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Component-trees and multivalued images:
Structural properties

Nicolas Passat, BeitoNaegel

Abstract—Component-trees model the structure of grey-level  This article is organised as follows. Section Il descrilyes t
images by considering their binary level-sets obtained from context of this work. Section Il provides notations. SentlV/
successive thresholdings. They also enable to define anti-extimes gives a formal definition of the classical notion of comparen
filtering procedures for such images. In order to extend this . . I .
image processing approach to any (grey-level or multivalued) tree..Sect|ons. V-VII cons.tltute the contribution of thecigt
images, both the notion of component-tree, and its associated S€ction V defines the notion of component-graph. Section VI
filtering framework, have to be generalised. In this article we first establishes the structural links between different vasiaf
deal with the generalisation of the component-tree structure. W thjs notion. Section VII studies the influence of specific gma
define a new data structure, thecomponent-graph, which extends —51ye spaces, thus leading to structural simplificatiorez-S

the notion of component-tree to images taking their values in tion VIII . th incial ti f ¢
any (partially or totally) ordered set. The component-graphs are 10N summarises the principal properties of compoRen

declined in three variants, of increasing richness and size, whose graphs. Section IX concludes the article.
structural properties are studied.

Index Terms—Mathematical morphology, component-tree, Il. RELATED WORKS
multivalued images, anti-extensive filtering, component-graph. A, Component-trees

Initially proposed in the field of statistics [3], [4], the
I. INTRODUCTION component-tree (also known as dendrone [5], [6], confinemen
HE component-tree is a data structure which modéie [7] or max-tree [8]) has been (re)defined in the framéwor
some characteristics of grey-level images by considerifyMathematical morphology (see.g, [9]-Chapter 7, or [10])
their binary level-sets obtained from successive thretngl and involved in the development of morphological operators
operations. Component-trees are particularly well-suiter [11], [8]. . i )
the design of methods devoted to process or analyse greyFrom @ methodological point of view, some efforts have
level images, based on hypotheses related to the topol@f" conducted to enable the efficient computation of
(connectedness) and the specific intensity (local extresha)COmPonent-trees [8], [12], [13]. From an applicative paiit
structures of interest. Based on these properties, compond//€W, component-trees have been involved in the developmen
trees have been involved in several image processing appligf Several image processing and analysis techniques. Most o
tions, especially for filtering and segmentation. them are devoted to ]‘|Ite_r|ng or segmentation [8], [14], [15]
The success of component-trees in the field of grey-levdl: [17]- Other applications have also been considered, f
image processing, together with the increasing need foli-apgiStance, image registration [7], [18], image retrievad]j1
cations involving multivalued images, justify their exsion 20, image classification [21], interactive visualisatif22],
to the case of such images, which do not take their valuesTH!tithresholding [23] or document binarisation [24].
totally ordered sets, but in any (partially or totally) oree In the field of f||ter|ng'and segmentation, the proposed
ones. In particular, this work takes place in the contexihef t Methods have been designed to detect some structures of

extension of mathematical morphology to multivalued insagelNterest by using information modelled by attributes [125],
After a preliminary study of the relations betweer?nd stored at each node of the tree. These attributes arerchos

component-trees and multivalued images from a methodold@:cording to hypotheses related to the applicative coritéwd
ical point of view [1], a generalisation of component-treeSUPtree obtained by pruning the component-tree of the image
to such images has been initiated in [2]. The present wodth respect to these attributes, can then be used to reoenst
develops this framework. In particular, this article deaith & Pinary (segmentation) or grey-level (filtering) result.
data structure issues (algorithmic issues will be consitler
in a further article). We describe a new data structure, tlle Mathematical morphology and multivalued images
component-graphwhich extends the notion of component-tree Mathematical morphology has been first defined on binary
to images taking values in any ordered set. The componeiitages, and then on grey-level ones (see [9] for a recent
graphs are declined in three variants of increasing richeed  state of the art on mathematical morphology). Its extension
size. There structural properties are studied, in pagiauhder to multivalued €.g, colour, multispectral, label) images is an
various hypotheses related to frequent image value spacesmportant task, motivated by potential applications in tiplg

