

(b) T

A

(c) λ0(I)

D
H

B

D

(d) λ1(I)

D
I

C

F

E

(e) λ2(I)

J

C

G K
O

(f) λ3(I)

N

C

L M

P

(g) λ4(I)

(h) Filtering (bI) (i) Segmentation

Fig. 1. (a) A grey-level imageI : Ω → V with Ω ⊂ R
2, andV = [[0, 4]] ⊂

Z (from 0, in black, to4, in white), equipped with the standard order relation
≤ on Z. (c–g) Thresholded imagesλv(I) ⊆ Ω (in white) for v varying from
0 to 4. (b) The component-treeT of I. The letters (A–P) in nodes correspond
to the associated connected components (c–g). (h) Filtered imagebI obtained
from I by preserving the nodes B, F, K, M and P inT. (i) Segmented (binary)
image obtained fromI by substituting

S

to
b≤, andX to C(X,m(X)) in

Formula (7), with the same set of nodes as in (h).

such procedures, the resulting imageÎ : Ω → V induced by
Ψ̂ ⊆ Ψ can be defined by substitutinĝΨ to Ψ in Formula (7),
as illustrated in Fig. 1(h,i).

D. Purpose

We propose to extend the concepts defined in Section IV-C
to the case of multivalued images. In order to do so, it is
necessary:

(i) to define a data structure generalising the notion of
component-tree to such images; and

(ii) to generalise the associated filtering framework accord-
ingly.

The item(i) is considered in Sections V–VII. The item(ii)
will be developed in a subsequent article.

V. COMPONENT-GRAPHS

In this section, we assume that the relation order6 on V
can be either partial or total.

A. Valued connected components

In Formula (3), any cylinder functionC(X,v) is generated
by a couple(X, v) where X ∈ C[λv(I)] is a connected
component of the thresholded imageλv(I) ⊆ Ω of I at
value v. In the sequel,(X, v) is called avalued connected
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component. We define the setΘ ⊆ 2Ω × V of all the valued
connected components of an imageI : Ω → V as

Θ =
⋃

v∈V

C[λv(I)] × {v} (8)

From the order relation6 defined onV , and the inclusion
relation⊆ on 2Ω, we can define the order relationE on Θ as
follows

(X1, v1) E (X2, v2) ⇔

{
(X1 ⊂ X2) ∨
((X1 = X2) ∧ (v2 6 v1))

(9)

This order relation on the valued connected components
can be seen as the analogue of the (order) inclusion re-
lation on the connected components. In particular, for any
(X1, v1), (X2, v2) ∈ Θ, it verifies the following properties

((X1 ∩ X2 6= ∅) ∧ (v2 6 v1)) ⇒ (X1 ⊆ X2) (10)

((X1, v1) E (X2, v2)) ⇒ (v1 6< v2) (11)

B. Component-graphs

In first approximation, thecomponent-graphG of an image
I : Ω → V is defined as the Hasse diagram of the ordered
set (Θ,E). However, three variants of component-graphs can
relevantly be considered by defining two additional subsets
Θ̇, Θ̈ ⊆ Θ of valued connected components (the usefulness of
which will be justified in the sequel)

Θ̇ =
⋃

X∈Ψ

{X} ×

6h
{v | X ∈ C[λv(I)]} (12)

Θ̈ = {(Ω,⊥)} ∪
⋂

{Θ′ ⊆ Θ | I =

≤j

K∈Θ′

CK} (13)

Broadly speaking,Θ gathers all the valued connected compo-
nents induced byI; Θ̇ gathers the valued connected compo-
nents of maximal values for any connected components; and
Θ̈ gathers the valued connected components associated to the
cylinders functions which are sup/max-generators ofI (see
Formula (3)).

We note◭ (resp.◭̇, resp.◭̈) the cover relation associated
to the order relationE on Θ (resp. to the restriction ofE to
Θ̇, resp. to the restriction ofE to Θ̈). From these definitions,
we derive that

Θ̈ ⊆ Θ̇ ⊆ Θ (14)

and
Ej

Θ =

Ej
Θ̇ =

Ej
Θ̈ = (Ω,⊥) (15)

Ei
Θ =

Ei
Θ̇ =

Ei
Θ̈ (16)

We then have the following definition for the three variants
of component-graphs.

