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Sparse Non-Negative Stencils for Anisotropic Diffusion ∗

Jérôme Fehrenbach† Jean-Marie Mirebeau‡

May 22, 2013

Abstract

We introduce a new discretization scheme for Anisotropic
Diffusion, AD-LBR, on two and three dimensional carte-
sian grids. The main features of this scheme is that
it is non-negative and has sparse stencils, of cardinality
bounded by 6 in 2D, by 12 in 3D, despite allowing diffu-
sion tensors of arbitrary anisotropy. The radius of these
stencils is not a-priori bounded however, and can be quite
large for pronounced anisotropies. Our scheme also has
good spectral properties, which permits larger time steps
and avoids e.g. chessboard artifacts.

AD-LBR relies on Lattice Basis Reduction, a tool from
discrete mathematics which has recently shown its rele-
vance for the discretization on grids of strongly anisotropic
Partial Differential Equations [14]. We prove that AD-
LBR is in 2D asymptotically equivalent to a finite element
discretization on an anisotropic Delaunay triangulation, a
procedure more involved and computationally expensive.
Our scheme thus benefits from the theoretical guarantees
of this procedure, for a fraction of its cost. Numerical
experiments in 2D and 3D illustrate our results.

keywords : Anisotropic Diffusion, Non-Negative Nu-
merical Scheme, Lattice Basis Reduction.

We consider throughout this paper a bounded smooth
domain Ω ⊂ Rd, where d ∈ {2, 3} denotes the dimension,
equipped with a continuous diffusion tensor D. We do
not impose any bound on the diffusion tensor anisotropy,
and we are in fact interested in pronounced, non axis-
aligned anisotropies. Anisotropic diffusion is here under-
stood in the sense of [25]: the diffusion tensor D(z), at a
point z ∈ Ω, is a symmetric positive definite matrix whose
eigenvalues may have different orders of magnitude. Our
results are not relevant for isotropic diffusion with a vari-
able scalar coefficient, as in the pioneering work of Perona
and Malik [20].
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We address the discretization of the following energy E ,
defined for u ∈ H1(Ω):

E(u) :=

ˆ
Ω

‖∇u(z)‖2D(z)dz. (1)

We denote ‖e‖M :=
√
〈e,Me〉, for any e ∈ Rd, and any

M in the set S+
d of symmetric positive definite d× d ma-

trices. Gradient descent for the energy (1) has the form
of a parabolic PDE:

∂tu = div(D∇u). (2)

This equation, Anisotropic Diffusion, is with its variants
at the foundation of powerful image processing techniques.
Some variants include curvature terms [19], or diffusion-
reaction terms [5]. Time varying and solution dependent
diffusion tensors can also be considered. A general ex-
position can be found in [25], where various choices for
the definition of the diffusion tensor D from the image
u, adapted to various applications, are proposed and dis-
cussed.

Our contribution in the discretization of the energy (1)
results in improved numerical solutions of (2), in terms
of accuracy and stability, for a minor increase in com-
plexity. This extends to applications, such as Coher-
ence Enhancing Diffusion and Edge Preserving Diffusion
[25], see the numerical experiments in §4, which involve
solving (2) using a solution dependent diffusion tensor
D = D(u). For that purpose, one fixes a time step ∆T ,
and solves for each integer n ≥ 0 the linear diffusion equa-
tion ∂tu = div(Dn∇u) on the interval [n∆T, (n+ 1)∆T ],
with Dn := D(u(n∆T )). In these applications, the dif-
fusion tensor D(u) is typically defined in terms of the
structure tensor [25] of u, in such way that diffusion is
pronounced within image homogeneous regions, and tan-
gentially along image edges, but not across edges.

In two dimensions, AD-LBR strictly speaking is not the
first non-negative scheme for anisotropic diffusion: the
proof of Theorem 6 in [25] implicitly defines an alterna-
tive 6-point non-negative scheme. This alternative scheme
does however lack many of the qualities of AD-LBR: it
leads to axis aligned artifacts, spectral aberrations, sten-
cils of larger radius, reduced numerical accuracy, and does
not extend to 3D. A detailed description and comparison
is presented in §4.1.
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Consider a scale parameter h > 0, and a sampling Ωh
of the domain Ω on the cartesian grid Zd, rescaled by h:
with obvious notations

Ωh := Ω ∩ hZd.

We introduce a novel discretization of the energy (1), re-
ferred to as AD-LBR (Anisotropic Diffusion using Lattice
Basis Reduction). It is a sum of squared differences of a
discrete map u ∈ L2(Ωh)

Eh(u) := hd−2
∑
z∈Ωh

∑
e∈V (z)

γz(e) |u(z + he)− u(z)|2 (3)

The stencils V (z) ⊂ Zd, z ∈ Ωh, are symmetric and have
cardinality at most 6 in 2D, 12 in 3D. The coefficients
γz(e) ≥ 0 are non-negative. They are constructed using
a classical tool from discrete mathematics, Lattice Basis
Reduction, which allows to cheaply build efficient sten-
cils for grid discretizations of Partial Differential Equa-
tions (PDEs) involving strongly anisotropic diffusion ten-
sors or Riemannian metrics. This approach has been ap-
plied to anisotropic static Hamilton-Jacobi PDEs in [14],
resulting in a new numerical scheme: Fast Marching using
Lattice Basis Reduction (FM-LBR). Substantial improve-
ments were obtained in comparison with earlier methods,
in terms of both accuracy and complexity.

The paper is organized as follows. We describe the sten-
cils of the two dimensional AD-LBR in §1, and state our
main 2D result: the asymptotic equivalence of AD-LBR
with a finite element discretization on an Anisotropic De-
launay Triangulation. Section §2 provides additional de-
tails on the two dimensional stencils of AD-LBR, and de-
scribes the three dimensional ones. The more technical
§3 details the proof of the 2D equivalence result stated
in §1. Two and three dimensional numerical experiments
are presented in §4, including qualitative and quantitative
comparisons with five other numerical schemes.

1 Description of the scheme, and
main results

Our numerical scheme, Anisotropic Diffusion using Lattice
Basis Reduction (AD-LBR), involves the construction of
stencils whose geometry is tailored after the local diffusion
tensor. Its essential feature is non-negativity: the discrete
energy Eh(u) is written as a sum (3) of squared differences
of values of u, with non-negative weights γz(e) ≥ 0. This
discretization is consistent if for each z ∈ Ωh, and any
smooth u,

hd‖∇u(z)‖2D(z) = hd−2
∑

e∈V (z)

γz(e) 〈∇u(z), he〉2. (4)

Indeed, the left hand side approximates the contribution
of the “voxel” z + [−h/2, h/2]d to the integral (1), while
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Figure 1: Right: the stencils associated to three matrices
M of anisotropy ratios κ(M) equal to 1.1, 3.5, 8 respec-
tively. The ellipses {z ∈ R2; ‖z‖M = 1} are shown left;
their principal axis is aligned with (cos(π/3), sin(π/3)).
More stencils are shown in [14].

the right hand side is obtained by inserting the first order
approximation u(z+ he) ' u(z) + 〈∇u(z), he〉 in (3). The
identity (4) is in turn equivalent to

D(z) =
∑

e∈V (z)

γz(e) ee
T. (5)

The next lemma shows how to obtain such a decomposi-
tion in 2D. We denote by u⊥ := (−b, a) the rotation of a
vector u = (a, b) ∈ R2 by π/2, in such way that for all
v ∈ R2:

〈u⊥, v〉 = det(u, v).

Lemma 1. Let e0, e1, e2 ∈ R2 be such that e0+e1+e2 = 0,
and |det(e1, e2)| = 1. Then for any D ∈ S+

2 , with the
convention e3+i := ei:

D = −
∑

0≤i≤2

〈e⊥i+1, De
⊥
i+2〉 eieT

i . (6)

Proof. Note that 1 = |det(e2, e0)| = |det(e0, e1)|. Denot-
ing by D′ the right hand side of (6), we obtain

〈e⊥1 , D′e⊥1 〉 = −〈e⊥0 , De⊥1 〉〈e2, e
⊥
1 〉2 − 〈e⊥1 , De⊥2 〉〈e0, e

⊥
1 〉2

= −〈e⊥0 + e⊥2 , De
⊥
1 〉 = 〈e⊥1 , De⊥1 〉.

Thus ‖e⊥1 ‖D′ = ‖e⊥1 ‖D. Likewise ‖e⊥2 ‖D′ = ‖e⊥2 ‖D, and
‖e⊥1 + e⊥2 ‖D′ = ‖e⊥0 ‖D′ = ‖e⊥0 ‖D = ‖e⊥1 + e⊥2 ‖D. Since
(e⊥1 , e

⊥
2 ) is a basis of R2, the result follows.

The diffusion tensor D is meant to measure gradients,
as in (1). In order to measure angles between vectors,
we introduce a Riemannian metric 1 M on the domain Ω,
which is proportional to the inverse of D: for all z ∈ Ω

M(z) := d(z) D(z)−1, where d(z) := det(D(z))
1
d . (7)

1The Laplace Beltrami operator associated to M does not coin-
cide with div(D∇·), unless D is identically of determinant 1. This
is not an issue for our application.
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The normalizing factor d(z) was chosen so as to normalize
the metric determinant: det(M(z)) = 1. This normaliza-
tion reflects the fact that the construction of our sten-
cil V (z) depends on the preferred direction of diffusion,
and on the amount of anisotropy, whereas the absolute
strength of diffusion is irrelevant. In dimension d = 2, one
easily checks that for any z ∈ Ω and any e, f ∈ R2, one
has

〈e⊥,D(z)f⊥〉 = d(z)〈e,M(z)f〉. (8)

The AD-LBR is based on decompositions (5), given by
the previous lemma, with a family of vectors (ei)

2
i=0 cho-

sen so that the scalar products appearing in (6) are non-
positive. The adequate concept is that of M -obtuse su-
perbase of Zd [4].

Definition 1. • A basis of Zd is a family (ei)
d
i=1 of

elements of Zd such that |det(e1, · · · , ed)| = 1.

• A superbase of Zd is a family (ei)
d
i=0 such that e0 +

· · ·+ ed = 0, and (ei)
d
i=1 is a basis of Zd.

Definition 2. Let M ∈ S+
d . A family (ei)i∈I of vectors in

Rd is said to be M -obtuse if 〈ei,Mej〉 ≤ 0 for all distinct
i, j ∈ I.

In dimension d ≤ 3, there exists for each M ∈
S+
d at least one M -obtuse superbase of Zd [4]. The

practical construction of such superbases is discussed in
§2, and based on lattice basis reduction algorithms de-
scribed in [11, 23, 17] (hence the name of our numerical
scheme). This construction has a logarithmic numerical
cost O(lnκ(M)) in the anisotropy ratio of the matrix M :

κ(M) := max
|u|=|v|=1

‖u‖M
‖v‖M

=
√
‖M‖‖M−1‖. (9)

The AD-LBR energy Eh : L2(Ωh) → R+, see (3), is in
two dimensions written in terms of the following stencils
and coefficients. Let z ∈ Ω, and let e0, e1, e2 be an M(z)-
obtuse superbase of Z2. We set

V (z) := {e0, e1, e2, −e0,−e1,−e2}, (10)

and for 0 ≤ i ≤ 2, with the convention ei+3 := ei,

γz(±ei) := −1

2
〈e⊥i+1,D(z)e⊥i+2〉. (11)

Lemma 1 implies the announced decomposition (5), and
the weights γz are non-negative in view of (8). These
weights γz : Z2 → R+, extended by 0 outside V (z), do not
depend on the choice of M(z)-obtuse superbase (e0, e1, e2),
see Lemma 11. Stencils of the three dimensional AD-LBR
are described in §2, and involve a construction of Selling2

2The authors would like to thank Professor P. Q. Nguyen for
pointing out this 12 points 3D stencil, which is simpler and sparser
than the 14 points stencil proposed by the authors in an earlier
version of the manuscript.