_ . _ o areas. Several contributions have been devoted to thisfispec

Nicolas Passat and BeitoNaegel are with the Univer&t de Stras-

bourg, LSIT UMR CNRS 7005, Strasbourg, France (passat@radr, PUrPOSe (a whole state of the art is beyond the scope of this
b.naegel@unistra.fr). article; seeg.g, [26] for a recent survey).
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In general, the spaces in which such images take théir are notedvgY and Ag Y, respectively. The supremum
values are not canonically equipped with total orders (land the infimum ofY are noted (when they exisg/gY
opposition to the case of grey-level images), but with phrtiand /\< Y, respectively (we will notd J and( for \/= and
ones. Several strategies have been considered to deal w{fﬁ, respectively). The maximum and the minimumofare
this issue. Except in few works (see.g, [27]), they intend noted (when they existy S Y and A S Y, respectively. IfY” is
to split these value spaces into several totally ordereds ongefined as{x | p(x)} wherep is a Boolean predicate, we will
(marginal processing), or to defia& hoctotal order relations sometimes noté{f(x) x, instead ('_)fY< Y the same remark
on them (vectorial processing), with several variants [E8],  1,54s forAg, \/s, /\S’ U, N, LI
[30], [31], [32]. These approaches present the advantage ofygte that the symbok will be used to denote two distinct
embedding multivalued images into simpler frameworks WhiG, jors: the standard order 6hand the pointwise order on
authorise to process them similarly to grey-level onesbkmg functions; the context of use enables however to unambigu-

in particular to reduce the algorithmic complexity indudgd | associate the correct semantics to each occurreribe of
partially ordered sets. Unfortunately, they also potdiytizias symbol.)

the information intrinsically carried by these —more coexpl
but richer— partially ordered value spaces.

In the present work, we deal with the general casearf o
(partially or totally) ordered value spaces, without agtimg A- Connectivity
to modify the order, then providing a contribution to the Intuitively (and informally), the notion otonnectivityon
extension of mathematical morphology to multivalued insgagea set(2 allows to decide whether it is possible to go from
and more especially to the one of connected filtering (see abls point (or a subset) of) to another one while always
[33], [34] for other recent contributions on this topic). remaining in Q. If this property is verified, we say that
Q is connected Several (similar, and sometimes equivalent
[35]) ways can be considered to define connectivity: from the
standard notions of topology [36], [37]; from the notions of

The inclusion (resp. strict inclusion) relation on setsaged  paths in digital/discrete spaces [38], [39], [40]; or even b
C (resp.C). The cardinality of a seX is noted| X |. The power morphological definitions of connectivity [41], [42], [43]L6].
set of a setX is noted2™. If P C 2% is a partition ofX, we A connectivity on2 can be defined by a functiap: 2 —
write X = | | P. 22° which provides, for anyX’ C Q the set of all the connected

A function I from a setX to a setY” is notedF": X — Y,  sets included inX. The maximal elements of the ordered set
and the set of all the functions frod to Y is nOtedYX. If (C(X), g) are Ca”ed th@onnected Componem X’ and the
X' C X andY’ CY, we noteF(X') = {F(z) | = € X'} set of all the connected componentsX6f(namely V< C(X))
and F~1(Y') = {z € X | F(z) € Y'}. If F'is a bijection, s notedc[X].
we also noteF' ! : Y — X its associated inverse function. |y the present work, we are mainly interested by the

Let ~ be a (binary) relation on a séf. The restriction of fg|lowing three properties of connectivity:
~ to a subset” C X will generally still be noted~ (except (P1) If X C €, then the se€|X] is a partition ofX.

ifa new notation' s introdqced). L , (P2) If X CY C Q, then for anyA € C[X], there exists a
We say that~ is an equivalence relation i is reflexive, unique B € C[Y] such thatA C B.

transitive and symmetric. For any € X, the equivalence (P3) F X CY CQ, AeC[y]andAC X, thenA € C[X].
class ofz with respect to~ is noted|z] .. The set of all these T N
equivalence classes is notéd/ ~.

We say that~ is an order relation (and tha&tX, ~) is an
ordered set) if~ is reflexive, transitive and antisymmetric.
Moreover, we say that is a total (resp. partial) order relation
(and that(X, ~) is a totally (resp. partially) ordered set), if
~ is total (resp. partial)if., if Vz,y € X, (x ~y) V (y ~ x)
(resp. if 3z, y € X, (z A y) A (y £ 2))).

For any symbol further used to denote an order relation (
<, 4, etc.), the inverse symbolD( >, >, etc.) denotes the
associated dual order, while the symbol without lower far ( b

. : e
<, <, etc.) denotes the associated strict order.

The Hasse diagram of an ordered &&t <) is the couple
(X, <) where< is the cover relation associated g defined
for all z,y € X by z < y iff z < y and there is noo ¢ X B- Images
such thatr < z < y. Let Q be a nonempty finite set. L& be a nonempty finite

If (X,<) is an ordered set and ¢ X, we notex! = set equipped with an order relatiagh We assume thatl/, <)
{ye X |y >z}andx! = {y € X | y < x}, namely the admits a minimum, noted.. An imageis a function/ : Q —
sets of the elements greater and lower thamespectively. If V. The setsQ2 and V' are called thesupportand thevalue
Y C X, the set of all the maximal and minimal elements a$paceof I, respectively. For any € Q, I(z) € V is the

IV. COMPONENTTREES

II1. N OTATIONS

Broadly speaking, Property (P1) guarantees the complete-
ness and non-redundancy of the decompositionXofinto
connected components; Property (P2) guarantees the -hierar
chical organisation of connected components in the powter se
lattice of 2; and Property (P3) guarantees the persistence of
connected components in this lattice.