Definition 1 (Component-graph(s)):Let I : Ω → V be an
image. TheΘ- (resp.Θ̇-, resp.Θ̈-)component-graphof I is
the Hasse diagramG = (Θ,◭) (resp. Ġ = (Θ̇, ◭̇), resp.
G̈ = (Θ̈, ◭̈)) of the ordered set(Θ,E) (resp. (Θ̇,E), resp.
(Θ̈,E)). For the sake of concision, the term̊Θ-component-
graph and the notation̊G = (Θ̊, ◭̊) will sometimes be used

(a) I

a

db c e

f g h

ji

(b) (V,≺)

A

(c) λa(I)

B

F

(d) λb(I)

D E

C

(e) λc(I)

G

M

(f) λd(I)

H

N

(g) λe(I)

I O

X

X

(h) λf (I)

J

K

(i) λg(I)

Q

L

(j) λh(I)

R

X

X

(k) λi(I)

P

S

(l) λj(I)

A

G H

CB

D E F

S

Q R

I J K

M N O

L

P

(m) G

A

CB

S

R

I J K L

P

(n) Ġ

A

B

S

R

I K L

P

(o) G̈

Fig. 2. (a) A multivalued imageI : Ω → V with Ω ⊂ R
2, and V =

{a, b, c, d, e, f, g, h, i, j}. (b) The Hasse diagram of the ordered set(V, 6).
For the sake of readability, each value ofV is associated to an arbitrary
colour. The (Hasse diagrams of the) ordered sets(f↓, 6), (i↓, 6), (j↓, 6)
are identified by the closed green, cyan and orange curves, respectively. (c–l)
Thresholded imagesλv(I) for v ∈ V . (m) TheΘ-component-graph ofI. The
letters (A–S) in nodes correspond to the associated connected components
(c–l). For any one of the four leavesK = (X, v) ∈

aE Θ, the (Hasse
diagram of the) ordered set(K↑, E) is identified by a closed curve of colour
corresponding to the valueσ(K) = v (see Property 1). The comparison
between these four curves and the three curves of (b) illustrates the “flattening”
of (K↑, E) by comparison to(σ(K)↓, 6) (see Property 3). (n) ThėΘ-
component-graph ofI. The nodes I, J, K, L, R and S, iṅG are associated to
the sets of nodes{D, I}, {E, J}, {F, K}, {G, H, L}, {O, R} and{M, N, Q,
S} in G, respectively (see Property 4). (o) TheΘ̈-component-graph ofI. The
nodes C and J, which are surrounded by{K, L} and {R, S}, respectively,
belong toΘ̇ but not toΘ̈ (see Property 6).

to denote the three kinds of component-graphs. The elements
of Θ̊ are calledΘ̊-nodes(or simply, nodes); the elements of
◭̊ are called̊Θ-edges(or simply, edges); (Ω,⊥) is called the
root; the elements of

aE
Θ̊ are called theleavesof the Θ̊-

component-graph.
An example of component-graph is illustrated in Fig. 2.
From Formula (3), the reconstruction ofI from its valued
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connected components is given by

I =

≤j

K∈Θ̊

CK (17)

VI. GENERAL REMARKS ON THE STRUCTURE OF

COMPONENT-GRAPHS

In this section, we study some links existing between the
different structures of̊Θ-component-graphs and the Hasse
diagram(V,≺) of (V,6).

A. Links between(Θ,◭) and (V,≺)

The Θ-component-graph ofI : Ω → V locally inherits
from the structure of(V,≺). More precisely, for any leave
K = (X, v) ∈

aE
Θ, the ordered set(K↑,E) is “similar” to

the ordered set(v↓,6).
This similarity is first expressed by the fact that each valued

connected component ofK↑ can be associated to a unique
value ofv↓ andvice versa.

Property 1: Let K = (X, v) ∈
aE

Θ. The function
∣∣∣∣

σ : K↑ → v↓

(Y, u) 7→ u
(18)

is a bijection betweenK↑ andv↓.
Proof: The fact thatσ((Y, u)) ∈ v↓ for any (Y, u) ∈ K↑

derives from the fact thatK ∈
aE

Θ (this is generally not true
otherwise). The injectivity and surjectivity ofσ then derive
from Properties (P1) and (P2).