[22]. The above description of the stencils V (z) is suitable
for periodic, reflected, and Dirichlet boundary conditions
(extending u by zero outside Ωh in the latter case). In the
case of Neumann boundary conditions, a slight modifica-
tion is in order:

V (z; h) := {e ∈ V (z); z + he ∈ Ωh}.

We have so far established three strongpoints of the AD-
LBR:

Non-negativity. Off diagonal coefficients of the symmet-
ric semi-definite N × N matrix, N = #(Ωh), associ-
ated to the energy Eh are non-positive, while diagonal
coefficients are positive.

Sparsity. Stencil cardinality is uniformly bounded, with-
out restriction on the anisotropy ratio κ(D(z)) of the
diffusion tensor.

Complexity. The construction of the stencil V (z), and of
the associated coefficients γz, has a logarithmic cost
O(lnκ(D(z))) in the anisotropy ratio of the diffusion
tensor.

The next result, Theorem 1, restricted to the two di-
mensional case, establishes that AD-LBR is asymptot-
ically equivalent to a more involved and computation-
ally intensive procedure: a finite element discretization of
the energy (1), on an Anisotropic Delaunay Triangulation
(ADT, see [10] and below) of the domain Ω. Under the
assumptions of Theorem 1, AD-LBR benefits from two ad-
ditional guarantees, that we state informally and without
proof.

No chessboard artifacts. Some numerical schemes for
anisotropic diffusion suffer from chessboard artifacts,
in the sense that periodic artifacts develop at the pixel
level. Such artifacts cannot develop in finite element
discretizations, since they would lead to high fre-
quency oscillations of the finite element interpolant,
and therefore to an increase of the energy (12). The
asymptotic equivalence of the AD-LBR with a finite
element discretization also rules out these defects.

Spectral correctness. The n-th smallest eigenvalue
λn(h) of the symmetric matrix associated to h−dEh
(3), converges as h → 0 towards the n-th smallest
eigenvalue λn of the continuous operator −div(D∇),
for any given integer n ≥ 0. See Figure 8 page 15
for an illustration. This follows from a similar prop-
erty of the finite element energy E ′h (12), and from
the asymptotic equivalence (13).

Our convergence result, Theorem 1 below, is special-
ized to the case of a square periodic domain, which covers
reflecting boundary conditions frequently used in image
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p

Figure 2: The distance δp(q), from a grid point p to q ∈
R2, is defined in terms of the local metric M(p), see (14).
The level lines {q ∈ R2; δp(q) = r} are ellipses (left). The
collection of points q ∈ R2 closer to p than to any other
grid point is the Voronoi region of p (left: the boundaries of
Voronoi regions are shown dashed). The Voronoi diagram
(right) is the collection of all Voronoi regions.

processing. Since the grid discretization must be compat-
ible with the boundary conditions, any scale parameter h
appearing in the rest of the paper is assumed to be the
inverse of a positive integer:

h ∈ {1/n; n ≥ 1}.

Theorem 1. Let Ω be the unit square [0, 1[2, equipped
with periodic boundary conditions. Let D : Ω → S+

2 be
a (periodic) diffusion tensor with Lipschitz regularity, and
let M be the Riemannian metric defined by (7). When
h is sufficiently small, the periodic Riemannian domain
(Ω,M) admits an Anisotropic Delaunay Triangulation Th,
with collection of vertices Ωh := Ω∩hZ2. For u ∈ L2(Ωh),
define

E ′h(u) :=

ˆ
Ω

‖∇(ITh u)(z)‖2D(z)dz, (12)

where IT denotes the piecewise linear interpolation op-
erator on a triangulation T . Then for some constant
c = c(D), independent of u and h,

(1− ch)Eh(u) ≤ E ′h(u) ≤ (1 + ch)Eh(u). (13)

Let us mention that the finite element discretization on
an ADT is a more general procedure than AD-LBR, since
it does not require the domain Ω to be sampled on a grid.
This flexibility can be used to locally increase the density
of vertices, in places where solution u is expected to be
less regular, or to insert vertices exactly on ∂Ω for a better
discretization of boundary conditions. (Such refinements
are however generally incompatible with image processing
since the unknowns, the pixel values, lie by construction
on a fixed and given cartesian grid.) Here and as often, the
performance of AD-LBR is at the cost of its specialization.

The proof of Theorem 1 is postponed to §3, but for
the sake of concreteness, we describe here the concept of

p1

p2

p3

q

Tq

p

Figure 3: A Voronoi vertex q is a point where the Voronoi
regions of at least three grid points (pi)

k
i=1 intersect (left:

Voronoi region boundaries are shown dashed); here k = 3
(values k > 3 are non-generic). The dual Voronoi cell
Tq, generically a triangle, is the convex envelope of the
grid points {pi; 1 ≤ i ≤ k} (left). The collection of dual
Voronoi cells Tq defines a polygonization Qh, generically
a triangulation, and the Anisotropic Delaunay Triangula-
tion Th is obtained by arbitrarily triangulating (if neces-
sary) the elements of Qh. Here Th = Qh (right). The
stencil Vh(p), of a vertex p of Th, see (17), is represented
by arrows (right).

Anisotropic Delaunay Triangulation (ADT) [10]. In the
rest of this introduction, and in §3, we assume as in Theo-
rem 1 that the diffusion tensor D is defined on the square
[0, 1]2 and satisfies periodic boundary conditions. We ex-
tend it, as well as the metric M, to the whole plane R2 by
periodicity.

We specialize the concept of ADT [10], to the domain
R2 and the collection of vertices hZ2. For that purpose, we
introduce some notations. For all p, q ∈ R2, we denote by
δp(q) the distance from p to q, as measured by the metric
at the point p:

δp(q) := ‖q − p‖M(p). (14)

We denote by ∆h(q) the least distance from a point q ∈ R2,
to the grid hZ2:

∆h(q) := min
p∈hZ2

δp(q). (15)

We introduce the Voronoi cell Vorh(p) of a grid point p ∈
hZ2, which is the collection of points q ∈ R2 closer to p
than to any other grid point:

Vorh(p) := {q ∈ R2; δp(q) = ∆h(q)}. (16)

The collection of Voronoi cells is referred to as the Voronoi
diagram, see Figure 2. A Voronoi vertex is a point q ∈ R2

at which at least three distinct Voronoi regions intersect:
(Vorh(pi))

k
i=1, k ≥ 3, pi ∈ hZ2. We attach to q a dual

Voronoi cell Tq, defined as the convex hull of the points
(pi)

k
i=1, see Figure 3.
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The geometric dual Qh, of the Voronoi diagram, is de-
fined as the collection of all dual Voronoi cells Tq. Note
that, generically on the metric M, no more than three
Voronoi regions can intersect at any point in R2, thus
the elements of Qh are generically triangles. If h is small
enough, we show in §3 (using the Dual Triangulation Theo-
rem in [10]) that Tq is a strictly convex polygon, of vertices
(pi)

k
i=1 with the above notations, and that Qh is a polygo-

nization (generically a triangulation) of R2, with vertices
hZ2.

Since the metric M and the vertices hZ2 are periodic
(recall that h = 1/n for some integer n ≥ 1), arbitrarily
triangulating the elements of Qh, respecting periodicity,
yields a periodic triangulation Th.

Definition 3 (ADT, Labelle and Shewchuk [10]). The
triangulation Th obtained by the above construction is re-
ferred to as an ADT of the domain R2, with collection
of vertices hZ2, and underlying Riemannian metric M.
Since Th is Z2-periodic, we also regard it as an ADT of
the periodic unit square Ω.

We establish in §3.1 the existence of the ADT Th. In-
cidentally, we show in Lemma 7 (iii) page 8 that the an-
gles of the elements of Th, measured with respect to the
local metric M, are asymptotically acute. This geomet-
rical property (which holds thanks to our special choice
of triangulation vertices, on a grid) is linked to the non-
negativity of AD-LBR: indeed, it is known that finite
elements discretizations such as (12) yield non-negative
numerical schemes, and the discrete maximum principle,
if the mesh satisfies a non-obtuse angle condition, see
Lemma 3.1 in [9].

Subsection §3.2 is devoted to the study of M -obtuse su-
perbases of Z2, and their cousins M -reduced bases of Z2,
on which the AD-LBR relies: we discuss their character-
ization, uniqueness and stability properties. We study in
§3.3 the finite element stencils, defined for p ∈ hZ2 by

Vh(p) := {e ∈ Z2; [p, p+ he] is an edge of Th}, (17)

see Figure 3 (right). We show that Vh(p) coincides with
the AD-LBR stencil V (p), unless the lattice Z2 admits a
basis almost orthogonal with respect to the scalar product
associated to M(p), see Lemma 13. This is tied to the
fact that orthogonal grids admit several (usual) Delaunay
triangulations. Overcoming this technical difficulty, we
conclude the proof of Theorem 1.

Note that the construction of the ADT Th is not easy
to parallelize, in particular when anisotropy is pronounced
since the Voronoi regions of far away points interact. The
construction of Th also involves solving polynomial equa-
tions of degree four, because Voronoi regions boundaries
are conics, and Voronoi vertices must be identified at their
intersections. In contrast, the AD-LBR stencils are inde-
pendent of each other, and the numerical cost of their

Figure 4: Right: stencil of the AD-LBR, for a symmetric
matrix of eigenvector M of anisotropy ratio κ(M) equal to
2 (top) or 6 (bottom). The anisotropy is of “needle” type:
the two largest eigenvalues of M are equal, and the needle
orientation is given by the vector (4, 2, 3). The ellipsoid
{z ∈ R3; ‖z‖ ≤ 1} is shown left.

construction only grows logarithmically with the metric
anisotropy.

2 Construction of obtuse super-
bases, and three dimensional
stencils

Algorithms for the construction of privileged bases of lat-
tices, consisting of short and almost orthogonal vectors,
have attracted an important research effort from the math-
ematical community, over a long period of time. The first
such algorithm dates back to Lagrange [11], and is re-
stricted to two dimensional lattices. Methods for high
dimensional lattices, such as the LLL algorithm [12], are
of key importance for integer programming and cryptog-
raphy [18]. AD-LBR is based on the original algorithm of
Lagrange [11], and on its recent extension to three dimen-
sional lattices [23, 17]. These methods output a basis of
Zd reduced in the sense of Minkowski, which in dimension
d ≤ 4 is equivalent to the following definition.

We denote by e1Z+ · · ·+ ekZ the sub-lattice of Zd gen-
erated by vectors e1, · · · , ek ∈ Zd. This sub-lattice equals
{0} by convention if k = 0.

Definition 4. An M -reduced basis of Zd, where d ≤ 4

5



and M ∈ S+
d , is a basis (e1, · · · , ed) of Zd such that

‖ei‖M = min{‖e‖M ; e ∈ Zd \ (e1Z + · · ·+ ei−1Z)}. (18)

For each d ≤ 4, and each M ∈ S+
d , there exists at

least one M -reduced basis [17]. In contrast, there exists
M ∈ S+

5 for which no basis of Zd satisfies (18). The norms
of the elements (ei)

d
i=1 of an M -reduced basis,

λi(M) := ‖ei‖M , (19)

are called the Minkowski minima, and are independent of
the choice of M -reduced basis. In particular, e1 is the
shortest vector of Zd, with respect to the norm ‖ ·‖M , and
e2 is the shortest linearly independent vector.

Lemma 2. For any M ∈ S+
d , 1 ≤ i ≤ d,

‖M− 1
2 ‖− 1

2 ≤ λi(M) ≤ ‖M‖ 1
2 .

Proof. Note that ‖M− 1
2 ‖− 1

2 ‖e‖ ≤ ‖e‖M ≤ ‖M‖
1
2 ‖e‖, for

any e ∈ R2. In addition: (i) any e ∈ Z2 \ {0} satisfies
‖e‖ ≥ 1, and (ii) the set Zd\(e1Z+· · ·+ei−1Z) appearing in
(18) always contains at least one element e of the canonical
basis of Rd, so that ‖e‖ ≤ 1. The announced result easily
follows.