In the sequel, we consider any connectivity On(satis-
fying, in particular, Properties (P1)—(P3)), providedtthais
connected for this connectivity.¢., C[Q2] = {Q}).

In the illustrations of Sections IV-VII, the setQ will
finite subsets ofk? equipped with the usual arc-based
connectivity.
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value of I at x. Without loss of generality, we assume that
I71({L}) #0.If (V,<) is a totally (resp. partially) ordered
set, we say thaf is agrey-level(resp. amultivalued image

Let X C Q andv € V. The thresholding function\, is
defined by

Ay @ VR 29
D e @eQ| @) =) (1)
The cylinder functionCx ., is defined by
Cxpy @+ 2 — V

. v IfreX (2)
t 1 otherwise

An image ] : @ — V can be decomposed into cylinder (c) () (d) A1 (1) () A2(1) ) As(l) @ M(D)
functions induced by thresholding operations and, symmetr
cally, I can be reconstructed by composition of these cylinder

functions, as
< <
I = Y Y C(X,’z)) (3)
vEV X eC[Ay(1)]

where < is the order relation oV defined by
(F<G) & (Ve F(z) < G(x)) @)
We noteV the set of all the connected components obtained

P Fig. 1. (a) A grey-level imagé : Q — V with Q c R?, andV = [0,4] C
from all the threShOIdmgS of Z (from 0, in black, to4, in white), equipped with the standard order relation

(h) Filtering (f) (i) Segmentation

< onZ. (c—g) Thresholded images, (I) C Q (in white) for v varying from
V= U C[)"U(IH (5) 0to 4. (b() Tﬂze component-treg (g)f I.(Tzle Iettérs (A—P; in nodeiycogrrespond
veV to the associated connected components (c—g). (h) Filtenade/ obtained
from I by preserving the nodes B, F, K, M and P3n (i) Segmented (binary)
C. Component-trees image obtained fron? by substitutinglJ to YS, and X to C(x,m(x)) in

. . . Formula (7), with the same set of nodes as in (h).
In the sequel of this section, we assume tfEt<) is a

totally ordered set. It derives from Properties (P1), (P2) a
from the totality of< that for anyX € ¥, (X', C) is a totally A .
ordered set. Moreover, since we also h&ve- Yg X', the such procedures, _the resulting _mag\eﬂ — V induced by
Hasse diagran® of (¥, C) has a tree structure (of ro6t). ¥ & ¥ can be defined by substituting to ¥ in Formula (7),
This Hasse diagram is called teemponent-treef 1. as illustrated in Fig. 1(h,).

An example of component-tree is shown in Fig. 1(a—g). It
illustrates the fact thak’ € ¥ can correspond to several conD. Purpose
nected components in distinct thresholded imaggd) C
for successive values € V.

This remark implies thaX € V¥ is intrinsically associated
in T to a valuem(X) defined by

< <

We propose to extend the concepts defined in Section IV-C
to the case of multivalued images. In order to do so, it is
necessary:

(1) to define a data structure generalising the notion of

component-tree to such images; and
m(X) = Y{U | X e (D]} = A I(z) (6)  (ii) to generalise the associated filtering framework accord-
zeX ingly.
which is actually the maximal value df which generates The item(i) is considered in Sections V-VII. The itefit)

this connected component by thresholding/afnote that the ;| pe developed in a subsequent article.
second equality in Formula (6) derives from Property (P3)).

This definition ofm(X) is justified by the reconstruction df
from its component-tree. Indeed, eakhe V¥ is associated to a
cylinder function, and in particular to the value paramisteg !N this section, we assume that the relation ordeon V'
this function. More formally, based on Formula (3), we hav&@n be either partial or total.

V. COMPONENTFGRAPHS

<
I = Y C(x,m(x)) (7) A. Valued connected components

Xev In Formula (3), any cylinder functiod@’ x ,,) is generated

The selection of subsets @ (generally based oad hoc by a couple(X,v) where X € C[\,(I)] is a connected
criteria) in component-tree$ can be used to develop (anti-component of the thresholded image(l) C Q of [ at

extensive) filtering procedures [8], [14]. When performingalue v. In the sequel(X,v) is called avalued connected
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componentWe define the se® C 2 x V of all the valued
connected components of an imafeQ2 — V' as