This similarity is also expressed by the fact that the relation
between two values ofv↓ is preserved between their associated
valued connected components inK↑.

Property 2: Let K = (X, v) ∈
aE

Θ. The functionσ−1 :
v↓ → K↑ induces a homomorphism from(v↓,>) to (K↑,E):
for any K1 = σ−1(v1),K2 = σ−1(v2) ∈ K↑, we have

(v1 > v2) ⇒ (K1 E K2) (19)

Proof: The result derives from Property (P2).
In general, this homomorphism is not an isomorphism.

In particular, it is possible that(X1, v1) E (X2, v2) while
v2 66 v1. This property derives from the definition ofE
(Formula (9)), in which⊆ is considered prioritarily to6.

From a theoretical point of view, the ordered set(K↑,E)
is then richer than(v↓,6). (In other words, the cardinality
of E is higher than the cardinality of6.) However, from a
practical point of view(K↑,◭) is (most of the time) less rich
than (v↓,≺).

Property 3: Let K = (X, v) ∈
aE

Θ. Let v1, v2 ∈ v↓ and
K1 = σ−1(v1),K2 = σ−1(v2) ∈ K↑. Let us suppose that
K1 E K2 while v2 66 v1. Let v3 ∈ v↓ and K3 = σ−1(v3) ∈
K↑. We have

(v3 ≺ v1) ⇒ ((v3 ≺ v2) ⇒ K1 6◭ K3) (20)

(v2 ≺ v3) ⇒ ((v1 ≺ v3) ⇒ K3 6◭ K2) (21)

Proof: If v3 ≺ v1, v2, we havev3 6 v1, v2 and then
K1,K2 E K3. By hypothesis, we then haveK1 E K2 E K3.
By definition of◭ it comesK1 6◭ K3, and Formula (20) then

holds. A similar reasoning can be applied for Formula (21).

Broadly speaking, the appearance of one edge in(K↑,◭)
results in the disappearance ofk edges (k ∈ N), by comparison
to the edges of(v↓,≺). In particular, the different parts of
(Θ,◭) located above each leaf, will often be “flattened”,
by comparison to(v↓,≺), thus reducing the size of the
associated data structure. This phenomenon is exemplified in
Fig. 2(a,b,m).

B. Links between(Θ̇, ◭̇) and (Θ,◭)

The nodes of(Θ,◭) which are preserved in(Θ̇, ◭̇) are
those which are maximal elements with respect toE, for a
given connected component (see Formula (12)).

Let ∼
θ̊

be the equivalence relation on̊Θ defined by

((X1, v1) ∼θ̊
(X2, v2)) ⇔ (X1 = X2) (22)

(These relations gather in their equivalence classes the valued
connected components which correspond to similar connected
components.) Note that for any nodeK ∈ Θ̇, we have

[K]∼
θ̇

=

Ei
[K]∼θ

(23)

Broadly speaking, any set of nodes[K]∼θ
of (Θ,◭) leads to

a set of nodes[K]∼
θ̇

of (Θ̇, ◭̇).
The links between the edges of(Θ,◭) and those of(Θ̇, ◭̇)

are characterised as follows.
Property 4: Let [K1]∼

θ̇
, [K2]∼

θ̇
be two distinct equivalence

classes of∼θ̇. Then the following two assertions are equivalent

∃K ′
1 ∈ [K1]∼θ

,K ′
2 ∈ [K2]∼θ

,K ′
1 ◭ K ′

2 (24)

∀K ′′
1 ∈ [K1]∼

θ̇
,K ′′

2 ∈ [K2]∼
θ̇
,K ′′

1 ◭̇ K ′′
2 (25)

Proof: The equivalence between Formulae (24) and (25)
derives from the non-existence ofX ∈ Ψ such thatX1 ⊂
X ⊂ X2, with K1 = (X1, v1), K2 = (X2, v2).