We emphasize that obtaining an M -reduced basis, i.e.
solving the minimization problems (18), is both simple and
cheap numerically. In dimension d = 2, this is the object
of Lagrange’s algorithm [11] (later rediscovered by Gauss
and often erroneously called Gauss’s algorithm, see [17]):
initialize (e, f) as the canonical basis of Z2, and

Do (e, f) := (f, e− Round(〈e,Mf〉/‖f‖2M ) f), (20)

while ‖e‖M > ‖f‖M .

This algorithm can be regarded as a two dimensional ge-
ometrical generalization of greatest common divisor com-
putation. It can be extended to higher dimension and, in
dimension up to four, outputs an M -reduced basis after at
most O(lnκ(M)) iterations [17], each consisting of O(1)
operations among reals.

The elements of an M -reduced basis are heuristically
never very far from being orthogonal, as illustrated by the
following lemma.

Lemma 3. Let M ∈ S+
d , d ≤ 4, and let (e1, · · · , ed) be

an M -reduced basis. Then for any i, j ∈ {1, · · · , d},

2|〈ei,Mej〉| ≤ ‖ei‖2M . (21)

Proof. Since ‖ek‖M is an increasing function of k ∈
{1, · · · , d}, we may assume that i < j. If follows from (18)
that ‖ej‖M ≤ ‖ej+ei‖M , and ‖ej‖M ≤ ‖ej−ei‖M . Squar-
ing these inequalities, and developing the scalar products,
we obtain the announced result.

Corollary 1. Let M ∈ S+
2 , and let (e, f) be an M -reduced

basis such that 〈e,Mf〉 ≤ 0. Then (e, f, g) is an M -obtuse
superbase of Z2, with g := −e− f . In addition

〈e,Mg〉 ≤ −‖e‖2M/2, 〈f,Mg〉 ≤ −‖f‖2M/2. (22)

Proof. The previous Lemma implies 〈e,M(e + f)〉 ≥
‖e‖2M − |〈e,Mf〉| ≥ 1

2‖e‖
2
M . Likewise 〈f,M(e + f)〉 ≥

1
2‖f‖

2
M . The result follows.

The practical construction of the two dimensional AD-
LBR stencil at a point z ∈ Ω amounts to (i) compute
an M(z)-reduced basis (e, f) using Lagrange’s algorithm
(20), (ii) replace f with −f , if necessary, so that 〈e,Mf〉 ≤
0, and (iii) define the stencil V (z) and the weights γz in
terms of the M -obtuse superbase (e, f, g) of Z2, where
g = −e− f , as described in (10) and (11).

The rest of this section is devoted to the description
of the three dimensional AD-LBR stencils. In constrast
with the two dimensional case, the construction of the 3D
stencil V (z) at a point z ∈ Ω, involves a D(z)-obtuse basis,
instead of an M(z)-obtuse basis.

Proposition 1. Let D ∈ S+
3 , and let (e1, e2, e3) be a D-

reduced basis. Let bi := εieσ(i), for all 1 ≤ i ≤ 3, where
the signs ε1, ε2, ε3 ∈ {−1, 1}, and the permutation σ of
{1, 2, 3} are chosen so that

|〈b1, Db2〉| ≤ min{−〈b1, Db3〉, −〈b2, Db3〉}. (23)

Then the following is a D-obtuse superbase:{
(b1, b2, b3,−b1 − b2 − b3) if 〈b1, Db2〉 ≤ 0,

(−b1, b2, b1 + b3,−b2 − b3) otherwise.
(24)

Proof. To achieve (23), one can choose σ such that b′i :=
eσ(i) satisfies |〈b′1, Db′2〉| ≤ |〈b′1, Db′3〉| ≤ |〈b′2, Db′3〉|. Then
choose the signs (εi)

3
i=1 such that bi := εib

′
i satisfies

〈b1, Db3〉 ≤ 0 and 〈b2, Db3〉 ≤ 0.
The two families of vectors appearing in (24) are clearly

superbases. We thus only need to show that they are
D-obtuse; in other words that 〈e,Df〉 ≤ 0 for any two
distinct elements e, f of these families. Note that for all
distinct i, j ∈ {1, 2, 3}, using (21),

2|〈bi, Dbj〉| ≤ ‖bi‖2D.

In the case where 〈b1, Db2〉 ≤ 0, the pairwise scalar
products between b1, b2, b3 are non-positive by construc-
tion. In addition

2〈b1 + b2 + b3, Db1〉
≥(‖b1‖2D − 2|〈b1, Db2〉|) + (‖b1‖2D − 2|〈b1, Db3〉|) ≥ 0.

Likewise 〈b1 + b2 + b3, Dbi〉 ≥ 0 for all i ∈ {1, 2, 3}, which
concludes the proof.
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We next turn to the second case, where 〈b1, Db2〉 ≥ 0.
Enumerating all scalar products we obtain

〈b1, D(b1 + b3)〉 ≥ ‖b1‖2D − |〈b1, Db3〉| ≥ 0,

〈b1, D(−b2 − b3)〉 = −〈b1, Db2〉 − 〈b1, Db3〉 ≥ 0,

−〈b2, D(b1 + b3)〉 = −〈b2, Db1〉 − 〈b2, Db3〉 ≥ 0,

〈b2, D(b2 + b3)〉 ≥ ‖b2‖2D − |〈b2, Db3〉| ≥ 0,

and finally

2〈b1 + b3, D(b2 + b3)〉 ≥ 2〈b1, Db2〉
+ (‖b3‖2 − 2|〈b1, Db3〉|) + (‖b3‖2 − 2|〈b2, Db3〉|) ≥ 0.

This concludes the proof.

In view of the previous Proposition, obtaining a D-
obtuse superbase of Z3 has numerical cost O(lnκ(D)).
Indeed a D-reduced basis needs to be computed in a pre-
liminary step, after what Proposition 1 is applied for a
negligible O(1) cost. An alternative method for the con-
struction of D-obtuse superbases of Z3 is presented in [4]
and in appendix B of [3], but its numerical complexity is
not known to the authors.

The three dimensional AD-LBR is defined by the fol-
lowing stencils and coefficients. Let z ∈ Ω, let D := D(z),
and let (ei)

3
i=0 be a D-obtuse superbase of Z3. We set

V (z) := {ek × el; k, l ∈ {0, 1, 2, 3}, k 6= l},

and if {i, j, k, l} = {0, 1, 2, 3}, i 6= j and k 6= l, then

γz(ek × el) := −1

2
〈ei, Dej〉.

As announced, #(V (z)) = 12, and the weights γz are non-
negative. The proof of the scheme consistency (5), due to
Selling [22], is reproduced in the next lemma for com-
pleteness. A generalization, appearing in Appendix B of
[3], allows in arbitrary dimension to build a non-negative
decomposition of the form (25) from a D-obtuse superbase
of Zd. However the non existence of such a superbase, for
some matrices D ∈ S+

4 , forbids a straightforward exten-
sion of AD-LBR to higher dimension.

Lemma 4 (Selling [22]). Let (ei)
3
i=0 be a superbase of Z3.

For all i, j, k, l such that {i, j, k, l} = {0, 1, 2, 3}, i < j,
and k < l, let cij := ek × el. Then, for any D ∈ S+

3 :

D = −
∑

0≤i<j≤3

〈ei, Dej〉cijcTij . (25)

Proof. Let i, j, k, l be as in the definition of cij . Then

〈ei, cij〉 = 〈ei, ek × el〉 = det(ei, ek, el) ∈ {−1, 1},

since (ei, ek, el) is a basis of Z3. Also

〈ej , cij〉 = 〈−ei − ek − el, ek × el〉
= −〈ei, ek × el〉 = −〈ei, cij〉.

In addition, clearly, 〈ek, cij〉 = 〈el, cij〉 = 0. Denoting by
D′ the right hand side of (25), we obtain as a result

〈e0, D
′e0〉 = −〈e0, De1〉 − 〈e0, De2〉 − 〈e0, De3〉

= 〈e0, D(−e1 − e2 − e3)〉 = 〈e0, De0〉.
〈e0, D

′e1〉 = −〈e0, De1〉〈e0, c01〉〈e1, c01〉 = 〈e0, De1〉.

Likewise 〈ei, D′ej〉 = 〈ei, Dej〉 for all i, j ∈ {1, 2, 3, 4}. It
follows as announced that D = D′.

3 Equivalence to a finite element
discretization

This section is devoted to the proof of Theorem 1: the
asymptotic equivalence of AD-LBR with a finite element
discretization on an Anisotropic Delaunay Triangulation
(ADT). We use the notations of §1. The existence of the
ADT Th is established in the first subsection, for h suf-
ficiently small, as well as a few of its properties. The
second subsection is devoted to the study of M -reduced
bases. Theorem 1 is proved in the third subsection, by
comparing the stencils of the AD-LBR and of the finite
element discretization.

We denote by κ the maximum anisotropy ratio (9) of
the diffusion tensor

κ := max
z∈Ω

κ(D(z)). (26)

Observing that κ(D(z)) = κ(M(z)), and recalling that
det(M(z)) = 1, one easily checks that

κ−
1
2 ‖e‖ ≤ ‖e‖M(z) ≤ κ

1
2 ‖e‖, (27)

for all z ∈ Ω and all e ∈ R2.

3.1 Existence of an ADT

Our first lemma provides an uniform bound on the size
of the Voronoi regions, see Figure 3, involved in the con-
struction of the ADT.

Lemma 5. (i) For all r ∈ R2, one has ∆h(r) ≤ κ
1
2h.

(ii) If p, q ∈ hZ2, and r ∈ Vorh(p) ∩ Vorh(q), then
‖p− r‖ ≤ κh and ‖p− q‖ ≤ 2κh.

Proof. Point (i). Rounding the coordinates of r to a near-
est multiple of h, we obtain a point p ∈ hZ2 such that
‖p − r‖ ≤ h. Recalling (27) we obtain δp(r) ≤ κ

1
2h, and

therefore ∆h(r) ≤ κ
1
2h in view of (15).

Point (ii). We have κ−
1
2 ‖p−r‖ ≤ δp(r) = ∆h(r) ≤ κ

1
2h.

Thus ‖p − r‖ ≤ κh, and likewise ‖q − r‖ ≤ κh. Finally,
by the triangle inequality, ‖p − q‖ ≤ ‖p − r‖ + ‖q − r‖ ≤
2κh.
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Following the notations of [10], we denote by τ(p, q),
p, q ∈ R2, the smallest constant τ ≥ 1 such that

τ−1δp(r) ≤ δq(r) ≤ τδp(r), for all r ∈ R2.

Equivalently, in the sense of symmetric matrices,

τ−2 M(p) ≤M(q) ≤ τ2 M(p). (28)

We also define a quantity τh ≥ 1, closely related to the
modulus of continuity of the metric M:

τh := max{τ(p, q); ‖p− q‖ ≤ 2κh}. (29)

One has τh → 1 as h → 0, for any continuous metric M
(indeed M is periodic and therefore uniformly continuous).
If M is Lipschitz, as assumed in Theorem 1, then τh =
1 +O(h).

We show in the next lemma the existence of an ADT,
by applying the main result of [10], under the assumption
that τh is sufficiently small. More precisely, we assume in
the rest of this subsection that

τh <
√

1 + κ−2. (30)

Lemma 6. (i) If p, q ∈ hZ2, p 6= q, and r ∈ Vorh(p) ∩
Vorh(q), then δp(r) < δp(q)/

√
τ(p, q)2 − 1.

(ii) The geometric dual Qh of the Voronoi diagram is, as
announced in §1, a polygonization of R2 into strictly
convex polygons, with vertices hZ2.

Proof. Point (i). We may assume that τ(p, q) > 1, oth-
erwise there is nothing to prove. Point (ii) of Lemma 5
implies that ‖p− q‖ ≤ 2κh, thus√

τ(p, q)2 − 1 ≤
√
τ2
h − 1 < κ−1.

On the other hand δp(q) ≥ κ−
1
2 ‖q − p‖ ≥ κ−

1
2h, and

δp(r) ≤ ∆h(r) ≤ κ
1
2h. The announced inequality follows.