0= [J )] x {v} ®)
veV

From the order relatior< defined onV, and the inclusion
relation C on 2%, we can define the order relatieh on © as

follows (@r1 (b) (V, <)
(X1 C Xz) vV
(Xl,vl) < (XQ,UQ) = { ((X1 _ Xg) /\(
This order relation on the valued connected compone
can be seen as the analogue of the (order) inclusion
lation on the connected components. In particular, for any( (d) A (1 @ A\(I) () ra(l (@) Xe(T)

(X1,v1), (X2,v2) € O, it verifies the following properties

((Xl ﬂXQ # @) A (1}2 g 1)1)) (Xl C X2 (10)
((Xl,vl) < (XQ,’UQ)) = (’U1 7( ’UQ (11)

B. Component-graphs (h) Ap(I (i) Ag(I) G) M (I (k) A ( Iy \;(I)
In first approximation, theomponent-grapk® of an image
I:Q — V is defined as the Hasse diagram of the ordered
set (0, d). However, three variants of component-graphs can B
relevantly be considered by defining two additional subsets
©,6 C O of valued connected components (the usefulness B

which will be justified in the sequel)

o= X xgz)X CA (I 12
XLEJW{}V{I € Cr(I)]} ()
b={@ tuNfe'celr=Y @3

o

Keo’

Broadly speakingp gathers all the valued connected compo-
nents induced by; © gathers the valued connected compo- (m) & n & (0) &
nents of maximal values for any connected components; and

2. (a) A multivalued imagd : Q@ — V with Q C R?, andV =
© gathers the valued connected components associated to{fﬁg e,d,e, f,g,h,i,j}. (b) The Hasse diagram of the ordered 68t <).

cylinders functions which are sup/max-generators/ ofsee For the sake of readability, each value f is assouated to an arbltrary
Formula (3)). colour. The (Hasse diagrams of the) ordered $¢ts <), (it, <), (4}, <)

. . . . re identified by the closed green, cyan and orange curm&ec&vely. (c—I)
We note« (resp.«, resp.«) the cover relation aSSOCIated?hresholded images, (I) for v € V. (m) The®-component-graph of. The

to the order relationrd on © (resp. to the restriction ofl to  letters (A-S) in nodes correspond to the associated cosmhemimponents

O, resp. to the restriction of! to ©). From these definitions, (c-)). For any one of the four leave5” = (X,v) € A¥ ©, the (Hasse
we derive that diagram of the) ordered séK T, <) is identified by a closed curve of colour

.. . corresponding to the value(K) = v (see Property 1). The comparison
©COCo (14)  petween these four curves and the three curves of (b) #itestithe “flattening”
of (KT,<) by comparison to(o(K)!, <) (see Property 3). (n) The-
and component-graph of. The nodes |, J, K, L, R and S, & are associated to
the sets of node¢D, 1}, {E, J}, {F, K}, {G, H, L}, {O, R} and{M, N, Q,
\/ N/ - N/ - S} in &, respectively (see Property 4). (o) TBecomponent-graph of. The
Y 0= Y 0= Y@ =(Q,1) (15)  nodes C and J, which are surrounded ¢, L} and {R, S}, respectively,
d d d
Ae=Ae=A6 (16)

belong to© but not to© (see Property 6).
We then have the following definition for the three variants
of component-graphs. to denote the three kinds of component-graphs. The elements

Definition 1 (Component-graph(s)Let I : © — V be an of © are called@ -nodes(or simply, node$; the elements of

image. The©- (resp.©-, resp.O©-)component-graplof I is < are calledo- -edges(or simply, edge$; (€2, 1) is called the
the Hasse diagrant = (O, <) (resp.® = (@ <), resp. foot; the elements ofA~ © are called theleavesof the ©-

& = (6, <)) of the ordered sete, <) (resp. (O <), resp. component-graph.
(9 <)). For the sake of conC|S|on the ter@rcomponent- An example of component-graph is illustrated in Fig. 2.
graph and the notatiod = ((), <) will sometimes be used From Formula (3), the reconstruction &ffrom its valued
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connected components is given by holds. A similar reasoning can be applied for Formula (21).
|
<
I = Y Cr (17) Broadly speaking, the appearance of one edgékin, <)

results in the disappearancefoédges k € N), by comparison

Keo . .
© to the edges ofv!, <). In particular, the different parts of
VI. GENERAL REMARKS ON THE STRUCTURE OF (0, «) located above each leaf, will often be “flattened”,
COMPONENEGRAPHS by comparison to(v!, <), thus reducing the size of the

. . . - associated data structure. This phenomenon is exemplified i
In this section, we study some links existing between trﬁg 2(a,b,m) P P

different structures of©-component-graphs and the Hasse
diagram(V, <) of (V,<).
B. Links betweeri©, «) and (0, <)