Broadly speaking, all the edges between two nodes of
(Θ,◭) associated to a same connected component disappear
in (Θ̇, ◭̇), while any edge between two nodes of(Θ,◭)
associated to distinct connected components leads to edges
between all pairs of nodes of(Θ̇, ◭̇) respectively associated to
these two distinct connected components. These links between
Θ- and Θ̇-component-graphs are exemplified in Fig. 2(m,n).

In this example, for anyK ∈ Θ̇, we have[K]∼
θ̇

= {K}.
However, this is not necessarily true in general. Nevertheless,
since the existence of an edge betweenK1 andK2 in (Θ̇, ◭̇)
implies the existence of a similar edge between anyK ′

1 and
K ′

2 in [K1]∼
θ̇

and[K2]∼
θ̇
, respectively, we can unambiguously

extend the relationE (and then◭̇) from Θ̇ to Θ̇/∼θ̇ as follows

([K1]∼
θ̇

E [K2]∼
θ̇
) ⇔ (K1 E K2) (26)

This enables to model(Θ̇, ◭̇) in a more compact fashion, by
considering its equivalence classes for∼θ̇ instead of its nodes.
This model is, moreover, directly linked toΨ, as illustrated in
Fig. 3.
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(a) I

A

B B B B

C C DC

E F

(b) (Θ̇, ◭̇)

E F

A

B

C D

(c) (Θ̇/∼
θ̇
, ◭̇)

a

b

c d e f

g h

i j k

l m

(d) (V,≺)

A

(e) λa(I)

B

(f) λf (I)

C

(g) λk(I)

D

(h) λh(I)

E

(i) λl(I)

F

(j) λm(I)

Fig. 3. (a) A multivalued imageI : Ω → V with Ω ⊂ R
2, and

V = {a, b, c, d, e, f, g, h, i, j, k, l, m}. (d) The Hasse diagram of the ordered
set (V, 6). For the sake of readability, each value ofV is associated to an
arbitrary colour. (e–j) Thresholded imagesλv(I) for v ∈ V : (e) λa(I);
(f) λb(I) = λc(I) = λd(I) = λe(I) = λf (I); (g) λg(I) = λi(I) =
λj(I) = λk(I); (h) λh(I); (i) λl(I); (j) λm(I). (b) The Θ̇-component-
graph ofI. Each node of the graph is a valued connected component made of
a connected component (A–F) of a thresholded image depicted in(e–j), and
a value corresponding to the associated colour in (d). (c) The “compact”Θ̇-
component-graph(Θ̇/∼

θ̇
, ◭̇) of I, which has the same structure as(Ψ,⊆)

(see Property 5).

Property 5: By considering the bijection betweeṅΘ/∼θ̇

and Ψ which associates any equivalence class[(X, v)]∼
θ̇

of
∼θ̇ to X,

(Θ̇/∼θ̇,E) is isomorphic to(Ψ,⊆). (27)

Proof: Formula (27) derives from the definitions ofE and
∼θ̇.

C. Links between(Θ̈, ◭̈) and (Θ̇, ◭̇)

The nodes of (Θ̇, ◭̇) which are preserved in(Θ̈, ◭̈)
are the sup/max-generators ofI, i.e., the valued connected
componentsK ∈ Θ̇ which contribute effectively to the
(re)construction ofI via their associated cylinder functionCK

(see Formulae (13) and (17)). This property can however be
expressed without directly considering the relations between
I and the cylinder functions induced bẏΘ.

Property 6: Let K = (X, v) ∈ Θ̇. We have

(K ∈ Θ̈) ⇔ ((K ∈

Ei
Θ̇) ∨ (K 6=

⊔ Ei
K↓)) (28)

Proof: First note that(Ω,⊥) satisfies Formula (28). Let
us now suppose thatK 6= (Ω,⊥). If K = (X, v) ∈

aE
Θ̇,

then for all x ∈ X, we haveI(x) = v. If K 6=
⊔ aE

K↓,
then, there existsx ∈ X such thatI(x) = v. The fact that
K ∈ Θ̈ then derives from Formula (13). IfK /∈

aE
Θ̇ and

K =
⊔ aE

K↓, then for eachx ∈ X, there existsK ′ ∈

K↓ such thatv < CK′(x). Consequently, we haveCK(x) <b≤

K′∈
a

E K↓
CK′(x), and then, from Formula (13),K /∈ Θ̈.