Point (ii). We apply Theorem 7 (Dual Triangulation
Theorem) in [10]. Since the domain R2 has no boundary,
it suffices to check that all the Voronoi arcs and vertices are
wedged, see [10]. This condition means that for any p, q ∈
hZ2 such that p 6= q, and any r ∈ Vorh(p) ∩ Vorh(q), one
has (r − q) M(q)(p − q) > 0, and likewise exchanging the
roles of p and q. Heuristically, it expresses the acuteness
of some angles measured in the local metric. Lemma 5 in
[10] shows that this condition follows from point (i) of this
lemma, which concludes the proof.

We recall that Th is the triangulation obtained by arbi-
trarily triangulating the polygonization Qh of the previous
lemma, respecting periodicity, see Definition 3. Generi-
cally Qh is already a triangulation, hence Th = Qh, see §1.
The Voronoi regions Vorh, and the triangulation Th, are
illustrated in Figures 2 and 3.

The next lemma provides estimates of the diameter, the
area, and the angles of the elements of Th. These geomet-
rical properties also have an interpretation in the context
of lattices: (ii) shows that the edges of any triangle T ∈ Th
define a superbase (e, f, g) of Z2, and (iii) that this super-
base is almost M(z)-obtuse, for any z ∈ T .

Note that the vertices p, q, r of any triangle T ∈ Th
satisfy by construction

Vorh(p) ∩Vorh(q) ∩Vorh(r) 6= ∅. (31)

Lemma 7. Denote by he, hf, hg the edges of a triangle
T ∈ Th, where e, f, g ∈ Z2 are oriented so that e+f+g = 0.
Then

(i) max{‖e‖, ‖f‖, ‖g‖} ≤ 2κ.

(ii) |det(e, f)| = 1, thus |T | = h2/2.

(iii) 〈e,M(z)f〉 ≤ θh, for any z ∈ T , where θh → 0 as
h→ 0. (Explicitly: θh = κ(3 + 9τ2

2h)(τ2
2h − 1))

Proof. Point (i). We denote by p, q, r the vertices of T ,
ordered in such way that p+he = q, q+hf = r, r+hg = p.
The announced estimate follows from (31), and from point
(ii) of Lemma 5.

Point (ii). Since Th is a conforming triangulation, the
intersection of T with the collection hZ2 of all vertices of
Th consists of only three points: the vertices p, q, r of T .
Thus the triangle of vertices −e, 0, f , homothetic to T ,
contains no point of integer coordinates but its vertices.
This implies that (e, f) is a basis of Z2, hence |det(e, f)| =
1, as announced.

Point (iii). The pairwise distances between p, q, r are
bounded by 2κh, see point (i), and since z ∈ T so are
the pairwise distances between p, q, r, z. Defining s :=
p−q+r ∈ hZ2, and observing that ‖s−p‖ = ‖r−q‖ ≤ 2κh,
we find that the pairwise distances between p, q, r, z, s are
bounded by 4κh.

Let x ∈ Vorh(p) ∩ Vorh(q) ∩ Vorh(r). We have δp(x) =
δq(x) = δr(x) = ∆h(x) ≤ δs(x), thus

δs(x)2 ≥ δp(x)2 − δq(x)2 + δr(x)2. (32)

(For intuition: in a classical Delaunay triangulation, x
would be the circumcenter of T , and (32) would state that
s is outside the circumcircle of T .) Denoting M := M(z),
and δ := ∆h(x), we obtain

|δp(x)2 − ‖x− p‖2M | ≤ δp(x)2(τ(p, z)2 − 1)

≤ δ2(τ2
2h − 1), (33)

using Lemma 5, and likewise for q, r. We also have

δs(x) = ‖p− q + r − x‖M(s)

≤ ‖p− x‖M(s) + ‖q − x‖M(s) + ‖r − x‖M(s)

≤ 3δτ2h.
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Thus, proceeding as in (33),

|δs(x)− ‖s− x‖2M | ≤ δs(x)2(τ2
2h − 1) ≤ 9δ2τ2

2h(τ2
2h − 1).

Inserting in (32) these estimates of δ?(x), ? ∈ {p, q, r, s},
and using the fact that δ ≤ κ

1
2h, see Lemma 5, we obtain

after expansion the announced estimate of 〈e,Mf〉.

We next rewrite the finite element energy E ′h (12) in a
form similar to that of the AD-LBR energy Eh (3). Let ϕhp :
R2 → R be the piecewise linear function on Th such that
ϕhp(p) = 1, and ϕhp(q) = 0 for any vertex q ∈ hZ2 distinct
from p. This is the classical “hat function” encountered in
finite element analysis. For all p ∈ hZ2, e ∈ Z2 \ {0}, let

γhp (e) := −1

2

ˆ
R2

〈∇ϕhp(z),D(z)∇ϕhp+he(z)〉dz (34)

Clearly, γhp (e) = 0 if [p, p + he] is not an edge of Th, in
other words if e does not belong to the stencil Vh(p), de-
fined in (17). We express in the next lemma the finite
element energy E ′h (12) in terms of the stencils Vh and of
the (potentially negative) weights γhp .

Lemma 8. For any u ∈ L2(Ωh), extended by periodicity
to hZ2, one has

E ′h(u) =
∑
p∈Ωh

∑
e∈Vh(p)

γhp (e)|u(p+ he)− u(p)|2. (35)

Proof. For any triangle T ∈ Th, and any p, q ∈ hZ2, we
denote

sT (p, q) :=

ˆ
T

〈∇ϕhp(z), D(z)∇ϕhq (z)〉 dz.

Clearly sT (p, q) = 0 if q or p is not a vertex of T . The
coefficient γhp (e), e ∈ Z2, is thus given by the following
sum with at most two non-zero terms:

γhp (e) = −1

2

∑
T∈Th

sT (p, p+ he). (36)

Let p, q, r ∈ hZ2 be the vertices of a triangle T ∈ Th.
Since the sum ϕhp + ϕhq + ϕhr is constant on T , equal to 1,
it has a null gradient on T , and therefore

sT (p, p) + sT (p, q) + sT (p, r) = 0.

Using this relation, and the two similar ones obtained by
a cyclic permutation of p, q, r, we obtainˆ

T

‖∇(ITh u)(z)‖2D(z)dz

=u(p)2sT (p, p) + u(q)2sT (q, q) + u(r)2sT (r, r)

+ 2u(p)u(q)sT (p, q) + 2u(q)u(r)sT (q, r)

+ 2u(r)u(p)sT (r, p),

=− sT (p, q)(u(p)− u(q))2 − sT (q, r)(u(q)− u(r))2

− sT (r, p)(u(r)− u(p))2.

Summing this expression over all T ∈ Th, and combining it
with (36), we obtain (35), which concludes the proof.

Finally, we provide an approximation of the coeffi-
cients γhp which will be easily compared with the AD-LBR
weights γp (11).

Lemma 9. Consider an edge [p, p + he] of Th, shared by
the two distinct triangles T, T ′ ∈ Th. Let hf, hg (resp.
hf ′, hg′) be the two other vector edges of T (resp. T ′),
oriented so that e+f +g = 0 (resp. e+f ′+g′ = 0). Then∣∣∣∣γhp (e) +

1

4

(
〈f⊥,D(p) g⊥〉+ 〈f ′⊥,D(p) g′⊥〉

)∣∣∣∣ ≤ εh,
where εh := 2κ2 max{‖D(x)−D(y)‖; ‖x− y‖ ≤ 2κh}.

Proof. We assume, up to exchanging f and g, that [p, p−
hg] is an edge of T . Let α := det(e, f) ∈ {−1, 1}, see point
(ii) of Lemma 7; note that α = det(f, g) = det(g, e). Let
γ be the constant value of ∇ϕhp on T . Then 〈γ, he〉 = −1
and 〈γ, hg〉 = 1. These two independent linear identities
are also satisfied by αf⊥/h, hence ∇ϕhp = γ = αf⊥/h on
T .

Denoting q := p+hg, we obtain likewise ∇ϕhq = αg⊥/h
on T . Hence recalling that |T | = h2/2:

ˆ
T

〈∇ϕhp ,D(p)∇ϕhq 〉 =
h2

2

〈
αf⊥

h
,D(p)

αg⊥

h

〉
=

1

2

〈
f⊥,D(p)g⊥

〉
Therefore, using point (i) of Lemma 7 in the last step,∣∣∣∣ˆ

T

〈∇ϕhp ,D(z)∇ϕhq 〉dz −
1

2
〈f⊥,D(p)g⊥〉

∣∣∣∣
=

∣∣∣∣ˆ
T

〈∇ϕhp , (D(z)−D(p))∇ϕhq 〉dz
∣∣∣∣

≤ h2

2

2κ

h

2κ

h
max{‖D(z)−D(p)‖; z ∈ T} ≤ εh.

Proceeding likewise on T ′, and recalling (34) (or (36)), we
conclude the proof.

3.2 Some properties of M-reduced bases

We establish some technical properties of M -reduced
bases, thanks to which we will be able to compare in §3.3
the “geometric” construction of the ADT finite element
stencils Vh, with the lattice based construction of the AD-
LBR stencils V .

Lemma 10. Let M ∈ S+
2 , let e1, · · · , en ∈ Z2, n > 2, and

let ε ∈ {−1, 1}. Assume that for all 1 ≤ i ≤ n, with the
convention en+1 := e1:

det(ei, ei+1) = ε, (37)

〈ei,Mei+1〉 > −
1

2
min

{
‖ei‖2M , ‖ei+1‖2M

}
. (38)
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Then any M -reduced basis (e, f) satisfies

{e, f} ⊂ {e1, · · · , en}.

Proof. Let z ∈ Z2 \ {e1, · · · , en}. Our objective is to show
that z cannot be an element of an M -reduced basis, and
we may therefore assume that z has co-prime coordinates.

It follows from (37) that the closed polygonal line of
consecutive vertices e1, · · · , en, circles at least once around
the origin, see Figure 5. Hence z = αei + βei+1, for some
1 ≤ i ≤ n and some α, β ≥ 0. Since (ei, ei+1) is a basis
of Z2 (indeed |det(ei, ei+1)| = 1), the coefficients α and β
are integers. Since z /∈ {ei, ei+1}, α + β ≥ 2. Since z has
co-prime coordinates, αβ 6= 0.

Assuming without loss of generality that ‖ei‖M ≥
‖ei+1‖M , we obtain using (38):

‖z‖2M = α2‖ei‖2M + β2‖ei+1‖2M + 2αβ〈ei,Mei+1〉
> α2‖ei‖2M + β2‖ei+1‖2M − αβmin{‖ei‖2M , ‖ei+1‖2M}
≥ ‖ei‖2M + (α2 + β2 − 1− αβ)‖ei+1‖2M .

Observing that α2 + β2 − 1− αβ ≥ 0 for all α, β ∈ [1,∞[,
we obtain ‖z‖M > ‖ei‖M . Since ei and ei+1 are linearly
independent, we have ‖ei‖M ≥ λ2(M). Finally ‖z‖M >
λ2(M), hence z cannot be an element of an M -reduced
basis, which concludes the proof.

The next corollary reverses the construction, presented
in Corollary 1, of an M -obtuse superbase from an M -
reduced basis.

Corollary 2. Let M ∈ S+
2 and let (e, f, g) be an M -obtuse

superbase of Z2, ordered so that ‖e‖M ≤ ‖f‖M ≤ ‖g‖M .
Then (e, f) is an M -reduced basis.

Proof. The family (e,−g, f,−e, g,−f) satisfies by con-
struction the conditions of the previous lemma. Hence
any M(z)-reduced basis (e′, f ′) of Z2 satisfies {e′, f ′} ⊂
{e, f, g,−e,−f,−g}. Observing that e′ and f ′ are lin-
early independent, that ‖e′‖M ≤ ‖f ′‖M , and that ‖e‖M ≤
‖f‖M ≤ ‖g‖M , we obtain that ‖e‖M ≤ ‖e′‖M and
‖f‖M ≤ ‖f ′‖M . Recalling that M -reduced bases are de-
fined by the minimality of their ‖·‖M -norms, see Definition
4, we obtain as announced that (e, f) is an M -reduced ba-
sis.