A. Links betweeri®, «) and (V, <) The nodes of(©, «4) which are preserved if©, <) are
The ©-component-graph of : Q@ — V locally inherits those which are maximal elements with respecttofor a
from the structure of(V, <). More precisely, for any leave given connected component (see Formula (12)).
K = (X,v) € AT O, the ordered setK, <) is “similar” to Let ~; be the equivalence relation @ defined by
the ordered setv!, <).
This similarity is first expressed by the fact that each wdlue (X1, 01) ~5 (X2, 02)) & (X7 = Xo) (22)

1 ) .
Sgﬂjleg;e(f ;ﬁ?\ﬁggev'grg can be associated to a unlqu?These relations gather in their equivalence classes tlheda
Pro e:}t 1 Let K — (X < 6. The function connected components which correspond to similar condecte
perty - =X,v) e A76. components.) Note that for any nodé € ©, we have

. KT !
o g, ) o (18) g
’ K]~y = AlK], (23)
is a bijection betweer " andv'. .
Proof: The fact thatr((Y, u)) € v! for any (Y, u) € K' Broadly speaking, any set of nodgs]., of (©, «) leads to

derives from the fact thak € A~ © (this is generally not true @ Set of nodesk].; of (6, «). o
otherwise). The injectivity and surjectivity of then derive ~ The links between the edges @, «) and those of©, «)
from Properties (P1) and (P2). m are characterised as follows.

This similarity is also expressed by the fact that the refati  Property 4: Let[K:]., [K2]., be two distinct equivalence
between two values af! is preserved between their associateglasses of-;. Then the following two assertions are equivalent
valued connected components /Y . , , , ,

Property 2: Let K = (X,v) € A~ ©. The functions—" : 3K € [Kil~y, K € [Ko],, K1 €4 K, (24)
v} — K induces a homomorphism frofa!, >) to (KT, <): VK] € [Ki].,, Ky € [Ka].,, K| € Ky (25)

for any K1 = 071 (vy), Ko = 071 (vs) € KT, we have _
Proof: The equivalence between Formulae (24) and (25)

(v1 =2 v9) = (K < Ky) (19) derives from the non-existence &f ¢ ¥ such thatX; C
X C X, with K, :(Xl,’l)l), KQZ(XQ,'UQ). |

Broadly speaking, all the edges between two nodes of
r?& «) associated to a same connected component disappear
in (©, <), while any edge between two nodes (, <)
associated to distinct connected components leads to edges
between all pairs of nodes ()f—), <€) respectively associated to
these two distinct connected components. These links legtwe
©- and ©-component-graphs are exemplified in Fig. 2(m,n).

In this example, for anyx € ©, we have[K]., = {K}.
However, this is not necessarily true in general. Neveetel
since the existence of an edge betwdénand K in (G), <)

Ky = o-'(01), Ka = o—(1) € K. Let us suppose thatim/p_lies the existence of a simil_ar edge between éﬁyand
K1 < K while vy £ vy. Letvs € o' and Ky = o~ (v) € Kjin [Ki], anq[KQ]Ng, respgcuvely, we can unambiguously
K. We have extend the relatiord (and then«) from © to © /~ as follows

Proof: The result derives from Property (P2). [ ]

In general, this homomorphism is not an isomorphis
In particular, it is possible thatX;,v1) < (X2,v2) while
ve & wy. This property derives from the definition of
(Formula (9)), in whichC is considered prioritarily te<.

From a theoretical point of view, the ordered $é&f', <)
is then richer than(v!, <). (In other words, the cardinality
of < is higher than the cardinality o£.) However, from a
practical point of view( KT, «) is (most of the time) less rich
than (v, <).

Property 3: Let K = (X,v) € A~ ©. Let vy, vy € v and

(v3 < v1) = ((v3 < v2) = K1 #4 K3) (20) (K]~ S [K2]n,) & (K1 D Ky) (26)

(v2 <w3) = ((v1 < v3) = K3 A K>) (21) This enables to modei®, <) in a more compact fashion, by

Proof: If vs < wv1,vs, We havevs < vy,v, and then considering its equivalence classes 4gy instead of its nodes.
K1, K> < Ks. By hypothesis, we then ha§; < K, < K5. This model is, moreover, directly linked tb, as illustrated in
By definition of « it comesK; # K3, and Formula (20) then Fig. 3.
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K such thatv < Ck/ (). Consequently, we hav€'x (z) <

i,eAﬁ . Cr/(z), and then, from Formula (13}{ ¢6. m

As a corollary of this property, whefi]., # {K}, we
necessarily havek’ ¢ ©. The links betweer@ and ©-
component-trees are exemplified in Fig. 2(n,o).

Note finally that there is no straightforward way lteally
characterise the edges éf from the ones of®. Indeed,
the existence (resp. non-existence) of an edge between two
nodes of© depends on the non-existence (resp. existence)
of a transitive path composed of successi«@dges between
these nodes.