As a corollary of this property, when[K]∼
θ̇
6= {K}, we

necessarily haveK /∈ Θ̈. The links betweenΘ̇- and Θ̈-
component-trees are exemplified in Fig. 2(n,o).

Note finally that there is no straightforward way tolocally
characterise the edges of̈Θ from the ones ofΘ̇. Indeed,
the existence (resp. non-existence) of an edge between two
nodes ofΘ̈ depends on the non-existence (resp. existence)
of a transitive path composed of successiveΘ̈-edges between
these nodes.

VII. A BOUT THE INFLUENCE OF(V,6) ON

COMPONENT-GRAPHS

In this section, we study how certain order relations
6 defined onV influence the structural properties of the
component-graphs. In particular, we consider (from the
most general to the most specific) three kinds of ordered
sets, frequent in image applications: lower-piecewise lattices
(Section VII-A), lower-piecewise totally ordered sets (Sec-
tion VII-B), and totally ordered sets (Section VII-C).

A. (V,6) is a lower-piecewise lattice

An ordered set(X,6) is a upper- (resp. lower-)semilattice
if for any x, y ∈ X,

∨6{x, y} (also notedx ∨6 y) (resp.∧6{x, y} (also notedx ∧6 y)) exists. It is a lattice if it is
both a upper- and a lower-semilattice.

An ordered set(X,6) is a upper- (resp. lower-)piecewise
lattice if for any x ∈ X, the ordered set(x↑,6) (resp.(x↓,6))
is a lattice. Note that a upper- (resp. lower-)semilattice is a
upper- (resp. lower-)piecewise lattice, but the converse is not
true in general.

In this section, we assume that(V,6) is a lower-piecewise
lattice.

1) Structure of the Θ̊-component-graphs: The Θ-
component-graphs inherit from the structure of(V,6).

Property 7: Let (V,6) be a lower-piecewise lattice. Then

(Θ,E) is a upper-piecewise lattice. (29)

Proof: Let K = (X, v) ∈
aE

Θ. It derives from
Property 2 that(K↑,E) is a lattice. Since for anyx ∈ X
where(X,E) is a lattice,(x↑,E) is still a lattice,(Θ,E) is a
upper-piecewise lattice.

As a corollary, we have the following property, related to
the structure of the equivalence classes of∼θ.

Property 8: Let (V,6) be a lower-piecewise lattice. Let
K ∈ Θ, then

([K]∼θ
,E) is a lower-semilattice. (30)

Proof: Let K = (X, v). Let K ′ = (Y, u) ∈
aE

Θ such
thatY ⊆ X. From Property 7,(K ′↑,E) is a lattice. Moreover
we have [K]∼θ

⊆ K ′↑. As (V,6) is a lower-piecewise
lattice, (u↓,6) is a lattice. Let(X, v1), (X, v2) ∈ [K]∼θ

. We
have X ⊆ λv1∨6v2

(I), and then, from Property (P3),X ∈
C[λv1∨6v2

(I)]. Consequently, we have(X, v1∨
6v2) ∈ [K]∼θ

,
and the result follows.



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, JANUARY 20XX 7

(a) I

(0,3)

(1,3) (2,2)

(1,2) (2,1)

(1,1)

(1,0)

(0,2)

(2,3) (3,2)

(3,1)

(3,0)

(2,0)

(0,1)

(0,0)

(b) (V,≺)

A

(c) λ(0,0)(I)

B

F

(d) λ(0,1)(I)

C

E

(e) λ(1,0)(I)

D

K

(f) λ(0,2)(I)

I

L

(g) λ(1,1)(I)

J

P

R

(h) λ(2,0)(I)

X

H

Q

(i) λ(0,3)(I)

N

O

(j) λ(1,2)(I)

M

U

W

(k) λ(2,1)(I)

G

(l) λ(3,0)(I)

X

S

V

(m) λ(1,3)(I)

T

Y

Z

(n) λ(2,2)(I)

AA

(o) λ(3,1)(I)

X

X

AB

(p) λ(2,3)(I)

AC

(q) λ(3,2)(I)