The previous lemma shows that for any z ∈ Ω, there
exists an M(z)-reduced basis (e, f) such that

V (z) = {e, f, e+ f,−e,−f,−e− f}. (39)

Given M ∈ S+
2 , and an M -reduced basis (e, f) of Z2, we

denote µ(M) := |〈e,Mf〉|. This value can be expressed in
terms of the Minkowski minima (19) and thus does not de-
pend on the particular choice of M -reduced basis. Indeed,
recalling the identity

〈e,Mf〉2 + det(M) det(e, f)2 = ‖e‖2M‖f‖2M ,

e1

e2

e3

e4e5

e6

e7

e8

e9

e10

e11

e

f

g = -e - f

e

f

g =
-e - f

Figure 5: (left) A family e1, · · · , e11 satisfying condition
(37) of Lemma 10: the closed polygonal line of vertices
(e1, · · · , e11) circles (at least) once around the origin, and

the triangles ̂(0, ei, ei+1) have area 1/2. (Center and right)
The lattice Z2, and an M -reduced basis (e, f), shown after
a linear change of coordinates by A, such that ATA = M ∈
S+

2 . Case µ(M) = 0 (center), and case 2µ(M) = λ1(M)2

(right).

we obtain

µ(M) = |〈e,Mf〉| =
√
λ1(M)2λ2(M)2 − det(M). (40)

In addition one has

0 ≤ 2µ(M) ≤ λ1(M)2, (41)

where the right hand side follows from Lemma 3. A van-
ishing value, µ(M) = 0, indicates that the lattice Z2 ad-
mits an M -orthogonal basis. In contrast, when the up-
per bound is met, 2µ(M) = λ1(M)2, one has ‖f‖M =
‖f + εe‖M for ε := −sign〈e,Mf〉, hence the reduced basis
(e, f) is not unique even up to sign changes. See Figure 5.

We next show that the stencils of the AD-LBR do not
depend on the choices of reduced bases, as was announced
in the introduction.

Lemma 11. The weights γz : Z2 → R+ used in the AD-
LBR at a point z ∈ Ω (defined on V (z) by (11) and ex-
tended to Z2 by 0), do not depend on the choice of M(z)-
obtuse superbase of Z2.

Proof. We denote M := M(z) and D := D(z). Let
(e, f, g) and (e′, f ′, g′) be two M -obtuse superbases, and
let V, V ′ and γ, γ′ : Z2 → R+ be the corresponding AD-
LBR stencils and weights defined by (10) and (11). We
may assume, using Corollary 2 and up to reordering, that
(e, f) and (e′, f ′) are M -reduced bases.

Corollary 1 states that the scalar products 〈e,Mg〉,
〈f,Mg〉, 〈e′,Mg′〉 and 〈f ′,Mg′〉 are (strictly) negative.
On the other hand

〈e,Mf〉 = 〈e′,Mf ′〉 = −µ(M) ≤ 0. (42)

Applying Lemma 10 to the family

(e′,−g′, f ′,−e′, g′,−f ′)

10



we obtain that

{e, f} ⊂ {e′, f ′, g′,−e′,−f ′,−g′}. (43)

If µ(M) 6= 0, then 〈e,Mf〉 and 〈e′,Mf ′〉 are negative,
and not merely non-positive, thus {e, f} ⊂ {e′, f ′, g′}, or
{e, f} ⊂ {−e′,−f ′,−g′}. Since e + f + g = 0 = e′ +
f ′+ g′, it follows that {e, f, g} = {e′, f ′, g′}, or {e, f, g} =
{−e′,−f ′,−g′}. The stencils V, V ′ are thus identical, see
(10), and so are the weights γ, γ′.

If µ(M) = 0, then the stencils V, V ′ may not be identi-
cal. Observe however that 〈e⊥, Df⊥〉 = 0 = 〈e′⊥, Df ′⊥〉,
using (8). Hence using the weights expression (11):

γ(±g) = −〈e⊥, Df⊥〉/2 = 0, (44)

γ(±e) = ‖f⊥‖2D/2, γ(±f) = ‖e⊥‖2D/2,

and likewise for γ′, e′, f ′, g′. Note also that ‖g′‖2M =
‖e′‖2M+‖f ′‖2M > λ2(M)2, hence e and f are different from
g′ and −g′. It follows from (43) that {e, f} = {ε1e

′, ε2f
′}

for some ε1, ε2 ∈ {−1, 1}. This implies γ = γ′ in view of
(44), and concludes the proof.

The next lemma establishes weak uniqueness and stabil-
ity properties for M -reduced bases, in the case of a strict
inequality 2µ(M) < λ1(M)2.

Lemma 12. Consider M,M ′ ∈ S+
2 , an M -reduced ba-

sis (e, f), and an M ′-reduced basis (e′, f ′). Let τ ≥ 1 be
such that τ−2M ≤M ′ ≤ τ2M , in the sense of symmetric
matrices. Assume either:

(i) 2µ(M) < λ1(M)2, and τ = 1 (i.e. M ′ = M).

(ii) 4µ(M) ≤ λ1(M)2, and τ4 ≤ 1 + 1
3κ(M)−2.

Then {e′, f ′} ⊂ {e, f,−e,−f}.

Proof. Denoting α := 2µ(M)/λ1(M)2, we obtain:

4〈e,M ′f〉 = ‖e+ f‖2M ′ − ‖e− f‖2M ′
≤ τ2‖e+ f‖2M − τ−2‖e− f‖2M
= (τ2 − τ−2)(‖e‖2M + ‖f‖2M ) + 2(τ2 + τ−2)〈e,Mf〉
≤ ((τ2 − τ−2)(1 + κ(M)2) + α(τ2 + τ−2))‖e‖2M
≤ ((τ4 − 1)(1 + κ(M)2) + α(τ4 + 1))‖e‖2M ′ .

In the fourth line we used Lemma 2, which implies that
‖f‖M = λ2(M) ≤ κ(M)λ1(M) = κ(M)‖e‖M , and
Lemma 3 to bound 2〈e,Mf〉. Replacing α and τ with
their assumed upper bounds, we obtain 2〈e,M ′f〉 <
‖e‖2M ′ . Proceeding likewise, we obtain 2|〈e,M ′f〉| <
min{‖e‖2M ′ , ‖f‖2M ′}. We may therefore apply Lemma
10 to M ′ and (e, f,−e,−f), which implies {e′, f ′} ⊂
{e, f,−e,−f} as announced.

3.3 Comparison of the stencils

We assume in this subsection that the scale parameter h
is sufficiently small. Our assumption is stronger than the
one used in §3.1, see (30), hence in particular there exists
an Anisotropic Delaunay Triangulation Th. More precisely
we assume that

τh ≤ 4
√

1 + 1/(3κ2) and θh ≤ θ0 := 1/(4κ). (45)

See (26), (29), and Lemma 7 for the definition of κ, τh
and θh respectively. For Lipschitz metrics, τh = 1 +O(h)
and θh = O(h).

Our objective is to compare the stencils V (p), Vh(p),
of the AD-LBR (10) and of the ADT finite element dis-
cretization (17) respectively, at a point p ∈ hZ2. The
next lemma shows that they are equal unless the lattice
Z2 is almost orthogonal with respect to the local metric;
a property quantified via µ(M(p)), see (40).

Lemma 13. Let p ∈ hZ2, and let M := M(p). If µ(M) >
θh, then Vh(p) = V (p). In any case, one has for any M -
reduced basis (e, f):

Vh(p) ⊃{e, f,−e,−f} (46)

Vh(p) ⊂{e, f, e+ f, e− f, −e,−f,−e− f, f − e} (47)

Proof. We assume that 〈e,Mf〉 ≤ 0, up to replacing f
with −f . Let T ∈ Th be a triangle containing p, and let
he1, he2, he3 be the edges of T , oriented so that e1 + e2 +
e3 = 0. Using point (iii) of Lemma 7, and (27), we obtain
for all 1 ≤ i ≤ 3, with the convention e4 := e1

〈ei,Mei+1〉 ≤ θh ≤ θ0 <
1

2κ
≤ 1

2
min{‖ei‖2M , ‖ei+1‖2M}.

(48)
Denote E := {e1, e2, e3}, and −E := {−e1,−e2,−e3}.
Applying Lemma 10 to M and the points (e1,−e3, e2,
−e1, e3,−e2), we obtain that {e, f} ⊂ E ∪ (−E). Up
to exchanging E with −E, we thus have {e, f} ⊂ E or
{e,−f} ⊂ E. Since the elements of E sum to zero, we
conclude that

E = {e, f,−e− f} or E = {e,−f,−e+ f}, (49)

which implies (47).
If µ(M) = |〈e,Mf〉| > θh, then (48) forbids the sec-

ond case in (49). Thus E = {e, f,−e − f}, and therefore
Vh(p) ⊂ V (p), using (39).

Let T ∈ Th be a triangle containing p and intersecting
the half line L := {p + re; r > 0}. We know (49) that
he is a vector edge of T (i.e. the difference between two
vertices of T ). The corresponding edge segment must be
[p, p + he], since otherwise T ∩ L would be empty. Thus
e ∈ Vh(p). Applying the same argument to −e, f,−f , we
obtain (46).

If µ(M) > θh, then h(e + f) is also a vector edge of
any triangle T ∈ Th containing p, since we eliminated
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Figure 6: Consider a point p ∈ hZ2, and denote M :=
M(p). From left to right: ellipse {‖z‖M ≤ 1}, AD-LBR
stencil V (p), stencils W (p) ⊂ Vh(p) ⊂ W ′(p). For W (p)
and W ′(p) we assumed that µ(M) < θ0, otherwise they
are equal to V (p). Note that V (p), W (p), W ′(p) only
depend on M , while Vh(p) depends on the structure of
the triangulation Th.

the second case in (49). Reasoning as above we find that
{e+f,−e−f} ⊂ Vh(p), and therefore V (p) ⊂ Vh(p). Thus
V (p) = Vh(p). This concludes the proof.

We introduce new stencils W (p),W ′(p), for p ∈ R2,
defined as follows. Let M := M(p). If µ(M) ≤ θ0, then
denoting by (e, f) an M -reduced basis,

W (p) := {e, f,−e,−f}, (50)

W ′(p) := {e, f, e+ f, e− f, −e,−f,−e− f, f − e}. (51)

On the other hand, if µ(M) > θ0, then

W (p) := V (p) =: W ′(p). (52)

The previous lemma implies that W (p) ⊂ Vh(p) ⊂ W ′(p)
for any p ∈ hZ2.

Lemma 14. The stencils W (p), W ′(p), do not depend on
the choice of M(p)-reduced basis.

Proof. Let M := M(p). If µ(M) > θ0, then W (p), W ′(p)
are defined by (52), hence there is nothing to prove. Oth-
erwise we obtain µ(M) ≤ θ0 ≤ 1/(4κ) ≤ λ1(M)2/4.
Hence, by Lemma 12, any two M -reduced bases (e, f),
(e′, f ′), need to satisfy {e′, f ′} ⊂ {e, f,−e,−f}. In view
of (50) and (51), they thus yield the same stencils W (p),
W ′(p).

Let Fh,F ′h be the energies associated to the stencils
W,W ′: for u ∈ L2(Ωh), extended to hZ2 by periodicity,

Fh(u) :=
∑
z∈Ωh

∑
g∈W (z)

|u(z + hg)− u(z)|2,

F ′h(u) :=
∑
z∈Ωh

∑
g∈W ′(z)

|u(z + hg)− u(z)|2.