(&) Xa(I) ) Xp(I) @) e (1) VIl. ABOUT THE INFLUENCE OF(V, <) ON
COMPONENFGRAPHS

In this section, we study how certain order relations
< defined onV influence the structural properties of the
component-graphs. In particular, we consider (from the

@ (V. <) most general to the most specific) three kinds of ordered
’ M A O @) O M) gets, frequent in image applications: lower-piecewistic
Fig. 3. (a) A multivalued ,mage, . Q - V owith Q ¢ R?, and (Section VII-A), lower-piecewise totally ordered sets ¢Se

V ={a,b,c,d,e, f,g,h,i,j,k,1,m}. (d) The Hasse diagram of the orderedtion VII-B), and totally ordered sets (Section VII-C).

set (V, ). For the sake of readablllty each value W6fis associated to an

arbitrary colour. (e—j) Thresholded images () for v € V: (e) Ao (1);

) X(I) = Xe(I) = Ma(I) = Ae(I) = Ap(D); (@) \g(I) = N(I) = A. (V,<) is a lower-piecewise lattice

gﬁéér)m ofI)\IégIc)h rsg)dé\gg t%e(ci])ra/?)ltg |.2, a(J\)/aI)l\g(g c)on(rtw)()ec-lt—:(? g)r%(;)rgr?gsfrr:ade oAn ordered set X, ) is a upper- (resp. lower-)semilattice
3 Comnected componert () of & tresholded Image depiotie h and it for any € X, \/*{r.y} (also noteds V< ) (resp.
2o\$puoen(e:g:§rs£;mnél/gé, <) of I, which has the same structurep(ak,g) /\ {x,y} (also noteds AS v)) F’,‘XISt,S' It is a lattice if it is
(see Property 5). both a upper- and a lower-semilattice.

An ordered se( X, <) is aupper- (resp.lower-)piecewise
lattice if for any = € X, the ordered sdtr', <) (resp.(z', X))
is a lattice. Note that a upper- (resp. lower-)semilattieea i
upper- (resp. lower-)piecewise lattice, but the convesseoit
true in general.

In this section, we assume th@t, <) is a lower-piecewise
(©/~4, Q) is isomorphic to(¥, C). (27) lattice. )

1) Structure of the ©-component-graphs: The ©O-
component-graphs inherit from the structure(df <).

Property 7: Let (V, <) be a lower-piecewise lattice. Then

Property 5: By considering the bijection betvvee@/wé
and ¥ which associates any equivalence cléss,v)]., of
~y 10 X

0 ’

Proof: Formula (27) derives from the definitions gfand
~g- [
C. Links betweeri®, 4) and (O, <) (©,<) is a upper-piecewise lattice. (29)

The nodes of (©, <) which are preserved in©, <) Proof: Let K = (X,v) € AYO. It derives from
are the sup/max-generators of i.e, the valued connected Property 2 that(K', 4) is a lattice. Since for any: € X
componentsk € © which contribute effectively to the where(X, <) is a lattice,(z', <) is still a lattice,(©, <) is a
(re)construction of via their associated cylinder functiafiy — Upper-piecewise lattice. [ |
(see Formulae (13) and (17)). This property can however beAs a corollary, we have the following property, related to
expressed without directly considering the relations leetw the structure of the equivalence classes-pf
1 and the cylinder functions induced l@ Property 8: Let (V,<) be a lower-piecewise lattice. Let

Property 6: Let K = (X,v) € ©. We have K € 0, then

< | ([K]~,, <) is a lower-semilattice. (30)
Ke0) s (K )V (K K 28
(K e © A #UA ) (&) Proof: Let K = (X,v). Let K’ = (Y,u) € A< © such

Proof: First note that(€2, 1) satisfies Formula (28) LetthatY C X. From Property 7(K’T <) is a lattice. Moreover
us now suppose thak # (2, 1). If K = (X,v) € AO, we have [K]., € K'l. As (V,<) is a lower-piecewise
then for allz € X, we havel(z) = v. If K # | |[A= K, lattice, (u!, <) is a lattice. Let(X, v1), (X, v2) € [K]~,. We
then, there exists € X such that/(z) = v. The fact that have X C X, <,,(I), and then, from Property (P3) €
K € 6 then derives from Formula (13). IK ¢ A¥© and C[Ay, v<u, (I)]. Consequently, we haveX, v VSvs) € (K],

K = | AT K, then for eachz € X, there existsk’ € and the result follows. [ |
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for any K € ©. [ ]

Note that, in genera[,@, <) is not a upper-piecewise lattice.
These properties are exemplified in Fig. 4.