M N

O RQP

U VTS W

YX Z AA

AB AC

H I J K L

D E F G

B C

A

(r) G

M N

X

AB AC

H

G

B C

A

(s) Ġ

M N

X

AB AC

H

G

A

(t) G̈

Fig. 4. (a) A multivalued imageI : Ω → V with Ω ⊂ R
2, andV ⊆ Z

2,
equipped with the lexicographic order relation. (b) The Hasse diagram of the
ordered set(V, 6). For the sake of readability, each value ofV is associated
to an arbitrary colour. (c–q) Thresholded imagesλv(I) for v ∈ V . (r) The
Θ-component-graph ofI. The letters (A–AC) in nodes correspond to the
associated connected components (c–q). (s) TheΘ̇-component-graph ofI. The
nodes H, M, N and X are associated to the sets of nodes{D,H}, {E,I,J,M},
{F,K,L,N} and{O,S,T,X} in (r), respectively. (t) ThëΘ-component-graph of
I. The nodes B and C, which were present in (s) have disappeared, since they
are spatially surrounded by{H,M} and{G,N}, respectively.

It then derives from this property that thėΘ-component-
graphs also inherit from the structure of(V,6).

Property 9: Let (V,6) be a lower-piecewise lattice. Then

(Θ̇,E) is a upper-piecewise lattice. (31)

Proof: The result derives from the fact that(Θ,E) is a
upper-piecewise lattice and that([K]∼θ

,E) admits a minimum

for any K ∈ Θ.
Note that, in general,(Θ̈,E) is not a upper-piecewise lattice.

These properties are exemplified in Fig. 4.
2) Links betweenΘ- and Θ̇-component-graphs:Under the

current hypotheses (see Property 8), Formula (12) can be
rewritten as

Θ̇ = {(X,

6j

X∈C[λv(I)]

v) | X ∈ Ψ} (32)

This formula leads to the following result.
Property 10: Let (V,6) be a lower-piecewise lattice. By

considering the bijection betweeṅΘ and Ψ which associates
any node(X, v) to X,

(Θ̇,E) is isomorphic to(Ψ,⊆). (33)

Proof: From Formula (32), for eachK ∈ Θ̇, we have
[K]∼

θ̇
= {K}. The result then follows from Property 5.

Moreover, by extending the relationE (and then◭) from
Θ to Θ/∼θ as follows

([K1]∼θ
E [K2]∼θ

) ⇔ (

Ek
[K1]∼θ

E

Ek
[K2]∼θ

) (34)

we have the following property.
Property 11: If (V,6) is a lower-piecewise lattice, then

(Θ/∼θ,E) is isomorphic to(Θ̇,E). (35)

Proof: The proof derives from the equality between any
K ∈ Θ̇ and

cE
[K]∼θ

.
This identification is completed by the fact that for allK ∈ Θ̇,
([K]∼θ

,E) is a lower-semilattice (Property (8)), and by the
following property.

Property 12: Let (V,6) be a lower-piecewise lattice. For
all K1,K2 ∈ Θ (with [K1]∼θ

6= [K2]∼θ
) we have

(K1 ◭ K2) ⇒ (

Ek
[K1]∼θ

◭̇

Ek
[K2]∼θ

) (36)

Proof: The result derives from Property 4.
Broadly speaking, all the edges between two nodes of

(Θ,◭) associated to a same connected component disappear
in (Θ̇, ◭̇), while any edge between two nodes of(Θ,◭)
associated to distinct connected components lead to edges
between the nodes of(Θ̇, ◭̇) respectively associated to these
two distinct connected components. These links betweenΘ-
and Θ̇-component-trees are exemplified in Fig. 4(r,s).

B. (V,6) is a lower-piecewise totally ordered set

We say that an order relation6 on a setX is upper-
(resp. lower-)piecewise total (and that(X,6) is a upper- (resp.
lower-)piecewise totally ordered set) if for anyx ∈ X, (x↑,6)
(resp.(x↓,6)) is a totally ordered set.