The outline of the proof of Theorem 1 is as follows. We
prove in Lemmas 16, 17 and 15 respectively that for any

u ∈ L2(Ωh):

|E ′h(u)− Eh(u)| ≤ (εh + C0θh)F ′h(u) (53)

F ′h(u) ≤ C1Fh(u) (54)

Fh(u) ≤ C2Eh(u), (55)

where the constants C0, C1, C2 only depend on the metric
M. Combining these inequalities, and recalling that θh =
O(h) and εh = O(h) for Lipschitz metrics (εh is defined
in Lemma 9), we obtain

|E ′h(u)− Eh(u)| ≤ chEh(u),

for some constant c = c(M). This establishes (13), and
concludes the proof of Theorem 1.

For each p ∈ R2, we denote by ηp, η
′
p : Z2 → {0, 1}, the

characteristic functions of W (p) and W ′(p) respectively.
The proofs of (53) and (55) immediately result from the
comparison, in Lemmas 16 and 15 respectively, of the co-
efficients γp, γ

h
p , ηp, η

′
p appearing in the expressions of

Eh, E ′h,Fh,F ′h.
In the following, it will be convenient to express the AD-

LBR weights, and others, in terms of the scalar product
associated to the Riemannian metric. We thus recall (8):
for any z ∈ Ω, and any e, f ∈ R2,

〈e⊥,D(z)f⊥〉 = d(z)〈e,M(z)f〉.

We also define the bounds (0 < d ≤ d <∞)

d := min
z∈Ω

d(z), d := max
z∈Ω

d(z).

Lemma 15. For any p ∈ R2, one has on Z2

ηp ≤ C2γp, with C2 := 2d/θ0.

Proof. Let M := M(p), and let (e, f, g) be an M -obtuse
superbase of Z2. We can assume, thanks to Corollary 2,
that (e, f) is an M -reduced basis. Then using (22)

2 d(p)γp(±f) ≥ 1

2
‖e‖2M ≥

1

2κ
= 2θ0,

hence γp(±f) ≥ θ0/d, and likewise γp(±e) ≥ θ0/d. If
µ(M) ≤ θ0, then W (p) = {e, f,−e,−f}, and this con-
cludes the proof.

Assume now that µ(M) > θ0. Then

2 d(p)γp(±g) = −〈e,Mf〉 = µ(M) ≥ θ0,

hence γp(±g) ≥ θ0/(2d). The result follows since W (p) =
{e, f, g,−e,−f,−g}.

Let p ∈ hZ2 and let e1, · · · , ek be the consecutive ele-
ments of Vh(p), in trigonometric order. We define for all
1 ≤ i ≤ k, denoting M := M(p),

γ̃hp (ei) := −d(p)

4
(〈ei−ei−1, Mei−1〉+ 〈ei−ei+1, Mei+1〉),
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with the periodic conventions ek+1 := e1, e0 := ek. We
also set γ̃hp = 0 on Z2 \ {e1, · · · , ek}.

Lemma 16. For any p ∈ hZ2, one has on Z2

|γhp − γ̃hp | ≤ εhη′p, and |γ̃hp − γp| ≤ C0θhη
′
p, (56)

where εh is given in Lemma 9, and C0 = 1/d.

Proof. The coefficients γp, γ
h
p , γ̃hp , are all equal to zero

outside of W ′(p). This holds by construction of γp, and
by Lemma 13 for γhp , γ̃hp . We may therefore forget about
the presence of η′p in (56).

First inequality. Lemma 9 states that |γhp − γ̃hp | ≤ εh on
Z2, which concludes the proof.

Second inequality. If µ(M) > θh, then Vh(p) = V (p).
Comparing the definition of γ̃hp with that of γp (11) we

observe that γ̃hp = γp on Z2, which concludes the proof in
this case.

Assume now that µ(M) ≤ θh. Let (e, f, g) be an M -
obtuse superbase of Z2. We can assume, thanks to Corol-
lary 2 that (e, f) is an M -reduced basis. Looking at (11)
and denoting δ := 2 d(p), we find that

|δγp(±e)− ‖f‖2M | = |〈e,Mf〉| = µ(M) ≤ θh.

Likewise |δγp(±f)− ‖e‖2M | ≤ θh. In addition

δγp(±(e+ f)) = µ(M) ≤ θh, and γp(±(e− f)) = 0.

Combining the definition of γ̃hp with the description of
the stencil Vh(p) in Lemma 13, we obtain that

2δ γ̃hp (e) =

 〈f − e,Mf〉
or

〈f + e,Mf〉

+

 〈f − e,Mf〉
or

〈f + e,Mf〉

 .

In any case |δ γ̃hp (e) − ‖f‖2M | ≤ θh. The expressions and

estimates of γ̃hp at the points −e, f,−f are obtained simi-
larly. Likewise, using Lemma 13,

2δ γ̃hp (e+ f) =

{
〈e,Mf〉+ 〈e,Mf〉 if e+ f ∈ Vh(p),
0 otherwise.

In any case |δ γ̃hp (e + f)| ≤ θh. The expressions and

estimates of γ̃hp at the points −(e + f), e − f,−(e − f)

are similar. Comparing the above estimates of γp, γ̃
h
p ,

we obtain that δ|γp − γ̃hp | ≤ 2θh on {e, f, e + f, e − f,
−e,−f,−e− f, f − e} = W ′(p). Since δ = 2 d(p) ≥ 2d =
2/C0, this concludes the proof.

In the last lemma of this section, we control the con-
tribution to the energy F ′h of a stencil W ′(p), p ∈ hZ2,
in terms of the contributions to Fh of W (p) and of the
neighboring stencils W (p + he), e ∈ W (p). This leads to
an estimate of F ′h in terms of Fh, which concludes the
proof of Theorem 1.

Lemma 17. One has F ′h(u) ≤ C1Fh(u), for any u ∈
L2(Ωh), with C1 := 17.

Proof. Consider a grid point p ∈ hZ2, and denote M :=
M(p). Assume first that µ(M) ≤ θ0, so that W (p) (
W ′(p). Consider also an arbitrary g ∈W ′(p) \W (p), and
observe that g = e+ f for some M -reduced basis (e, f).

We set p′ := p + e and M ′ := M(p′). Applying point
(ii) of Lemma 12, we find that (e, f) is also an M ′-reduced
basis. Indeed we have as required

4µ(M) ≤ 4θ0 = κ−1 ≤ λ1(M)2,

using (27), and the assumption on τ follows from (45) and
(28). Therefore

f ∈W (p′), and h−1(p′ − p) = e ∈W (p′). (57)

We obtain

|u(p+ g)− u(p)|2 (58)

= |u(p+ e+ f)− u(p)|2

≤ 2(|u(p+ e+ f)− u(p+ e)|2 + |u(p+ e)− u(p)|2)

= 2(|u(p′ + f)− u(p′)|2 + |u(p+ e)− u(p)|2).

Denote, for all q ∈ hZ2,

Fh(u; q) :=
∑

g∈W (q)

|u(q + hg)− u(q)|2,

F ′h(u; q) :=
∑

g∈W ′(q)

|u(q + hg)− u(q)|2.

Using (58), we obtain

F ′h(u; p)−Fh(u; p) ≤ Gh(u; p) (59)

where Gh(u; p) is given by 4Fh(u; p) + 2
∑

g∈W (p)

Fh(u; p+ g), if µ(M(p)) ≤ θ0

0, if µ(M(p)) > θ0

When Fh(u; p′) appears in Gh(u; p), with p, p′ ∈ hZ2, p 6=
p′, we have h−1(p′ − p) ∈ W (p′), see (57). For each p′ ∈
hZ2, there are thus at most #(W (p′)) ≤ 6 points p ∈ hZ2\
{p′} such that Fh(u; p′) appears in Gh(u; p). Summing
(59) over p ∈ Ωh, we thus obtain F ′h(u)−Fh(u) ≤ (4+2×
6)Fh(u) (the constant could easily be improved), which
concludes the proof.

4 Numerical experiments

We compare our scheme AD-LBR with a family of other
schemes: finite difference, finite elements, and two sche-
mes from the image processing literature. We begin with
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a quantitative comparison for the discretization of the
restoration equation, in a synthetic case where the ex-
act solution is analytically available for reference. The
second test case is a qualitative comparison of Coherence-
Enhancing Diffusion (CED) [25], on a real image and the
quality assessment is by visual inspection. Finally we
present a 3D implementation of AD-LBR for proof of fea-
sibility, featuring a synthetic CED experiment, and a ap-
plication of Edge Enhancing Diffusion to MRI data.

4.1 The different schemes

Our two dimensional numerical experiments feature the
following six numerical schemes for anisotropic diffusion.

ã AD-LBR: the scheme presented in this work.

ã Finite Differences (FD). The gradient and the diver-
gence are discretized using standard centered finite
differences [15], see Remark 3 for details. This ap-
proach, arguably the most straightforward, leads to a
9 point stencil.

ã Bilinear Finite Elements (Q1). Bilinear finite ele-
ments, also referred to as Q1 finite elements, are linear
with respect to each space direction. This amounts
to use a 9 points stencil, where the coefficients are
different from the previous scheme.

ã Weickert-Scharr scheme (WS). This scheme, intro-
duced in [27], is based on a second order approxima-
tion of the gradient using a 3× 3 centered stencil. As
a result, it offers good accuracy and rotation invari-
ance when applied to sufficiently smooth functions,
but lacks robustness guarantees such as the discrete
maximum principle and spectral correctness (see §1),
even for D = Id. The stencil for this scheme has size
5× 5.

ã Weickert’s Non-Negative scheme (W-NN). The coef-
ficients of this scheme, detailed in [25] page 95, are
non-negative as long as the anisotropy ratio (9) sat-
isfies κ ≤ 1 +

√
2 ∼ 2.41.

ã Axes-directed Non-Negative scheme (A-NN). This six
point non-negative scheme is implicitly defined in the
proof Theorem 6 in [25], and can be regarded as a
generalisation of W-NN. See Remark 1 below for de-
tails. Among the 6 points of the stencil, 4 points are
along the axes of coordinates.

Note that other schemes exist, see for instance [16, 28].
While an exhaustive comparison is in principle desirable, it
could not be done here due to time and space constraints.

To fix the ideas and illustrate the difference between
the schemes, we propose to compute the stencil and the
coefficients for different constant diffusion tensors D, in

isotropic and anisotropic cases. Denoting by R the matrix
of rotation by the angle θ = π/6, and by κ ≥ 1 the chosen
anisotropy ratio, we set, identically on R2:

D := R

(
1 0
0 κ−2

)
RT. (60)

The results are presented in Tables 1 and 2. Note that for
the two last cases (anisotropy κ =

√
10 and κ =

√
50) the

AD-LBR stencil contains points that are outside the 3× 3
neighborhood of the pixel. However the stencil contains 6
points, as expected. This contrasts with the schemes FD,
Q1, W-NN where only the 3×3 neighborhood is involved.
Another observation is that the off-center stencil coeffi-
cients of the AD-LBR are non-positive (this gives non-
negative off-diagonal coefficients for div(D∇)), in contrast
with schemes FD, Q1, WS, and with scheme W-NN for
anisotropy κ > 1 +

√
2. This is an essential property of

AD-LBR (and A-NN), and as a consequence our scheme
satisfies, unconditionally, the discrete maximum principle
[1, 6].

The largest eigenvalue of the discrete operator
−div(D∇) is given in Table 3, for the different schemes.
It turns out that AD-LBR has in most cases the smallest
eigenvalues among all schemes, except for scheme WS and
occasionally A-NN. This property allows (although this
was not done in our numerical experiments) to use larger
time steps for AD-LBR than for the other schemes, when
solving parabolic equations (2) or (64) with an explicit
time discretization.

Operator splitting is a classical approach to further in-
crease the timestep in (potentially anisotropic and non-
linear) diffusion PDEs [25, 26, 2]. The AD-LBR is com-
patible with Additive Operator Splitting, by applying Re-
mark (e) page 111 in [25], although the efficiency of this
technique is here compromised by the potentially large
number of directions in our adaptive stencils. Let us also
mention Multiplicative Operator Splittings, and Additive-
Multiplicative Operator Splittings, which allow to com-
bine different time-steps [2, 8]. None of these methods
was used in our experiments.