2) Links betweer®- and ©-component-graphsUnder the
current hypotheses (see Property 8), Formula (12) can be
rewritten as

<
I b) (V, R =
@ O O={X, Y wlxew (32)

XeC[A (D))
This formula leads to the following result.
Property 10: Let (V,<) be a lower-piecewise lattice. By

considering the bijection betweed and ¥ which associates
(c) )\(0 0y(1) (d) A, 1)(1 (&) A1, 0)(1) ® Ao, 2)(1 (9) A\, 1)(1 any node(X7v) to X,

(M A2,00(1) ) Ao,z (I) 0) Ma,2(D) ) Aa,y(T) (1) A, 0)(1)
g

. .. . . ([Kil~y 2 [Kalvy) & (NKil, 2 A[K2lo)  (34)

Property 11: If (V, <) is a lower-piecewise lattice, then

(6, <) is isomorphic to(¥, C). (33)

Proof: From Formula (32), for eaclik € ©, we have

[K]~, = {K}. The result then follows from Property 5. ®

Moreover, by extending the relatiod (and then<) from
O to ©/~y as follows

(©/~4, <) is isomorphic to(©, <). (35)

Proof: The proof derives from the equality between any
K € © and \ 7[K]-,. [
This identification is completed by the fact that for &lle ©,
([K]~y, Q) is a lower-semilattice (Property (8)), and by the
following property.
Property 12: Let (V,<) be a lower-piecewise lattice. For
all K, K5 € © (with [K4]., # [K2]~,) We have

(K1 4 K2) = (\[K1]ey < A[K2lo,)  (36)

Proof: The result derives from Property 4. |
Fig. 4. (a) A multivalued imagé : Q — V with Q c R2, andV C 72, Broadly speaking, all the edges between two nodes of

equipped with the lexicographic order relation. (b) The s$¢adiagram of the (@7 4) associated to a same connected component disappear
ordered setV, <). For the sake of readability, each valueléfis associated .

to an arbitrary colour. (c—q) Thresholded |mag>es([) for v € V. (r) The In (@7 )' while any edge between two nodes (ﬁ) )
©-component-graph of. The letters (A-AC) in nodes correspond to theassociated to distinct connected components lead to edges

associated connected components (c—q). (s)d#emponent-graph of. The  petween the nodes (QB <) respectively associated to these

nodes H, M, N and X are associated to the sets of ng@esi}, {E,l,J,M}, e .
{FK,LN} and{0,S,T.X in (), respectively. (t) Thé-component-graph of WO distinct connected components. These links betwgen

I. The nodes B and C, which were present in (s) have disappesine¢t they and ©-component-trees are exemplified in Fig. 4(r,s).
are spatially surrounded b{H,M} and {G,N}, respectively.

® &

B. (V,<) is a lower-piecewise totally ordered set

It then derives from this property that ttfé-component- We say that an order relatiot on a setX is upper-
graphs also inherit from the structure @f, <). (resp. lower-)piecewise total (and tha¥, <) is a upper- (resp.
Property 9: Let (V, <) be a lower-piecewise lattice. Then lower-)piecewise totally ordered set) if for anyc X, (27, <)

(resp.(x!, <)) is a totally ordered set.
In this section, we assume th@t, <) is a lower-piecewise
Proof: The result derives from the fact th&®, <) is a totally ordered set. Note thatl, <) is then also a lower-
upper-piecewise lattice and th@k’]..., , <) admits a minimum piecewise lattice.

(©, <) is a upper-piecewise lattice (31)
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(@1 (b) (V,=) C©B=6~7%
. U o2 HEEE2 e 2le Al
eo e
(€) Aa(I) (d) (1) (e) Ae(1) ® Xa(I) 9) Xe(1) d) Xo(1) (e) A1 (1) ) X2(1) (9) A3(1) (h) Aa (1)

Fig. 6. (a) The grey-level image: @ — V of Fig. 1(a). (d—h) Thresholded
images A\, (I) € Q (in white) for v varying from 0 to 4. (b) The ©-
component-graph off. (c) The ©-/©-component-graphs of, which are
isomorphic to its component-tree (see Fig. 1(b)). The lettard?) in nodes
correspond to the associated connected components (c—g).

oole| I Lo

(M) Ar(D) (@) Ag(1) 0 An() () AilD) 0 A (D)

and 11. Moreover, Properties 8 and 12 are strengthened by the
following ones.