In this section, we assume that(V,6) is a lower-piecewise
totally ordered set. Note that(V,6) is then also a lower-
piecewise lattice.
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(a) I

c db

a

e

i

f

j

g

h

(b) (V,≺)

A

(c) λa(I)

B

(d) λb(I) (e) λc(I)

D
C

(f) λd(I)

B F

E

(g) λe(I)

H

G

(h) λf (I)

D

(i) λg(I) (j) λh(I)

K L

(k) λi(I)

N

M

(l) λj(I)

A

B C D

F E I H J G

K L M N

(m) G

A

B C D

F E I J

K L M N

(n) Ġ

A

B

F E I J

K L M N

(o) G̈

Fig. 5. (a) A multivalued imageI : Ω → V with Ω ⊂ R
2, and

V = {a, b, c, d, e, f, g, h, i, j}. (b) The Hasse diagram of a lower-piecewise
totally ordered set(V, 6). For the sake of readability, each value ofV is
associated to an arbitrary colour. (c–l) Thresholded imagesλv(I) for v ∈ V .
(m) TheΘ-component-graphs ofI. The letters (A–N) in nodes correspond to
the associated connected components (c–l). (n) TheΘ̇-component-graphs of
I. The nodes M and N are associated, in (m), to “linear parts”{H,M} and
{G,N} (Properties 15 and 16). (o) ThëΘ-component-graphs ofI.

1) Structure of the̊Θ-component-graphs:Under the current
hypotheses, the result of Property 2 is strengthened.

Property 13: Let K = (X, v) ∈ Θ. By considering the
bijection σ : K↑ → v↓,

(K↑,E) is isomorphic to(v↓,>). (37)

Proof: The result derives from the totality of6 on v↓.
The Θ̊-component-graphs then inherit from the structure of

(V,6).
Property 14: Let (V,6) be a lower-piecewise totally or-

dered set. Then

(Θ̊,E) is a upper-piecewise totally ordered set. (38)

Proof: The result derives from Property 13 and the fact
that any subset of a totally ordered set is itself totally ordered.

Under the current hypotheses, the̊Θ-component-graphs
have a tree structure (of root(Ω,⊥)), as illustrated in
Fig. 5(a,m–o).

2) Links betweenΘ- and Θ̇-component-graphs:Since
(V,6) is a lower-piecewise lattice, all the properties of Sec-
tion VII-A remain valid here, and in particular Properties 10

(a) I

A

B D

E F G H

K L M N

O P Q R

C

(b) G

A

B

C D,E

K

L M N

F,G H,I,J

O,P

(c) Ġ = G̈∼ T

A

(d) λ0(I)

D
H

B

D

(e) λ1(I)

D
I

C

F

E

(f) λ2(I)

J

C

G K
O

(g) λ3(I)

N

C

L M

P

(h) λ4(I)

Fig. 6. (a) The grey-level imageI : Ω → V of Fig. 1(a). (d–h) Thresholded
imagesλv(I) ⊆ Ω (in white) for v varying from 0 to 4. (b) The Θ-
component-graph ofI. (c) The Θ̇-/Θ̈-component-graphs ofI, which are
isomorphic to its component-tree (see Fig. 1(b)). The letters(A–P) in nodes
correspond to the associated connected components (c–g).

and 11. Moreover, Properties 8 and 12 are strengthened by the
following ones.

Property 15: Let (V,6) be a lower-piecewise totally or-
dered set. LetK ∈ Θ̇. Then

([K]∼θ
,E) is totally ordered. (39)

Proof: The result derives from Property 8 and the lower-
piecewise totality of6.

Property 16: Let (V,6) be a lower-piecewise totally or-
dered set. For allK1,K2 (with [K1]∼θ

6= [K2]∼θ
) we have

(K1 ◭ K2) ⇒ (

Ek
[K1]∼θ

◭̇ K2) (40)

(K1 ◭̇ K2) ⇒ (

Ej
[K1]∼θ

◭ K2) (41)

Proof: The result derives from Properties 12 and 15.
Broadly speaking, the branching points of theΘ-component-
graph are preserved in the associatedΘ̇-component-graph,
while each node ofΘ̇ is associated to a linear part of
the Θ-component-graph. These properties are illustrated in
Fig. 5(m,n).

C. (V,6) is a totally ordered set

In this section, we assume that(V,6) is a totally ordered
set. The case of grey-level images is then matched here.