Remark 1 (Axes-directed non negative six point scheme).
The following six point scheme A-NN is, in our belief,
the best possible implementation of the constructive proof
in [25] of the existence of non-negative schemes for two
dimensional anisotropic diffusion. Like AD-LBR, this
scheme is defined by the data at each point z ∈ Ω of a
stencil V (z), and of non-negative weights γz.

Let D(z) =

(
a b
b c

)
. In the diagonal case b = 0, the

scheme A-NN relies on the classical four points stencil.
Otherwise note that

a

|b|
− |b|

c
=
ac− b2

|b|c
> 0.
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Let p, q ∈ Z \ {0} be such that bpq ≥ 0,

|b|
c
≤
∣∣∣∣pq
∣∣∣∣ ≤ a

|b|
, (61)

and max(|p|, |q|) is minimal. The scheme A-NN is defined
by the six point stencil

V (z) := {(±1, 0), (0,±1),±(p, q)}

and the non-negative weights

2γ(±1, 0) = a− p

q
b, 2γ(0,±1) = c− q

p
b,

2γ(±(p, q)) =
b

pq
.

These coefficients are non-negative by construction, and
consistency (5) is easily checked. Contrary to AD-LBR,
the coordinate axes play a privileged role in A-NN. This
introduces axis aligned artifacts which are visible in Figure
12 (g).

Remark 2 (Stencil radius). The two dimensional stencils
of AD-LBR coincide with those of FM-LBR, a numerical
scheme for anisotropic static Hamilton-Jacobi PDEs in-
troduced in [14] the second author. As shown in Proposi-
tion 1.6 of [14], the euclidean radius

r = max{‖v‖; v ∈ V (z)}

of this stencil is bounded by κ(D(z)).
In contrast, consider for 0 < ε < 1/4 the matrix

D :=

(
1 1− 2ε

1− 2ε 1− 3ε

)
.

If follows from (61) that 1 + ε ≤ p/q + O(ε2) ≤ 1 + 2ε.
From this point, one easily obtains that q & ε−1 ≈ κ(D)2.
The radius of the A-NN stencil, at a point z ∈ Ω, may
thus be of the order of κ(D(z))2. The radii of the AD-
LBR and A-NN stencils, computed for diffusion tensors
of anisotropy κ = 10 and of various orientations, are il-
lustrated on Figure 7.

Remark 3 (Scheme FD). The operator div(D∇·) is dis-
cretized using centered finite differences [15]. This involves
quantities defined at half integer indices, and in particu-
lar the diffusion tensor is here given on the offsetted grid
(i + 1/2, j + 1/2), (i, j) ∈ Z2. For the sake of readabil-
ity, we thus define i+ := i + 1/2 and i− := i − 1/2. The
gradient operator is discretized by:

(∂xu)i+,j = ui+1,j − ui,j , (∂yu)i,j+ = ui,j+1 − ui,j .

The divergence is defined as follows:

div(D∇u)i,j = ∂x(D11∂xu+ D12∂yu)i,j

+ ∂y(D21∂xu+ D22∂yu)i,j ,
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Figure 7: Radius of the AD-LBR stencil (plain), and of
the A-NN stencil (dashed), for a matrix Dθ of anisotropy
ratio κ = 10 and eigenvector (cos θ, sin θ). The AD-LBR
stencil is here always the smallest, and its radius does not
exceed 5.1, versus 36.1 for A-NN.

6 8 10 12
n

20

40

60

l

D =

(
19/2 6

6 4

)

Figure 8: The seven smallest eigenvalues of the operator
−div(D∇), on [0, 1]2 with periodic boundary conditions,
discretized on a n × n grid with 4 ≤ n ≤ 12. Plain: AD-
LBR discretization; Dashed: A-NN discretization. Some
eigenvalues have multiplicities, hence less than 14 graphs
are visible. Eigenvalues of the A-NN discretization here
“oscillate” with the dimension. In contrast, thanks to its
asymptotic equivalence with a finite element scheme, the
smallest eigenvalues of the AD-LBR discretization con-
verge towards those of the continuous partial differential
operator.
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with

(D11∂xu)i+,j =
1

2

(
D11
i+,j+ + D11

i+,j−

)
(∂xu)i+,j ,

∂x(D11∂xu)i,j = (D11∂xu)i+,j − (D11∂xu)i−,j

(D21∂xu)i+,j+ =
1

2
D21
i+,j+

(
(∂xu)i+,j + (∂xu)i+,j+1

)
,

∂y(D21∂xu)i,j =
1

2

(
(D21∂xu)i+,j+ − (D21∂xu)i+,j−

+(D21∂xu)i−,j+ − (D21∂xu)i−,j−
)
,

and similar terms involving ∂yu.

Table 1: The stencil coefficients for different constant
diffusion tensors, and the different schemes presented. The
value of the anisotropy ratio κ is given in the second row,
and the orientation of the principal axis is θ = π/6, see
(60). The bold coefficient indicates the center node. In
some examples we present for clarity reasons only half of
the stencil (the other half can be deduced by symmetry).
Stencil entries are highlighted when they are positive and
off-center - an undesirable property which gives rise to
stability issues. For small anisotropies, κ ≤ 1 +

√
2, one

has AD-LBR = W-NN = A-NN.

κ κ = 1 (D = Id) κ =
√
2

stencil for
AD-LBR

0 −1 0
−1 4 −1
0 −1 0

0 −0.41 −0.22
−0.66 2.57 −0.66
−0.22 −0.41 0

stencil for
FD

0 −1 0
−1 4 −1
0 −1 0

0.11 −0.63 −0.11
−0.88 3 −0.88
−0.11 −0.63 0.11

stencil for
Q1

1

3

 −1 −1 −1
−1 8 −1
−1 −1 −1

 −0.14 −0.13 −0.36
−0.38 2 −0.38
−0.36 −0.13 −0.14

stencil for
WS

−0.1 −0.06 −0.02
0.12 0 −0.06
0.46 0.12 −0.1
0.12 0 −0.06
−0.1 −0.06 −0.02

−0.06 −0.05 −0.02
0.01 −0.04 −0.06
0.35 0.07 −0.09
0.01 0.04 −0.04
−0.06 −0.02 −0.01

stencil for
W-NN

0 −1 0
−1 4 −1
0 −1 0

0 −0.41 −0.22
−0.66 2.57 −0.66
−0.22 −0.41 0

stencil for
A-NN

0 −1 0
−1 4 −1
0 −1 0

0 −0.41 −0.22
−0.66 2.57 −0.66
−0.22 −0.41 0

4.2 A test case with an explicit solution

Consider an image v ∈ L2(Ω), defined on a domain Ω, and
a diffusion tensor field D : Ω→ S+

2 . A classical approach
to restore the image v, if it has been corrupted by additive
noise, is to find u ∈ H1(Ω) which minimizes:

j(u) =

ˆ
Ω

|u− v|2 + λ

ˆ
Ω

||∇u||2D. (62)

Table 2: The stencil coefficients for different metrics and
the different schemes presented, similarly to Table 1 but
with more pronounced anisotropies. For the scheme A-
NN some points of the stencil are too far from the center
node to be represented here, so we indicate the coordinates
of these points and the associated coefficient.

κ κ =
√
10 κ =

√
50

stencil for
AD-LBR

0 −0.26 −0.06
1.16 −0.26 0

0 −0.11 −0.16
0.55 −0.01 0

stencil for
FD

0.19 −0.32 −0.19
−0.77 2.2 −0.77
−0.19 −0.32 0.19

0.21 −0.27 −0.21
−0.76 2.04 −0.76
−0.21 −0.27 0.21

stencil for
Q1

0.01 0.04 −0.38
−0.41 1.47 −0.41
−0.38 0.04 0.01

0.04 0.08 −0.38
−0.42 1.36 −0.42
−0.38 0.08 0.04

stencil for
WS

−0.02 −0.04 −0.02
0.09 −0.08 −0.07
0.25 0.04 −0.08
0.09 0.08 −0.02
−0.02 0.004 −0.003

−0.02 −0.04 −0.02
0.09 −0.08 −0.07
0.24 0.03 −0.08
0.09 0.08 −0.02
−0.02 0.01 −0.002

stencil for
W-NN

0 0.06 −0.39
−0.39 1.42 −0.39
−0.39 0.06 0

0 0.16 −0.42
−0.33 1.19 −0.33
−0.42 0.16 0

stencil for
A-NN

−0.07 0
0.64 −0.19

−0.01 0
0.17 −0.05

γ(3, 2) = −0.06 γ(5, 3) = −0.03

In other words, u is a penalized least squares approxima-
tion of v. The parameter λ > 0 should be adjusted so as to
avoid excessive smoothing (for large λ), or insufficient de-
noising (for small λ). The solution u can be characterized
as the solution to the static elliptic PDE:{

−λ div(D∇u) + u = v, on Ω.
〈∇u, n〉 = 0, on ∂Ω.

(63)

In applications [20, 24] the diffusion tensor D is usually
adapted to the local image structure, in order to avoid
smoothing the edges of v. We construct below a test case
(image v and tensor field D), for which the solution u is
known analytically.

In order to obtain an analytic solution, we first consider
a separable problem where the image is invariant by trans-
lation along the horizontal axis, and the metric is constant
with axes parallel to the coordinate axes. This first prob-
lem is invariant under translations along the x-axis, and
therefore boils down to a 1-dimensional problem. This sep-
arable problem is then transported by a diffeomorphism
in order to obtain a new problem where the axes of the
metric are no more parallel to the coordinate axes.

The analytical image is composed of a black and a white
stripe: v0(x, y) = 1y<0.5, see Figure 9. Given κ ≥ 1, we
consider the constant diffusion tensor

D0 =

(
1 0
0 κ−2

)
.
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Table 3: Largest eigenvalue of the discretized operator
−div(D∇), for the constant metric D = D, where the
matrix D is given on Tables 1 and 2. The time step, in
the explicit discretization of (64), should not exceed the
inverse of this value.

κ κ = 1 κ =
√
2 κ =

√
10 κ =

√
50

eigenvalue
AD-LBR

8 4.27 2.06 1.06

eigenvalue
FD

8 6.22 5.06 4.85

eigenvalue
Q1

5.7 4.94 4.32 4.20

eigenvalue
WS

1 1 1 1

eigenvalue
W-NN

8 4.27 3.1 3.02

eigenvalue
A-NN

8 4.27 1.04 0.3

The analytical solution u0 of (63), applied to D0 and
v0, is known in the case of the infinite domain Ω = R2. In
Fourier domain all the coefficients are real and:

û0(ξ) = v̂0(ξ)/(1 + 〈ξ,D0ξ〉).

This separable problem is transformed using the following
diffeomorphism: for (x, y) ∈ Ω

f(x, y) = (x, y + α cos(2πx)).

The Jacobian of f is

J(x, y) =

(
1 0

−2πα sin(2πx) 1

)
We apply the different restoration schemes to the image
v = v0 ◦ f , and the following diffusion tensor:

D(z) = |det J(z)| J(z)−1 D0 (J(z)−1)T

= J(z)−1 D0 (J(z)−1)T =

(
1 s
s s2 + κ−2

)
,

where we denoted z = (x, y) ∈ Ω and s = 2πα sin(2πx).
The numerical solution is compared to the analytical func-
tion u = u0 ◦ f , which is the exact solution in the case of
the infinite domain Ω = R2. This numerical solution was
obtained on the bounded domain Ω = [0, 1[2, equipped
with reflecting boundary conditions. Numerical evidence
suggests that this change of domain and of boundary con-
ditions has only an anecdotic impact on the solution of
(63), with the parameters chosen in this test case.

We used α := 1/3 in the numerical experiments. The
maximum value of κ(D(x)), among all x ∈ Ω, is equivalent
to κmax := κ

√
1 + (2πα)2 ' 2.3κ.