Property 15: Let (V,<) be a lower-piecewise totally or-
dered set. LefX € ©. Then

([K]~,, <) is totally ordered. (39)
Fig. 5. (a) A multivalued imagel : Q@ — V with @ C R2, and Proof: The result derives from Property 8 and the lower-
V ={a,b,c,d,e, f,g,h,1,j}. (b) The Hasse diagram of a lower-piecewisepiecewise totality of<. ]

totally ordered se(V, ). For the sake of readability, each value Wfis . _ni ; _
associated to an arbitrary colour. (c—l) Thresholded imag€d) for v € V. Property 16: Let (V’ g) be a lower-piecewise totally or

(m) The ©-component-graphs df. The letters (A-N) in nodes correspond todered set. For alKy, K> (with [K4]., # [K2]~,) we have
the associated connected components (c—). (n) @r@mponent-graphs of

I. The nodes M and N are associated, in (m), to “linear paft$M} and d
{G,N} (Properties 15 and 16). (0) TH&-component-graphs df. (K; 4 Ks) = (A[Kﬂwe < K3) (40)
g
o (K1 €4 K3) = (Y[Ki]~, € K2) (41)
1) Structure of th&-component-graphstUnder the current . )
hypotheses, the result of Property 2 is strengthened. Proof: The result derives from Properties 12 and 1.
Property 13:Let K = (X,v) € ©. By considering the Broadly speaking, the branching points of tBecomponent-
bijectiono : KT — v!, graph are preserved in the associattecomponent-graph,
o _ while each node of© is associated to a linear part of
(KT, <) is isomorphic to(v', >). (B7)  the ©-component-graph. These properties are illustrated in

Proof: The result derives from the totality af onv!. m Fig. 5(m,n).
The ©-component-graphs then inherit from the structure of
(V,<). _ _ C. (V,<) is a totally ordered set
Property 14: Let (V,<) be a lower-piecewise totally or-

dered set. Then In this section, we assume th@t, <) is a totally ordered

) set. The case of grey-level images is then matched here.
(0, Q) is a upper-piecewise totally ordered set. (38) Note that(V, <) is also a lower-piecewise totally ordered
§et. Consequently, all the properties of Sections VII-A and
CVII-B remain valid here, and in particular Properties 10 and
14.

Moreover, Property 10 is strengthened by the following one.
Property 17: Let (V, <) be a totally ordered set. Then

Proof: The result derives from Property 13 and the fa
that any subset of a totally ordered set is itself totallyeoed.

Under the current hypotheses, ti@component-graphs
have a tree structure (of rooff2, 1)), as illustrated in
Fig. 5(a,m-0). ) (@7 <) = (@’ <) (42)

2) Links between©- and ©-component-graphs:Since
(V,<) is a lower-piecewise lattice, all the properties of Sec- Proof: The result derives from Property 6 and Proper-
tion VII-A remain valid here, and in particular Propertie8 1ties (P2) and (P3). |
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From the following property, we finally guarantee theheoretical point of view, we have the following upper-bdsn
compliance between the concepts of component-tree &odthe number of nodes ab
component-graphs, as illustrated in Fig. 6.

Property 18: Let I : 2 — V be a grey-level image, angl ‘Q‘ = O(I®l.[V]) (45)
its component-tree. Then 0] = O(|2[.|V]) (46)
®, & are isomorphic ta€ (43) ©] = 0o(e) “47)
where & C 2% is the set of all the flat zones df, with
and - - thus || < || (and generally)®| <« |©2]). From a practical
j Y c _ Y Ox (44) point of view, for real images, th_e actual number .of nodes
. (X;m(X)) o in the ©-component-graph of an image: @ — V will be

generally (much) lower than these bounds, since it will dejpe

Proof: Formula (43) derives from Properties 10 and 17n|®|, |V|, but also on the structure of the image itself, and in
Formula (44) is a rewriting of Formulae (7) and (17). m particular the number of its maxima and their “height”, with
respect to(V, <). In particular, we will have

VIII. SUMMARY 8| <0< 18| < Z lo(K)Y| (48)
A. Main properties KephT o
Table | describes the component-graphs/tree defined by the IX. CONCLUSION

different. ordereq sets ind.uced l@"and V. Tables Il and Il 14 hotion of component-graph has been proposed as an
summarise the isomorphism relathns between .t.hem,'and B&ension of the notion of component-tree for images taking
nature of their order. These properties are classified dqtg)r their values in any (partially or totally) ordered sets. ®om
lto thed n_atureb:)f the qrdergd Sal? <) ((jw'th d.the foII<.JV\I/|ng structural properties of three variants of componentdgsap
egend Ta “es Ialll. JO' tqt? y oraered; LPlTO_. OW€have been investigated, in particular for value spacestwdrie
piecewise totally ordered; LPL: lower-piecewise lattice) likely to appear in real image®.q, piecewise totally ordered

TABLE | sets or lattices).
COMPONENTFGRAPHSTREE DEFINITIONS, ACCORDING TO(V; <). In the next part of this work, we will propose to gener-
alise the standard grey-level image filtering frameworkeblas
VO] 69 | ©.9 [ 6/~ ©.9 | #.9 arey g 9 .
T ® oS T on component-trees [8], [14], thus relaxing the constgaint
LPTO & & & linked to total orderings on image values. In particulag th
LPL & & & component-graphs(s) construction and the non-trivialdssf
Other G ® | & (compact) S image reconstruction will be discussed.
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