Note that(V,6) is also a lower-piecewise totally ordered
set. Consequently, all the properties of Sections VII-A and
VII-B remain valid here, and in particular Properties 10 and
14.

Moreover, Property 10 is strengthened by the following one.
Property 17: Let (V,6) be a totally ordered set. Then

(Θ̇,E) = (Θ̈,E) (42)

Proof: The result derives from Property 6 and Proper-
ties (P2) and (P3).
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From the following property, we finally guarantee the
compliance between the concepts of component-tree and
component-graphs, as illustrated in Fig. 6.

Property 18: Let I : Ω → V be a grey-level image, andT
its component-tree. Then

Ġ, G̈ are isomorphic toT (43)

and

I =

≤j

X∈Ψ

C(X,m(X)) =

≤j

K∈Θ̊

CK (44)

Proof: Formula (43) derives from Properties 10 and 17.
Formula (44) is a rewriting of Formulae (7) and (17).

VIII. S UMMARY

A. Main properties

Table I describes the component-graphs/tree defined by the
different ordered sets induced bẙΘ andΨ. Tables II and III
summarise the isomorphism relations between them, and the
nature of their order. These properties are classified according
to the nature of the ordered set(V,6) (with the following
legend in Tables I–III: TO: totally ordered; LPTO: lower-
piecewise totally ordered; LPL: lower-piecewise lattice).

TABLE I
COMPONENT-GRAPHS/TREE DEFINITIONS, ACCORDING TO(V, 6).

(V, 6) (Θ, E) (Θ̇, E) (Θ̇/∼
θ̇
, E) (Θ̈, E) (Ψ,⊆)

TO G Ġ, G̈ T

LPTO G Ġ G̈

LPL G Ġ G̈

Other G Ġ Ġ (compact) G̈

TABLE II
ISOMORPHISM RELATIONS, ACCORDING TO(V, 6).

(V, 6) (Θ, E) (Θ̇, E) (Θ̇/∼
θ̇
, E) (Ψ,⊆) (Θ̈, E)

TO Isomorphic
LPTO Isomorphic
LPL Isomorphic
Other Isomorphic

TABLE III
NATURE OF THE ORDERED SETS, ACCORDING TO(V, 6).

(V, 6) (Θ, E) (Θ̇, E) (Θ̇/∼
θ̇
, E) (Ψ,⊆) (Θ̈, E)

TO Upper-piecewise totally ordered
LPTO Upper-piecewise totally ordered
LPL Upper-piecewise lattice
Other

B. Space complexity

From an algorithmic point of view (and,a fortiori, from an
applicative one), the size of the̊Θ-component-graph̊G of an
imageI : Ω → V strongly conditions the ability to process
this imagevia a filtering framework relying on̊G. From a

theoretical point of view, we have the following upper-bounds
for the number of nodes of̊G

|Θ| = O(|Φ|.|V |) (45)

|Θ̇| = O(|Φ|.|V |) (46)

|Θ̈| = O(|Φ|) (47)

where Φ ⊆ 2Ω is the set of all the flat zones ofI, with
thus |Φ| ≤ |Ω| (and generally,|Φ| ≪ |Ω|). From a practical
point of view, for real images, the actual number of nodes
in the Θ̊-component-graph of an imageI : Ω → V will be
generally (much) lower than these bounds, since it will depend
on |Φ|, |V |, but also on the structure of the image itself, and in
particular the number of its maxima and their “height”, with
respect to(V,6). In particular, we will have

|Θ̈| ≤ |Θ̇| ≤ |Θ| ≤
∑

K∈
a

E Θ

|σ(K)↓| (48)

IX. CONCLUSION

The notion of component-graph has been proposed as an
extension of the notion of component-tree for images taking
their values in any (partially or totally) ordered sets. Some
structural properties of three variants of component-graphs
have been investigated, in particular for value spaces which are
likely to appear in real images (e.g., piecewise totally ordered
sets or lattices).

In the next part of this work, we will propose to gener-
alise the standard grey-level image filtering framework based
on component-trees [8], [14], thus relaxing the constraints
linked to total orderings on image values. In particular, the
component-graphs(s) construction and the non-trivial issue of
image reconstruction will be discussed.
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