4.3 Results for the synthetic test case

We present in Figure 10 the performance results of the
different schemes, for different values of the anisotropy κ,
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Figure 9: Left: image vana. Right: image v = vana ◦ f
transformed by the diffeomorphism f .

obtained on a series of grids of size ranging from 100×100
to 1200 × 1200. The anisotropy varies from κ = 2 to
κ = 10, which are relevant values for imaging applications,
see the numerical experiments in §4.4. The quality of a
scheme is measured by the L2 difference and the H1 semi-
norm difference between the numerical solution and the
analytical solution. Note that the error is concentrated
close to the discontinuity, since the solution tends rapidly
to a constant (0 or 1) far from the discontinuity. We chose
the smoothing parameter λ = 10−3 in (62). The linear
equation obtained by the discretization of (63) is solved
using Conjugate Gradient.

We also tested extreme anisotropies, κ ≥ 100 (thus
κmax ≥ 230), which can be relevant in physics related
applications. None of the tested schemes showed convinc-
ing results: methods based on fixed stencils fail because
the discrete operator looses positivity, while the AD-LBR
(and A-NN even more) suffers from under-sampling due
to the large radius of its stencils. We thus refer to [7]
for a radically different approach tailored for this setting.
This method introduces an auxiliary one-dimensional un-
known, which is constant on the field lines (obtained in a
preprocessing step) of the anisotropy direction field, and
varies orthogonally to them.

The performance advantage of the AD-LBR is particu-
larly clear when the error is measured in the H1 semi-
norm: for the anisotropy κ = 10 and the resolution
500 × 500, which are relevant values in image processing,
AD-LBR outperforms its alternatives by a factor ranging
from 3 to 5.

4.4 Coherence-enhancing diffusion

In order to document the interest of our discretization, we
implement Coherence-Enhancing Diffusion [25] using the
different numerical schemes at our disposal. The following
parabolic equation is considered:

∂tu = div(D(Jρ(∇uσ))∇u). (64)

This equation is non-linear since the diffusion tensor de-
pends on the solution u. This tensor also depends on four
user defined parameters σ, ρ, C ∈ R+, α ∈]0, 1[. Let Kσ
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Figure 10: Numerical results for the synthetic test case,
with different values of the anisotropy factor: κ = 2 (top
row), κ = 5 (middle row), κ = 10 (bottom row). Vertical
axis: relative error in L2 norm (left column), or H1 semi-
norm (right column), for the six schemes tested. Horizon-
tal axis: integer N , where the image resolution is N ×N .
Since the tested schemes are first order, numerical error is
expected to be proportional to N−1. Log-log scale.

(resp. Kρ), be the Gaussian kernel of variance σ (resp.
ρ). Define the convolution uσ := Kσ ? u, and the struc-
ture tensor Jρ := Kρ ? (∇uσ∇uTσ ). The diffusion tensor
D(Jρ) possesses the same eigenvectors (v1, v2) as Jρ, and
if the eigenvalues of Jρ are µ1 ≥ µ2 then the eigenvalues
of D(Jρ) are

λ1 := α

λ2 := α+ (1− α) exp

(
−C

(µ1 − µ2)2

)
.

This ensures that one smoothes preferably along the co-
herence direction v2, with a diffusivity that increases with
respect to the coherence (µ1−µ2)2. When the time param-
eter t becomes large, the image tends to a constant image,
therefore it is necessary to stop the process at some fi-
nite time T . The ratio of the eigenvalues is bounded by
λ2/λ1 ≤ 1/α, hence κ ≤ 1/

√
α.

We used an explicit time discretization for (64), with
time step ∆t. The image un+1 at time (n+1)∆t is defined

by the explicit equation:

un+1 − un

∆t
= div(D(Jρ(∇unσ))∇un).

The parameters used in our simulation were: σ = 0.5,
ρ = 4, C = 10−5, α = 10−2 and ∆t = 0.02. This gives
a maximum anisotropy of κ = 10. The algorithm was
applied to a fingerprint image. The results obtained for
T = 10 are shown in Figures 11 and 12, and they document
the ability of our scheme to close interrupted lines more
efficiently than the other schemes. The largest eigenvalue
of the discrete operator −div(D∇) at t = 0 is given in
Table 4 for the different schemes. As was already noticed
in the constant metric case, it turns out that AD-LBR
has the smallest eigenvalues among all schemes, except
for scheme WS. This property allows (although this was
not done in our numerical experiments) to use larger time
steps for AD-LBR than for the other schemes.

Note also that ridges are clearer, and valleys are darker,
using AD-LBR than with the other schemes. (Gray-scale
range is the same for all images, see also Figure 13). This
reflects the fact that AD-LBR avoids, better than the
other schemes, smoothing transversally to the orientation
encoded in the continuous anisotropic PDE (64).

Remark 4 (Computation time). Numerical solvers of the
parabolic PDE (64) combine three main components: (i)
Constructing the diffusion tensor. (ii) Assembling the dis-
cretization stencils and the operator sparse matrix. (iii)
Performing an explicit time step. Components (i) and
(ii) are executed exactly the same number of times, while
step (iii) is generally more frequent: in order to save CPU
time, one typically does not update the diffusion operator
at each time step. We produced a C++ implementation of
AD-LBR, within the Insight Toolkit open source library.
Although our code is neither parallel nor aggressively opti-
mized, we believe that comparing the CPU times for steps
(i), (ii) and (iii) is informative, and allows to estimate the
additional cost of AD-LBR which is essentially contained
in step (ii).

For our 2D Coherence-Enhancing Diffusion (CED) ex-
periment, on the 512 × 512 fingerprint image, (i) takes
0.21s, (ii) 0.027s, (iii) 0.005s. For our 3D CED Experi-
ment, on 100 × 100 × 100 synthetic data, (i) takes 1.35s,
(ii) 0.51s, (iii) 0.035s. In both cases, the AD-LBR specific
step (ii) is dominated by the construction of the diffusion
tensor (i). Step (ii) may also be dominated by the mere
cost (iii) of iterations, provided the operator is updated
less than once every 6 explicit steps in 2D (14 in 3D). To
our eyes, the limited additional cost (ii) of AD-LBR is ac-
ceptable in view of the strong theoretical guarantees, and
qualitative improvements, brought by this scheme.
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Table 4: Largest eigenvalue of the discretized operator
−div(D∇), where D = D(Jρ(∇uσ)) at t = 0.

scheme AD-LBR FD Q1 WS W-NN A-NN
eigenvalue 3.75 5.67 5.09 0.96 3.83 6.23

4.5 3-dimensional experiments

In order to illustrate the feasibility of our scheme in 3D
space, we present the action of anisotropic diffusion PDEs
on two examples. The first example is a 3D analog of the
synthetic test case presented in [27], featuring Coherence-
Enhancing Diffusion. The second one is the application of
Edge-Enhancing Diffusion to a MRI scan.

Synthetic example
The original, radially varying image is defined on the

cube [0, 1]3. The gray-level at a point x is defined by

u0(x) = cos
(
2(r/R)3

)
,

where r := |x| and R := 1/2. This image presents a series
of concentric level-sets. We present in Figure 14 the level
sets {u0 = 0}, and a slice through the plane z = 0.7.

The image u0 is perturbed by

u := u0 + n,

where n is an additive Gaussian noise of variance σ =
0.5. The reconstructed image is obtained using a 3D
Coherence-Enhancing Diffusion PDE [25], similar to the
2D one in section 4.4:

∂tu = div(D(Jρ(∇uσ))∇u),

where Jρ is the structure tensor defined by Jρ := Kρ ?
(∇uσ∇uTσ ), uσ := Kσ ?u. The tensor D(Jρ) possesses the
same eigenvectors (v1, v2, v3) as Jρ, and if the eigenvalues
of Jρ are µ1 ≥ µ2 ≥ µ3 then the eigenvalues of D(Jρ) are

λ1 := α

λ2 := α+ (1− α) exp

(
−C

(µ1 − µ2)2

)
,

λ3 := α+ (1− α) exp

(
−C

(µ1 − µ3)2

)
,

where α = 10−2. The anisotropy ratio is bounded by
κ = 1/

√
α = 10. We used the values σ = 0.5, ρ = 4. The

problem is discretized using 1003 voxels. We present in
Figure 14 the noisy image u (levelset 0 and planar slice)
and the result after 20 time-steps of ∆t = 10−3.

3D MRI data
The data is a 256×256×100 Magnetic Resonance Imag-

ing scan of a skull, and was obtained from the ”Univer-
sity of North Carolina Volume Rendering Test Data Set”
archive.

The reconstructed image is obtained using a 3D Edge-
Enhancing Diffusion PDE [25], which differs from the
above Coherence-Enhancing Diffusion one by the choice
of the diffusion tensor eigenvalues. The optimal choice of
these eigenvalues indeed depends on the application, and
is still an active subject of research [13]. With the above
notations, the eigenvalues of D(Jρ) are

λ1 := 1− exp

(
−C
µ2

1

)
λ2 := 1− exp

(
−C
µ2

2

)
,

λ3 := 1.

We used the values σ = 0.5, ρ = 4. In our experiment,
the maximum anisotropy ratio was κ = 11.2. We present
in Figure 15 the original image and two slices of the result
after 10 time-steps of ∆t = 10−4.

Conclusion

We introduced in this paper a new numerical scheme, AD-
LBR, for anisotropic diffusion in image processing. This
scheme is non-negative, and its stencils have a limited sup-
port: 6 points in 2D, 12 points in 3D. The former property
implies that our scheme respects the maximum principle of
Alvarez, Guichard, Lions and Morel, which is an essential
feature of parabolic PDEs.

AD-LBR outperformed all tested alternatives in a quan-
titative numerical experiment: a test case in which approx-
imate numerical solutions are compared against a known
analytical solution. In a second qualitative test case, dif-
ferent schemes were used to enhance a fingerprint image.
Our scheme appears here to close more efficiently the lines
of the fingerprint, and to diffuse less orthogonally to the
lines. This is precisely the purpose of the implemented
PDE, coherence enhancing diffusion. We also presented a
3-dimensional implementation as a proof of feasibility.

The construction of the stencils of the AD-LBR is
both original and non-trivial. The computational load
for this aspect of the algorithm is fortunately not dom-
inant, thanks to the use of a tool from discrete geometry:
lattice basis reduction. The AD-LBR also allows to use
larger time steps than most of its counterparts, in explicit
discretizations of parabolic equations.

AD-LBR trivially extends to vector valued and matrix
valued images, by applying it on each image component
independently. (In other words, the coupling between im-
age components lies in the construction of the common
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Figure 14: Levelset 0 (top) and slice (bottom) of a 3D image. Original (left), noisy (center), and reconstructed (right)
images. Slice in the plane z = 0.7, with values clipped to the range [−1.3, 1.3].
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Figure 15: Top: MRI data. Bottom: Data processed via 3D Edge Enhancing diffusion, using AD-LBR. Left: 3D
rendering of the original volume data and the processed volume, the 3D rendering was obtained using ImageJ 3D
viewer [21] (the effect of anisotropic diffusion is not much visible in this first representation). Center: slice of the
original and processed volume. Right: details of the original and processed slices.
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diffusion tensor D, which AD-LBR regards as user input.)
Future work will be devoted to the application of AD-LBR
to the regularization of diffusion tensor fields, arising for
instance from diffusion MRI, for which we expect it to
be particularly appropriate: thanks to the scheme non-
negativity, positive-definiteness is naturally preserved.
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Figure 11: From top to bottom and from left to right:
Original image (with two regions highlighted); diffused
image using AD-LBR; FD; Q1; WS; W-NN; A-NN. Here
T = 10.
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Figure 12: Detail of the region on the right. From top
to bottom and from left to right: original image; diffused
image using AD-LBR; FD; Q1; WS; W-NN; A-NN.
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Figure 13: Evolution under CED of a section of the finger-
print image. The ridges in the evolved image are higher,
and the valleys are deeper, with AD-LBR than with the
other schemes. This illustrates the fact that AD-LBR,
respecting the continuous PDE, diffuses more along the
structure and less in the orthogonal direction. From top
to bottom: location of the section of the image; section at
T = 10; section at T = 50; section at T = 100.
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